Science.gov

Sample records for decision tree ensembles

  1. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  2. Creating Ensembles of Decision Trees Through Sampling

    SciTech Connect

    Kamath,C; Cantu-Paz, E

    2001-07-26

    Recent work in classification indicates that significant improvements in accuracy can be obtained by growing an ensemble of classifiers and having them vote for the most popular class. This paper focuses on ensembles of decision trees that are created with a randomized procedure based on sampling. Randomization can be introduced by using random samples of the training data (as in bagging or boosting) and running a conventional tree-building algorithm, or by randomizing the induction algorithm itself. The objective of this paper is to describe the first experiences with a novel randomized tree induction method that uses a sub-sample of instances at a node to determine the split. The empirical results show that ensembles generated using this approach yield results that are competitive in accuracy and superior in computational cost to boosting and bagging.

  3. Improving ensemble decision tree performance using Adaboost and Bagging

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie

    2015-12-01

    Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.

  4. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  5. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    DOEpatents

    Cantu-Paz, Erick; Kamath, Chandrika

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  6. Identifying representative trees from ensembles.

    PubMed

    Banerjee, Mousumi; Ding, Ying; Noone, Anne-Michelle

    2012-07-10

    Tree-based methods have become popular for analyzing complex data structures where the primary goal is risk stratification of patients. Ensemble techniques improve the accuracy in prediction and address the instability in a single tree by growing an ensemble of trees and aggregating. However, in the process, individual trees get lost. In this paper, we propose a methodology for identifying the most representative trees in an ensemble on the basis of several tree distance metrics. Although our focus is on binary outcomes, the methods are applicable to censored data as well. For any two trees, the distance metrics are chosen to (1) measure similarity of the covariates used to split the trees; (2) reflect similar clustering of patients in the terminal nodes of the trees; and (3) measure similarity in predictions from the two trees. Whereas the latter focuses on prediction, the first two metrics focus on the architectural similarity between two trees. The most representative trees in the ensemble are chosen on the basis of the average distance between a tree and all other trees in the ensemble. Out-of-bag estimate of error rate is obtained using neighborhoods of representative trees. Simulations and data examples show gains in predictive accuracy when averaging over such neighborhoods. We illustrate our methods using a dataset of kidney cancer treatment receipt (binary outcome) and a second dataset of breast cancer survival (censored outcome).

  7. Approximate Splitting for Ensembles of Trees using Histograms

    SciTech Connect

    Kamath, C; Cantu-Paz, E; Littau, D

    2001-09-28

    Recent work in classification indicates that significant improvements in accuracy can be obtained by growing an ensemble of classifiers and having them vote for the most popular class. Implicit in many of these techniques is the concept of randomization that generates different classifiers. In this paper, they focus on ensembles of decision trees that are created using a randomized procedure based on histograms. Techniques, such as histograms, that discretize continuous variables, have long been used in classification to convert the data into a form suitable for processing and to reduce the compute time. The approach combines the ideas behind discretization through histograms and randomization in ensembles to create decision trees by randomly selecting a split point in an interval around the best bin boundary in the histogram. The experimental results with public domain data show that ensembles generated using this approach are competitive in accuracy and superior in computational cost to other ensembles techniques such as boosting and bagging.

  8. Lazy decision trees

    SciTech Connect

    Friedman, J.H.; Yun, Yeogirl; Kohavi, R.

    1996-12-31

    Lazy learning algorithms, exemplified by nearest-neighbor algorithms, do not induce a concise hypothesis from a given training set; the inductive process is delayed until a test instance is given. Algorithms for constructing decision trees, such as C4.5, ID3, and CART create a single {open_quotes}best{close_quotes} decision tree during the training phase, and this tree is then used to classify test instances. The tests at the nodes of the constructed tree are good on average, but there may be better tests for classifying a specific instance. We propose a lazy decision tree algorithm-LazyDT-that conceptually constructs the {open_quotes}best{close_quote} decision tree for each test instance. In practice, only a path needs to be constructed, and a caching scheme makes the algorithm fast. The algorithm is robust with respect to missing values without resorting to the complicated methods usually seen in induction of decision trees. Experiments on real and artificial problems are presented.

  9. Boosted Decision Trees and Applications

    NASA Astrophysics Data System (ADS)

    Coadou, Yann

    2013-07-01

    Decision trees are a machine learning technique more and more commonly used in high energy physics, while it has been widely used in the social sciences. After introducing the concepts of decision trees, this article focuses on its application in particle physics.

  10. Human decision error (HUMDEE) trees

    SciTech Connect

    Ostrom, L.T.

    1993-08-01

    Graphical presentations of human actions in incident and accident sequences have been used for many years. However, for the most part, human decision making has been underrepresented in these trees. This paper presents a method of incorporating the human decision process into graphical presentations of incident/accident sequences. This presentation is in the form of logic trees. These trees are called Human Decision Error Trees or HUMDEE for short. The primary benefit of HUMDEE trees is that they graphically illustrate what else the individuals involved in the event could have done to prevent either the initiation or continuation of the event. HUMDEE trees also present the alternate paths available at the operator decision points in the incident/accident sequence. This is different from the Technique for Human Error Rate Prediction (THERP) event trees. There are many uses of these trees. They can be used for incident/accident investigations to show what other courses of actions were available and for training operators. The trees also have a consequence component so that not only the decision can be explored, also the consequence of that decision.

  11. Weighted Hybrid Decision Tree Model for Random Forest Classifier

    NASA Astrophysics Data System (ADS)

    Kulkarni, Vrushali Y.; Sinha, Pradeep K.; Petare, Manisha C.

    2016-06-01

    Random Forest is an ensemble, supervised machine learning algorithm. An ensemble generates many classifiers and combines their results by majority voting. Random forest uses decision tree as base classifier. In decision tree induction, an attribute split/evaluation measure is used to decide the best split at each node of the decision tree. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation among them. The work presented in this paper is related to attribute split measures and is a two step process: first theoretical study of the five selected split measures is done and a comparison matrix is generated to understand pros and cons of each measure. These theoretical results are verified by performing empirical analysis. For empirical analysis, random forest is generated using each of the five selected split measures, chosen one at a time. i.e. random forest using information gain, random forest using gain ratio, etc. The next step is, based on this theoretical and empirical analysis, a new approach of hybrid decision tree model for random forest classifier is proposed. In this model, individual decision tree in Random Forest is generated using different split measures. This model is augmented by weighted voting based on the strength of individual tree. The new approach has shown notable increase in the accuracy of random forest.

  12. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769

  13. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  14. Decision tree modeling using R

    PubMed Central

    2016-01-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769

  15. [Decision trees in psychiatric therapy].

    PubMed

    Dantchev, N

    1996-01-01

    The main objective of decision analysis is to offer a theoretical representation of choices made in an environment of uncertainty. This technique is currently under development in a great variety of fields, particularly in medicine, where aid in decision making is the topic of much research. Psychiatry, in turn, is very much concerned by these new developments which could be of particular interest to therapeutics-an area where the large number of studies and date are in great contrast with the lack of consensus concerning the various solutions proposed to patients. Decision analysis utilizes different techniques among which are decision trees. The technique of decision trees goes far beyond a simple graphic representation of reasoning in the form of a chart. Its basic principles is to measure the uncertainty associated with decision making in the hopes of better understanding the rationale of decisions while optimizing the gain versus cost ratio. The goal is to calculate, within a series of decisions, the weight of their importance expressed in terms of usefulness or unpleasantness. In psychiatric therapeutics, only three studies have been published which incorporate the technique of decision trees. Two of these deal with treating depression (Schulberg et al., 1989; Koenig et al., 1993) while the third deals with schizophrenia (Hatcher, 1995). The limits of these techniques are, on one hand, due to their feasibility in that their complexity renders them inapplicable when a great number of variables have to be taken into account or when the amount of necessary data is still insufficient. Moreover, the use of these techniques remains relatively restricted as their expansion depends upon their acceptance by clinical physicians. Also, their use raises questions as to what extent it is possible to rationalize decisions in psychiatry. From a larger perspective, one must consider that these techniques may eventually furnish certain elements which could be integrated to

  16. Extensions and applications of ensemble-of-trees methods in machine learning

    NASA Astrophysics Data System (ADS)

    Bleich, Justin

    Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to generate the fits. These new probability model-based approaches show much promise versus their algorithmic counterparts, but also offer substantial room for improvement. The first part of this thesis focuses on methodological advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust implementation of BART for both research and application. We then develop a principled approach to variable selection for BART as well as the ability to naturally incorporate prior information on important covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive structure of decision trees and does not require imputation. Last, we relax the assumption of homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity. The second part of this thesis returns to the classic algorithmic approaches in the context of classification problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of

  17. Bayesian Evidence Framework for Decision Tree Learning

    NASA Astrophysics Data System (ADS)

    Chatpatanasiri, Ratthachat; Kijsirikul, Boonserm

    2005-11-01

    This work is primary interested in the problem of, given the observed data, selecting a single decision (or classification) tree. Although a single decision tree has a high risk to be overfitted, the induced tree is easily interpreted. Researchers have invented various methods such as tree pruning or tree averaging for preventing the induced tree from overfitting (and from underfitting) the data. In this paper, instead of using those conventional approaches, we apply the Bayesian evidence framework of Gull, Skilling and Mackay to a process of selecting a decision tree. We derive a formal function to measure `the fitness' for each decision tree given a set of observed data. Our method, in fact, is analogous to a well-known Bayesian model selection method for interpolating noisy continuous-value data. As in regression problems, given reasonable assumptions, this derived score function automatically quantifies the principle of Ockham's razor, and hence reasonably deals with the issue of underfitting-overfitting tradeoff.

  18. Ensemble survival trees for identifying subpopulations in personalized medicine.

    PubMed

    Chen, Yu-Chuan; Chen, James J

    2016-09-01

    Recently, personalized medicine has received great attention to improve safety and effectiveness in drug development. Personalized medicine aims to provide medical treatment that is tailored to the patient's characteristics such as genomic biomarkers, disease history, etc., so that the benefit of treatment can be optimized. Subpopulations identification is to divide patients into several different subgroups where each subgroup corresponds to an optimal treatment. For two subgroups, traditionally the multivariate Cox proportional hazards model is fitted and used to calculate the risk score when outcome is survival time endpoint. Median is commonly chosen as the cutoff value to separate patients. However, using median as the cutoff value is quite subjective and sometimes may be inappropriate in situations where data are imbalanced. Here, we propose a novel tree-based method that adopts the algorithm of relative risk trees to identify subgroup patients. After growing a relative risk tree, we apply k-means clustering to group the terminal nodes based on the averaged covariates. We adopt an ensemble Bagging method to improve the performance of a single tree since it is well known that the performance of a single tree is quite unstable. A simulation study is conducted to compare the performance between our proposed method and the multivariate Cox model. The applications of our proposed method to two public cancer data sets are also conducted for illustration. PMID:27073016

  19. From Family Trees to Decision Trees.

    ERIC Educational Resources Information Center

    Trobian, Helen R.

    This paper is a preliminary inquiry by a non-mathematician into graphic methods of sequential planning and ways in which hierarchical analysis and tree structures can be helpful in developing interest in the use of mathematical modeling in the search for creative solutions to real-life problems. Highlights include a discussion of hierarchical…

  20. Learning Decision Trees over Erasing Pattern Languages

    NASA Astrophysics Data System (ADS)

    Mukouchi, Yasuhito; Sato, Masako

    2008-07-01

    In this paper, we consider a learning problem of decision trees over erasing patterns from positive examples in the framework of identification in the limit due to Gold and Angluin. An erasing pattern is a string pattern with constant symbols and erasable variables. A decision tree over erasing patterns can be applied to identify or express transmembrane domains of amino acid sequences, and gives intuitive knowledge expressions. We first show that the ordinary decision trees with height 1 over erasing regular patterns are learnable but those with height at most 2 are not learnable from positive examples. Then we introduce a co-pattern pc for an erasing pattern p, and we redefine the language of a decision tree over erasing patterns as a language obtainable by finitely many applications of union operations and intersection operations to the languages of erasing patterns and co-patterns. Under the new definition of decision trees, we show that these decision trees with height at most n are learnable from positive examples. Moreover, we investigate efficient learning algorithms for decision trees with height 1. Terada et al. discussed the same problem for decision trees over nonerasing patterns, and the results obtained in the present work are natural extensions of Terada's results.

  1. Decision Tree Technique for Particle Identification

    SciTech Connect

    Quiller, Ryan

    2003-09-05

    Particle identification based on measurements such as the Cerenkov angle, momentum, and the rate of energy loss per unit distance (-dE/dx) is fundamental to the BaBar detector for particle physics experiments. It is particularly important to separate the charged forms of kaons and pions. Currently, the Neural Net, an algorithm based on mapping input variables to an output variable using hidden variables as intermediaries, is one of the primary tools used for identification. In this study, a decision tree classification technique implemented in the computer program, CART, was investigated and compared to the Neural Net over the range of momenta, 0.25 GeV/c to 5.0 GeV/c. For a given subinterval of momentum, three decision trees were made using different sets of input variables. The sensitivity and specificity were calculated for varying kaon acceptance thresholds. This data was used to plot Receiver Operating Characteristic curves (ROC curves) to compare the performance of the classification methods. Also, input variables used in constructing the decision trees were analyzed. It was found that the Neural Net was a significant contributor to decision trees using dE/dx and the Cerenkov angle as inputs. Furthermore, the Neural Net had poorer performance than the decision tree technique, but tended to improve decision tree performance when used as an input variable. These results suggest that the decision tree technique using Neural Net input may possibly increase accuracy of particle identification in BaBar.

  2. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  3. Support Vector Machine with Ensemble Tree Kernel for Relation Extraction.

    PubMed

    Liu, Xiaoyong; Fu, Hui; Du, Zhiguo

    2016-01-01

    Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966

  4. Support Vector Machine with Ensemble Tree Kernel for Relation Extraction

    PubMed Central

    Fu, Hui; Du, Zhiguo

    2016-01-01

    Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966

  5. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. Rasoul; Landgrebe, David

    1990-01-01

    Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  6. Parallel object-oriented decision tree system

    DOEpatents

    Kamath; Chandrika , Cantu-Paz; Erick

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  7. Bayesian Ensemble Trees (BET) for Clustering and Prediction in Heterogeneous Data

    PubMed Central

    Duan, Leo L.; Clancy, John P.; Szczesniak, Rhonda D.

    2016-01-01

    We propose a novel “tree-averaging” model that utilizes the ensemble of classification and regression trees (CART). Each constituent tree is estimated with a subset of similar data. We treat this grouping of subsets as Bayesian Ensemble Trees (BET) and model them as a Dirichlet process. We show that BET determines the optimal number of trees by adapting to the data heterogeneity. Compared with the other ensemble methods, BET requires much fewer trees and shows equivalent prediction accuracy using weighted averaging. Moreover, each tree in BET provides variable selection criterion and interpretation for each subset. We developed an efficient estimating procedure with improved estimation strategies in both CART and mixture models. We demonstrate these advantages of BET with simulations and illustrate the approach with a real-world data example involving regression of lung function measurements obtained from patients with cystic fibrosis. Supplemental materials are available online. PMID:27524872

  8. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  9. Prediction of regional streamflow frequency using model tree ensembles

    NASA Astrophysics Data System (ADS)

    Schnier, Spencer; Cai, Ximing

    2014-09-01

    This study introduces a novel data-driven method called model tree ensembles (MTEs) to predict streamflow frequency statistics based on known drainage area characteristics, which yields insights into the dominant controls of regional streamflow. The database used to induce the models contains both natural and anthropogenic drainage area characteristics for 294 USGS stream gages (164 in Texas and 130 in Illinois). MTEs were used to predict complete flow duration curves (FDCs) of ungaged streams by developing 17 models corresponding to 17 points along the FDC. Model accuracy was evaluated using ten-fold cross-validation and the coefficient of determination (R2). During the validation, the gages withheld from the analysis represent ungaged watersheds. MTEs are shown to outperform global multiple-linear regression models for predictions in ungaged watersheds. The accuracy of models for low flow is enhanced by explicit consideration of variables that capture human interference in watershed hydrology (e.g., population). Human factors (e.g., population and groundwater use) appear in the regionalizations for low flows, while annual and seasonal precipitation and drainage area are important for regionalizations of all flows. The results of this study have important implications for predictions in ungaged watersheds as well as gaged watersheds subject to anthropogenically-driven hydrologic changes.

  10. Algorithms for optimal dyadic decision trees

    SciTech Connect

    Hush, Don; Porter, Reid

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  11. Decision Tree Modeling for Ranking Data

    NASA Astrophysics Data System (ADS)

    Yu, Philip L. H.; Wan, Wai Ming; Lee, Paul H.

    Ranking/preference data arises from many applications in marketing, psychology, and politics. We establish a new decision tree model for the analysis of ranking data by adopting the concept of classification and regression tree. The existing splitting criteria are modified in a way that allows them to precisely measure the impurity of a set of ranking data. Two types of impurity measures for ranking data are introduced, namelyg-wise and top-k measures. Theoretical results show that the new measures exhibit properties of impurity functions. In model assessment, the area under the ROC curve (AUC) is applied to evaluate the tree performance. Experiments are carried out to investigate the predictive performance of the tree model for complete and partially ranked data and promising results are obtained. Finally, a real-world application of the proposed methodology to analyze a set of political rankings data is presented.

  12. IND - THE IND DECISION TREE PACKAGE

    NASA Technical Reports Server (NTRS)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The

  13. Fuzzy decision trees: issues and methods.

    PubMed

    Janikow, C Z

    1998-01-01

    Decision trees are one of the most popular choices for learning and reasoning from feature-based examples. They have undergone a number of alterations to deal with language and measurement uncertainties. We present another modification, aimed at combining symbolic decision trees with approximate reasoning offered by fuzzy representation. The intent is to exploit complementary advantages of both: popularity in applications to learning from examples, high knowledge comprehensibility of decision trees, and the ability to deal with inexact and uncertain information of fuzzy representation. The merger utilizes existing methodologies in both areas to full advantage, but is by no means trivial. In particular, knowledge inferences must be newly defined for the fuzzy tree. We propose a number of alternatives, based on rule-based systems and fuzzy control. We also explore capabilities that the new framework provides. The resulting learning method is most suitable for stationary problems, with both numerical and symbolic features, when the goal is both high knowledge comprehensibility and gradually changing output. We describe the methodology and provide simple illustrations.

  14. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  15. An Application of Decision Tree Based on ID3

    NASA Astrophysics Data System (ADS)

    Xiaohu, Wang; Lele, Wang; Nianfeng, Li

    This article deals with the application of classical decision tree ID3 of the data mining in a certain site data. It constitutes a decision tree based on information gain and thus produces some useful purchasing behavior rules. It also proves that the decision tree has a wide applicable future in the sale field on site.

  16. CUDT: A CUDA Based Decision Tree Algorithm

    PubMed Central

    Sheu, Ruey-Kai; Chiu, Chun-Chieh

    2014-01-01

    Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture), which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set. PMID:25140346

  17. Using Decision Trees for Comparing Pattern Recognition Feature Sets

    SciTech Connect

    Proctor, D D

    2005-08-18

    Determination of the best set of features has been acknowledged as one of the most difficult tasks in the pattern recognition process. In this report significance tests on the sort-ordered, sample-size normalized vote distribution of an ensemble of decision trees is introduced as a method of evaluating relative quality of feature sets. Alternative functional forms for feature sets are also examined. Associated standard deviations provide the means to evaluate the effect of the number of folds, the number of classifiers per fold, and the sample size on the resulting classifications. The method is applied to a problem for which a significant portion of the training set cannot be classified unambiguously.

  18. Using attribute behavior diversity to build accurate decision tree committees for microarray data.

    PubMed

    Han, Qian; Dong, Guozhu

    2012-08-01

    DNA microarrays (gene chips), frequently used in biological and medical studies, measure the expressions of thousands of genes per sample. Using microarray data to build accurate classifiers for diseases is an important task. This paper introduces an algorithm, called Committee of Decision Trees by Attribute Behavior Diversity (CABD), to build highly accurate ensembles of decision trees for such data. Since a committee's accuracy is greatly influenced by the diversity among its member classifiers, CABD uses two new ideas to "optimize" that diversity, namely (1) the concept of attribute behavior-based similarity between attributes, and (2) the concept of attribute usage diversity among trees. The ideas are effective for microarray data, since such data have many features and behavior similarity between genes can be high. Experiments on microarray data for six cancers show that CABD outperforms previous ensemble methods significantly and outperforms SVM, and show that the diversified features used by CABD's decision tree committee can be used to improve performance of other classifiers such as SVM. CABD has potential for other high-dimensional data, and its ideas may apply to ensembles of other classifier types. PMID:22809418

  19. Coherent neuronal ensembles are rapidly recruited when making a look-reach decision

    PubMed Central

    Wong, Yan T.; Fabiszak, Margaret M.; Novikov, Yevgeny; Daw, Nathaniel D.; Pesaran, Bijan

    2015-01-01

    Summary Selecting and planning actions recruits neurons across many areas of the brain but how ensembles of neurons work together to make decisions is unknown. Temporally-coherent neural activity may provide a mechanism by which neurons coordinate their activity in order to make decisions. If so, neurons that are part of coherent ensembles may predict movement choices before other ensembles of neurons. We recorded neuronal activity in the lateral and medial banks of the intraparietal sulcus (IPS) of the posterior parietal cortex, while monkeys made choices about where to look and reach and decoded the activity to predict the choices. Ensembles of neurons that displayed coherent patterns of spiking activity extending across the IPS, “dual coherent” ensembles, predicted movement choices substantially earlier than other neuronal ensembles. We propose that dual-coherent spike timing reflects interactions between groups of neurons that play an important role in how we make decisions. PMID:26752158

  20. Accounting for Epistemic Uncertainty in PSHA: Logic Tree and Ensemble Model

    NASA Astrophysics Data System (ADS)

    Taroni, Matteo; Marzocchi, Warner; Selva, Jacopo

    2014-05-01

    The logic tree scheme is the probabilistic framework that has been widely used in the last decades to take into account epistemic uncertainties in probabilistic seismic hazard analysis (PSHA). Notwithstanding the vital importance for PSHA to incorporate properly the epistemic uncertainties, we argue that the use of the logic tree in a PSHA context has conceptual and practical drawbacks. Despite some of these drawbacks have been reported in the past, a careful evaluation of their impact on PSHA is still lacking. This is the goal of the present work. In brief, we show that i) PSHA practice does not meet the assumptions that stand behind the logic tree scheme; ii) the output of a logic tree is often misinterpreted and/or misleading, e.g., the use of percentiles (median included) in a logic tree scheme raises theoretical difficulties from a probabilistic point of view; iii) in case the assumptions that stand behind a logic tree are actually met, this leads to several problems in testing any PSHA model. We suggest a different strategy - based on ensemble modeling - to account for epistemic uncertainties in a more proper probabilistic framework. Finally, we show that in many PSHA practical applications, the logic tree is improperly applied to build sound ensemble models.

  1. Accounting for Epistemic Uncertainty in PSHA: Logic Tree and Ensemble Model

    NASA Astrophysics Data System (ADS)

    Taroni, M.; Marzocchi, W.; Selva, J.

    2014-12-01

    The logic tree scheme is the probabilistic framework that has been widely used in the last decades to take into account epistemic uncertainties in probabilistic seismic hazard analysis (PSHA). Notwithstanding the vital importance for PSHA to incorporate properly the epistemic uncertainties, we argue that the use of the logic tree in a PSHA context has conceptual and practical drawbacks. Despite some of these drawbacks have been reported in the past, a careful evaluation of their impact on PSHA is still lacking. This is the goal of the present work. In brief, we show that i) PSHA practice does not meet the assumptions that stand behind the logic tree scheme; ii) the output of a logic tree is often misinterpreted and/or misleading, e.g., the use of percentiles (median included) in a logic tree scheme raises theoretical difficulties from a probabilistic point of view; iii) in case the assumptions that stand behind a logic tree are actually met, this leads to several problems in testing any PSHA model. We suggest a different strategy - based on ensemble modeling - to account for epistemic uncertainties in a more proper probabilistic framework. Finally, we show that in many PSHA practical applications, the logic tree is de facto loosely applied to build sound ensemble models.

  2. Application of portfolio theory in decision tree analysis.

    PubMed

    Galligan, D T; Ramberg, C; Curtis, C; Ferguson, J; Fetrow, J

    1991-07-01

    A general application of portfolio analysis for herd decision tree analysis is described. In the herd environment, this methodology offers a means of employing population-based decision strategies that can help the producer control economic variation in expected return from a given set of decision options. An economic decision tree model regarding the use of prostaglandin in dairy cows with undetected estrus was used to determine the expected return of the decisions to use prostaglandin and breed on a timed basis, use prostaglandin and then breed on sign of estrus, or breed on signs of estrus. The risk attributes of these decision alternatives were calculated from the decision tree, and portfolio theory was used to find the efficient decision combinations (portfolios with the highest return for a given variance). The resulting combinations of decisions could be used to control return variation.

  3. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000...

  4. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000...

  5. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000...

  6. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000...

  7. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000...

  8. Decision-Tree Formulation With Order-1 Lateral Execution

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive

  9. Computational study of developing high-quality decision trees

    NASA Astrophysics Data System (ADS)

    Fu, Zhiwei

    2002-03-01

    Recently, decision tree algorithms have been widely used in dealing with data mining problems to find out valuable rules and patterns. However, scalability, accuracy and efficiency are significant concerns regarding how to effectively deal with large and complex data sets in the implementation. In this paper, we propose an innovative machine learning approach (we call our approach GAIT), combining genetic algorithm, statistical sampling, and decision tree, to develop intelligent decision trees that can alleviate some of these problems. We design our computational experiments and run GAIT on three different data sets (namely Socio- Olympic data, Westinghouse data, and FAA data) to test its performance against standard decision tree algorithm, neural network classifier, and statistical discriminant technique, respectively. The computational results show that our approach outperforms standard decision tree algorithm profoundly at lower sampling levels, and achieves significantly better results with less effort than both neural network and discriminant classifiers.

  10. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure. PMID:26120265

  11. An Ensemble of Neural Networks for Stock Trading Decision Making

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Liu, Chen-Hao; Fan, Chin-Yuan; Lin, Jun-Lin; Lai, Chih-Ming

    Stock turning signals detection are very interesting subject arising in numerous financial and economic planning problems. In this paper, Ensemble Neural Network system with Intelligent Piecewise Linear Representation for stock turning points detection is presented. The Intelligent piecewise linear representation method is able to generate numerous stocks turning signals from the historic data base, then Ensemble Neural Network system will be applied to train the pattern and retrieve similar stock price patterns from historic data for training. These turning signals represent short-term and long-term trading signals for selling or buying stocks from the market which are applied to forecast the future turning points from the set of test data. Experimental results demonstrate that the hybrid system can make a significant and constant amount of profit when compared with other approaches using stock data available in the market.

  12. Operational optimization of irrigation scheduling for citrus trees using an ensemble based data assimilation approach

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H.; Han, X.; Martinez, F.; Jimenez, M.; Manzano, J.; Chanzy, A.; Vereecken, H.

    2013-12-01

    Data assimilation (DA) techniques, like the local ensemble transform Kalman filter (LETKF) not only offer the opportunity to update model predictions by assimilating new measurement data in real time, but also provide an improved basis for real-time (DA-based) control. This study focuses on the optimization of real-time irrigation scheduling for fields of citrus trees near Picassent (Spain). For three selected fields the irrigation was optimized with DA-based control, and for other fields irrigation was optimized on the basis of a more traditional approach where reference evapotranspiration for citrus trees was estimated using the FAO-method. The performance of the two methods is compared for the year 2013. The DA-based real-time control approach is based on ensemble predictions of soil moisture profiles, using the Community Land Model (CLM). The uncertainty in the model predictions is introduced by feeding the model with weather predictions from an ensemble prediction system (EPS) and uncertain soil hydraulic parameters. The model predictions are updated daily by assimilating soil moisture data measured by capacitance probes. The measurement data are assimilated with help of LETKF. The irrigation need was calculated for each of the ensemble members, averaged, and logistic constraints (hydraulics, energy costs) were taken into account for the final assigning of irrigation in space and time. For the operational scheduling based on this approach only model states and no model parameters were updated by the model. Other, non-operational simulation experiments for the same period were carried out where (1) neither ensemble weather forecast nor DA were used (open loop), (2) Only ensemble weather forecast was used, (3) Only DA was used, (4) also soil hydraulic parameters were updated in data assimilation and (5) both soil hydraulic and plant specific parameters were updated. The FAO-based and DA-based real-time irrigation control are compared in terms of soil moisture

  13. Automatic design of decision-tree algorithms with evolutionary algorithms.

    PubMed

    Barros, Rodrigo C; Basgalupp, Márcio P; de Carvalho, André C P L F; Freitas, Alex A

    2013-01-01

    This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms. The proposed hyper-heuristic evolutionary algorithm, HEAD-DT, is extensively tested using 20 public UCI datasets and 10 microarray gene expression datasets. The algorithms automatically designed by HEAD-DT are compared with traditional decision-tree induction algorithms, such as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating algorithms which are significantly more accurate than C4.5 and CART.

  14. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers.

    PubMed

    Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis

    2013-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.

  15. Generating the Simple Decision Tree with Symbiotic Evolution

    NASA Astrophysics Data System (ADS)

    Otani, Noriko; Shimura, Masamichi

    In representing classification rules by decision trees, simplicity of tree structure is as important as predictive accuracy especially in consideration of the comprehensibility to a human, the memory capacity and the time required to classify. Trees tend to be complex when they get high accuracy. This paper proposes a novel method for generating accurate and simple decision trees based on symbiotic evolution. It is distinctive of symbiotic evolution that two different populations are evolved in parallel through genetic algorithms. In our method one's individuals are partial trees of height 1, and the other's individuals are whole trees represented by the combinations of the former individuals. Generally, overfitting to training examples prevents getting high predictive accuracy. In order to circumvent this difficulty, individuals are evaluated with not only the accuracy in training examples but also the correct answer biased rate indicating the dispersion of the correct answers in the terminal nodes. Based on our method we developed a system called SESAT for generating decision trees. Our experimental results show that SESAT compares favorably with other systems on several datasets in the UCI repository. SESAT has the ability to generate more simple trees than C5.0 without sacrificing predictive accuracy.

  16. RNA search with decision trees and partial covariance models.

    PubMed

    Smith, Jennifer A

    2009-01-01

    The use of partial covariance models to search for RNA family members in genomic sequence databases is explored. The partial models are formed from contiguous subranges of the overall RNA family multiple alignment columns. A binary decision-tree framework is presented for choosing the order to apply the partial models and the score thresholds on which to make the decisions. The decision trees are chosen to minimize computation time subject to the constraint that all of the training sequences are passed to the full covariance model for final evaluation. Computational intelligence methods are suggested to select the decision tree since the tree can be quite complex and there is no obvious method to build the tree in these cases. Experimental results from seven RNA families shows execution times of 0.066-0.268 relative to using the full covariance model alone. Tests on the full sets of known sequences for each family show that at least 95 percent of these sequences are found for two families and 100 percent for five others. Since the full covariance model is run on all sequences accepted by the partial model decision tree, the false alarm rate is at least as low as that of the full model alone.

  17. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    ERIC Educational Resources Information Center

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  18. Decision trees for symbolic knowledge based on contingency table analysis

    NASA Astrophysics Data System (ADS)

    Rauber, Thomas W.; Steiger-Garcao, A. S.

    1993-09-01

    In this paper we point out an alternative basis for splitting a node of a decision tree. We use exactly the same framework of the tree generation as ID3 does, in order to be able to compare the results properly. The splitting of the sample set is also done locally at a tree node, without considering earlier decisions about the partition of the samples. Only one attribute is used to split the samples. We point out different splitting criteria. Contingency tables are a technique in nonparametric statistics to analyze categorical (symbolic) populations. Among other useful applications of contingency tables, dependence tests between rows and columns of the table can be performed. A sample set is inserted into a contingency table with classes as columns and all values of an attribute as rows. A variety of measurements of dependence can then be derived. Results in respect to the two most important qualities of decision trees, the error rate and tree complexity, are presented. For a set of selected benchmark examples the performance of ID3 and the contingency table approach are compared. It is shown that in many cases the contingency table method exhibits lower estimated error rates or has less nodes for the generated decision tree.

  19. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  20. Taste-Guided Decisions Differentially Engage Neuronal Ensembles across Gustatory Cortices

    PubMed Central

    MacDonald, Christopher J.; Meck, Warren H.; Simon, Sidney A.; Nicolelis, Miguel A.L.

    2009-01-01

    Much remains to be understood about the differential contributions from primary and secondary sensory cortices to sensory guided decision making. To address this issue we simultaneously recorded activity from neuronal ensembles in primary (gustatory cortex – GC) and secondary gustatory (orbitofrontal cortex – OFC) cortices while rats made a taste-guided decision between two response alternatives. We found that before animals commenced a response guided by a tastant cue, GC ensembles contained more information than OFC about the response alternative about to be selected. Thereafter, while the animal’s response was underway the response selective information in ensembles from both regions increased, albeit to a greater degree in OFC. In GC, this increase depends on a representation of the taste cue guiding the animal‘s response. The increase in the OFC also depends on the taste cue guiding and other features of the response such as its spatiomotor properties and the behavioral context under which it is executed. Each of these latter features is encoded by different ensembles of OFC neurons that are recruited at specific times throughout the response selection process. These results indicate that during a taste-guided decision task both primary and secondary gustatory cortices dynamically encode different types of information. PMID:19741134

  1. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  2. Automatic sleep staging using state machine-controlled decision trees.

    PubMed

    Imtiaz, Syed Anas; Rodriguez-Villegas, Esther

    2015-01-01

    Automatic sleep staging from a reduced number of channels is desirable to save time, reduce costs and make sleep monitoring more accessible by providing home-based polysomnography. This paper introduces a novel algorithm for automatic scoring of sleep stages using a combination of small decision trees driven by a state machine. The algorithm uses two channels of EEG for feature extraction and has a state machine that selects a suitable decision tree for classification based on the prevailing sleep stage. Its performance has been evaluated using the complete dataset of 61 recordings from PhysioNet Sleep EDF Expanded database achieving an overall accuracy of 82% and 79% on training and test sets respectively. The algorithm has been developed with a very small number of decision tree nodes that are active at any given time making it suitable for use in resource-constrained wearable systems. PMID:26736278

  3. Automatic sleep staging using state machine-controlled decision trees.

    PubMed

    Imtiaz, Syed Anas; Rodriguez-Villegas, Esther

    2015-01-01

    Automatic sleep staging from a reduced number of channels is desirable to save time, reduce costs and make sleep monitoring more accessible by providing home-based polysomnography. This paper introduces a novel algorithm for automatic scoring of sleep stages using a combination of small decision trees driven by a state machine. The algorithm uses two channels of EEG for feature extraction and has a state machine that selects a suitable decision tree for classification based on the prevailing sleep stage. Its performance has been evaluated using the complete dataset of 61 recordings from PhysioNet Sleep EDF Expanded database achieving an overall accuracy of 82% and 79% on training and test sets respectively. The algorithm has been developed with a very small number of decision tree nodes that are active at any given time making it suitable for use in resource-constrained wearable systems.

  4. Multi-Model Long-Range Ensemble Forecast for Decision Support in Hydroelectric Operations

    NASA Astrophysics Data System (ADS)

    Kunkel, M. L.; Parkinson, S.; Blestrud, D.; Holbrook, V. P.

    2014-12-01

    Idaho Power Company (IPC) is a hydroelectric based utility serving over a million customers in southern Idaho and eastern Oregon. Hydropower makes up ~50% of our power generation and accurate predictions of streamflow and precipitation drive our long-term planning and decision support for operations. We investigate the use of a multi-model ensemble approach for mid and long-range streamflow and precipitation forecasts throughout the Snake River Basin. Forecast are prepared using an Idaho Power developed ensemble forecasting technique for 89 locations throughout the Snake River Basin for periods of 3 to 18 months in advance. A series of multivariable linear regression, multivariable non-linear regression and multivariable Kalman filter techniques are combined in an ensemble forecast based upon two data types, historical data (streamflow, precipitation, climate indices [i.e. PDO, ENSO, AO, etc…]) and single value decomposition derived values based upon atmospheric heights and sea surface temperatures.

  5. Comparing the decision-relevance and utility of alternative ensembles of climate projections in water management and other applications

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.; Tingstad, A.

    2015-12-01

    Decisions to manage the risks of climate change hinge, among many other things, on deeply uncertain and imperfect climate projections. Improving the decision relevance and utility of climate projections requires navigating a trade-off between increasing the physical realism of the model (often by improving the spatial resolution) and increasing the representation of decision-relevant uncertainties. This talk will examine the decision-relevance and utility of alternative ensembles of climate information by comparing two decision support applications, in water management and biodiversity perseveration, both in California. The climate ensembles will consist of different combinations of high and medium resolution projections from NARCCAP (North American Regional Climate Assessment Program) as well as low resolution, but more numerous, projections from the CMIP3 and CMIP5 ensembles. The decision support applications will use the same ensembles of climate projections in different contexts. Workshops with decision makers examine the extent to which the different ensembles lead to different decisions, the extent to which considering a wider range of uncertainty affects decisions, the extent to which decision makers' confidence in the projections and the decisions based on them will be sensitive to the resolution at which they are communicated and the resolution dependent skill, and how the answers to these questions varies with the water management and biodiversity contexts. This study aims to provide empirical evidence to support judgments on how best to use uncertainty climate information in water management and other decision support applications.

  6. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  7. Evaluation of Decision Trees for Cloud Detection from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Nemani, Ramakrishna

    2005-01-01

    Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.

  8. Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques

    NASA Astrophysics Data System (ADS)

    Acevedo, Walter; Reich, Sebastian; Cubasch, Ulrich

    2016-03-01

    This paper investigates the applicability of the Vaganov-Shashkin-Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) "switching recording" of 2 variables and (3) bounded response windows leading to "thresholded response". We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL's nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL's formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL's performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.

  9. Using Evolutionary Algorithms to Induce Oblique Decision Trees

    SciTech Connect

    Cantu-Paz, E.; Kamath, C.

    2000-01-21

    This paper illustrates the application of evolutionary algorithms (EAs) to the problem of oblique decision tree induction. The objectives are to demonstrate that EAs can find classifiers whose accuracy is competitive with other oblique tree construction methods, and that this can be accomplished in a shorter time. Experiments were performed with a (1+1) evolutionary strategy and a simple genetic algorithm on public domain and artificial data sets. The empirical results suggest that the EAs quickly find Competitive classifiers, and that EAs scale up better than traditional methods to the dimensionality of the domain and the number of training instances.

  10. The Decision-Identification Tree: A New NEPA Scoping Tool.

    PubMed

    Eccleston

    2000-10-01

    / No single methodology has been universally accepted for determining the appropriate scope of analysis for an environmental impact statement (EIS). Most typically, the scope of analysis is determined by first identifying actions and facilities that need to be analyzed. Once the scope of actions and facilities is identified, the scope of impacts is determined. Yet agencies sometimes complete an EIS only to discover that the analysis does not adequately support decisions that need to be made. Such discrepancies can often be traced to disconnects between scoping, the subsequent analysis, and the final decision-making process that follows. A new and markedly different approach-decision-based scoping-provides an effective methodology for improving the EIS scoping process. Decision-based scoping, in conjunction with a new tool, the decision-identification tree (DIT), places emphasis on first identifying the potential decisions that may eventually need to be made. The DIT provides a methodology for mapping alternative courses of action as a function of fundamental decision points. Once these decision points have been correctly identified, the range of actions, alternatives, and impacts can be more accurately assessed; this approach can improve the effectiveness of EIS planning, while reducing the risk of future disconnects between the EIS analysis and reaching a final decision. This approach also has applications in other planning disciplines beyond that of the EIS. PMID:10954809

  11. Decision trees can initialize radial-basis function networks.

    PubMed

    Kubat, M

    1998-01-01

    Successful implementations of radial-basis function (RBF) networks for classification tasks must deal with architectural issues, the burden of irrelevant attributes, scaling, and some other problems. This paper addresses these issues by initializing RBF networks with decision trees that define relatively pure regions in the instance space; each of these regions then determines one basis function. The resulting network is compact, easy to induce, and has favorable classification accuracy.

  12. Decision-relevant early-warning thresholds for ensemble flood forecasting systems

    NASA Astrophysics Data System (ADS)

    Stephens, Liz; Pappenberger, Florian; Cloke, Hannah; Alfieri, Lorenzo

    2014-05-01

    Over and under warning of potential future floods is problematic for decision-making, and could ultimately lead to trust being lost in the forecasts. The use of ensemble flood forecasting systems for early warning therefore requires a consideration of how to determine and implement decision-relevant thresholds for flood magnitude and probability. This study uses a year's worth of hindcasts from the Global Flood Awareness System (GloFAS) to explore the sensitivity of the warning system to the choice of threshold. We use a number of different methods for choosing these thresholds, building on current approaches that use model climatologies to determine the critical flow magnitudes, to those that can provide 'first guesses' of potential impacts (through integration with global-scale inundation mapping), as well as methods that could incorporate resource limitations.

  13. The xeroderma pigmentosum pathway: decision tree analysis of DNA quality.

    PubMed

    Naegeli, Hanspeter; Sugasawa, Kaoru

    2011-07-15

    The nucleotide excision repair (NER) system is a fundamental cellular stress response that uses only a handful of DNA binding factors, mutated in the cancer-prone syndrome xeroderma pigmentosum (XP), to detect an astounding diversity of bulky base lesions, including those induced by ultraviolet light, electrophilic chemicals, oxygen radicals and further genetic insults. Several of these XP proteins are characterized by a mediocre preference for damaged substrates over the native double helix but, intriguingly, none of them recognizes injured bases with sufficient selectivity to account for the very high precision of bulky lesion excision. Instead, substrate versatility as well as damage specificity and strand selectivity are achieved by a multistage quality control strategy whereby different subunits of the XP pathway, in succession, interrogate the DNA double helix for a distinct abnormality in its structural or dynamic parameters. Through this step-by-step filtering procedure, the XP proteins operate like a systematic decision making tool, generally known as decision tree analysis, to sort out rare damaged bases embedded in a vast excess of native DNA. The present review is focused on the mechanisms by which multiple XP subunits of the NER pathway contribute to the proposed decision tree analysis of DNA quality in eukaryotic cells. PMID:21684221

  14. An efficient tree classifier ensemble-based approach for pedestrian detection.

    PubMed

    Xu, Yanwu; Cao, Xianbin; Qiao, Hong

    2011-02-01

    Classification-based pedestrian detection systems (PDSs) are currently a hot research topic in the field of intelligent transportation. A PDS detects pedestrians in real time on moving vehicles. A practical PDS demands not only high detection accuracy but also high detection speed. However, most of the existing classification-based approaches mainly seek for high detection accuracy, while the detection speed is not purposely optimized for practical application. At the same time, the performance, particularly the speed, is primarily tuned based on experiments without theoretical foundations, leading to a long training procedure. This paper starts with measuring and optimizing detection speed, and then a practical classification-based pedestrian detection solution with high detection speed and training speed is described. First, an extended classification/detection speed metric, named feature-per-object (fpo), is proposed to measure the detection speed independently from execution. Then, an fpo minimization model with accuracy constraints is formulated based on a tree classifier ensemble, where the minimum fpo can guarantee the highest detection speed. Finally, the minimization problem is solved efficiently by using nonlinear fitting based on radial basis function neural networks. In addition, the optimal solution is directly used to instruct classifier training; thus, the training speed could be accelerated greatly. Therefore, a rapid and accurate classification-based detection technique is proposed for the PDS. Experimental results on urban traffic videos show that the proposed method has a high detection speed with an acceptable detection rate and a false-alarm rate for onboard detection; moreover, the training procedure is also very fast.

  15. Recognizing Human Activities Using Non-linear SVM Decision Tree

    NASA Astrophysics Data System (ADS)

    Zhao, Haiyong; Liu, Zhijing; Zhang, Hao

    This paper presents a new method of human activity recognition, which is based on R transform and non-linear SVM Decision Tree (NSVMDT). For a key binary human silhouette, R transform is employed to represent low-level features. The advantage of the R transform lies in its low computational complexity and geometric invariance. We utilize NSVMDT to train and classify video sequences, and demonstrate the usability with many sequences. Compared with other methods, ours is superior because the descriptor is robust to frame loss in superior because the descriptor is robust to frame loss in activities recognition, simple representation, computational complexity and template generalization. Sufficient experiments have proved the efficiency.

  16. Application of decision tree on land suitability analysis

    NASA Astrophysics Data System (ADS)

    Hou, Yajuan; Liu, Yaolin; Ren, Zhouqiao

    2008-12-01

    With increasing volume of data in modern science, there has been a rapid expansion of interests and researches on data mining, which is an increasingly popular tool in data analysis to obtain implicit knowledge. Decision Tree (DT), as one of widespread used classification approaches in data mining, is used successfully in many diverse areas. This paper attempts to show how to apply Decision Tree on land suitability analysis and make some conclusions for its application. Firstly, the approach of application of DT on Land Suitability and the popular learning algorithm is discussed. Then 3 towns' land units in Hainan province are selected as study case to demonstrate our approach by C4.5 implemented using C++ language, and the obtained results are compared to the results in the literature and are checked by random sample investigation. The major conclusion is that DT is suitable for land suitability analysis, by which a high veracity result can be obtained, and the obtained classifying knowledge is readable and can be interpreted well. In some sense, it can adjust knowledge by updated training dataset naturally and avoid the highly dependence with experience.

  17. Using decision trees to understand structure in missing data

    PubMed Central

    Tierney, Nicholas J; Harden, Fiona A; Harden, Maurice J; Mengersen, Kerrie L

    2015-01-01

    Objectives Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting Data taken from employees at 3 different industrial sites in Australia. Participants 7915 observations were included. Materials and methods The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions Researchers are encouraged to use CART and BRT models to explore and understand missing data. PMID:26124509

  18. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed.

  19. Ethical decision-making made easier. The use of decision trees in case management.

    PubMed

    Storl, H; DuBois, B; Seline, J

    1999-01-01

    Case managers have never before faced the multitude of difficult ethical dilemmas that now confront them daily. Legal, medical, social, and ethical considerations often fly in the face of previously reliable intuitions. The importance and urgency of facing these dilemmas head-on has resulted in clear calls for action. What are the appropriate legal, ethical, and professional parameters for effective decision making? Are normatively sensitive, but also practically sensible protocols possible? In an effort to address these concerns, Alternatives for the Older Adult, Inc., Rock Island, Illinois established an ethics committee to look into possible means of resolving or dissolving commonly occurring dilemmas. As a result of year-long deliberations, the committee formulated a decision-making strategy whose central apparatus is the decision tree--a flowchart of reasonable decisions and their consequent implications. In this article, we explore the development of this approach as well as the theory that underlies it. PMID:10695172

  20. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION

    SciTech Connect

    Vasconcellos, E. C.; Ruiz, R. S. R.; De Carvalho, R. R.; Capelato, H. V.; Gal, R. R.; LaBarbera, F. L.; Frago Campos Velho, H.; Trevisan, M.

    2011-06-15

    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 {<=} r {<=} 21 (85.2%) and r {>=} 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 {<=} r {<=} 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ({approx}2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 {<=} r {<=} 21.

  1. Applying an Ensemble Classification Tree Approach to the Prediction of Completion of a 12-Step Facilitation Intervention with Stimulant Abusers

    PubMed Central

    Doyle, Suzanne R.; Donovan, Dennis M.

    2014-01-01

    Aims The purpose of this study was to explore the selection of predictor variables in the evaluation of drug treatment completion using an ensemble approach with classification trees. The basic methodology is reviewed and the subagging procedure of random subsampling is applied. Methods Among 234 individuals with stimulant use disorders randomized to a 12-Step facilitative intervention shown to increase stimulant use abstinence, 67.52% were classified as treatment completers. A total of 122 baseline variables were used to identify factors associated with completion. Findings The number of types of self-help activity involvement prior to treatment was the predominant predictor. Other effective predictors included better coping self-efficacy for substance use in high-risk situations, more days of prior meeting attendance, greater acceptance of the Disease model, higher confidence for not resuming use following discharge, lower ASI Drug and Alcohol composite scores, negative urine screens for cocaine or marijuana, and fewer employment problems. Conclusions The application of an ensemble subsampling regression tree method utilizes the fact that classification trees are unstable but, on average, produce an improved prediction of the completion of drug abuse treatment. The results support the notion there are early indicators of treatment completion that may allow for modification of approaches more tailored to fitting the needs of individuals and potentially provide more successful treatment engagement and improved outcomes. PMID:25134038

  2. Classification of Subcellular Phenotype Images by Decision Templates for Classifier Ensemble

    NASA Astrophysics Data System (ADS)

    Zhang, Bailing

    2010-01-01

    Subcellular localization is a key functional characteristic of proteins. An automatic, reliable and efficient prediction system for protein subcellular localization is needed for large-scale genome analysis. The automated cell phenotype image classification problem is an interesting "bioimage informatics" application. It can be used for establishing knowledge of the spatial distribution of proteins within living cells and permits to screen systems for drug discovery or for early diagnosis of a disease. In this paper, three well-known texture feature extraction methods including local binary patterns (LBP), Gabor filtering and Gray Level Coocurrence Matrix (GLCM) have been applied to cell phenotype images and the multiple layer perceptron (MLP) method has been used to classify cell phenotype image. After classification of the extracted features, decision-templates ensemble algorithm (DT) is used to combine base classifiers built on the different feature sets. Different texture feature sets can provide sufficient diversity among base classifiers, which is known as a necessary condition for improvement in ensemble performance. For the HeLa cells, the human classification error rate on this task is of 17% as reported in previous publications. We obtain with our method an error rate of 4.8%.

  3. A Novel Approach on Designing Augmented Fuzzy Cognitive Maps Using Fuzzified Decision Trees

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Elpiniki I.

    This paper proposes a new methodology for designing Fuzzy Cognitive Maps using crisp decision trees that have been fuzzified. Fuzzy cognitive map is a knowledge-based technique that works as an artificial cognitive network inheriting the main aspects of cognitive maps and artificial neural networks. Decision trees, in the other hand, are well known intelligent techniques that extract rules from both symbolic and numeric data. Fuzzy theoretical techniques are used to fuzzify crisp decision trees in order to soften decision boundaries at decision nodes inherent in this type of trees. Comparisons between crisp decision trees and the fuzzified decision trees suggest that the later fuzzy tree is significantly more robust and produces a more balanced decision making. The approach proposed in this paper could incorporate any type of fuzzy decision trees. Through this methodology, new linguistic weights were determined in FCM model, thus producing augmented FCM tool. The framework is consisted of a new fuzzy algorithm to generate linguistic weights that describe the cause-effect relationships among the concepts of the FCM model, from induced fuzzy decision trees.

  4. Career Path Suggestion using String Matching and Decision Trees

    NASA Astrophysics Data System (ADS)

    Nagpal, Akshay; P. Panda, Supriya

    2015-05-01

    High school and college graduates seemingly are often battling for the courses they should major in order to achieve their target career. In this paper, we worked on suggesting a career path to a graduate to reach his/her dream career given the current educational status. Firstly, we collected the career data of professionals and academicians from various career fields and compiled the data set by using the necessary information from the data. Further, this was used as the basis to suggest the most appropriate career path for the person given his/her current educational status. Decision trees and string matching algorithms were employed to suggest the appropriate career path for a person. Finally, an analysis of the result has been done directing to further improvements in the model.

  5. Classification of Liss IV Imagery Using Decision Tree Methods

    NASA Astrophysics Data System (ADS)

    Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.

    2016-06-01

    Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.

  6. The value of decision tree analysis in planning anaesthetic care in obstetrics.

    PubMed

    Bamber, J H; Evans, S A

    2016-08-01

    The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. PMID:27026589

  7. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    ERIC Educational Resources Information Center

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  8. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    ERIC Educational Resources Information Center

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  9. Decision trees and decision committee applied to star/galaxy separation problem

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Eduardo Charles

    Vasconcellos et al [1] study the efficiency of 13 diferente decision tree algorithms applied to photometric data in the Sloan Digital Sky Digital Survey Data Release Seven (SDSS-DR7) to perform star/galaxy separation. Each algorithm is defined by a set fo parameters which, when varied, produce diferente final classifications trees. In that work we extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. We find that Functional Tree algorithm (FT) yields the best results by the mean completeness function (galaxy true positive rate) in two magnitude intervals:14<=r<=21 (85.2%) and r>=19 (82.1%). We compare FT classification to the SDSS parametric, 2DPHOT and Ball et al (2006) classifications. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ( 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 <= r <= 21. We now study the performance of a decision committee composed by FT classifiers. We will train six FT classifiers with random selected objects from the same 884,126 SDSS-DR7 objects with spectroscopic data that we use before. Both, the decision commitee and our previous single FT classifier will be applied to the new ojects from SDSS data releses eight, nine and ten. Finally we will compare peformances of both methods in this new data set. [1] Vasconcellos, E. C.; de Carvalho, R. R.; Gal, R. R.; LaBarbera, F. L.; Capelato, H. V.; Fraga Campos Velho, H.; Trevisan, M.; Ruiz, R. S. R

  10. Prediction of adverse drug reactions using decision tree modeling.

    PubMed

    Hammann, F; Gutmann, H; Vogt, N; Helma, C; Drewe, J

    2010-07-01

    Drug safety is of great importance to public health. The detrimental effects of drugs not only limit their application but also cause suffering in individual patients and evoke distrust of pharmacotherapy. For the purpose of identifying drugs that could be suspected of causing adverse reactions, we present a structure-activity relationship analysis of adverse drug reactions (ADRs) in the central nervous system (CNS), liver, and kidney, and also of allergic reactions, for a broad variety of drugs (n = 507) from the Swiss drug registry. Using decision tree induction, a machine learning method, we determined the chemical, physical, and structural properties of compounds that predispose them to causing ADRs. The models had high predictive accuracies (78.9-90.2%) for allergic, renal, CNS, and hepatic ADRs. We show the feasibility of predicting complex end-organ effects using simple models that involve no expensive computations and that can be used (i) in the selection of the compound during the drug discovery stage, (ii) to understand how drugs interact with the target organ systems, and (iii) for generating alerts in postmarketing drug surveillance and pharmacovigilance.

  11. Molecular decision trees realized by ultrafast electronic spectroscopy

    PubMed Central

    Fresch, Barbara; Hiluf, Dawit; Collini, Elisabetta; Levine, R. D.; Remacle, F.

    2013-01-01

    The outcome of a light–matter interaction depends on both the state of matter and the state of light. It is thus a natural setting for implementing bilinear classical logic. A description of the state of a time-varying system requires measuring an (ideally complete) set of time-dependent observables. Typically, this is prohibitive, but in weak-field spectroscopy we can move toward this goal because only a finite number of levels are accessible. Recent progress in nonlinear spectroscopies means that nontrivial measurements can be implemented and thereby give rise to interesting logic schemes where the outputs are functions of the observables. Lie algebra offers a natural tool for generating the outcome of the bilinear light–matter interaction. We show how to synthesize these ideas by explicitly discussing three-photon spectroscopy of a bichromophoric molecule for which there are four accessible states. Switching logic would use the on–off occupancies of these four states as outcomes. Here, we explore the use of all 16 observables that define the time-evolving state of the bichromophoric system. The bilinear laser–system interaction with the three pulses of the setup of a 2D photon echo spectroscopy experiment can be used to generate a rich parallel logic that corresponds to the implementation of a molecular decision tree. Our simulations allow relaxation by weak coupling to the environment, which adds to the complexity of the logic operations. PMID:24043793

  12. Discovering Patterns in Brain Signals Using Decision Trees

    PubMed Central

    2016-01-01

    Even with emerging technologies, such as Brain-Computer Interfaces (BCI) systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain's behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT) to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain's behaviour. PMID:27688746

  13. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    SciTech Connect

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-06-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  14. Discovering Patterns in Brain Signals Using Decision Trees

    PubMed Central

    2016-01-01

    Even with emerging technologies, such as Brain-Computer Interfaces (BCI) systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain's behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT) to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain's behaviour.

  15. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  16. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  17. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  18. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  19. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  20. Using GEFS ensemble forecasts for decision making in reservoir management in California

    NASA Astrophysics Data System (ADS)

    Scheuerer, M.; Hamill, T.; Webb, R. S.

    2015-12-01

    Reservoirs such as Lake Mendocino in California's Russian River Basin provide flood control, water supply, recreation, and environmental stream flow regulation. Many of these reservoirs are operated by the U.S. Army Corps of Engineers (Corps) according to water control manuals that specify elevations for an upper volume of reservoir storage that must be kept available for capturing storm runoff and reducing flood risk, and a lower volume of storage that may be used for water supply. During extreme rainfall events, runoff is captured by these reservoirs and released as quickly as possible to create flood storage space for another potential storm. These flood control manuals are based on typical historical weather patterns - wet during the winter, dry otherwise - but are not informed directly by weather prediction. Alternative reservoir management approaches such as Forecast-Informed Reservoir Operations (FIRO), which seek to incorporate advances in weather prediction, are currently being explored as means to improve water supply availability while maintaining flood risk reduction and providing additional ecosystem benefits.We present results from a FIRO proof-of-concept study investigating the reliability of post-processed GEFS ensemble forecasts to predict the probability that day 6-to-10 precipitation accumulations in certain areas in California exceed a high threshold. Our results suggest that reliable forecast guidance can be provided, and the resulting probabilities could be used to inform decisions to release or hold water in the reservoirs. We illustrate the potential of these forecasts in a case study of extreme event probabilities for the Russian River Basin in California.

  1. Supervised hashing using graph cuts and boosted decision trees.

    PubMed

    Lin, Guosheng; Shen, Chunhua; Hengel, Anton van den

    2015-11-01

    To build large-scale query-by-example image retrieval systems, embedding image features into a binary Hamming space provides great benefits. Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the binary Hamming space. Most existing approaches apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of those methods, and can result in complex optimization problems that are difficult to solve. In this work we proffer a flexible yet simple framework that is able to accommodate different types of loss functions and hash functions. The proposed framework allows a number of existing approaches to hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes the hashing learning problem into two steps: binary code (hash bit) learning and hash function learning. The first step can typically be formulated as binary quadratic problems, and the second step can be accomplished by training a standard binary classifier. For solving large-scale binary code inference, we show how it is possible to ensure that the binary quadratic problems are submodular such that efficient graph cut methods may be used. To achieve efficiency as well as efficacy on large-scale high-dimensional data, we propose to use boosted decision trees as the hash functions, which are nonlinear, highly descriptive, and are very fast to train and evaluate. Experiments demonstrate that the proposed method significantly outperforms most state-of-the-art methods, especially on high-dimensional data. PMID:26440270

  2. Supervised hashing using graph cuts and boosted decision trees.

    PubMed

    Lin, Guosheng; Shen, Chunhua; Hengel, Anton van den

    2015-11-01

    To build large-scale query-by-example image retrieval systems, embedding image features into a binary Hamming space provides great benefits. Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the binary Hamming space. Most existing approaches apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of those methods, and can result in complex optimization problems that are difficult to solve. In this work we proffer a flexible yet simple framework that is able to accommodate different types of loss functions and hash functions. The proposed framework allows a number of existing approaches to hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes the hashing learning problem into two steps: binary code (hash bit) learning and hash function learning. The first step can typically be formulated as binary quadratic problems, and the second step can be accomplished by training a standard binary classifier. For solving large-scale binary code inference, we show how it is possible to ensure that the binary quadratic problems are submodular such that efficient graph cut methods may be used. To achieve efficiency as well as efficacy on large-scale high-dimensional data, we propose to use boosted decision trees as the hash functions, which are nonlinear, highly descriptive, and are very fast to train and evaluate. Experiments demonstrate that the proposed method significantly outperforms most state-of-the-art methods, especially on high-dimensional data.

  3. Population screening for glucose intolerant subjects using decision tree analyses.

    PubMed

    Barriga, K J; Hamman, R F; Hoag, S; Marshall, J A; Shetterly, S M

    1996-10-01

    The purpose of this study was to develop a method of screening for impaired glucose tolerance and previously undiagnosed NIDDM that could be used preliminary to the administration of an oral glucose tolerance test (OGTT) for final classification of glucose tolerance status. The purpose of a preliminary screening of this type would be to reduce the number of OGTT's needed to identify cases of IGT and NIDDM in the population. We used NIDDM risk indicators and decision tree analysis methods (CART software) to identify subgroups of the population at increased risk. We examined a population of Hispanic (n = 583) and non-Hispanic white (n = 768) subjects without a prior history of diabetes. Subjects were classified as normal, IGT or NIDDM (WHO criteria) based on results from a 75 g oral glucose tolerance test (OGTT). Sensitivity (SEN) and specificity (SPE) of the CART models were calculated using the OGTT as the 'gold standard.' Two approaches to screening were simulated. In the simultaneous approach all risk variables were entered into CART models at once. In the serial approach, risk variables were grouped according to degree of effort required for data collection, and were entered into CART models in stages. Fasting glucose, age and body mass index (BMI) were selected as risk variables by CART when simulating the simultaneous approach (SEN = 91%, SPE = 55%). In the serial approach, CART used age and BMI to eliminate 35% of the population from further screening, and then used fasting glucose, glycohemoglobin, age and BMI to classify the remaining higher risk subjects (SEN = 85%, SPE = 64%). These models suggest that screening for IGT and previously undiagnosed NIDDM can be based on measurement of relatively simple indicators, and yet maintain a level of both sensitivity and specificity acceptable for this type of preliminary screening. PMID:9015666

  4. How to pose the question matters: Behavioural Economics concepts in decision making on the basis of ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; van Andel, Schalk Jan

    2014-05-01

    Part of recent research in ensemble and probabilistic hydro-meteorological forecasting analyses which probabilistic information is required by decision makers and how it can be most effectively visualised. This work, in addition, analyses if decision making in flood early warning is also influenced by the way the decision question is posed. For this purpose, the decision-making game "Do probabilistic forecasts lead to better decisions?", which Ramos et al (2012) conducted at the EGU General Assembly 2012 in the city of Vienna, has been repeated with a small group and expanded. In that game decision makers had to decide whether or not to open a flood release gate, on the basis of flood forecasts, with and without uncertainty information. A conclusion of that game was that, in the absence of uncertainty information, decision makers are compelled towards a more risk-averse attitude. In order to explore to what extent the answers were driven by the way the questions were framed, in addition to the original experiment, a second variant was introduced where participants were asked to choose between a sure value (for either loosing or winning with a giving probability) and a gamble. This set-up is based on Kahneman and Tversky (1979). Results indicate that the way how the questions are posed may play an important role in decision making and that Prospect Theory provides promising concepts to further understand how this works.

  5. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  6. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  7. Combining evolutionary algorithms with oblique decision trees to detect bent double galaxies

    SciTech Connect

    Cantu-Paz, E; Kamath, C

    2000-06-22

    Decision trees have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis-parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learnt is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction with deterministic hill climbing and the use of simulated annealing. In this paper, they use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. They demonstrate the technique on a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology, and describe their experiences with several split evaluation criteria.

  8. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events.

  9. Use of a decision tree to select the mud system for the Oso field, Nigeria

    SciTech Connect

    Dear, S.F. III; Beasley, R.D.; Barr, K.P.

    1995-10-01

    Far too often, the basis for selection of a mud system is the ``latest, greatest`` technology or personal preference rather than sound cost-effective analysis. The use of risk-vs.-cost decision analysis improves mud selection and makes it a proper business decision. Several mud systems usually are available to drill and well and, with good decision analysis, the cost-effectiveness of each alternative becomes apparent. This paper describes how the drilling team used structured decision analysis to evaluate and select the best mud system for the project. First, Monte Carlo simulations forecast the range of possible results with each alternative. The simulations provide most-likely values for the variables in the decision tree, including reasonable ranges for sensitivity analyses. This paper presents and discusses the simulations, the decision tree, and the sensitivity analyses.

  10. Ramping ensemble activity in dorsal anterior cingulate neurons during persistent commitment to a decision.

    PubMed

    Blanchard, Tommy C; Strait, Caleb E; Hayden, Benjamin Y

    2015-10-01

    We frequently need to commit to a choice to achieve our goals; however, the neural processes that keep us motivated in pursuit of delayed goals remain obscure. We examined ensemble responses of neurons in macaque dorsal anterior cingulate cortex (dACC), an area previously implicated in self-control and persistence, in a task that requires commitment to a choice to obtain a reward. After reward receipt, dACC neurons signaled reward amount with characteristic ensemble firing rate patterns; during the delay in anticipation of the reward, ensemble activity smoothly and gradually came to resemble the postreward pattern. On the subset of risky trials, in which a reward was anticipated with 50% certainty, ramping ensemble activity evolved to the pattern associated with the anticipated reward (and not with the anticipated loss) and then, on loss trials, took on an inverted form anticorrelated with the form associated with a win. These findings enrich our knowledge of reward processing in dACC and may have broader implications for our understanding of persistence and self-control. PMID:26334016

  11. Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius

    2015-04-01

    In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were

  12. Outsourcing the Portal: Another Branch in the Decision Tree.

    ERIC Educational Resources Information Center

    McMahon, Tim

    2000-01-01

    Discussion of the management of information resources in organizations focuses on the use of portal technologies to update intranet capabilities. Considers application outsourcing decisions, reviews benefits (including reducing costs) as well as concerns, and describes application service providers (ASPs). (LRW)

  13. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner. PMID:22552588

  14. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    PubMed

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  15. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process

    PubMed Central

    Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  16. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    PubMed

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  17. Novel decision tree algorithms for the treatment planning of compromised teeth.

    PubMed

    Ovaydi-Mandel, Amy; Petrov, Sofia D; Drew, Howard J

    2013-01-01

    In clinical practice, dentists are faced with the dilemma of whether to treat, maintain, or extract a tooth. Of primary importance are the patient's desires and the restorability and periodontal condition of the tooth/teeth in question. Too often, clinicians extract teeth when endodontic therapy, crown-lengthening surgery, forced orthodontic eruption, or regenerative therapy can be used with predictable results. In addition, many clinicians do not consider the use of questionable teeth as provisional or transitional abutments. The aim of this article is to present a novel decision tree approach that will address the clinical deductive reasoning, based on the scientific literature and exemplified by selective case presentations, that may help clinicians make the right decision. Innovative decision tree algorithms will be proposed that consider endodontic, restorative, and periodontal assessments to improve and possibly eliminate erroneous decision making. Decision-based algorithms are dynamic and must be continually updated in accordance with new evidence-based studies.

  18. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  19. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  20. Post-event human decision errors: operator action tree/time reliability correlation

    SciTech Connect

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  1. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    PubMed

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  2. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    PubMed

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  3. The decision - identification tree: A new EIS scoping tool

    SciTech Connect

    Eccleston, C.H.

    1997-04-02

    No single methodology has been developed or universally accepted for determining the scope of an Environmental Impact Statement (EIS). Most typically, the scope is determined by first identifying actions and facilities to be analyzed. Yet, agencies sometimes complete an EIS, only to discover that the scope does not adequately address decisions that need to be made. Such discrepancies can often be traced to disconnects between the scoping process and the actual decision making that follows. A new tool, for use in a value engineering setting, provides an effective methodology for improving the EIS scoping process. Application of this tool is not limited to National Environmental Policy Act (NEPA) scoping efforts. This tool, could in fact, be used to map potential decision points for a range of diverse planning applications and exercises.

  4. Ensembl 2007.

    PubMed

    Hubbard, T J P; Aken, B L; Beal, K; Ballester, B; Caccamo, M; Chen, Y; Clarke, L; Coates, G; Cunningham, F; Cutts, T; Down, T; Dyer, S C; Fitzgerald, S; Fernandez-Banet, J; Graf, S; Haider, S; Hammond, M; Herrero, J; Holland, R; Howe, K; Howe, K; Johnson, N; Kahari, A; Keefe, D; Kokocinski, F; Kulesha, E; Lawson, D; Longden, I; Melsopp, C; Megy, K; Meidl, P; Ouverdin, B; Parker, A; Prlic, A; Rice, S; Rios, D; Schuster, M; Sealy, I; Severin, J; Slater, G; Smedley, D; Spudich, G; Trevanion, S; Vilella, A; Vogel, J; White, S; Wood, M; Cox, T; Curwen, V; Durbin, R; Fernandez-Suarez, X M; Flicek, P; Kasprzyk, A; Proctor, G; Searle, S; Smith, J; Ureta-Vidal, A; Birney, E

    2007-01-01

    The Ensembl (http://www.ensembl.org/) project provides a comprehensive and integrated source of annotation of chordate genome sequences. Over the past year the number of genomes available from Ensembl has increased from 15 to 33, with the addition of sites for the mammalian genomes of elephant, rabbit, armadillo, tenrec, platypus, pig, cat, bush baby, common shrew, microbat and european hedgehog; the fish genomes of stickleback and medaka and the second example of the genomes of the sea squirt (Ciona savignyi) and the mosquito (Aedes aegypti). Some of the major features added during the year include the first complete gene sets for genomes with low-sequence coverage, the introduction of new strain variation data and the introduction of new orthology/paralog annotations based on gene trees.

  5. Decision tree for the binding of dipeptides to the thermally fluctuating surface of cathepsin K

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2016-03-01

    The behavior of 15 dipeptides on thermally fluctuating cathepsin K was investigated by molecular dynamics and docking simulations. Four dipeptides were distributed on sites near the active center, and the variations were small. Eleven dipeptides were distributed on sites far from the active center, and the variations were large for nine dipeptides and very large for the other two. The decision tree was constructed using genetic programming, and it accurately classified the 15 dipeptides. The decision tree would accurately estimate the behavior of various peptides, and should significantly contribute to the design of useful peptides.

  6. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids.

    PubMed

    Ali, Safdar; Majid, Abdul; Khan, Asifullah

    2014-04-01

    Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our

  7. Image Change Detection via Ensemble Learning

    SciTech Connect

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work, we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.

  8. Dynamics of Cortical Neuronal Ensembles Transit from Decision Making to Storage for Later Report

    PubMed Central

    Ponce-Alvarez, Adrián; Nácher, Verónica; Luna, Rogelio; Riehle, Alexa

    2012-01-01

    Decisions based on sensory evaluation during single trials may depend on the collective activity of neurons distributed across brain circuits. Previous studies have deepened our understanding of how the activity of individual neurons relates to the formation of a decision and its storage for later report. However, little is known about how decision-making and decision maintenance processes evolve in single trials. We addressed this problem by studying the activity of simultaneously recorded neurons from different somatosensory and frontal lobe cortices of monkeys performing a vibrotactile discrimination task. We used the hidden Markov model to describe the spatiotemporal pattern of activity in single trials as a sequence of firing rate states. We show that the animal's decision was reliably maintained in frontal lobe activity through a selective state sequence, initiated by an abrupt state transition, during which many neurons changed their activity in a concomitant way, and for which both latency and variability depended on task difficulty. Indeed, transitions were more delayed and more variable for difficult trials compared with easy trials. In contrast, state sequences in somatosensory cortices were weakly decision related, had less variable transitions, and were not affected by the difficulty of the task. In summary, our results suggest that the decision process and its subsequent maintenance are dynamically linked by a cascade of transient events in frontal lobe cortices. PMID:22933781

  9. Fuzzy decision trees for planning and autonomous control of a coordinated team of UAVs

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Nguyen, ThanhVu H.

    2007-04-01

    A fuzzy logic resource manager that enables a collection of unmanned aerial vehicles (UAVs) to automatically cooperate to make meteorological measurements will be discussed. Once in flight no human intervention is required. Planning and real-time control algorithms determine the optimal trajectory and points each UAV will sample, while taking into account the UAVs' risk, risk tolerance, reliability, mission priority, fuel limitations, mission cost, and related uncertainties. The control algorithm permits newly obtained information about weather and other events to be introduced to allow the UAVs to be more effective. The approach is illustrated by a discussion of the fuzzy decision tree for UAV path assignment and related simulation. The different fuzzy membership functions on the tree are described in mathematical detail. The different methods by which this tree is obtained are summarized including a method based on using a genetic program as a data mining function. A second fuzzy decision tree that allows the UAVs to automatically collaborate without human intervention is discussed. This tree permits three different types of collaborative behavior between the UAVs. Simulations illustrating how the tree allows the different types of collaboration to be automated are provided. Simulations also show the ability of the control algorithm to allow UAVs to effectively cooperate to increase the UAV team's likelihood of success.

  10. Test Reviews: Euler, B. L. (2007). "Emotional Disturbance Decision Tree". Lutz, FL: Psychological Assessment Resources

    ERIC Educational Resources Information Center

    Tansy, Michael

    2009-01-01

    The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…

  11. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  12. Predicting the distribution of out-of-reach biotopes with decision trees in a Swedish marine protected area.

    PubMed

    Gonzalez-Mirelis, Genoveva; Lindegarth, Mats

    2012-12-01

    Through spatially explicit predictive models, knowledge of spatial patterns of biota can be generated for out-of-reach environments, where there is a paucity of survey data. This knowledge is invaluable for conservation decisions. We used distribution modeling to predict the occurrence of benthic biotopes, or megafaunal communities of the seabed, to support the spatial planning of a marine national park. Nine biotope classes were obtained prior to modeling from multivariate species data derived from point source, underwater imagery. Five map layers relating to depth and terrain were used as predictor variables. Biotope type was predicted on a pixel-by-pixel basis, where pixel size was 15 x 15 m and total modeled area was 455 km2. To choose a suitable modeling technique we compared the performance of five common models based on recursive partitioning: two types of classification and regression trees ([1] pruned by 10-fold cross-validation and [2] pruned by minimizing complexity), random forests, conditional inference (CI) trees, and CI forests. The selected model was a CI forest (an ensemble of CI trees), a machine-learning technique whose discriminatory power (class-by-class area under the curve [AUC] ranged from 0.75 to 0.86) and classification accuracy (72%) surpassed those of the other methods tested. Conditional inference trees are virtually new to the field of ecology. The final model's overall prediction error was 28%. Model predictions were also checked against a custom-built measure of dubiousness, calculated at the polygon level. Key factors other than the choice of modeling technique include: the use of a multinomial response, accounting for the heterogeneity of observations, and spatial autocorrelation. To illustrate how the model results can be implemented in spatial planning, representation of biodiversity in the national park was described and quantified. Given a goal of maximizing classification accuracy, we conclude that conditional inference trees

  13. Predicting metabolic syndrome using decision tree and support vector machine methods

    PubMed Central

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-01-01

    BACKGROUND Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. METHODS This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. RESULTS SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. CONCLUSION The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in

  14. Power system distributed on-line fault section estimation using decision tree based neural nets approach

    SciTech Connect

    Yang, H.T.; Chang, W.Y.; Huang, C.L.

    1995-01-01

    This paper proposes a distributed neural nets decision approach to on-line estimation of the fault section of a transmission and distribution (T and D) system. The distributed processing alleviates the burden of communication between the control center and local substations, and increases the reliability and flexibility of the diagnosis system. Besides, by using the algorithms of data-driven decision tree induction and direct mapping from the decision tree into neural net, the proposed diagnosis system features parallel processing and easy implementation, overcoming the limitations of overly large and complex system. The approach has been practically tested on a typical Taiwan Power (Taipower) T and D system. The feasibility of such a diagnosis system is presented.

  15. An expert-guided decision tree construction strategy: an application in knowledge discovery with medical databases.

    PubMed Central

    Tsai, Y. S.; King, P. H.; Higgins, M. S.; Pierce, D.; Patel, N. P.

    1997-01-01

    With the steady growth in electronic patient records and clinical medical informatics systems, the data collected for routine clinical use have been accumulating at a dramatic rate. Inter-disciplinary research provides a new generation of computation tools in knowledge discovery and data management is in great demand. In this study, an expert-guided decision tree construction strategy is proposed to offer an user-oriented knowledge discovery environment. The strategy allows experts, based on their expertise and/or preference, to override inductive decision tree construction process. Moreover, by reviewing decision paths, experts could focus on subsets of data that may be clues to new findings, or simply contaminated cases. PMID:9357618

  16. Building an ensemble of climate scenarios for decision-making in hydrology: benefits, pitfalls and uncertainties

    NASA Astrophysics Data System (ADS)

    Braun, Marco; Chaumont, Diane

    2013-04-01

    Using climate model output to explore climate change impacts on hydrology requires several considerations, choices and methods in the post treatment of the datasets. In the effort of producing a comprehensive data base of climate change scenarios for over 300 watersheds in the Canadian province of Québec, a selection of state of the art procedures were applied to an ensemble comprising 87 climate simulations. The climate data ensemble is based on global climate simulations from the Coupled Model Intercomparison Project - Phase 3 (CMIP3) and regional climate simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and operational simulations produced at Ouranos. Information on the response of hydrological systems to changing climate conditions can be derived by linking climate simulations with hydrological models. However, the direct use of raw climate model output variables as drivers for hydrological models is limited by issues such as spatial resolution and the calibration of hydro models with observations. Methods for downscaling and bias correcting the data are required to achieve seamless integration of climate simulations with hydro models. The effects on the results of four different approaches to data post processing were explored and compared. We present the lessons learned from building the largest data base yet for multiple stakeholders in the hydro power and water management sector in Québec putting an emphasis on the benefits and pitfalls in choosing simulations, extracting the data, performing bias corrections and documenting the results. A discussion of the sources and significance of uncertainties in the data will also be included. The climatological data base was subsequently used by the state owned hydro power company Hydro-Québec and the Centre d'expertise hydrique du Québec (CEHQ), the provincial water authority, to simulate future stream flows and analyse the impacts on hydrological indicators. While this

  17. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  18. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    PubMed

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances.

  19. Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning

    NASA Technical Reports Server (NTRS)

    Otterstatter, Matthew R.

    2005-01-01

    The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.

  20. Validating a decision tree for serious infection: diagnostic accuracy in acutely ill children in ambulatory care

    PubMed Central

    Verbakel, Jan Y; Lemiengre, Marieke B; De Burghgraeve, Tine; De Sutter, An; Aertgeerts, Bert; Bullens, Dominique M A; Shinkins, Bethany; Van den Bruel, Ann; Buntinx, Frank

    2015-01-01

    Objective Acute infection is the most common presentation of children in primary care with only few having a serious infection (eg, sepsis, meningitis, pneumonia). To avoid complications or death, early recognition and adequate referral are essential. Clinical prediction rules have the potential to improve diagnostic decision-making for rare but serious conditions. In this study, we aimed to validate a recently developed decision tree in a new but similar population. Design Diagnostic accuracy study validating a clinical prediction rule. Setting and participants Acutely ill children presenting to ambulatory care in Flanders, Belgium, consisting of general practice and paediatric assessment in outpatient clinics or the emergency department. Intervention Physicians were asked to score the decision tree in every child. Primary outcome measures The outcome of interest was hospital admission for at least 24 h with a serious infection within 5 days after initial presentation. We report the diagnostic accuracy of the decision tree in sensitivity, specificity, likelihood ratios and predictive values. Results In total, 8962 acute illness episodes were included, of which 283 lead to admission to hospital with a serious infection. Sensitivity of the decision tree was 100% (95% CI 71.5% to 100%) at a specificity of 83.6% (95% CI 82.3% to 84.9%) in the general practitioner setting with 17% of children testing positive. In the paediatric outpatient and emergency department setting, sensitivities were below 92%, with specificities below 44.8%. Conclusions In an independent validation cohort, this clinical prediction rule has shown to be extremely sensitive to identify children at risk of hospital admission for a serious infection in general practice, making it suitable for ruling out. Trial registration number NCT02024282. PMID:26254472

  1. Using Boosted Decision Trees to Separate Signal and Background in B to XsGamma Decays

    SciTech Connect

    Barber, James; /Massachusetts U., Amherst /SLAC

    2006-09-27

    The measurement of the branching fraction of the flavor changing neutral current B {yields} X{sub s}{gamma} transition can be used to expose physics outside the Standard Model. In order to make a precise measurement of this inclusive branching fraction, it is necessary to be able to effectively separate signal and background in the data. In order to achieve better separation, an algorithm based on Boosted Decision Trees (BDTs) is implemented. Using Monte Carlo simulated events, ''forests'' of trees were trained and tested with different sets of parameters. This parameter space was studied with the goal of maximizing the figure of merit, Q, the measure of separation quality used in this analysis. It is found that the use of 1000 trees, with 100 values tested for each variable at each node, and 50 events required for a node to continue separating give the highest figure of merit, Q = 18.37.

  2. [Study of decision tree in the application of predicting protein-protein interactions].

    PubMed

    Guo, Xiaolong; Jiang, Yan; Qui, Lu

    2013-10-01

    Proteins are the final executive actor of cell viability and function. Protein-protein interactions determine the complexity of the organism. Research on the protein interactions can help us understand the function of the protein at the molecular level, learn the cell growth, development, differentiation, apoptosis and understand biological regulation mechanisms and other activities. They are essential for understanding the pathologies of diseases and helpful in the prevention and treatment of diseases, as well as in the development of new drugs. In this paper, we employ the single decision-tree classification model to predict protein-protein interactions in the yeast. The original data came from the existing literature. Using software Clementine, this paper analyzes how these attributes affect the accuracy of the model by adjusting the predicted attributes. The result shows that a single decision tree is a good classification model and it has higher accuracy compared to those in the previous researches.

  3. Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach

    PubMed Central

    Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor

    2016-01-01

    Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313

  4. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  5. Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach.

    PubMed

    Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor

    2016-01-01

    Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313

  6. Decision tree approach for classification of remotely sensed satellite data using open source support

    NASA Astrophysics Data System (ADS)

    Sharma, Richa; Ghosh, Aniruddha; Joshi, P. K.

    2013-10-01

    In this study, an attempt has been made to develop a decision tree classification (DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source data mining software. The classified image is compared with the image classified using classical ISODATA clustering and Maximum Likelihood Classifier (MLC) algorithms. Classification result based on DTC method provided better visual depiction than results produced by ISODATA clustering or by MLC algorithms. The overall accuracy was found to be 90% (kappa = 0.88) using the DTC, 76.67% (kappa = 0.72) using the Maximum Likelihood and 57.5% (kappa = 0.49) using ISODATA clustering method. Based on the overall accuracy and kappa statistics, DTC was found to be more preferred classification approach than others.

  7. Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir

    NASA Astrophysics Data System (ADS)

    Oral, L. O.; Tecim, V.

    2013-05-01

    Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.

  8. Generation of Gridded Daily Weather Ensembles for Decision Support in the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Rajagopalan, B.; Kleiber, W.; Katz, R. W.; Podesta, G. P.

    2014-12-01

    We introduce a stochastic weather generator for the variables of minimum temperature, maximum temperature, and precipitation occurrence. Temperature variables are modeled in vector autoregressive framework, conditional on precipitation occurrence. Precipitation occurrence arises via a probit model, and both temperature and occurrence are spatially correlatedusing spatial Gaussian processes. Additionally, local climate is included by spatially-varying model coefficients, allowing spatially-evolving relationships between variables. The method is illustrated on a network of stations in the Pampas region of Argentina where nonstationary relationships and historical spatial correlation challenge existing approaches. The covariancestructure of this network of stations is then used to produce daily gridded weather scenarios which can be used to drive hydrologic models. Inclusion of other covariates such as seasonal total precipitation and global climate drivers allows the potential for decadal projections, an increasingly useful tool for decision support.

  9. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar

  10. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release.

  11. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  12. Decision tree: A very useful tool in analysing flow-induced vibration data

    NASA Astrophysics Data System (ADS)

    Kumar, R. Ajith; Sugumaran, V.; Gowda, B. H. L.; Sohn, C. H.

    2008-01-01

    This paper presents the results of an analysis of flow-induced oscillations of a square section cylinder under interference conditions using a data-mining tool called 'decision tree'. The interference effects were studied at some specific relative positions identified. Experiments have been carried out for various relative dimensions or size ratios ( b/ B) of the test cylinder and the interfering cylinder with values of 0.5, 1.0, 1.5 and 2.0. It has been found that the parameters reduced velocity ( U/ fB), relative position ( L/ B, T/ B) and size ratio ( b/ B) influence the flow-induced oscillation of the cylinder quite significantly. In practical situations, very often, critical combinations of these parameters leading to objectionable vibratory amplitudes may occur and, hence, they need to be identified and eliminated. It is here the application of 'decision tree' found to be significantly helpful. Hence, in this paper, emphasis is laid on the effectiveness of 'decision tree' in analysing the flow-induced vibration data and consequently arriving at the safest as well as the critical conditions. The results show that, for safer design conditions, reduced velocity should be lower than a threshold value. It has been also found that relative position is playing only a lesser significant role when compared to reduced velocity and size ratio. The results further show that critical conditions are very likely to occur at high reduced velocities, for size ratios greater than one.

  13. Remote sensing image classification method based on evidence theory and decision tree

    NASA Astrophysics Data System (ADS)

    Li, Xuerong; Xing, Qianguo; Kang, Lingyan

    2010-11-01

    Remote sensing image classification is an important and complex problem. Conventional remote sensing image classification methods are mostly based on Bayesian subjective probability theory, but there are many defects for its uncertainty. This paper firstly introduces evidence theory and decision tree method. Then it emphatically introduces the function of support degree that evidence theory is used on pattern recognition. Combining the D-S evidence theory with the decision tree algorithm, a D-S evidence theory decision tree method is proposed, where the support degree function is the tie. The method is used to classify the classes, such as water, urban land and green land with the exclusive spectral feature parameters as input values, and produce three classification images of support degree. Then proper threshold value is chosen and according image is handled with the method of binarization. Then overlay handling is done with these images according to the type of classifications, finally the initial result is obtained. Then further accuracy assessment will be done. If initial classification accuracy is unfit for the requirement, reclassification for images with support degree of less than threshold is conducted until final classification meets the accuracy requirements. Compared to Bayesian classification, main advantages of this method are that it can perform reclassification and reach a very high accuracy. This method is finally used to classify the land use of Yantai Economic and Technological Development Zone to four classes such as urban land, green land and water, and effectively support the classification.

  14. Decision tree approach to evaluating inactive uranium processing sites for liner requirements

    SciTech Connect

    Relyea, J.F.

    1983-03-01

    Recently, concern has been expressed about potential toxic effects of both radon emission and release of toxic elements in leachate from inactive uranium mill tailings piles. Remedial action may be required to meet disposal standards set by the states and the US Environmental Protection Agency (EPA). In some cases, a possible disposal option is the exhumation and reburial (either on site or at a new location) of tailings and reliance on engineered barriers to satisfy the objectives established for remedial actions. Liners under disposal pits are the major engineered barrier for preventing contaminant release to ground and surface water. The purpose of this report is to provide a logical sequence of action, in the form of a decision tree, which could be followed to show whether a selected tailings disposal design meets the objectives for subsurface contaminant release without a liner. This information can be used to determine the need and type of liner for sites exhibiting a potential groundwater problem. The decision tree is based on the capability of hydrologic and mass transport models to predict the movement of water and contaminants with time. The types of modeling capabilities and data needed for those models are described, and the steps required to predict water and contaminant movement are discussed. A demonstration of the decision tree procedure is given to aid the reader in evaluating the need for the adequacy of a liner.

  15. Building Decision Trees for Characteristic Ellipsoid Method to Monitor Power System Transient Behaviors

    SciTech Connect

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Dagle, Jeffery E.

    2010-12-01

    The characteristic ellipsoid is a new method to monitor the dynamics of power systems. Decision trees (DTs) play an important role in applying the characteristic ellipsoid method to system operation and analysis. This paper presents the idea and initial results of building DTs for detecting transient dynamic events using the characteristic ellipsoid method. The objective is to determine fault types, fault locations and clearance time in the system using decision trees based on ellipsoids of system transient responses. The New England 10-machine 39-bus system is used for running dynamic simulations to generate a sufficiently large number of transient events in different system configurations. Comprehensive transient simulations considering three fault types, two fault clearance times and different fault locations were conducted in the study. Bus voltage magnitudes and monitored reactive and active power flows are recorded as the phasor measurements to calculate characteristic ellipsoids whose volume, eccentricity, center and projection of the longest axis are used as indices to build decision trees. The DT performances are tested and compared by considering different sets of PMU locations. The proposed method demonstrates that the characteristic ellipsoid method is a very efficient and promising tool to monitor power system dynamic behaviors.

  16. A decision tree – based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds

    PubMed Central

    Pavlopoulos, Sotiris A; Stasis, Antonis CH; Loukis, Euripides N

    2004-01-01

    Background New technologies like echocardiography, color Doppler, CT, and MRI provide more direct and accurate evidence of heart disease than heart auscultation. However, these modalities are costly, large in size and operationally complex and therefore are not suitable for use in rural areas, in homecare and generally in primary healthcare set-ups. Furthermore the majority of internal medicine and cardiology training programs underestimate the value of cardiac auscultation and junior clinicians are not adequately trained in this field. Therefore efficient decision support systems would be very useful for supporting clinicians to make better heart sound diagnosis. In this study a rule-based method, based on decision trees, has been developed for differential diagnosis between "clear" Aortic Stenosis (AS) and "clear" Mitral Regurgitation (MR) using heart sounds. Methods For the purposes of our experiment we used a collection of 84 heart sound signals including 41 heart sound signals with "clear" AS systolic murmur and 43 with "clear" MR systolic murmur. Signals were initially preprocessed to detect 1st and 2nd heart sounds. Next a total of 100 features were determined for every heart sound signal and relevance to the differentiation between AS and MR was estimated. The performance of fully expanded decision tree classifiers and Pruned decision tree classifiers were studied based on various training and test datasets. Similarly, pruned decision tree classifiers were used to examine their differentiation capabilities. In order to build a generalized decision support system for heart sound diagnosis, we have divided the problem into sub problems, dealing with either one morphological characteristic of the heart-sound waveform or with difficult to distinguish cases. Results Relevance analysis on the different heart sound features demonstrated that the most relevant features are the frequency features and the morphological features that describe S1, S2 and the systolic

  17. Merging Multi-model CMIP5/PMIP3 Past-1000 Ensemble Simulations with Tree Ring Proxy Data by Optimal Interpolation Approach

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Luo, Yong; Xing, Pei; Nie, Suping; Tian, Qinhua

    2015-04-01

    Two sets of gridded annual mean surface air temperature in past millennia over the Northern Hemisphere was constructed employing optimal interpolation (OI) method so as to merge the tree ring proxy records with the simulations from CMIP5 (the fifth phase of the Climate Model Intercomparison Project). Both the uncertainties in proxy reconstruction and model simulations can be taken into account applying OI algorithm. For better preservation of physical coordinated features and spatial-temporal completeness of climate variability in 7 copies of model results, we perform the Empirical Orthogonal Functions (EOF) analysis to truncate the ensemble mean field as the first guess (background field) for OI. 681 temperature sensitive tree-ring chronologies are collected and screened from International Tree Ring Data Bank (ITRDB) and Past Global Changes (PAGES-2k) project. Firstly, two methods (variance matching and linear regression) are employed to calibrate the tree ring chronologies with instrumental data (CRUTEM4v) individually. In addition, we also remove the bias of both the background field and proxy records relative to instrumental dataset. Secondly, time-varying background error covariance matrix (B) and static "observation" error covariance matrix (R) are calculated for OI frame. In our scheme, matrix B was calculated locally, and "observation" error covariance are partially considered in R matrix (the covariance value between the pairs of tree ring sites that are very close to each other would be counted), which is different from the traditional assumption that R matrix should be diagonal. Comparing our results, it turns out that regional averaged series are not sensitive to the selection for calibration methods. The Quantile-Quantile plots indicate regional climatologies based on both methods are tend to be more agreeable with regional reconstruction of PAGES-2k in 20th century warming period than in little ice age (LIA). Lager volcanic cooling response over Asia

  18. Socioeconomic determinants of menarche in rural Polish girls using the decision trees method.

    PubMed

    Matusik, Stanisław; Laska-Mierzejewska, Teresa; Chrzanowska, Maria

    2011-05-01

    The aim of this study was to assess the usefulness of the decision trees method as a research method of multidimensional associations between menarche and socioeconomic variables. The article is based on data collected from the rural area of Choszczno in the West Pomerania district of Poland between 1987 and 2001. Girls were asked about the appearance of first menstruation (a yes/no method). The average menarchal age was estimated by the probit analysis method, using second grade polynomials. The socioeconomic status of the girls' families was determined using five qualitative variables: fathers' and mothers' educational level, source of income, household appliances and the number of children in a family. For classification based on five socioeconomic variables, one of the most effective algorithms CART (Classification and Regression Trees) was used. In 2001 the menarchal age in 66% of examined girls was properly classified, while a higher efficiency of 70% was obtained for girls examined in 1987. The decision trees method enabled the definition of the hierarchy of socioeconomic variables influencing girls' biological development level. The strongest discriminatory power was attributed to the number of children in a family, and the mother's and then father's educational level. Using this method it is possible to detect differences in strength of socioeconomic variables associated with girls' pubescence before 1987 and after 2001 during the transformation of the economic and political systems in Poland. However, the decision trees method is infrequently applied in social sciences and constitutes a novelty; this article proves its usefulness in examining relations between biological processes and a population's living conditions. PMID:21211091

  19. Using decision trees to manage hospital readmission risk for acute myocardial infarction, heart failure, and pneumonia.

    PubMed

    Hilbert, John P; Zasadil, Scott; Keyser, Donna J; Peele, Pamela B

    2014-12-01

    To improve healthcare quality and reduce costs, the Affordable Care Act places hospitals at financial risk for excessive readmissions associated with acute myocardial infarction (AMI), heart failure (HF), and pneumonia (PN). Although predictive analytics is increasingly looked to as a means for measuring, comparing, and managing this risk, many modeling tools require data inputs that are not readily available and/or additional resources to yield actionable information. This article demonstrates how hospitals and clinicians can use their own structured discharge data to create decision trees that produce highly transparent, clinically relevant decision rules for better managing readmission risk associated with AMI, HF, and PN. For illustrative purposes, basic decision trees are trained and tested using publically available data from the California State Inpatient Databases and an open-source statistical package. As expected, these simple models perform less well than other more sophisticated tools, with areas under the receiver operating characteristic (ROC) curve (or AUC) of 0.612, 0.583, and 0.650, respectively, but achieve a lift of at least 1.5 or greater for higher-risk patients with any of the three conditions. More importantly, they are shown to offer substantial advantages in terms of transparency and interpretability, comprehensiveness, and adaptability. By enabling hospitals and clinicians to identify important factors associated with readmissions, target subgroups of patients at both high and low risk, and design and implement interventions that are appropriate to the risk levels observed, decision trees serve as an ideal application for addressing the challenge of reducing hospital readmissions.

  20. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  1. Instant spectral assignment for advanced decision tree-driven mass spectrometry.

    PubMed

    Bailey, Derek J; Rose, Christopher M; McAlister, Graeme C; Brumbaugh, Justin; Yu, Pengzhi; Wenger, Craig D; Westphall, Michael S; Thomson, James A; Coon, Joshua J

    2012-05-29

    We have developed and implemented a sequence identification algorithm (inSeq) that processes tandem mass spectra in real-time using the mass spectrometer's (MS) onboard processors. The inSeq algorithm relies on accurate mass tandem MS data for swift spectral matching with high accuracy. The instant spectral processing technology takes ∼16 ms to execute and provides information to enable autonomous, real-time decision making by the MS system. Using inSeq and its advanced decision tree logic, we demonstrate (i) real-time prediction of peptide elution windows en masse (∼3 min width, 3,000 targets), (ii) significant improvement of quantitative precision and accuracy (~3x boost in detected protein differences), and (iii) boosted rates of posttranslation modification site localization (90% agreement in real-time vs. offline localization rate and an approximate 25% gain in localized sites). The decision tree logic enabled by inSeq promises to circumvent problems with the conventional data-dependent acquisition paradigm and provides a direct route to streamlined and expedient targeted protein analysis.

  2. Comparison of neurofuzzy logic and decision trees in discovering knowledge from experimental data of an immediate release tablet formulation.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required. PMID:17459671

  3. Comparison of neurofuzzy logic and decision trees in discovering knowledge from experimental data of an immediate release tablet formulation.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.

  4. Development of a decision tree to determine appropriateness of NVivo in analyzing qualitative data sets.

    PubMed

    Auld, Garry W; Diker, Ann; Bock, M Ann; Boushey, Carol J; Bruhn, Christine M; Cluskey, Mary; Edlefsen, Miriam; Goldberg, Dena L; Misner, Scottie L; Olson, Beth H; Reicks, Marla; Wang, Changzheng; Zaghloul, Sahar

    2007-01-01

    A decision tree was developed to determine when NVivo is an appropriate tool for qualitative analysis. NVivo, a qualitative analysis software package, was used to analyze interviews of 204 Asian, Hispanic, and white parents in 12 states. The experience provided insight into issues that should be considered when deciding to use the software. NVivo can enhance the qualitative research process, quickly process queries, and expand analytical avenues. Before using, however, the following must be considered: training time, establishing inter-coder reliability, number and length of documents, coding time, coding structure, use of automated coding, and possible need for separate databases or additional supporting software.

  5. Improvement and analysis of ID3 algorithm in decision-making tree

    NASA Astrophysics Data System (ADS)

    Xie, Xiao-Lan; Long, Zhen; Liao, Wen-Qi

    2015-12-01

    For the cooperative system under development, it needs to use the spatial analysis and relative technology concerning data mining in order to carry out the detection of the subject conflict and redundancy, while the ID3 algorithm is an important data mining. Due to the traditional ID3 algorithm in the decision-making tree towards the log part is rather complicated, this paper obtained a new computational formula of information gain through the optimization of algorithm of the log part. During the experiment contrast and theoretical analysis, it is found that IID3 (Improved ID3 Algorithm) algorithm owns higher calculation efficiency and accuracy and thus worth popularizing.

  6. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  7. Integrating Decision Tree and Hidden Markov Model (HMM) for Subtype Prediction of Human Influenza A Virus

    NASA Astrophysics Data System (ADS)

    Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing

    Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.

  8. Are decision trees a feasible knowledge representation to guide extraction of critical information from randomized controlled trial reports?

    PubMed Central

    Chung, Grace Y; Coiera, Enrico

    2008-01-01

    Background This paper proposes the use of decision trees as the basis for automatically extracting information from published randomized controlled trial (RCT) reports. An exploratory analysis of RCT abstracts is undertaken to investigate the feasibility of using decision trees as a semantic structure. Quality-of-paper measures are also examined. Methods A subset of 455 abstracts (randomly selected from a set of 7620 retrieved from Medline from 1998 – 2006) are examined for the quality of RCT reporting, the identifiability of RCTs from abstracts, and the completeness and complexity of RCT abstracts with respect to key decision tree elements. Abstracts were manually assigned to 6 sub-groups distinguishing whether they were primary RCTs versus other design types. For primary RCT studies, we analyzed and annotated the reporting of intervention comparison, population assignment and outcome values. To measure completeness, the frequencies by which complete intervention, population and outcome information are reported in abstracts were measured. A qualitative examination of the reporting language was conducted. Results Decision tree elements are manually identifiable in the majority of primary RCT abstracts. 73.8% of a random subset was primary studies with a single population assigned to two or more interventions. 68% of these primary RCT abstracts were structured. 63% contained pharmaceutical interventions. 84% reported the total number of study subjects. In a subset of 21 abstracts examined, 71% reported numerical outcome values. Conclusion The manual identifiability of decision tree elements in the abstract suggests that decision trees could be a suitable construct to guide machine summarisation of RCTs. The presence of decision tree elements could also act as an indicator for RCT report quality in terms of completeness and uniformity. PMID:18957129

  9. Decision-tree analysis of factors influencing rainfall-related building structure and content damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-09-01

    Flood-damage prediction models are essential building blocks in flood risk assessments. So far, little research has been dedicated to damage from small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision-tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period 1998-2011. The databases include claims of water-related damage (for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor). Response variables being modelled are average claim size and claim frequency, per district, per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision-tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), a fraction of homeowners (content data only), a and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size. It is recommended to investigate explanations for the failure to derive models. These require the inclusion of other explanatory factors that were not used in the present study, an investigation of the variability in average claim size at different spatial scales, and the collection of more detailed insurance data that allows one to distinguish between the

  10. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a

  11. Snow event classification with a 2D video disdrometer - A decision tree approach

    NASA Astrophysics Data System (ADS)

    Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.

    2016-05-01

    Snowfall classification according to crystal type or degree of riming of the snowflakes is import for many atmospheric processes, e.g. wet deposition of aerosol particles. 2D video disdrometers (2DVD) have recently proved their capability to measure microphysical parameters of snowfall. The present work has the aim of classifying snowfall according to microphysical properties of single hydrometeors (e.g. shape and fall velocity) measured by means of a 2DVD. The constraints for the shape and velocity parameters which are used in a decision tree for classification of the 2DVD measurements, are derived from detailed on-site observations, combining automatic 2DVD classification with visual inspection. The developed decision tree algorithm subdivides the detected events into three classes of dominating crystal type (single crystals, complex crystals and pellets) and three classes of dominating degree of riming (weak, moderate and strong). The classification results for the crystal type were validated with an independent data set proving the unambiguousness of the classification. In addition, for three long-term events, good agreement of the classification results with independently measured maximum dimension of snowflakes, snowflake bulk density and surrounding temperature was found. The developed classification algorithm is applicable for wind speeds below 5.0 m s -1 and has the advantage of being easily implemented by other users.

  12. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  13. PcHD: personalized classification of heartbeat types using a decision tree.

    PubMed

    Park, Juyoung; Kang, Kyungtae

    2014-11-01

    The computer-aided interpretation of electrocardiogram (ECG) signals provides a non-invasive and inexpensive technique for analyzing heart activity under various cardiac conditions. Further, the proliferation of smartphones and wireless networks makes it possible to perform continuous Holter monitoring. However, although considerable attention has been paid to automated detection and classification of heartbeats from ECG data, classifier learning strategies have never been used to deal with individual variations in cardiac activity. In this paper, we propose a novel method for automatic classification of an individual׳s ECG beats for Holter monitoring. We use the Pan-Tompkins algorithm to accurately extract features such as the QRS complex and P wave, and employ a decision tree to classify each beat in terms of these features. Evaluations conducted against the MIT-BIH arrhythmia database before and after personalization of the decision tree using a patient׳s own ECG data yield heartbeat classification accuracies of 94.6% and 99%, respectively. These are comparable to results obtained from state-of-the-art schemes, validating the efficacy of our proposed method.

  14. Cardiovascular Dysautonomias Diagnosis Using Crisp and Fuzzy Decision Tree: A Comparative Study.

    PubMed

    Kadi, Ilham; Idri, Ali

    2016-01-01

    Decision trees (DTs) are one of the most popular techniques for learning classification systems, especially when it comes to learning from discrete examples. In real world, many data occurred in a fuzzy form. Hence a DT must be able to deal with such fuzzy data. In fact, integrating fuzzy logic when dealing with imprecise and uncertain data allows reducing uncertainty and providing the ability to model fine knowledge details. In this paper, a fuzzy decision tree (FDT) algorithm was applied on a dataset extracted from the ANS (Autonomic Nervous System) unit of the Moroccan university hospital Avicenne. This unit is specialized on performing several dynamic tests to diagnose patients with autonomic disorder and suggest them the appropriate treatment. A set of fuzzy classifiers were generated using FID 3.4. The error rates of the generated FDTs were calculated to measure their performances. Moreover, a comparison between the error rates obtained using crisp and FDTs was carried out and has proved that the results of FDTs were better than those obtained using crisp DTs. PMID:27139378

  15. Analysis of acid rain patterns in northeastern China using a decision tree method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuying; Jiang, Hong; Jin, Jiaxin; Xu, Xiaohua; Zhang, Qingxin

    2012-01-01

    Acid rain is a major regional-scale environmental problem in China. To control acid rain pollution and to protect the ecological environment, it is urgent to document acid rain patterns in various regions of China. Taking Liaoning Province as the study area, the present work focused on the spatial and temporal variations of acid rains in northeastern China. It presents a means for predicting the occurrence of acid rain using geographic position, terrain characteristics, routinely monitored meteorological factors and column concentrations of atmospheric SO 2 and NO 2. The analysis applies a decision tree approach to the foregoing observation data. Results showed that: (1) acid rain occurred at 17 stations among the 81 monitoring stations in Liaoning Province, with the frequency of acid rain from 0 to 84.38%; (2) summer had the most acid rain occurrences followed by spring and autumn, and the winter had the least; (3) the total accuracy for the simulation of precipitation pH (pH ≤ 4.5, 4.5 < pH ≤ 5.6, and pH > 5.6) was 98.04% using the decision tree method known as C5. The simulation results also indicated that the distance to coastline, elevation, wind direction, wind speed, rainfall amount, atmospheric pressure, and the precursors of acid rain all have a strong influence on the occurrence of acid rains in northeastern China.

  16. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree

    PubMed Central

    Safi, Yaser

    2016-01-01

    Diagnosis of oral ulcerative lesions might be quite challenging. This narrative review article aims to introduce an updated decision tree for diagnosing oral ulcerative lesions on the basis of their diagnostic features. Various general search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of MeSH keywords such as “oral ulcer,” “stomatitis,” and “mouth diseases.” Thereafter, English-language articles published since 1983 to 2015 in both medical and dental journals including reviews, meta-analyses, original papers, and case reports were appraised. Upon compilation of the relevant data, oral ulcerative lesions were categorized into three major groups: acute, chronic, and recurrent ulcers and into five subgroups: solitary acute, multiple acute, solitary chronic, multiple chronic, and solitary/multiple recurrent, based on the number and duration of lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by stepwise progression. PMID:27781066

  17. Decision trees for evaluating skin and respiratory sensitizing potential of chemicals in accordance with European regulations.

    PubMed

    Selgrade, Maryjane K; Sullivan, Katherine S; Boyles, Rebecca R; Dederick, Elizabeth; Serex, Tessa L; Loveless, Scott E

    2012-08-01

    Guidance for determining the sensitizing potential of chemicals is available in EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances; REACH guidance from the European Chemicals Agency; and the United Nations Globally Harmonized System (GHS). We created decision trees for evaluating potential skin and respiratory sensitizers. Our approach (1) brings all the regulatory information into one brief document, providing a step-by-step method to evaluate evidence that individual chemicals or mixtures have sensitizing potential; (2) provides an efficient, uniform approach that promotes consistency when evaluations are done by different reviewers; (3) provides a standard way to convey the rationale and information used to classify chemicals. We applied this approach to more than 50 chemicals distributed among 11 evaluators with varying expertise. Evaluators found the decision trees easy to use and recipients (product stewards) of the analyses found that the resulting documentation was consistent across users and met their regulatory needs. Our approach allows for transparency, process management (e.g., documentation, change management, version control), as well as consistency in chemical hazard assessment for REACH, EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances and the GHS. PMID:22584521

  18. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    PubMed

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology.

  19. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees.

    PubMed

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-09-18

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods.

  20. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model

    PubMed Central

    Lira, Felipe; Perez, Pedro S.; Baranauskas, José A.

    2013-01-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools. PMID:23455341

  1. Using decision-tree classifier systems to extract knowledge from databases

    NASA Technical Reports Server (NTRS)

    St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.

    1990-01-01

    One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.

  2. Development of decision tree models for substrates, inhibitors, and inducers of p-glycoprotein.

    PubMed

    Hammann, Felix; Gutmann, Heike; Jecklin, Ursula; Maunz, Andreas; Helma, Christoph; Drewe, Juergen

    2009-05-01

    In silico classification of new compounds for certain properties is a useful tool to guide further experiments or compound selection. Interaction of new compounds with the efflux pump P-glycoprotein (P-gp) is an important drug property determining tissue distribution and the potential for drug-drug interactions. We present three datasets on substrate, inhibitor, and inducer activities for P-gp (n = 471) obtained from a literature search which we compared to an existing evaluation of the Prestwick Chemical Library with the calcein-AM assay (retrieved from PubMed). Additionally, we present decision tree models of these activities with predictive accuracies of 77.7 % (substrates), 86.9 % (inhibitors), and 90.3 % (inducers) using three algorithms (CHAID, CART, and C4.5). We also present decision tree models of the calcein-AM assay (79.9 %). Apart from a comprehensive dataset of P-gp interacting compounds, our study provides evidence of the efficacy of logD descriptors and of two algorithms not commonly used in pharmacological QSAR studies (CART and CHAID). PMID:19519342

  3. Decision tree algorithm for detection of spatial processes in landscape transformation.

    PubMed

    Bogaert, Jan; Ceulemans, Reinhart; Salvador-Van Eysenrode, David

    2004-01-01

    The conversion of landscapes by human activities results in widespread changes in landscape spatial structure. Regardless of the type of land conversion, there appears to be a limited number of common spatial configurations that result from such land transformation processes. Some of these configurations are considered optimal or more desirable than others. Based on pattern geometry, we define ten processes responsible for pattern change: aggregation, attrition, creation, deformation, dissection, enlargement, fragmentation, perforation, shift, and shrinkage. A novelty in this contribution is the inclusion of transformation processes causing expansion of the land cover of interest. Consequently, we propose a decision tree algorithm that enables detection of these processes, based on three parameters that have to be determined before and after the transformation of the landscape: area, perimeter length, and number of patches of the focal landscape class. As an example, the decision tree algorithm is applied to determine the transformation processes of three divergent land cover change scenarios: deciduous woodland degradation in Cadiz Township (Wisconsin, USA) 1831-1950, canopy gap formation in a terra firme rain forest at the Tiputini Biodiversity Station (Amazonian Ecuador) 1997-1998, and forest regrowth in Petersham Township (Massachusetts, USA) 1830-1985. The examples signal the importance of the temporal resolution of the data, since long-term pattern conversions can be subdivided in stadia in which particular pattern components are altered by specific transformation processes.

  4. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  5. Cardiovascular Dysautonomias Diagnosis Using Crisp and Fuzzy Decision Tree: A Comparative Study.

    PubMed

    Kadi, Ilham; Idri, Ali

    2016-01-01

    Decision trees (DTs) are one of the most popular techniques for learning classification systems, especially when it comes to learning from discrete examples. In real world, many data occurred in a fuzzy form. Hence a DT must be able to deal with such fuzzy data. In fact, integrating fuzzy logic when dealing with imprecise and uncertain data allows reducing uncertainty and providing the ability to model fine knowledge details. In this paper, a fuzzy decision tree (FDT) algorithm was applied on a dataset extracted from the ANS (Autonomic Nervous System) unit of the Moroccan university hospital Avicenne. This unit is specialized on performing several dynamic tests to diagnose patients with autonomic disorder and suggest them the appropriate treatment. A set of fuzzy classifiers were generated using FID 3.4. The error rates of the generated FDTs were calculated to measure their performances. Moreover, a comparison between the error rates obtained using crisp and FDTs was carried out and has proved that the results of FDTs were better than those obtained using crisp DTs.

  6. High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems

    NASA Astrophysics Data System (ADS)

    Bigdeli, Behnaz; Pahlavani, Parham

    2016-10-01

    Synthetic Aperture Radar (SAR) data are of high interest for different applications in remote sensing specially land cover classification. SAR imaging is independent of solar illumination and weather conditions. It can even penetrate some of the Earth's surface materials to return information about subsurface features. However, the response of radar is more a function of geometry and structure than a surface reflection occurs in optical images. In addition, the backscatter of objects in the microwave range depends on the frequency of the band used, and the grey values in SAR images are different from the usual assumption of the spectral reflectance of the Earth's surface. Consequently, SAR imaging is often used as a complementary technique to traditional optical remote sensing. This study presents different ensemble systems for multisensor fusion of SAR, multispectral and LiDAR data. First, in decision ensemble system, after extraction and selection of proper features from each data, crisp SVM (Support Vector Machine) and Fuzzy KNN (K Nearest Neighbor) are utilized on each feature space. Finally Bayesian Theory is applied to fuse SVMs when Decision Template (DT) and Dempster Shafer (DS) are applied as fuzzy decision fusion methods on KNNs. Second, in feature ensemble system, features from all data are applied on a cube. Then classifications were performed by SVM and FKNN as crisp and fuzzy decision making system respectively. A co-registered TerrraSAR-X, WorldView-2 and LiDAR data set form San Francisco of USA was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with different sensor improves classification results for most of the classes.

  7. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  8. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  9. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  10. IntelliHealth: A medical decision support application using a novel weighted multi-layer classifier ensemble framework.

    PubMed

    Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan

    2016-02-01

    Accuracy plays a vital role in the medical field as it concerns with the life of an individual. Extensive research has been conducted on disease classification and prediction using machine learning techniques. However, there is no agreement on which classifier produces the best results. A specific classifier may be better than others for a specific dataset, but another classifier could perform better for some other dataset. Ensemble of classifiers has been proved to be an effective way to improve classification accuracy. In this research we present an ensemble framework with multi-layer classification using enhanced bagging and optimized weighting. The proposed model called "HM-BagMoov" overcomes the limitations of conventional performance bottlenecks by utilizing an ensemble of seven heterogeneous classifiers. The framework is evaluated on five different heart disease datasets, four breast cancer datasets, two diabetes datasets, two liver disease datasets and one hepatitis dataset obtained from public repositories. The analysis of the results show that ensemble framework achieved the highest accuracy, sensitivity and F-Measure when compared with individual classifiers for all the diseases. In addition to this, the ensemble framework also achieved the highest accuracy when compared with the state of the art techniques. An application named "IntelliHealth" is also developed based on proposed model that may be used by hospitals/doctors for diagnostic advice.

  11. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  12. Ensembl 2012

    PubMed Central

    Flicek, Paul; Amode, M. Ridwan; Barrell, Daniel; Beal, Kathryn; Brent, Simon; Carvalho-Silva, Denise; Clapham, Peter; Coates, Guy; Fairley, Susan; Fitzgerald, Stephen; Gil, Laurent; Gordon, Leo; Hendrix, Maurice; Hourlier, Thibaut; Johnson, Nathan; Kähäri, Andreas K.; Keefe, Damian; Keenan, Stephen; Kinsella, Rhoda; Komorowska, Monika; Koscielny, Gautier; Kulesha, Eugene; Larsson, Pontus; Longden, Ian; McLaren, William; Muffato, Matthieu; Overduin, Bert; Pignatelli, Miguel; Pritchard, Bethan; Riat, Harpreet Singh; Ritchie, Graham R. S.; Ruffier, Magali; Schuster, Michael; Sobral, Daniel; Tang, Y. Amy; Taylor, Kieron; Trevanion, Stephen; Vandrovcova, Jana; White, Simon; Wilson, Mark; Wilder, Steven P.; Aken, Bronwen L.; Birney, Ewan; Cunningham, Fiona; Dunham, Ian; Durbin, Richard; Fernández-Suarez, Xosé M.; Harrow, Jennifer; Herrero, Javier; Hubbard, Tim J. P.; Parker, Anne; Proctor, Glenn; Spudich, Giulietta; Vogel, Jan; Yates, Andy; Zadissa, Amonida; Searle, Stephen M. J.

    2012-01-01

    The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project. PMID:22086963

  13. DTREE: Microcomputer-Assisted Teaching of Psychiatric Diagnosis Using a Decision Tree Model

    PubMed Central

    First, Michael B.; Williams, Janet B.W.; Spitzer, Robert L.

    1988-01-01

    DTREE has been developed to provide new clinicians with computer-assisted teaching of psychiatric diagnosis, according to the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised (DSM-III-R). At the core of DTREE is an expert system that guides the user through the process of making a diagnosis. To best model the DSM-III-R system, a decision tree design has been employed in which questions are sequentially asked about a case, with the answer determining which question is asked next. Since the primary goal of an expert system used for teaching is to be able to provide explanations of what it is doing, annotated comments and additional explanatory text are available for each question that is asked. DTREE is currently undergoing field testing in both clinical and educational settings.

  14. Multi-output decision trees for lesion segmentation in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Jog, Amod; Carass, Aaron; Pham, Dzung L.; Prince, Jerry L.

    2015-03-01

    Multiple Sclerosis (MS) is a disease of the central nervous system in which the protective myelin sheath of the neurons is damaged. MS leads to the formation of lesions, predominantly in the white matter of the brain and the spinal cord. The number and volume of lesions visible in magnetic resonance (MR) imaging (MRI) are important criteria for diagnosing and tracking the progression of MS. Locating and delineating lesions manually requires the tedious and expensive efforts of highly trained raters. In this paper, we propose an automated algorithm to segment lesions in MR images using multi-output decision trees. We evaluated our algorithm on the publicly available MICCAI 2008 MS Lesion Segmentation Challenge training dataset of 20 subjects, and showed improved results in comparison to state-of-the-art methods. We also evaluated our algorithm on an in-house dataset of 49 subjects with a true positive rate of 0.41 and a positive predictive value 0.36.

  15. Multi-Output Decision Trees for Lesion Segmentation in Multiple Sclerosis

    PubMed Central

    Jog, Amod; Carass, Aaron; Pham, Dzung L.; Prince, Jerry L.

    2016-01-01

    Multiple Sclerosis (MS) is a disease of the central nervous system in which the protective myelin sheath of the neurons is damaged. MS leads to the formation of lesions, predominantly in the white matter of the brain and the spinal cord. The number and volume of lesions visible in magnetic resonance (MR) imaging (MRI) are important criteria for diagnosing and tracking the progression of MS. Locating and delineating lesions manually requires the tedious and expensive efforts of highly trained raters. In this paper, we propose an automated algorithm to segment lesions in MR images using multi-output decision trees. We evaluated our algorithm on the publicly available MICCAI 2008 MS Lesion Segmentation Challenge training dataset of 20 subjects, and showed improved results in comparison to state-of-the-art methods. We also evaluated our algorithm on an in-house dataset of 49 subjects with a true positive rate of 0.41 and a positive predictive value 0.36.

  16. K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier

    NASA Astrophysics Data System (ADS)

    Shibata, Tomoyuki; Wada, Toshikazu

    This paper presents a novel algorithm for Nearest Neighbor (NN) classifier. NN classification is a well-known method of pattern classification having the following properties: * it performs maximum-margin classification and achieves less than twice the ideal Bayesian error, * it does not require knowledge of pattern distributions, kernel functions or base classifiers, and * it can naturally be applied to multiclass classification problems. Among the drawbacks are A) inefficient memory use and B) ineffective pattern classification speed. This paper deals with the problems A and B. In most cases, NN search algorithms, such as k-d tree, are employed as a pattern search engine of the NN classifier. However, NN classification does not always require the NN search. Based on this idea, we propose a novel algorithm named k-d decision tree (KDDT). Since KDDT uses Voronoi-condensed prototypes, it consumes less memory than naive NN classifiers. We have confirmed that KDDT is much faster than NN search-based classifier through a comparative experiment (from 9 to 369 times faster than NN search based classifier). Furthermore, in order to extend applicability of the KDDT algorithm to high-dimensional NN classification, we modified it by incorporating Gabriel editing or RNG editing instead of Voronoi condensing. Through experiments using simulated and real data, we have confirmed the modified KDDT algorithms are superior to the original one.

  17. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    PubMed

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.

  18. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    PubMed

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size. PMID:27420067

  19. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree

    PubMed Central

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-01-01

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size. PMID:27420067

  20. Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories

    PubMed Central

    Türkcan, Silvan; Masson, Jean-Baptiste

    2013-01-01

    Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining potential further using the AIC. We apply the method to experimental Clostridium Perfingens -toxin (CPT) receptor trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental CPT trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant information than the diffusion coefficient or domain size and may be a better tool to

  1. Using Ensemble Decisions and Active Selection to Improve Low-Cost Labeling for Multi-View Data

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Wagstaff, Kiri L.

    2011-01-01

    This paper seeks to improve low-cost labeling in terms of training set reliability (the fraction of correctly labeled training items) and test set performance for multi-view learning methods. Co-training is a popular multiview learning method that combines high-confidence example selection with low-cost (self) labeling. However, co-training with certain base learning algorithms significantly reduces training set reliability, causing an associated drop in prediction accuracy. We propose the use of ensemble labeling to improve reliability in such cases. We also discuss and show promising results on combining low-cost ensemble labeling with active (low-confidence) example selection. We unify these example selection and labeling strategies under collaborative learning, a family of techniques for multi-view learning that we are developing for distributed, sensor-network environments.

  2. Ensemble-based analysis of Front Range severe convection on 6-7 June 2012: Forecast uncertainty and communication of weather information to Front Range decision-makers

    NASA Astrophysics Data System (ADS)

    Vincente, Vanessa

    -allowing ensemble also showed greater skill in forecasting heavy precipitation amounts in the vicinity of where they were observed during the most active convective period, particularly near urbanized areas. A total of 9 Front Range EMs were interviewed to research how they understood hazardous weather information, and how their perception of forecast uncertainty would influence their decision making following a heavy rain event. Many of the EMs use situational awareness and past experiences with major weather events to guide their emergency planning. They also highly valued their relationship with the National Weather Service to improve their understanding of weather forecasts and ask questions about the uncertainties. Most of the EMs perceived forecast uncertainty in terms of probability and with the understanding that forecasting the weather is an imprecise science. The greater the likelihood of occurrence (implied by a higher probability of precipitation) showed greater confidence in the forecast that an event was likely to happen. Five probabilistic forecast products were generated from the convection-allowing ensemble output to generate a hypothetical warm season heavy rain event scenario. Responses varied between the EMs in which products they found most practical or least useful. Most EMs believed that there was a high probability for flooding, as illustrated by the degree of forecasted precipitation intensity. Most confirmed perceiving uncertainty in the different forecast representations, sharing the idea that there is an inherent uncertainty that follows modeled forecasts. The long-term goal of this research is to develop and add reliable probabilistic forecast products to the "toolbox" of decision-makers to help them better assess hazardous weather information and improve warning notifications and response.

  3. A Decision-Tree-Oriented Guidance Mechanism for Conducting Nature Science Observation Activities in a Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung

    2010-01-01

    A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…

  4. VR-BFDT: A variance reduction based binary fuzzy decision tree induction method for protein function prediction.

    PubMed

    Golzari, Fahimeh; Jalili, Saeed

    2015-07-21

    In protein function prediction (PFP) problem, the goal is to predict function of numerous well-sequenced known proteins whose function is not still known precisely. PFP is one of the special and complex problems in machine learning domain in which a protein (regarded as instance) may have more than one function simultaneously. Furthermore, the functions (regarded as classes) are dependent and also are organized in a hierarchical structure in the form of a tree or directed acyclic graph. One of the common learning methods proposed for solving this problem is decision trees in which, by partitioning data into sharp boundaries sets, small changes in the attribute values of a new instance may cause incorrect change in predicted label of the instance and finally misclassification. In this paper, a Variance Reduction based Binary Fuzzy Decision Tree (VR-BFDT) algorithm is proposed to predict functions of the proteins. This algorithm just fuzzifies the decision boundaries instead of converting the numeric attributes into fuzzy linguistic terms. It has the ability of assigning multiple functions to each protein simultaneously and preserves the hierarchy consistency between functional classes. It uses the label variance reduction as splitting criterion to select the best "attribute-value" at each node of the decision tree. The experimental results show that the overall performance of the proposed algorithm is promising.

  5. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  6. Model-independent evaluation of tumor markers and a logistic-tree approach to diagnostic decision support.

    PubMed

    Ni, Weizeng; Huang, Samuel H; Su, Qiang; Shi, Jinghua

    2014-01-01

    Sensitivity and specificity of using individual tumor markers hardly meet the clinical requirement. This challenge gave rise to many efforts, e.g., combing multiple tumor markers and employing machine learning algorithms. However, results from different studies are often inconsistent, which are partially attributed to the use of different evaluation criteria. Also, the wide use of model-dependent validation leads to high possibility of data overfitting when complex models are used for diagnosis. We propose two model-independent criteria, namely, area under the curve (AUC) and Relief to evaluate the diagnostic values of individual and multiple tumor markers, respectively. For diagnostic decision support, we propose the use of logistic-tree which combines decision tree and logistic regression. Application on a colorectal cancer dataset shows that the proposed evaluation criteria produce results that are consistent with current knowledge. Furthermore, the simple and highly interpretable logistic-tree has diagnostic performance that is competitive with other complex models. PMID:25516124

  7. Proposal of a Clinical Decision Tree Algorithm Using Factors Associated with Severe Dengue Infection

    PubMed Central

    Hussin, Narwani; Cheah, Wee Kooi; Ng, Kee Sing; Muninathan, Prema

    2016-01-01

    Background WHO’s new classification in 2009: dengue with or without warning signs and severe dengue, has necessitated large numbers of admissions to hospitals of dengue patients which in turn has been imposing a huge economical and physical burden on many hospitals around the globe, particularly South East Asia and Malaysia where the disease has seen a rapid surge in numbers in recent years. Lack of a simple tool to differentiate mild from life threatening infection has led to unnecessary hospitalization of dengue patients. Methods We conducted a single-centre, retrospective study involving serologically confirmed dengue fever patients, admitted in a single ward, in Hospital Kuala Lumpur, Malaysia. Data was collected for 4 months from February to May 2014. Socio demography, co-morbidity, days of illness before admission, symptoms, warning signs, vital signs and laboratory result were all recorded. Descriptive statistics was tabulated and simple and multiple logistic regression analysis was done to determine significant risk factors associated with severe dengue. Results 657 patients with confirmed dengue were analysed, of which 59 (9.0%) had severe dengue. Overall, the commonest warning sign were vomiting (36.1%) and abdominal pain (32.1%). Previous co-morbid, vomiting, diarrhoea, pleural effusion, low systolic blood pressure, high haematocrit, low albumin and high urea were found as significant risk factors for severe dengue using simple logistic regression. However the significant risk factors for severe dengue with multiple logistic regressions were only vomiting, pleural effusion, and low systolic blood pressure. Using those 3 risk factors, we plotted an algorithm for predicting severe dengue. When compared to the classification of severe dengue based on the WHO criteria, the decision tree algorithm had a sensitivity of 0.81, specificity of 0.54, positive predictive value of 0.16 and negative predictive of 0.96. Conclusion The decision tree algorithm proposed

  8. Application Of Decision Tree Approach To Student Selection Model- A Case Study

    NASA Astrophysics Data System (ADS)

    Harwati; Sudiya, Amby

    2016-01-01

    The main purpose of the institution is to provide quality education to the students and to improve the quality of managerial decisions. One of the ways to improve the quality of students is to arrange the selection of new students with a more selective. This research takes the case in the selection of new students at Islamic University of Indonesia, Yogyakarta, Indonesia. One of the university's selection is through filtering administrative selection based on the records of prospective students at the high school without paper testing. Currently, that kind of selection does not yet has a standard model and criteria. Selection is only done by comparing candidate application file, so the subjectivity of assessment is very possible to happen because of the lack standard criteria that can differentiate the quality of students from one another. By applying data mining techniques classification, can be built a model selection for new students which includes criteria to certain standards such as the area of origin, the status of the school, the average value and so on. These criteria are determined by using rules that appear based on the classification of the academic achievement (GPA) of the students in previous years who entered the university through the same way. The decision tree method with C4.5 algorithm is used here. The results show that students are given priority for admission is that meet the following criteria: came from the island of Java, public school, majoring in science, an average value above 75, and have at least one achievement during their study in high school.

  9. Object classification in images for Epo doping control based on fuzzy decision trees

    NASA Astrophysics Data System (ADS)

    Bajla, Ivan; Hollander, Igor; Heiss, Dorothea; Granec, Reinhard; Minichmayr, Markus

    2005-02-01

    Erythropoietin (Epo) is a hormone which can be misused as a doping substance. Its detection involves analysis of images containing specific objects (bands), whose position and intensity are critical for doping positivity. Within a research project of the World Anti-Doping Agency (WADA) we are implementing the GASepo software that should serve for Epo testing in doping control laboratories world-wide. For identification of the bands we have developed a segmentation procedure based on a sequence of filters and edge detectors. Whereas all true bands are properly segmented, the procedure generates a relatively high number of false positives (artefacts). To separate these artefacts we suggested a post-segmentation supervised classification using real-valued geometrical measures of objects. The method is based on the ID3 (Ross Quinlan's) rule generation method, where fuzzy representation is used for linking the linguistic terms to quantitative data. The fuzzy modification of the ID3 method provides a framework that generates fuzzy decision trees, as well as fuzzy sets for input data. Using the MLTTM software (Machine Learning Framework) we have generated a set of fuzzy rules explicitly describing bands and artefacts. The method eliminated most of the artefacts. The contribution includes a comparison of the obtained misclassification errors to the errors produced by some other statistical classification methods.

  10. Comparison between Decision Tree and Genetic Programming to distinguish healthy from stroke postural sway patterns.

    PubMed

    Marrega, Luiz H G; Silva, Simone M; Manffra, Elisangela F; Nievola, Julio C

    2015-01-01

    Maintaining balance is a motor task of crucial importance for humans to perform their daily activities safely and independently. Studies in the field of Artificial Intelligence have considered different classification methods in order to distinguish healthy subjects from patients with certain motor disorders based on their postural strategies during the balance control. The main purpose of this paper is to compare the performance between Decision Tree (DT) and Genetic Programming (GP) - both classification methods of easy interpretation by health professionals - to distinguish postural sway patterns produced by healthy and stroke individuals based on 16 widely used posturographic variables. For this purpose, we used a posturographic dataset of time-series of center-of-pressure displacements derived from 19 stroke patients and 19 healthy matched subjects in three quiet standing tasks of balance control. Then, DT and GP models were trained and tested under two different experiments where accuracy, sensitivity and specificity were adopted as performance metrics. The DT method has performed statistically significant (P < 0.05) better in both cases, showing for example an accuracy of 72.8% against 69.2% from GP in the second experiment of this paper.

  11. Effect of training characteristics on object classification: An application using Boosted Decision Trees

    NASA Astrophysics Data System (ADS)

    Sevilla-Noarbe, I.; Etayo-Sotos, P.

    2015-06-01

    We present an application of a particular machine-learning method (Boosted Decision Trees, BDTs using AdaBoost) to separate stars and galaxies in photometric images using their catalog characteristics. BDTs are a well established machine learning technique used for classification purposes. They have been widely used specially in the field of particle and astroparticle physics, and we use them here in an optical astronomy application. This algorithm is able to improve from simple thresholding cuts on standard separation variables that may be affected by local effects such as blending, badly calculated background levels or which do not include information in other bands. The improvements are shown using the Sloan Digital Sky Survey Data Release 9, with respect to the type photometric classifier. We obtain an improvement in the impurity of the galaxy sample of a factor 2-4 for this particular dataset, adjusting for the same efficiency of the selection. Another main goal of this study is to verify the effects that different input vectors and training sets have on the classification performance, the results being of wider use to other machine learning techniques.

  12. Decision tree and postpartum management for preventing dehydration in the "breastfed" baby.

    PubMed

    Newman, J

    1996-06-01

    Dehydration and poor weight gain in breastfed infants are common but potentially preventable problems. Serious consequences are severe hypernatremic dehydration, severe weight loss, and severe hyperbilirubinemia with possible irreversible damage to the baby's brain or other vital organs. The dangers of dehydration have been emphasized by recent media reports of severe cases. These reports have resulted in increased, but often inappropriate, intervention in breastfeeding. On the basis of our experience at the Hospital for Sick Children, and the Doctors Hospital (Toronto), we have developed a decision tree and management protocol to assess breastfeeding, intervene effectively, and prevent such problems. If all breastfeeding mothers and babies are evaluated by qualified staff before discharge using this tool, it is expected that the serious consequences associated with babies leaving hospital appearing to be breastfeeding, but in fact not breastfeeding at all, will be prevented. Application of this approach, however, will require considerable upgrading of nurses' and physicians' skills and knowledge with regard to breastfeeding. A case report is presented.

  13. Decision tree for smart feature extraction from sleep HR in bipolar patients.

    PubMed

    Migliorini, Matteo; Mariani, Sara; Bianchi, Anna M

    2013-01-01

    The aim of this work is the creation of a completely automatic method for the extraction of informative parameters from peripheral signals recorded through a sensorized T-shirt. The acquired data belong to patients affected from bipolar disorder, and consist of RR series, body movements and activity type. The extracted features, i.e. linear and non-linear HRV parameters in the time domain, HRV parameters in the frequency domain, and parameters indicative of the sleep quality, profile and fragmentation, are of interest for the automatic classification of the clinical mood state. The analysis of this dataset, which is to be performed online and automatically, must address the problems related to the clinical protocol, which also includes a segment of recording in which the patient is awake, and to the nature of the device, which can be sensitive to movements and misplacement. Thus, the decision tree implemented in this study performs the detection and isolation of the sleep period, the elimination of corrupted recording segments and the checking of the minimum requirements of the signals for every parameter to be calculated. PMID:24110866

  14. A Decision Tree Based Classifier to Analyze Human Ovarian Cancer cDNA Microarray Datasets.

    PubMed

    Tsai, Meng-Hsiun; Wang, Hsin-Chieh; Lee, Guan-Wei; Lin, Yi-Chen; Chiu, Sheng-Hsiung

    2016-01-01

    Ovarian cancer is the deadliest gynaecological disease because of the high mortality rate and there is no any symptom in cancer early stage. It was often the terminal cancer period when patients were diagnosed with ovarian cancer and thus delays a good opportunity of treatment. The current common method for detecting ovarian cancer is blood testing for analyzing the tumor marker CA-125 of serum. However, specificity and sensitivity of CA-125 are insufficient for early detection. Therefore, it has become an urgent issue to look for an efficient method which precisely detects the tumor markers for ovarian cancer. This study aims to find the target genes of ovarian cancer by different algorithms of information science. Feature selection and decision tree were applied to analyze 9600 ovarian cancer-related genes. After screening the target genes, candidate genes will be analyzed by Ingenuity Pathway Analysis (IPA) software to create a genetic pathway model and to understand the interactive relationship in the different pathological stages of ovarian cancer. Finally, this research found 9 oncogenes associated with ovarian cancer and some genes had not been discovered in previous studies. This system will assist medical staffs in diagnosis and treatment at cancer early stage and improve the patient's survival. PMID:26531754

  15. Simultaneous and selective isolation of multiple subpopulations of rare cells from peripheral blood using ensemble-decision aliquot ranking (eDAR).

    PubMed

    Zhao, Mengxia; Wei, Bingchuan; Nelson, Wyatt C; Schiro, Perry G; Chiu, Daniel T

    2015-08-21

    Rare cells, such as circulating tumor cells (CTCs), can be heterogeneous. The isolation and identification of rare cells with different phenotypes is desirable, for clinical and biological applications. However, CTCs exist in a complex biological environment, which complicates the isolation and identification of particular subtypes. To address this need, we re-designed our ensemble-decision aliquot ranking (eDAR) system to detect, isolate, and study two subpopulations of rare cells in the same microchip. With this dual-capture eDAR device, we simultaneously and selectively isolated two subsets of CTCs from the same blood sample: One set expressed epithelial markers and the other had mesenchymal characteristics. We could apply other selection schemes with different sorting logics to isolate the two subpopulations on demand. The average recovery rate for each subpopulation was higher than 88% with a nearly 100% selectivity of the targeted cells; the throughput was 50 μL min(-1). PMID:26160592

  16. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  17. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.

  18. Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble

    PubMed Central

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  19. Large unbalanced credit scoring using Lasso-logistic regression ensemble.

    PubMed

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.

  20. Genetic programming based ensemble system for microarray data classification.

    PubMed

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.

  1. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  2. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  3. Validation of probability equation and decision tree in predicting subsequent dengue hemorrhagic fever in adult dengue inpatients in Singapore.

    PubMed

    Thein, Tun L; Leo, Yee-Sin; Lee, Vernon J; Sun, Yan; Lye, David C

    2011-11-01

    We developed a probability equation and a decision tree from 1,973 predominantly dengue serotype 1 hospitalized adult dengue patients in 2004 to predict progression to dengue hemorrhagic fever (DHF), applied in our clinic since March 2007. The parameters predicting DHF were clinical bleeding, high serum urea, low serum protein, and low lymphocyte proportion. This study validated these in a predominantly dengue serotype 2 cohort in 2007. The 1,017 adult dengue patients admitted to Tan Tock Seng Hospital, Singapore had a median age of 35 years. Of 933 patients without DHF on admission, 131 progressed to DHF. The probability equation predicted DHF with a sensitivity (Sn) of 94%, specificity (Sp) 17%, positive predictive value (PPV) 16%, and negative predictive value (NPV) 94%. The decision tree predicted DHF with a Sn of 99%, Sp 12%, PPV 16%, and NPV 99%. Both tools performed well despite a switch in predominant dengue serotypes.

  4. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  5. Effective Visualization of Temporal Ensembles.

    PubMed

    Hao, Lihua; Healey, Christopher G; Bass, Steffen A

    2016-01-01

    An ensemble is a collection of related datasets, called members, built from a series of runs of a simulation or an experiment. Ensembles are large, temporal, multidimensional, and multivariate, making them difficult to analyze. Another important challenge is visualizing ensembles that vary both in space and time. Initial visualization techniques displayed ensembles with a small number of members, or presented an overview of an entire ensemble, but without potentially important details. Recently, researchers have suggested combining these two directions, allowing users to choose subsets of members to visualization. This manual selection process places the burden on the user to identify which members to explore. We first introduce a static ensemble visualization system that automatically helps users locate interesting subsets of members to visualize. We next extend the system to support analysis and visualization of temporal ensembles. We employ 3D shape comparison, cluster tree visualization, and glyph based visualization to represent different levels of detail within an ensemble. This strategy is used to provide two approaches for temporal ensemble analysis: (1) segment based ensemble analysis, to capture important shape transition time-steps, clusters groups of similar members, and identify common shape changes over time across multiple members; and (2) time-step based ensemble analysis, which assumes ensemble members are aligned in time by combining similar shapes at common time-steps. Both approaches enable users to interactively visualize and analyze a temporal ensemble from different perspectives at different levels of detail. We demonstrate our techniques on an ensemble studying matter transition from hadronic gas to quark-gluon plasma during gold-on-gold particle collisions.

  6. Effective Visualization of Temporal Ensembles.

    PubMed

    Hao, Lihua; Healey, Christopher G; Bass, Steffen A

    2016-01-01

    An ensemble is a collection of related datasets, called members, built from a series of runs of a simulation or an experiment. Ensembles are large, temporal, multidimensional, and multivariate, making them difficult to analyze. Another important challenge is visualizing ensembles that vary both in space and time. Initial visualization techniques displayed ensembles with a small number of members, or presented an overview of an entire ensemble, but without potentially important details. Recently, researchers have suggested combining these two directions, allowing users to choose subsets of members to visualization. This manual selection process places the burden on the user to identify which members to explore. We first introduce a static ensemble visualization system that automatically helps users locate interesting subsets of members to visualize. We next extend the system to support analysis and visualization of temporal ensembles. We employ 3D shape comparison, cluster tree visualization, and glyph based visualization to represent different levels of detail within an ensemble. This strategy is used to provide two approaches for temporal ensemble analysis: (1) segment based ensemble analysis, to capture important shape transition time-steps, clusters groups of similar members, and identify common shape changes over time across multiple members; and (2) time-step based ensemble analysis, which assumes ensemble members are aligned in time by combining similar shapes at common time-steps. Both approaches enable users to interactively visualize and analyze a temporal ensemble from different perspectives at different levels of detail. We demonstrate our techniques on an ensemble studying matter transition from hadronic gas to quark-gluon plasma during gold-on-gold particle collisions. PMID:26529728

  7. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China

    PubMed Central

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-01-01

    Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328

  8. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  9. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology. PMID:27273293

  10. A comparison of artificial neural net and inductive decision tree learning applied to the diagnosis of coronary artery disease

    SciTech Connect

    Silver, D.L.; Hurwitz, G.A.; Cradduck, T.D.

    1994-05-01

    A variety of artificial intelligence systems are available for applications within nuclear medicine. It is important to understand the strengths and weaknesses of these systems and the class of problems for which each is best. Two supervised machine learning systems, a back propagation neural network and an inductive decision tree, were applied to the classification of coronary artery disease given a set of diagnostic input parameters. A comparison indicates that both paradigms perform well depending upon the requirements of the user. We examined the setup complexity, learning and classification speed, training accuracy, ability to generalize to previously unseen cases, and the explanatory power of the internal representations generated by the learning systems. A database of 503 patient records composed of ten parameters was used for the analysis. The target response was a binary value of disease or no disease. The results indicate that the inductive decision tree learning system is the better choice for this class of problem. It is easier to setup and training takes less time. It has good explanatory power since it produces a printed decision tree of the internal representation of acquired knowledge. On the other hand, the artificial neural net provides better generalization for new test cases, and has greater classification accuracy.

  11. Evaluation of the potential allergenicity of the enzyme microbial transglutaminase using the 2001 FAO/WHO Decision Tree.

    PubMed

    Pedersen, Mona H; Hansen, Tine K; Sten, Eva; Seguro, Katsuya; Ohtsuka, Tomoko; Morita, Akiko; Bindslev-Jensen, Carsten; Poulsen, Lars K

    2004-11-01

    All novel proteins must be assessed for their potential allergenicity before they are introduced into the food market. One method to achieve this is the 2001 FAO/WHO Decision Tree recommended for evaluation of proteins from genetically modified organisms (GMOs). It was the aim of this study to investigate the allergenicity of microbial transglutaminase (m-TG) from Streptoverticillium mobaraense. Amino acid sequence similarity to known allergens, pepsin resistance, and detection of protein binding to specific serum immunoglobulin E (IgE) (RAST) have been evaluated as recommended by the decision tree. Allergenicity in the source material was thought unlikely, since no IgE-mediated allergy to any bacteria has been reported. m-TG is fully degraded after 5 min of pepsin treatment. A database search showed that the enzyme has no homology with known allergens, down to a match of six contiguous amino acids, which meets the requirements of the decision tree. However, there is a match at the five contiguous amino acid level to the major codfish allergen Gad c1. The potential cross reactivity between m-TG and Gad c1 was investigated in RAST using sera from 25 documented cod-allergic patients and an extract of raw codfish. No binding between patient IgE and m-TG was observed. It can be concluded that no safety concerns with regard to the allergenic potential of m-TG were identified.

  12. Ensembl 2013

    PubMed Central

    Flicek, Paul; Ahmed, Ikhlak; Amode, M. Ridwan; Barrell, Daniel; Beal, Kathryn; Brent, Simon; Carvalho-Silva, Denise; Clapham, Peter; Coates, Guy; Fairley, Susan; Fitzgerald, Stephen; Gil, Laurent; García-Girón, Carlos; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah; Juettemann, Thomas; Kähäri, Andreas K.; Keenan, Stephen; Komorowska, Monika; Kulesha, Eugene; Longden, Ian; Maurel, Thomas; McLaren, William M.; Muffato, Matthieu; Nag, Rishi; Overduin, Bert; Pignatelli, Miguel; Pritchard, Bethan; Pritchard, Emily; Riat, Harpreet Singh; Ritchie, Graham R. S.; Ruffier, Magali; Schuster, Michael; Sheppard, Daniel; Sobral, Daniel; Taylor, Kieron; Thormann, Anja; Trevanion, Stephen; White, Simon; Wilder, Steven P.; Aken, Bronwen L.; Birney, Ewan; Cunningham, Fiona; Dunham, Ian; Harrow, Jennifer; Herrero, Javier; Hubbard, Tim J. P.; Johnson, Nathan; Kinsella, Rhoda; Parker, Anne; Spudich, Giulietta; Yates, Andy; Zadissa, Amonida; Searle, Stephen M. J.

    2013-01-01

    The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces. PMID:23203987

  13. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.

    PubMed

    Oksel, Ceyda; Winkler, David A; Ma, Cai Y; Wilkins, Terry; Wang, Xue Z

    2016-09-01

    The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and minimize any risks to health or the environment posed by the presence of ENMs. Data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics provide an attractive means of maximizing the value of scarce and expensive experimental data. Although such structure-activity relationship (SAR) methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), they have limited robustness and predictivity and, most importantly, interpretation of the models they generate is often very difficult. New computational modelling tools or new ways of using existing tools are required to model the relatively sparse and sometimes lower quality data on the biological effects of ENMs. The most commonly used SAR modelling methods work best with large datasets, are not particularly good at feature selection, can be relatively opaque to interpretation, and may not account for nonlinearity in the structure-property relationships. To overcome these limitations, we describe the application of a novel algorithm, a genetic programming-based decision tree construction tool (GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. We describe the algorithm and compare model results across the four studies. We show that GPTree generates models with accuracies equivalent to or superior to those of prior modelling studies on the same datasets. GPTree is a robust, automatic method for generation of accurate nanoSAR models with important advantages that it works with small datasets, automatically selects descriptors, and provides significantly improved interpretability of models.

  14. Ensemble Models

    EPA Science Inventory

    Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...

  15. A decision support system based on an ensemble of random forests for improving the management of women with abnormal findings at cervical cancer screening.

    PubMed

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Karakitsos, Petros; Koutsouris, Dimitrios

    2015-08-01

    In most cases, cervical cancer (CxCa) develops due to underestimated abnormalities in the Pap test. Today, there are ancillary molecular biology techniques available that provide important information related to CxCa and the Human Papillomavirus (HPV) natural history, including HPV DNA tests, HPV mRNA tests and immunocytochemistry techniques such as overexpression of p16. These techniques are either highly sensitive or highly specific, however not both at the same time, thus no perfect method is available today. In this paper we present a decision support system (DSS) based on an ensemble of Random Forests (RFs) for the intelligent combination of the results of classic and ancillary techniques that are available for CxCa detection, in order to exploit the benefits of each technique and produce more accurate results. The proposed system achieved both, high sensitivity (86.1%) and high specificity (93.3%), as well as high overall accuracy (91.8%), in detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). The system's performance was better than any other single test involved in this study. Moreover, the proposed architecture of employing an ensemble of RFs proved to be better than the single classifier approach. The presented system can handle cases with missing tests and more importantly cases with inadequate cytological outcome, thus it can also produce accurate results in the case of stand-alone HPV-based screening, where Pap test is not applied. The proposed system may identify women at true risk of developing CxCa and guide personalised management and therapeutic interventions.

  16. The creation of a digital soil map for Cyprus using decision-tree classification techniques

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Zomeni, Zomenia; Bruggeman, Adriana; Noller, Joy; Zissimos, Andreas

    2014-05-01

    Considering the increasing threats soil are experiencing especially in semi-arid, Mediterranean environments like Cyprus (erosion, contamination, sealing and salinisation), producing a high resolution, reliable soil map is essential for further soil conservation studies. This study aims to create a 1:50.000 soil map covering the area under the direct control of the Republic of Cyprus (5.760 km2). The study consists of two major steps. The first is the creation of a raster database of predictive variables selected according to the scorpan formula (McBratney et al., 2003). It is of particular interest the possibility of using, as soil properties, data coming from three older island-wide soil maps and the recently published geochemical atlas of Cyprus (Cohen et al., 2011). Ten highly characterizing elements were selected and used as predictors in the present study. For the other factors usual variables were used: temperature and aridity index for climate; total loss on ignition, vegetation and forestry types maps for organic matter; the DEM and related relief derivatives (slope, aspect, curvature, landscape units); bedrock, surficial geology and geomorphology (Noller, 2009) for parent material and age; and a sub-watershed map to better bound location related to parent material sources. In the second step, the digital soil map is created using the Random Forests package in R. Random Forests is a decision tree classification technique where many trees, instead of a single one, are developed and compared to increase the stability and the reliability of the prediction. The model is trained and verified on areas where a 1:25.000 published soil maps obtained from field work is available and then it is applied for predictive mapping to the other areas. Preliminary results obtained in a small area in the plain around the city of Lefkosia, where eight different soil classes are present, show very good capacities of the method. The Ramdom Forest approach leads to reproduce soil

  17. Analysis of the impact of recreational trail usage for prioritising management decisions: a regression tree approach

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek

    2016-04-01

    The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of

  18. Using decision trees to predict benthic communities within and near the German Exclusive Economic Zone (EEZ) of the North Sea.

    PubMed

    Pesch, Roland; Pehlke, Hendrik; Jerosch, Kerstin; Schröder, Winfried; Schlüter, Michael

    2008-01-01

    In this article a concept is described in order to predict and map the occurrence of benthic communities within and near the German Exclusive Economic Zone (EEZ) of the North Sea. The approach consists of two work steps: (1) geostatistical analysis of abiotic measurement data and (2) calculation of benthic provinces by means of Classification and Regression Trees (CART) and GIS-techniques. From bottom water measurements on salinity, temperature, silicate and nutrients as well as from punctual data on grain size ranges (0-20, 20-63, 63-2,000 mu) raster maps were calculated by use of geostatistical methods. At first the autocorrelation structure was examined and modelled with help of variogram analysis. The resulting variogram models were then used to calculate raster maps by applying ordinary kriging procedures. After intersecting these raster maps with punctual data on eight benthic communities a decision tree was derived to predict the occurrence of these communities within the study area. Since such a CART tree corresponds to a hierarchically ordered set of decision rules it was applied to the geostatistically estimated raster data to predict benthic habitats within and near the EEZ. PMID:17680336

  19. Ensembl 2015.

    PubMed

    Cunningham, Fiona; Amode, M Ridwan; Barrell, Daniel; Beal, Kathryn; Billis, Konstantinos; Brent, Simon; Carvalho-Silva, Denise; Clapham, Peter; Coates, Guy; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E; Janacek, Sophie H; Johnson, Nathan; Juettemann, Thomas; Kähäri, Andreas K; Keenan, Stephen; Martin, Fergal J; Maurel, Thomas; McLaren, William; Murphy, Daniel N; Nag, Rishi; Overduin, Bert; Parker, Anne; Patricio, Mateus; Perry, Emily; Pignatelli, Miguel; Riat, Harpreet Singh; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Vullo, Alessandro; Wilder, Steven P; Zadissa, Amonida; Aken, Bronwen L; Birney, Ewan; Harrow, Jennifer; Kinsella, Rhoda; Muffato, Matthieu; Ruffier, Magali; Searle, Stephen M J; Spudich, Giulietta; Trevanion, Stephen J; Yates, Andy; Zerbino, Daniel R; Flicek, Paul

    2015-01-01

    Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license. PMID:25352552

  20. Ensembl 2015

    PubMed Central

    Cunningham, Fiona; Amode, M. Ridwan; Barrell, Daniel; Beal, Kathryn; Billis, Konstantinos; Brent, Simon; Carvalho-Silva, Denise; Clapham, Peter; Coates, Guy; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E.; Janacek, Sophie H.; Johnson, Nathan; Juettemann, Thomas; Kähäri, Andreas K.; Keenan, Stephen; Martin, Fergal J.; Maurel, Thomas; McLaren, William; Murphy, Daniel N.; Nag, Rishi; Overduin, Bert; Parker, Anne; Patricio, Mateus; Perry, Emily; Pignatelli, Miguel; Riat, Harpreet Singh; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Vullo, Alessandro; Wilder, Steven P.; Zadissa, Amonida; Aken, Bronwen L.; Birney, Ewan; Harrow, Jennifer; Kinsella, Rhoda; Muffato, Matthieu; Ruffier, Magali; Searle, Stephen M.J.; Spudich, Giulietta; Trevanion, Stephen J.; Yates, Andy; Zerbino, Daniel R.; Flicek, Paul

    2015-01-01

    Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license. PMID:25352552

  1. Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes

    PubMed Central

    2013-01-01

    Background Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets. Results A multi-step decision tree-based method is described for defining endotypes based on gene expression, clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it provides easy access to all genes and clinical covariates that distinguish the groups. Conclusions The multi-step decision tree method described here will lead to better understanding of complex disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms underlying these diseases. This application should be considered a complement to ongoing efforts to better define and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby accounting for both major determinants of disease. PMID:24188919

  2. Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree.

    PubMed

    Yılmaz, Ersen; Kılıkçıer, Cağlar

    2013-01-01

    We use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification accuracy. Additionally, receiver operation characteristic analysis and cobweb representation are presented in order to analyze and visualize the performance of the method. Experimental results demonstrate that the proposed method achieves a remarkable classification accuracy rate of 91.62%.

  3. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection.

    PubMed

    Mao, Yong; Zhou, Xiaobo; Pi, Daoying; Sun, Youxian; Wong, Stephen T C

    2005-06-30

    We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene selection methods, binary classification tree based on SVM with F test, binary classification tree based on SVM with recursive feature elimination based on SVM, and FSVM with recursive feature elimination based on SVM are tested in our experiments. To accelerate computation, preselecting the strongest genes is also used. The proposed techniques are applied to analyze breast cancer data, small round blue-cell tumors, and acute leukemia data. Compared to existing multiclass cancer classifiers and binary classification tree based on SVM with F test or binary classification tree based on SVM with recursive feature elimination based on SVM mentioned in this paper, FSVM based on recursive feature elimination based on SVM can find most important genes that affect certain types of cancer with high recognition accuracy.

  4. Interactions between factors related to the decision of sex offenders to confess during police interrogation: a classification-tree approach.

    PubMed

    Beauregard, Eric; Deslauriers-Varin, Nadine; St-Yves, Michel

    2010-09-01

    Most studies of confessions have looked at the influence of individual factors, neglecting the potential interactions between these factors and their impact on the decision to confess or not during an interrogation. Classification and regression tree analyses conducted on a sample of 624 convicted sex offenders showed that certain factors related to the offenders (e.g., personality, criminal career), victims (e.g., sex, relationship to offender), and case (e.g., time of day of the crime) were related to the decision to confess or not during the police interrogation. Several interactions were also observed between these factors. Results will be discussed in light of previous findings and interrogation strategies for sex offenders.

  5. Integration of health services in the care of people living with aids: an approach using a decision tree.

    PubMed

    de Medeiros, Leidyanny Barbosa; Trigueiro, Débora Raquel Soares Guedes; da Silva, Daiane Medeiros; do Nascimento, João Agnaldo; Monroe, Aline Aparecida; Nogueira, Jordana de Almeida; Leadebal, Oriana Deyze Correia Paiva

    2016-02-01

    The care offer to people living with HIV/AIDS must transcend specialized outpatient services and include the participation of the Family Health Strategy. By understanding the importance of integration between these two points in the care network, the study aimed to build a decision support model to assist professionals of specialized health services in identifying behavior patterns in the use of Family Health Strategy services by people living with HIV/AIDS attended in the outpatient clinic. Thus, was proposed a model called decision tree, created from a database of 141 people with AIDS, users of a specialized outpatient clinic. The decision-making variable was the use of Family Health Strategy services by evaluating the integration of care. The model enabled the establishment of 23 rules with 80.1% hit percentage, what may support the decision-making of professionals in identifying situations in which it is necessary to stimulate the use of the Family Health Strategy by users. PMID:26910161

  6. Ensemble Tractography

    PubMed Central

    Wandell, Brian A.

    2016-01-01

    Tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with specific parameters poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate streamlines from an ensemble of algorithms (deterministic and probabilistic) and systematically varying parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validated prediction error of the diffusion MRI data than optimized connectomes generated using a single-algorithm or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles. PMID:26845558

  7. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier

    PubMed Central

    Kambhampati, Satya Samyukta; Singh, Vishal; Ramkumar, Barathram

    2015-01-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%. PMID:26609414

  8. Procalcitonin and C-reactive protein-based decision tree model for distinguishing PFAPA flares from acute infections.

    PubMed

    Kraszewska-Głomba, Barbara; Szymańska-Toczek, Zofia; Szenborn, Leszek

    2016-01-01

    As no specific laboratory test has been identified, PFAPA (periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis) remains a diagnosis of exclusion. We searched for a practical use of procalcitonin (PCT) and C-reactive protein (CRP) in distinguishing PFAPA attacks from acute bacterial and viral infections. Levels of PCT and CRP were measured in 38 patients with PFAPA and 81 children diagnosed with an acute bacterial (n=42) or viral (n=39) infection. Statistical analysis with the use of the C4.5 algorithm resulted in the following decision tree: viral infection if CRP≤19.1 mg/L; otherwise for cases with CRP>19.1 mg/L: bacterial infection if PCT>0.65ng/mL, PFAPA if PCT≤0.65 ng/mL. The model was tested using a 10-fold cross validation and in an independent test cohort (n=30), the rule's overall accuracy was 76.4% and 90% respectively. Although limited by a small sample size, the obtained decision tree might present a potential diagnostic tool for distinguishing PFAPA flares from acute infections when interpreted cautiously and with reference to the clinical context. PMID:27131024

  9. Lessons Learned from Applications of a Climate Change Decision Tree toWater System Projects in Kenya and Nepal

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Bonzanigo, L.; Taner, M. U.; Wi, S.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Decision Tree Framework developed for the World Bank's Water Partnership Program provides resource-limited project planners and program managers with a cost-effective and effort-efficient, scientifically defensible, repeatable, and clear method for demonstrating the robustness of a project to climate change. At the conclusion of this process, the project planner is empowered to confidently communicate the method by which the vulnerabilities of the project have been assessed, and how the adjustments that were made (if any were necessary) improved the project's feasibility and profitability. The framework adopts a "bottom-up" approach to risk assessment that aims at a thorough understanding of a project's vulnerabilities to climate change in the context of other nonclimate uncertainties (e.g., economic, environmental, demographic, political). It helps identify projects that perform well across a wide range of potential future climate conditions, as opposed to seeking solutions that are optimal in expected conditions but fragile to conditions deviating from the expected. Lessons learned through application of the Decision Tree to case studies in Kenya and Nepal will be presented, and aspects of the framework requiring further refinement will be described.

  10. Procalcitonin and C-reactive protein-based decision tree model for distinguishing PFAPA flares from acute infections

    PubMed Central

    Kraszewska-Głomba, Barbara; Szymańska-Toczek, Zofia; Szenborn, Leszek

    2016-01-01

    As no specific laboratory test has been identified, PFAPA (periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis) remains a diagnosis of exclusion. We searched for a practical use of procalcitonin (PCT) and C-reactive protein (CRP) in distinguishing PFAPA attacks from acute bacterial and viral infections. Levels of PCT and CRP were measured in 38 patients with PFAPA and 81 children diagnosed with an acute bacterial (n=42) or viral (n=39) infection. Statistical analysis with the use of the C4.5 algorithm resulted in the following decision tree: viral infection if CRP≤19.1 mg/L; otherwise for cases with CRP>19.1 mg/L: bacterial infection if PCT>0.65ng/mL, PFAPA if PCT≤0.65 ng/mL. The model was tested using a 10-fold cross validation and in an independent test cohort (n=30), the rule’s overall accuracy was 76.4% and 90% respectively. Although limited by a small sample size, the obtained decision tree might present a potential diagnostic tool for distinguishing PFAPA flares from acute infections when interpreted cautiously and with reference to the clinical context. PMID:27131024

  11. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    PubMed

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods.

  12. Refined estimation of solar energy potential on roof areas using decision trees on CityGML-data

    NASA Astrophysics Data System (ADS)

    Baumanns, K.; Löwner, M.-O.

    2009-04-01

    We present a decision tree for a refined solar energy plant potential estimation on roof areas using the exchange format CityGML. Compared to raster datasets CityGML-data holds geometric and semantic information of buildings and roof areas in more detail. In addition to shadowing effects ownership structures and lifetime of roof areas can be incorporated into the valuation. Since the Renewable Energy Sources Act came into force in Germany in 2000, private house owners and municipals raise attention to the production of green electricity. At this the return on invest depends on the statutory price per Watt, the initial costs of the solar energy plant, its lifetime, and the real production of this installation. The latter depends on the radiation that is obtained from and the size of the solar energy plant. In this context the exposition and slope of the roof area is as important as building parts like chimneys or dormers that might shadow parts of the roof. Knowing the controlling factors a decision tree can be created to support a beneficial deployment of a solar energy plant. Also sufficient data has to be available. Airborne raster datasets can only support a coarse estimation of the solar energy potential of roof areas. While they carry no semantically information, even roof installations are hardly to identify. CityGML as an Open Geospatial Consortium standard is an interoperable exchange data format for virtual 3-dimensional Cities. Based on international standards it holds the aforementioned geometric properties as well as semantically information. In Germany many Cities are on the way to provide CityGML dataset, e. g. Berlin. Here we present a decision tree that incorporates geometrically as well as semantically demands for a refined estimation of the solar energy potential on roof areas. Based on CityGML's attribute lists we consider geometries of roofs and roof installations as well as global radiation which can be derived e. g. from the European Solar

  13. Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump

    NASA Astrophysics Data System (ADS)

    Sakthivel, N. R.; Sugumaran, V.; Nair, Binoy. B.

    2010-08-01

    Mono-block centrifugal pumps are widely used in a variety of applications. In many applications the role of mono-block centrifugal pump is critical and condition monitoring is essential. Vibration based continuous monitoring and analysis using machine learning approach is gaining momentum. Particularly, artificial neural networks, fuzzy logic have been employed for continuous monitoring and fault diagnosis. This paper presents the use of decision tree and rough sets to generate the rules from statistical features extracted from vibration signals under good and faulty conditions of a mono-block centrifugal pump. A fuzzy classifier is built using decision tree and rough set rules and tested using test data. The results obtained using decision tree rules and those obtained using rough set rules are compared. Finally, the accuracy of a principle component analysis based decision tree-fuzzy system is also evaluated. The study reveals that overall classification accuracy obtained by the decision tree-fuzzy hybrid system is to some extent better than the rough set-fuzzy hybrid system.

  14. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  15. Ensembl 2016.

    PubMed

    Yates, Andrew; Akanni, Wasiu; Amode, M Ridwan; Barrell, Daniel; Billis, Konstantinos; Carvalho-Silva, Denise; Cummins, Carla; Clapham, Peter; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E; Janacek, Sophie H; Johnson, Nathan; Juettemann, Thomas; Keenan, Stephen; Lavidas, Ilias; Martin, Fergal J; Maurel, Thomas; McLaren, William; Murphy, Daniel N; Nag, Rishi; Nuhn, Michael; Parker, Anne; Patricio, Mateus; Pignatelli, Miguel; Rahtz, Matthew; Riat, Harpreet Singh; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Vullo, Alessandro; Wilder, Steven P; Zadissa, Amonida; Birney, Ewan; Harrow, Jennifer; Muffato, Matthieu; Perry, Emily; Ruffier, Magali; Spudich, Giulietta; Trevanion, Stephen J; Cunningham, Fiona; Aken, Bronwen L; Zerbino, Daniel R; Flicek, Paul

    2016-01-01

    The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.

  16. Ensembl 2016.

    PubMed

    Yates, Andrew; Akanni, Wasiu; Amode, M Ridwan; Barrell, Daniel; Billis, Konstantinos; Carvalho-Silva, Denise; Cummins, Carla; Clapham, Peter; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E; Janacek, Sophie H; Johnson, Nathan; Juettemann, Thomas; Keenan, Stephen; Lavidas, Ilias; Martin, Fergal J; Maurel, Thomas; McLaren, William; Murphy, Daniel N; Nag, Rishi; Nuhn, Michael; Parker, Anne; Patricio, Mateus; Pignatelli, Miguel; Rahtz, Matthew; Riat, Harpreet Singh; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Vullo, Alessandro; Wilder, Steven P; Zadissa, Amonida; Birney, Ewan; Harrow, Jennifer; Muffato, Matthieu; Perry, Emily; Ruffier, Magali; Spudich, Giulietta; Trevanion, Stephen J; Cunningham, Fiona; Aken, Bronwen L; Zerbino, Daniel R; Flicek, Paul

    2016-01-01

    The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license. PMID:26687719

  17. Ensembl 2016

    PubMed Central

    Yates, Andrew; Akanni, Wasiu; Amode, M. Ridwan; Barrell, Daniel; Billis, Konstantinos; Carvalho-Silva, Denise; Cummins, Carla; Clapham, Peter; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E.; Janacek, Sophie H.; Johnson, Nathan; Juettemann, Thomas; Keenan, Stephen; Lavidas, Ilias; Martin, Fergal J.; Maurel, Thomas; McLaren, William; Murphy, Daniel N.; Nag, Rishi; Nuhn, Michael; Parker, Anne; Patricio, Mateus; Pignatelli, Miguel; Rahtz, Matthew; Riat, Harpreet Singh; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Vullo, Alessandro; Wilder, Steven P.; Zadissa, Amonida; Birney, Ewan; Harrow, Jennifer; Muffato, Matthieu; Perry, Emily; Ruffier, Magali; Spudich, Giulietta; Trevanion, Stephen J.; Cunningham, Fiona; Aken, Bronwen L.; Zerbino, Daniel R.; Flicek, Paul

    2016-01-01

    The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license. PMID:26687719

  18. Application of decision trees to the analysis of soil radon data for earthquake prediction.

    PubMed

    Zmazek, B; Todorovski, L; Dzeroski, S; Vaupotic, J; Kobal, I

    2003-06-01

    Different regression methods have been used to predict radon concentration in soil gas on the basis of environmental data, i.e. barometric pressure, soil temperature, air temperature and rainfall. Analyses of the radon data from three stations in the Krsko basin, Slovenia, have shown that model trees outperform other regression methods. A model has been built which predicts radon concentration with a correlation of 0.8, provided it is influenced only by the environmental parameters. In periods with seismic activity this correlation is much lower. This decrease in predictive accuracy appears 1-7 days before earthquakes with local magnitude 0.8-3.3.

  19. Evaluating Psychiatric Hospital Admission Decisions for Children in Foster Care: An Optimal Classification Tree Analysis

    ERIC Educational Resources Information Center

    Snowden, Jessica A.; Leon, Scott C.; Bryant, Fred B.; Lyons, John S.

    2007-01-01

    This study explored clinical and nonclinical predictors of inpatient hospital admission decisions across a sample of children in foster care over 4 years (N = 13,245). Forty-eight percent of participants were female and the mean age was 13.4 (SD = 3.5 years). Optimal data analysis (Yarnold & Soltysik, 2005) was used to construct a nonlinear…

  20. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.

    PubMed

    Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka

    2010-09-01

    Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

  1. Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: design using Topliss' decision tree, synthesis and biological assay.

    PubMed

    Jorge, Salomão Dória; Palace-Berl, Fanny; Masunari, Andrea; Cechinel, Cléber André; Ishii, Marina; Pasqualoto, Kerly Fernanda Mesquita; Tavares, Leoberto Costa

    2011-08-15

    The aim of this study was the design of a set of benzofuroxan derivatives as antimicrobial agents exploring the physicochemical properties of the related substituents. Topliss' decision tree approach was applied to select the substituent groups. Hierarchical cluster analysis was also performed to emphasize natural clusters and patterns. The compounds were obtained using two synthetic approaches for reducing the synthetic steps as well as improving the yield. The minimal inhibitory concentration method was employed to evaluate the activity against multidrug-resistant Staphylococcus aureus strains. The most active compound was 4-nitro-3-(trifluoromethyl)[N'-(benzofuroxan-5-yl)methylene]benzhydrazide (MIC range 12.7-11.4 μg/mL), pointing out that the antimicrobial activity was indeed influenced by the hydrophobic and electron-withdrawing property of the substituent groups 3-CF(3) and 4-NO(2), respectively. PMID:21757359

  2. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    NASA Astrophysics Data System (ADS)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  3. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. PMID:24296116

  4. Ensembl 2014

    PubMed Central

    Flicek, Paul; Amode, M. Ridwan; Barrell, Daniel; Beal, Kathryn; Billis, Konstantinos; Brent, Simon; Carvalho-Silva, Denise; Clapham, Peter; Coates, Guy; Fitzgerald, Stephen; Gil, Laurent; Girón, Carlos García; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah; Johnson, Nathan; Juettemann, Thomas; Kähäri, Andreas K.; Keenan, Stephen; Kulesha, Eugene; Martin, Fergal J.; Maurel, Thomas; McLaren, William M.; Murphy, Daniel N.; Nag, Rishi; Overduin, Bert; Pignatelli, Miguel; Pritchard, Bethan; Pritchard, Emily; Riat, Harpreet S.; Ruffier, Magali; Sheppard, Daniel; Taylor, Kieron; Thormann, Anja; Trevanion, Stephen J.; Vullo, Alessandro; Wilder, Steven P.; Wilson, Mark; Zadissa, Amonida; Aken, Bronwen L.; Birney, Ewan; Cunningham, Fiona; Harrow, Jennifer; Herrero, Javier; Hubbard, Tim J.P.; Kinsella, Rhoda; Muffato, Matthieu; Parker, Anne; Spudich, Giulietta; Yates, Andy; Zerbino, Daniel R.; Searle, Stephen M.J.

    2014-01-01

    Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training. PMID:24316576

  5. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    NASA Astrophysics Data System (ADS)

    Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.

    2015-11-01

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.

  6. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    SciTech Connect

    Kupriyanov, M. S. Shukeilo, E. Y. Shichkina, J. A.

    2015-11-17

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.

  7. Exploring the intrinsic differences among breast tumor subtypes defined using immunohistochemistry markers based on the decision tree

    PubMed Central

    Li, Yang; Tang, Xu-Qing; Bai, Zhonghu; Dai, Xiaofeng

    2016-01-01

    Exploring the intrinsic differences among breast cancer subtypes is of crucial importance for precise diagnosis and therapeutic decision-making in diseases of high heterogeneity. The subtypes defined with several layers of information are related but not consistent, especially using immunohistochemistry markers and gene expression profiling. Here, we explored the intrinsic differences among the subtypes defined by the estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 based on the decision tree. We identified 30 mRNAs and 7 miRNAs differentially expressed along the tree’s branches. The final signature panel contained 30 mRNAs, whose performance was validated using two public datasets based on 3 well-known classifiers. The network and pathway analysis were explored for feature genes, from which key molecules including FOXQ1 and SFRP1 were revealed to be densely connected with other molecules and participate in the validated metabolic pathways. Our study uncovered the differences among the four IHC-defined breast tumor subtypes at the mRNA and miRNA levels, presented a novel signature for breast tumor subtyping, and identified several key molecules potentially driving the heterogeneity of such tumors. The results help us further understand breast tumor heterogeneity, which could be availed in clinics. PMID:27786176

  8. Forest or the trees: At what scale do elephants make foraging decisions?

    NASA Astrophysics Data System (ADS)

    Shrader, Adrian M.; Bell, Caroline; Bertolli, Liandra; Ward, David

    2012-07-01

    For herbivores, food is distributed spatially in a hierarchical manner ranging from plant parts to regions. Ultimately, utilisation of food is dependent on the scale at which herbivores make foraging decisions. A key factor that influences these decisions is body size, because selection inversely relates to body size. As a result, large animals can be less selective than small herbivores. Savanna elephants (Loxodonta africana) are the largest terrestrial herbivore. Thus, they represent a potential extreme with respect to unselective feeding. However, several studies have indicated that elephants prefer specific habitats and certain woody plant species. Thus, it is unclear at which scale elephants focus their foraging decisions. To determine this, we recorded the seasonal selection of habitats and woody plant species by elephants in the Ithala Game Reserve, South Africa. We expected that during the wet season, when both food quality and availability were high, that elephants would select primarily for habitats. This, however, does not mean that they would utilise plant species within these habitats in proportion to availability, but rather would show a stronger selection for habitats compared to plants. In contrast, during the dry season when food quality and availability declined, we expected that elephants would shift and select for the remaining high quality woody species across all habitats. Consistent with our predictions, elephants selected for the larger spatial scale (i.e. habitats) during the wet season. However, elephants did not increase their selection of woody species during the dry season, but rather increased their selection of habitats relative to woody plant selection. Unlike a number of earlier studies, we found that that neither palatability (i.e. crude protein, digestibility, and energy) alone nor tannin concentrations had a significant effect for determining the elephants' selection of woody species. However, the palatability:tannin ratio was

  9. Treatment of envenomation by Echis coloratus (mid-east saw scaled viper): a decision tree.

    PubMed

    Gilon, D; Shalev, O; Benbassat, J

    1989-01-01

    Envenomation by Echis coloratus causes a transient hemostatic failure. Systemic symptoms, hypotension and evident bleeding are rare, with only one reported fatality. In this paper, we examine the decision to treat victims of Echis coloratus by a specific horse antiserum. The decision model considers the mortality of treated and untreated envenomation, and the side effects of antiserum treatment: fatal anaphylaxis, serum sickness and increased risk of death after a possible repeated exposure to horse antiserum in the future. The results of the analysis are not sensitive to variations in the probability of side effects of antiserum treatment. They are sensitive to variations in the risk of bleeding after envenomation, in the degree of reduction of this risk by antiserum treatment and in the risk of dying after an event of bleeding. Prompt administration of antiserum appears to be the treatment of choice if it reduces the risk of bleeding from 23.6% to 20.3% and if 1.6% or more of the bleeding events are fatal. We conclude that presently available data support antiserum treatment of victims of Echis coloratus who present with hemostatic failure, even though the advantage imparted by this treatment appears to be small. PMID:2683230

  10. Nosocomial infections in Brazilian pediatric patients: using a decision tree to identify high mortality groups.

    PubMed

    Lopes, Julia M M; Goulart, Eugenio M A; Siqueira, Arminda L; Fonseca, Inara K; Brito, Marcus V S de; Starling, Carlos E F

    2009-04-01

    Nosocomial infections (NI) are frequent events with potentially lethal outcomes. We identified predictive factors for mortality related to NI and developed an algorithm for predicting that risk in order to improve hospital epidemiology and healthcare quality programs. We made a prospective cohort NI surveillance of all acute-care patients according to the National Nosocomial Infections Surveillance System guidelines since 1992, applying the Centers for Disease Control and Prevention 1988 definitions adapted to a Brazilian pediatric hospital. Thirty-eight deaths considered to be related to NI were analyzed as the outcome variable for 754 patients with NI, whose survival time was taken into consideration. The predictive factors for mortality related to NI (p < 0.05 in the Cox regression model) were: invasive procedures and use of two or more antibiotics. The mean survival time was significantly shorter (p < 0.05 with the Kaplan-Meier method) for patients who suffered invasive procedures and for those who received two or more antibiotics. Applying a tree-structured survival analysis (TSSA), two groups with high mortality rates were identified: one group with time from admission to the first NI less than 11 days, received two or more antibiotics and suffered invasive procedures; the other group had the first NI between 12 and 22 days after admission and was subjected to invasive procedures. The possible modifiable factors to prevent mortality involve invasive devices and antibiotics. The TSSA approach is helpful to identify combinations of predictors and to guide protective actions to be taken in continuous-quality-improvement programs. PMID:20140354

  11. Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study.

    PubMed

    Wylie, C E; Shaw, D J; Verheyen, K L P; Newton, J R

    2016-04-23

    The objective of this cross-sectional study was to compare the prevalence of selected clinical signs in laminitis cases and non-laminitic but lame controls to evaluate their capability to discriminate laminitis from other causes of lameness. Participating veterinary practitioners completed a checklist of laminitis-associated clinical signs identified by literature review. Cases were defined as horses/ponies with veterinary-diagnosed, clinically apparent laminitis; controls were horses/ponies with any lameness other than laminitis. Associations were tested by logistic regression with adjusted odds ratios (ORs) and 95% confidence intervals, with veterinary practice as an a priori fixed effect. Multivariable analysis using graphical classification tree-based statistical models linked laminitis prevalence with specific combinations of clinical signs. Data were collected for 588 cases and 201 controls. Five clinical signs had a difference in prevalence of greater than +50 per cent: 'reluctance to walk' (OR 4.4), 'short, stilted gait at walk' (OR 9.4), 'difficulty turning' (OR 16.9), 'shifting weight' (OR 17.7) and 'increased digital pulse' (OR 13.2) (all P<0.001). 'Bilateral forelimb lameness' was the best discriminator; 92 per cent of animals with this clinical sign had laminitis (OR 40.5, P<0.001). If, in addition, horses/ponies had an 'increased digital pulse', 99 per cent were identified as laminitis. 'Presence of a flat/convex sole' also significantly enhanced clinical diagnosis discrimination (OR 15.5, P<0.001). This is the first epidemiological laminitis study to use decision-tree analysis, providing the first evidence base for evaluating clinical signs to differentially diagnose laminitis from other causes of lameness. Improved evaluation of the clinical signs displayed by laminitic animals examined by first-opinion practitioners will lead to equine welfare improvements. PMID:26969668

  12. An improved methodology for land-cover classification using artificial neural networks and a decision tree classifier

    NASA Astrophysics Data System (ADS)

    Arellano-Neri, Olimpia

    Mapping is essential for the analysis of the land and land-cover dynamics, which influence many environmental processes and properties. When creating land-cover maps it is important to minimize error, since error will propagate into later analyses based upon these land cover maps. The reliability of land cover maps derived from remotely sensed data depends upon an accurate classification. For decades, traditional statistical methods have been applied in land-cover classification with varying degrees of accuracy. One of the most significant developments in the field of land-cover classification using remotely sensed data has been the introduction of Artificial Neural Networks (ANN) procedures. In this research, Artificial Neural Networks were applied to remotely sensed data of the southwestern Ohio region for land-cover classification. Three variants on traditional ANN-based classifiers were explored here: (1) the use of a customized architecture of the neural network in terms of the input layer for each land-cover class, (2) the use of texture analysis to combine spectral information and spatial information which is essential for urban classes, and (3) the use of decision tree (DT) classification to refine the ANN classification and ultimately to achieve a more reliable land-cover thematic map. The objective of this research was to prove that a classification based on Artificial Neural Networks (ANN) and decision tree (DT) would outperform by far the National Land Cover Data (NLCD). The NLCD is a land-cover classification produced by a cooperative effort between the United States Geological Survey (USGS) and the United States Environmental Protection Agency (USEPA). In order to achieve this objective, an accuracy assessment was conducted for both NLCD classification and ANN/DT classification. Error matrices resulting from the accuracy assessments provided overall accuracy, accuracy of each class, omission errors, and commission errors for each classification. The

  13. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A.; Rosenberg, D.; McKee, M.

    2012-12-01

    Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current

  14. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  15. Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis.

    PubMed

    Lungu, Angela; Swift, Andrew J; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M

    2016-06-01

    Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH. PMID:27252844

  16. Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis.

    PubMed

    Lungu, Angela; Swift, Andrew J; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M

    2016-06-01

    Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH.

  17. Diagnosis of pulmonary hypertension from magnetic resonance imaging–based computational models and decision tree analysis

    PubMed Central

    Swift, Andrew J.; Capener, David; Kiely, David; Hose, Rod; Wild, Jim M.

    2016-01-01

    Abstract Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH. PMID:27252844

  18. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ghulam, Abduwasit; Porton, Ingrid; Freeman, Karen

    2014-02-01

    In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH-VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.

  19. Landslide susceptibility mapping using decision-tree based CHi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration

    NASA Astrophysics Data System (ADS)

    Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin

    2014-06-01

    This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.

  20. Landsat-derived cropland mask for Tanzania using 2010-2013 time series and decision tree classifier methods

    NASA Astrophysics Data System (ADS)

    Justice, C. J.

    2015-12-01

    80% of Tanzania's population is involved in the agriculture sector. Despite this national dependence, agricultural reporting is minimal and monitoring efforts are in their infancy. The cropland mask developed through this study provides the framework for agricultural monitoring through informing analysis of crop conditions, dispersion, and intensity at a national scale. Tanzania is dominated by smallholder agricultural systems with an average field size of less than one hectare (Sarris et al, 2006). At this field scale, previous classifications of agricultural land in Tanzania using MODIS course resolution data are insufficient to inform a working monitoring system. The nation-wide cropland mask in this study was developed using composited Landsat tiles from a 2010-2013 time series. Decision tree classifiers methods were used in the study with representative training areas collected for agriculture and no agriculture using appropriate indices to separate these classes (Hansen et al, 2013). Validation was done using random sample and high resolution satellite images to compare Agriculture and No agriculture samples from the study area. The techniques used in this study were successful and have the potential to be adapted for other countries, allowing targeted monitoring efforts to improve food security, market price, and inform agricultural policy.

  1. Rejecting Non-MIP-Like Tracks using Boosted Decision Trees with the T2K Pi-Zero Subdetector

    NASA Astrophysics Data System (ADS)

    Hogan, Matthew; Schwehr, Jacklyn; Cherdack, Daniel; Wilson, Robert; T2K Collaboration

    2016-03-01

    Tokai-to-Kamioka (T2K) is a long-baseline neutrino experiment with a narrow band energy spectrum peaked at 600 MeV. The Pi-Zero detector (PØD) is a plastic scintillator-based detector located in the off-axis near detector complex 280 meters from the beam origin. It is designed to constrain neutral-current induced π0 production background at the far detector using the water target which is interleaved between scintillator layers. A PØD-based measurement of charged-current (CC) single charged pion (1π+) production on water is being developed which will have expanded phase space coverage as compared to the previous analysis. The signal channel for this analysis, which for T2K is dominated by Δ production, is defined as events that produce a single muon, single charged pion, and any number of nucleons in the final state. The analysis will employ machine learning algorithms to enhance CC1π+ selection by studying topological observables that characterize signal well. Important observables for this analysis are those that discriminate a minimum ionizing particle (MIP) like a muon or pion from a proton at the T2K energies. This work describes the development of a discriminator using Boosted Decision Trees to reject non-MIP-like PØD tracks.

  2. Prediction of healthy blood with data mining classification by using Decision Tree, Naive Baysian and SVM approaches

    NASA Astrophysics Data System (ADS)

    Khalilinezhad, Mahdieh; Minaei, Behrooz; Vernazza, Gianni; Dellepiane, Silvana

    2015-03-01

    Data mining (DM) is the process of discovery knowledge from large databases. Applications of data mining in Blood Transfusion Organizations could be useful for improving the performance of blood donation service. The aim of this research is the prediction of healthiness of blood donors in Blood Transfusion Organization (BTO). For this goal, three famous algorithms such as Decision Tree C4.5, Naïve Bayesian classifier, and Support Vector Machine have been chosen and applied to a real database made of 11006 donors. Seven fields such as sex, age, job, education, marital status, type of donor, results of blood tests (doctors' comments and lab results about healthy or unhealthy blood donors) have been selected as input to these algorithms. The results of the three algorithms have been compared and an error cost analysis has been performed. According to this research and the obtained results, the best algorithm with low error cost and high accuracy is SVM. This research helps BTO to realize a model from blood donors in each area in order to predict the healthy blood or unhealthy blood of donors. This research could be useful if used in parallel with laboratory tests to better separate unhealthy blood.

  3. An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    In this study, an expert system with a radial basis function neural network (RBF-NN) based on decision trees (DT) is designed to predict sediment transport in sewer pipes at the limit of deposition. First, sensitivity analysis is carried out to investigate the effect of each parameter on predicting the densimetric Froude number (Fr). The results indicate that utilizing the ratio of the median particle diameter to pipe diameter (d/D), ratio of median particle diameter to hydraulic radius (d/R) and volumetric sediment concentration (C(V)) as the input combination leads to the best Fr prediction. Subsequently, the new hybrid DT-RBF method is presented. The results of DT-RBF are compared with RBF and RBF-particle swarm optimization (PSO), which uses PSO for RBF training. It appears that DT-RBF is more accurate (R(2) = 0.934, MARE = 0.103, RMSE = 0.527, SI = 0.13, BIAS = -0.071) than the two other RBF methods. Moreover, the proposed DT-RBF model offers explicit expressions for use by practicing engineers. PMID:27386995

  4. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India.

    PubMed

    Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K

    2013-01-01

    The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index.

  5. The Spectral Dimension of Generic Trees

    NASA Astrophysics Data System (ADS)

    Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John F.

    2007-09-01

    We define generic ensembles of infinite trees. These are limits as N→∞ of ensembles of finite trees of fixed size N, defined in terms of a set of branching weights. Among these ensembles are those supported on trees with vertices of a uniformly bounded order. The associated probability measures are supported on trees with a single spine and Hausdorff dimension d h =2. Our main result is that the spectral dimension of the ensemble average is d s =4/3, and that the critical exponent of the mass, defined as the exponential decay rate of the two-point function along the spine, is 1/3.

  6. Ensemble Feature Learning of Genomic Data Using Support Vector Machine

    PubMed Central

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923

  7. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation.

  8. Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees.

    PubMed

    Scholz, Miklas; Uzomah, Vincent C

    2013-08-01

    The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment.

  9. A similarity study between the query mass and retrieved masses using decision tree content-based image retrieval (DTCBIR) CADx system for characterization of ultrasound breast mass images

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Chong; Hadjiiski, Lubomir; Chan, Heang-Ping; Sahiner, Berkman; Helvie, Mark; Paramagul, Chintana; Nees, Alexis V.

    2012-03-01

    We are developing a Decision Tree Content-Based Image Retrieval (DTCBIR) CADx scheme to assist radiologists in characterization of breast masses on ultrasound (US) images. Three DTCBIR configurations, including decision tree with boosting (DTb), decision tree with full leaf features (DTL), and decision tree with selected leaf features (DTLs) were compared. For DTb, the features of a query mass were combined first into a merged feature score and then masses with similar scores were retrieved. For DTL and DTLs, similar masses were retrieved based on the Euclidean distance between the feature vector of the query and those of the selected references. For each DTCBIR configuration, we investigated the use of the full feature set and the subset of features selected by the stepwise linear discriminant analysis (LDA) and simplex optimization method, resulting in six retrieval methods. Among the six methods, we selected five, DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, for the observer study. For a query mass, three most similar masses were retrieved with each method and were presented to the radiologists in random order. Three MQSA radiologists rated the similarity between the query mass and the computer-retrieved masses using a ninepoint similarity scale (1=very dissimilar, 9=very similar). For DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, the average Az values were 0.90+/-0.03, 0.85+/-0.04, 0.87+/-0.04, 0.79+/-0.05 and 0.71+/-0.06, respectively, and the average similarity ratings were 5.00, 5.41, 4.96, 5.33 and 5.13, respectively. Although the DTb measures had the best classification performance among the DTCBIRs studied, and DTLs had the worst performance, DTLs-full obtained higher similarity ratings than the DTb measures.

  10. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  11. Utilizing Home Healthcare Electronic Health Records for Telehomecare Patients With Heart Failure: A Decision Tree Approach to Detect Associations With Rehospitalizations.

    PubMed

    Kang, Youjeong; McHugh, Matthew D; Chittams, Jesse; Bowles, Kathryn H

    2016-04-01

    Heart failure is a complex condition with a significant impact on patients' lives. A few studies have identified risk factors associated with rehospitalization among telehomecare patients with heart failure using logistic regression or survival analysis models. To date, there are no published studies that have used data mining techniques to detect associations with rehospitalizations among telehomecare patients with heart failure. This study is a secondary analysis of the home healthcare electronic medical record called the Outcome and Assessment Information Set-C for 552 telemonitored heart failure patients. Bivariate analyses using SAS and a decision tree technique using Waikato Environment for Knowledge Analysis were used. From the decision tree technique, the presence of skin issues was identified as the top predictor of rehospitalization that could be identified during the start of care assessment, followed by patient's living situation, patient's overall health status, severe pain experiences, frequency of activity-limiting pain, and total number of anticipated therapy visits combined. Examining risk factors for rehospitalization from the Outcome and Assessment Information Set-C database using a decision tree approach among a cohort of telehomecare patients provided a broad understanding of the characteristics of patients who are appropriate for the use of telehomecare or who need additional supports. PMID:26848645

  12. Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets.

    PubMed

    Carbon-Mangels, Miriam; Hutter, Michael C

    2011-10-01

    Classification algorithms suffer from the curse of dimensionality, which leads to overfitting, particularly if the problem is over-determined. Therefore it is of particular interest to identify the most relevant descriptors to reduce the complexity. We applied Bayesian estimates to model the probability distribution of descriptors values used for binary classification using n-fold cross-validation. As a measure for the discriminative power of the classifiers, the symmetric form of the Kullback-Leibler divergence of their probability distributions was computed. We found that the most relevant descriptors possess a Gaussian-like distribution of their values, show the largest divergences, and therefore appear most often in the cross-validation scenario. The results were compared to those of the LASSO feature selection method applied to multiple decision trees and support vector machine approaches for data sets of substrates and nonsubstrates of three Cytochrome P450 isoenzymes, which comprise strongly unbalanced compound distributions. In contrast to decision trees and support vector machines, the performance of Bayesian estimates is less affected by unbalanced data sets. This strategy reveals those descriptors that allow a simple linear separation of the classes, whereas the superior accuracy of decision trees and support vector machines can be attributed to nonlinear separation, which are in turn more prone to overfitting.

  13. Ensembl Genomes: extending Ensembl across the taxonomic space.

    PubMed

    Kersey, P J; Lawson, D; Birney, E; Derwent, P S; Haimel, M; Herrero, J; Keenan, S; Kerhornou, A; Koscielny, G; Kähäri, A; Kinsella, R J; Kulesha, E; Maheswari, U; Megy, K; Nuhn, M; Proctor, G; Staines, D; Valentin, F; Vilella, A J; Yates, A

    2010-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community, which we consider as essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimised data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualised in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.

  14. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree.

    PubMed

    Price, Paul; Zaleski, Rosemary; Hollnagel, Heli; Ketelslegers, Hans; Han, Xianglu

    2014-01-01

    Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture's toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.

  15. Ensemble Integration of Forest Disturbance Maps for the Landscape Change Monitoring System (LCMS)

    NASA Astrophysics Data System (ADS)

    Cohen, W. B.; Healey, S. P.; Yang, Z.; Zhu, Z.; Woodcock, C. E.; Kennedy, R. E.; Huang, C.; Steinwand, D.; Vogelmann, J. E.; Stehman, S. V.; Loveland, T. R.

    2014-12-01

    The recent convergence of free, high quality Landsat data and acceleration in the development of dense Landsat time series algorithms has spawned a nascent interagency effort known as the Landscape Change Monitoring System (LCMS). LCMS is being designed to map historic land cover changes associated with all major disturbance agents and land cover types in the US. Currently, five existing algorithms are being evaluated for inclusion in LCMS. The priorities of these five algorithms overlap to some degree, but each has its own strengths. This has led to the adoption of a novel approach, within LCMS, to integrate the map outputs (i.e., base learners) from these change detection algorithms using empirical ensemble models. Training data are derived from independent datasets representing disturbances such as: harvest, fire, insects, wind, and land use change. Ensemble modeling is expected to produce significant increases in predictive accuracy relative to the results of the individual base learners. The non-parametric models used in LCMS also provide a framework for matching output ensemble maps to independent sample-based statistical estimates of disturbance area. Multiple decision trees "vote" on class assignment, and it is possible to manipulate vote thresholds to ensure that ensemble maps reflect areas of disturbance derived from sources such as national-scale ground or image-based inventories. This talk will focus on results of the first ensemble integration of the base learners for six Landsat scenes distributed across the US. We will present an assessment of base learner performance across different types of disturbance against an independently derived, sample-based disturbance dataset (derived from the TimeSync Landsat time series visualization tool). The goal is to understand the contributions of each base learner to the quality of the ensemble map products. We will also demonstrate how the ensemble map products can be manipulated to match sample-based annual

  16. Measurement of single top quark production in the tau+jets channnel using boosted decision trees at D0

    SciTech Connect

    Liu, Zhiyi

    2009-12-01

    The top quark is the heaviest known matter particle and plays an important role in the Standard Model of particle physics. At hadron colliders, it is possible to produce single top quarks via the weak interaction. This allows a direct measurement of the CKM matrix element Vtb and serves as a window to new physics. The first direct measurement of single top quark production with a tau lepton in the final state (the tau+jets channel) is presented in this thesis. The measurement uses 4.8 fb-1 of Tevatron Run II data in p$\\bar{p}$ collisions at √s = 1.96 TeV acquired by the D0 experiment. After selecting a data sample and building a background model, the data and background model are in good agreement. A multivariate technique, boosted decision trees, is employed in discriminating the small single top quark signal from a large background. The expected sensitivity of the tau+jets channel in the Standard Model is 1.8 standard deviations. Using a Bayesian statistical approach, an upper limit on the cross section of single top quark production in the tau+jets channel is measured as 7.3 pb at 95% confidence level, and the cross section is measured as 3.4-1.8+2.0 pb. The result of the single top quark production in the tau+jets channel is also combined with those in the electron+jets and muon+jets channels. The expected sensitivity of the electron, muon and tau combined analysis is 4.7 standard deviations, to be compared to 4.5 standard deviations in electron and muon alone. The measured cross section in the three combined final states is σ(p$\\bar{p}$ → tb + X,tqb + X) = 3.84-0.83+0.89 pb. A lower limit on |Vtb| is also measured in the three combined final states to be larger than 0.85 at 95% confidence level. These results are consistent with Standard Model expectations.

  17. The management of an endodontically abscessed tooth: patient health state utility, decision-tree and economic analysis

    PubMed Central

    Balevi, Ben; Shepperd, Sasha

    2007-01-01

    Background A frequent encounter in clinical practice is the middle-aged adult patient complaining of a toothache caused by the spread of a carious infection into the tooth's endodontic complex. Decisions about the range of treatment options (conventional crown with a post and core technique (CC), a single tooth implant (STI), a conventional dental bridge (CDB), and a partial removable denture (RPD)) have to balance the prognosis, utility and cost. Little is know about the utility patients attach to the different treatment options for an endontically abscessed mandibular molar and maxillary incisor. We measured patients' dental-health-state utilities and ranking preferences of the treatment options for these dental problems. Methods Forty school teachers ranked their preferences for conventional crown with a post and core technique, a single tooth implant, a conventional dental bridge, and a partial removable denture using a standard gamble and willingness to pay. Data previously reported on treatment prognosis and direct "out-of-pocket" costs were used in a decision-tree and economic analysis Results The Standard Gamble utilities for the restoration of a mandibular 1st molar with either the conventional crown (CC), single-tooth-implant (STI), conventional dental bridge (CDB) or removable-partial-denture (RPD) were 74.47 [± 6.91], 78.60 [± 5.19], 76.22 [± 5.78], 64.80 [± 8.1] respectively (p < 0.05). Their respective Willingness-to-Pay ($CDN) were 1,782.05 [± 361.42], 1,871.79 [± 349.44], 1,605.13 [± 348.10], 1,351.28 [± 368.62] (p < 0.05). The standard gamble utilities for the restoration of a maxillary central incisor with a CC, STI, CDB and RPD were 88.50 [± 6.12], 90.68 [± 3.41], 89.78 [± 3.81] and 91.10 [± 3.57] respectively (p > 0.05). Their respective willingness-to-pay ($CDN) were: 1,782.05 [± 361.42], 1,871.79 [± 349.44], 1,605.13 [± 348.10] and 1,351.28 [± 368.62]. A statistical difference was found between the utility of treating a

  18. An ensemble classification-based approach applied to retinal blood vessel segmentation.

    PubMed

    Fraz, Muhammad Moazam; Remagnino, Paolo; Hoppe, Andreas; Uyyanonvara, Bunyarit; Rudnicka, Alicja R; Owen, Christopher G; Barman, Sarah A

    2012-09-01

    This paper presents a new supervised method for segmentation of blood vessels in retinal photographs. This method uses an ensemble system of bagged and boosted decision trees and utilizes a feature vector based on the orientation analysis of gradient vector field, morphological transformation, line strength measures, and Gabor filter responses. The feature vector encodes information to handle the healthy as well as the pathological retinal image. The method is evaluated on the publicly available DRIVE and STARE databases, frequently used for this purpose and also on a new public retinal vessel reference dataset CHASE_DB1 which is a subset of retinal images of multiethnic children from the Child Heart and Health Study in England (CHASE) dataset. The performance of the ensemble system is evaluated in detail and the incurred accuracy, speed, robustness, and simplicity make the algorithm a suitable tool for automated retinal image analysis. PMID:22736688

  19. Using a High-Resolution Ensemble Modeling Method to Inform Risk-Based Decision-Making at Taylor Park Dam, Colorado

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Mahoney, K. M.; Holman, K. D.

    2015-12-01

    The Bureau of Reclamation (Reclamation) is responsible for the safety of Taylor Park Dam, located in central Colorado at an elevation of 9300 feet. A key aspect of dam safety is anticipating extreme precipitation, runoff and the associated inflow of water to the reservoir within a probabilistic framework for risk analyses. The Cooperative Institute for Research in Environmental Sciences (CIRES) has partnered with Reclamation to improve understanding and estimation of precipitation in the western United States, including the Taylor Park watershed. A significant challenge is that Taylor Park Dam is located in a relatively data-sparse region, surrounded by mountains exceeding 12,000 feet. To better estimate heavy precipitation events in this basin, a high-resolution modeling approach is used. The Weather Research and Forecasting (WRF) model is employed to simulate events that have produced observed peaks in streamflow at the location of interest. Importantly, an ensemble of model simulations are run on each event so that uncertainty bounds (i.e., forecast error) may be provided such that the model outputs may be more effectively used in Reclamation's risk assessment framework. Model estimates of precipitation (and the uncertainty thereof) are then used in rainfall runoff models to determine the probability of inflows to the reservoir for use in Reclamation's dam safety risk analyses.

  20. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions

    PubMed Central

    Sundaram, Mekala; Willoughby, Janna R.; Lichti, Nathanael I.; Steele, Michael A.; Swihart, Robert K.

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is

  1. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  2. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  3. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities.

  4. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities. PMID:26231989

  5. Exploring Ensemble Visualization

    PubMed Central

    Phadke, Madhura N.; Pinto, Lifford; Alabi, Femi; Harter, Jonathan; Taylor, Russell M.; Wu, Xunlei; Petersen, Hannah; Bass, Steffen A.; Healey, Christopher G.

    2012-01-01

    An ensemble is a collection of related datasets. Each dataset, or member, of an ensemble is normally large, multidimensional, and spatio-temporal. Ensembles are used extensively by scientists and mathematicians, for example, by executing a simulation repeatedly with slightly different input parameters and saving the results in an ensemble to see how parameter choices affect the simulation. To draw inferences from an ensemble, scientists need to compare data both within and between ensemble members. We propose two techniques to support ensemble exploration and comparison: a pairwise sequential animation method that visualizes locally neighboring members simultaneously, and a screen door tinting method that visualizes subsets of members using screen space subdivision. We demonstrate the capabilities of both techniques, first using synthetic data, then with simulation data of heavy ion collisions in high-energy physics. Results show that both techniques are capable of supporting meaningful comparisons of ensemble data. PMID:22347540

  6. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the

  7. The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    NASA Astrophysics Data System (ADS)

    Kheir, R. Bou; Bøcher, P. K.; Greve, M. B.; Greve, M. H.

    2010-06-01

    Accurate information about organic/mineral soil occurrence is a prerequisite for many land resources management applications (including climate change mitigation). This paper aims at investigating the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic distribution of hydromorphic organic landscapes in unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area) and one secondary (steady-state topographic wetness index) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to explain organic/mineral field measurements in hydromorphic landscapes of the Danish area chosen. A large number of tree-based classification models (186) were developed using (1) all of the parameters, (2) the primary DEM-derived topographic (morphological/hydrological) parameters only, (3) selected pairs of parameters and (4) excluding each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters) combined the steady-state topographic wetness index and soil type, and explained 68% of the variability in organic/mineral field measurements. The overall accuracy of the predictive organic/inorganic landscapes' map produced (at 1:50 000 cartographic scale) using the best tree was estimated to be ca. 75%. The proposed classification-tree model is relatively simple, quick, realistic and practical, and it can be applied to other areas, thereby providing a tool to facilitate the implementation of pedological/hydrological plans for conservation and

  8. The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    NASA Astrophysics Data System (ADS)

    Kheir, R. Bou; Bøcher, P. K.; Greve, M. B.; Greve, M. H.

    2010-01-01

    Accurate information about soil organic carbon (SOC), presented in a spatially form, is prerequisite for many land resources management applications (including climate change mitigation). This paper aims to investigate the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic distribution of hydromorphic organic landscapes at unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area) and one secondary (steady-state topographic wetness index) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to statistically explain SOC field measurements in hydromorphic landscapes of the chosen Danish area. A large number of tree-based classification models (186) were developed using (1) all of the parameters, (2) the primary DEM-derived topographic (morphological/hydrological) parameters only, (3) selected pairs of parameters and (4) excluding each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters) combined the steady-state topographic wetness index and soil type, and explained 68% of the variability in field SOC measurements. The overall accuracy of the produced predictive SOC map (at 1:50 000 cartographic scale) using the best tree was estimated to be ca. 75%. The proposed classification-tree model is relatively simple, quick, realistic and practical, and it can be applied to other areas, thereby providing a tool to help with the implementation of pedological/hydrological plans for conservation and sustainable

  9. World Music Ensemble: Kulintang

    ERIC Educational Resources Information Center

    Beegle, Amy C.

    2012-01-01

    As instrumental world music ensembles such as steel pan, mariachi, gamelan and West African drums are becoming more the norm than the exception in North American school music programs, there are other world music ensembles just starting to gain popularity in particular parts of the United States. The kulintang ensemble, a drum and gong ensemble…

  10. Acceleration of ensemble machine learning methods using many-core devices

    NASA Astrophysics Data System (ADS)

    Tamerus, A.; Washbrook, A.; Wyeth, D.

    2015-12-01

    We present a case study into the acceleration of ensemble machine learning methods using many-core devices in collaboration with Toshiba Medical Visualisation Systems Europe (TMVSE). The adoption of GPUs to execute a key algorithm in the classification of medical image data was shown to significantly reduce overall processing time. Using a representative dataset and pre-trained decision trees as input we will demonstrate how the decision forest classification method can be mapped onto the GPU data processing model. It was found that a GPU-based version of the decision forest method resulted in over 138 times speed-up over a single-threaded CPU implementation with further improvements possible. The same GPU-based software was then directly applied to a suitably formed dataset to benefit supervised learning techniques applied in High Energy Physics (HEP) with similar improvements in performance.

  11. Using Evidence-Based Decision Trees Instead of Formulas to Identify At-Risk Readers. REL 2014-036

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    This study examines whether the classification and regression tree (CART) model improves the early identification of students at risk for reading comprehension difficulties compared with the more difficult to interpret logistic regression model. CART is a type of predictive modeling that relies on nonparametric techniques. It presents results in…

  12. Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays.

    PubMed

    Macmillan, Donna S; Canipa, Steven J; Chilton, Martyn L; Williams, Richard V; Barber, Christopher G

    2016-04-01

    There is a pressing need for non-animal methods to predict skin sensitisation potential and a number of in chemico and in vitro assays have been designed with this in mind. However, some compounds can fall outside the applicability domain of these in chemico/in vitro assays and may not be predicted accurately. Rule-based in silico models such as Derek Nexus are expert-derived from animal and/or human data and the mechanism-based alert domain can take a number of factors into account (e.g. abiotic/biotic activation). Therefore, Derek Nexus may be able to predict for compounds outside the applicability domain of in chemico/in vitro assays. To this end, an integrated testing strategy (ITS) decision tree using Derek Nexus and a maximum of two assays (from DPRA, KeratinoSens, LuSens, h-CLAT and U-SENS) was developed. Generally, the decision tree improved upon other ITS evaluated in this study with positive and negative predictivity calculated as 86% and 81%, respectively. Our results demonstrate that an ITS using an in silico model such as Derek Nexus with a maximum of two in chemico/in vitro assays can predict the sensitising potential of a number of chemicals, including those outside the applicability domain of existing non-animal assays.

  13. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria.

    PubMed

    Jouanneau, Sulivan; Durand, Marie-José; Courcoux, Philippe; Blusseau, Thomas; Thouand, Gérald

    2011-04-01

    A primary statistical model based on the crossings between the different detection ranges of a set of five bioluminescent bacterial strains was developed to identify and quantify four metals which were at several concentrations in different mixtures: cadmium, arsenic III, mercury, and copper. Four specific decision trees based on the CHAID algorithm (CHi-squared Automatic Interaction Detector type) which compose this model were designed from a database of 576 experiments (192 different mixture conditions). A specific software, 'Metalsoft', helped us choose the best decision tree and a user-friendly way to identify the metal. To validate this innovative approach, 18 environmental samples containing a mixture of these metals were submitted to a bioassay and to standardized chemical methods. The results show on average a high correlation of 98.6% for the qualitative metal identification and 94.2% for the quantification. The results are particularly encouraging, and our model is able to provide semiquantitative information after only 60 min without pretreatments of samples. PMID:21355529

  14. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  15. The Relation of Student Behavior, Peer Status, Race, and Gender to Decisions about School Discipline Using CHAID Decision Trees and Regression Modeling

    ERIC Educational Resources Information Center

    Horner, Stacy B.; Fireman, Gary D.; Wang, Eugene W.

    2010-01-01

    Peer nominations and demographic information were collected from a diverse sample of 1493 elementary school participants to examine behavior (overt and relational aggression, impulsivity, and prosociality), context (peer status), and demographic characteristics (race and gender) as predictors of teacher and administrator decisions about…

  16. Triticeae resources in Ensembl Plants.

    PubMed

    Bolser, Dan M; Kerhornou, Arnaud; Walts, Brandon; Kersey, Paul

    2015-01-01

    Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high. Ensembl Plants (http://plants.ensembl.org) is an integrative resource organizing, analyzing and visualizing genome-scale information for important crop and model plants. Available data include reference genome sequence, variant loci, gene models and functional annotation. For variant loci, individual and population genotypes, linkage information and, where available, phenotypic information are shown. Comparative analyses are performed on DNA and protein sequence alignments. The resulting genome alignments and gene trees, representing the implied evolutionary history of the gene family, are made available for visualization and analysis. Driven by the case of bread wheat, specific extensions to the analysis pipelines and web interface have recently been developed to support polyploid genomes. Data in Ensembl Plants is accessible through a genome browser incorporating various specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These interfaces are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests and pollinators, facilitating the study of the plant in its environment.

  17. Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework

    NASA Astrophysics Data System (ADS)

    Loschetter, Annick; Rohmer, Jérémy

    2016-04-01

    Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered

  18. Partial dependence of breast tumor malignancy on ultrasound image features derived from boosted trees

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu

    2010-04-01

    Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.

  19. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  20. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 ‑3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for

  1. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the

  2. Fast decision tree-based method to index large DNA-protein sequence databases using hybrid distributed-shared memory programming model.

    PubMed

    Jaber, Khalid Mohammad; Abdullah, Rosni; Rashid, Nur'Aini Abdul

    2014-01-01

    In recent times, the size of biological databases has increased significantly, with the continuous growth in the number of users and rate of queries; such that some databases have reached the terabyte size. There is therefore, the increasing need to access databases at the fastest rates possible. In this paper, the decision tree indexing model (PDTIM) was parallelised, using a hybrid of distributed and shared memory on resident database; with horizontal and vertical growth through Message Passing Interface (MPI) and POSIX Thread (PThread), to accelerate the index building time. The PDTIM was implemented using 1, 2, 4 and 5 processors on 1, 2, 3 and 4 threads respectively. The results show that the hybrid technique improved the speedup, compared to a sequential version. It could be concluded from results that the proposed PDTIM is appropriate for large data sets, in terms of index building time.

  3. Schistosomiasis risk mapping in the state of Minas Gerais, Brazil, using a decision tree approach, remote sensing data and sociological indicators.

    PubMed

    Martins-Bedê, Flávia T; Dutra, Luciano V; Freitas, Corina C; Guimarães, Ricardo J P S; Amaral, Ronaldo S; Drummond, Sandra C; Carvalho, Omar S

    2010-07-01

    Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socioeconomic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense vegetation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were selected by the procedure included the terrain's water accumulation capacity, temperature extremes and the Human Development Index. In addition, the model was used to generate two maps, one that included risk classification for the entire of MG and another that included classification errors. The resulting map was 62.9% accurate.

  4. Hydrological Ensemble Prediction System (HEPS)

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Schaake, J.; Martin, E.; Pailleux, J.; Pappenberger, F.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Following on the success of the use of ensembles for weather forecasting, the hydrological community now moves increasingly towards Hydrological Ensemble Prediction Systems (HEPS) for improved flood forecasting using operationally available NWP products as inputs. However, these products are often generated on relatively coarse scales compared to hydrologically relevant basin units and suffer systematic biases that may have considerable impact when passed through the non-linear hydrological filters. Therefore, a better understanding on how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes is necessary. The "Hydrologic Ensemble Prediction Experiment" (HEPEX), is an international initiative consisting of hydrologists, meteorologist and end-users to advance probabilistic hydrologic forecast techniques for flood, drought and water management applications. Different aspects of the hydrological ensemble processor are being addressed including • Production of useful meteorological products relevant for hydrological applications, ranging from nowcasting products to seasonal forecasts. The importance of hindcasts that are consistent with the operational weather forecasts will be discussed to support bias correction and downscaling, statistically meaningful verification of HEPS, and the development and testing of operating rules; • Need for downscaling and post-processing of weather ensembles to reduce bias before entering hydrological applications; • Hydrological model and parameter uncertainty and how to correct and

  5. Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Brunner, Robert J.; Myers, Adam D.; Tcheng, David

    2006-10-01

    We provide classifications for all 143 million nonrepeat photometric objects in the Third Data Release of the SDSS using decision trees trained on 477,068 objects with SDSS spectroscopic data. We demonstrate that these star/galaxy classifications are expected to be reliable for approximately 22 million objects with r<~20. The general machine learning environment Data-to-Knowledge and supercomputing resources enabled extensive investigation of the decision tree parameter space. This work presents the first public release of objects classified in this way for an entire SDSS data release. The objects are classified as either galaxy, star, or nsng (neither star nor galaxy), with an associated probability for each class. To demonstrate how to effectively make use of these classifications, we perform several important tests. First, we detail selection criteria within the probability space defined by the three classes to extract samples of stars and galaxies to a given completeness and efficiency. Second, we investigate the efficacy of the classifications and the effect of extrapolating from the spectroscopic regime by performing blind tests on objects in the SDSS, 2dFGRS, and 2QZ surveys. Given the photometric limits of our spectroscopic training data, we effectively begin to extrapolate past our star-galaxy training set at r~18. By comparing the number counts of our training sample with the classified sources, however, we find that our efficiencies appear to remain robust to r~20. As a result, we expect our classifications to be accurate for 900,000 galaxies and 6.7 million stars and remain robust via extrapolation for a total of 8.0 million galaxies and 13.9 million stars.

  6. Ensembl regulation resources.

    PubMed

    Zerbino, Daniel R; Johnson, Nathan; Juetteman, Thomas; Sheppard, Dan; Wilder, Steven P; Lavidas, Ilias; Nuhn, Michael; Perry, Emily; Raffaillac-Desfosses, Quentin; Sobral, Daniel; Keefe, Damian; Gräf, Stefan; Ahmed, Ikhlak; Kinsella, Rhoda; Pritchard, Bethan; Brent, Simon; Amode, Ridwan; Parker, Anne; Trevanion, Steven; Birney, Ewan; Dunham, Ian; Flicek, Paul

    2016-01-01

    New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl's regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org. PMID:26888907

  7. An efficient algorithm for finding optimal gain-ratio multiple-split tests on hierarchical attributes in decision tree learning

    SciTech Connect

    Almuallim, H.; Akiba, Yasuhiro; Kaneda, Shigeo

    1996-12-31

    Given a set of training examples S and a tree-structured attribute x, the goal in this work is to find a multiple-split test defined on x that maximizes Quinlan`s gain-ratio measure. The number of possible such multiple-split tests grows exponentially in the size of the hierarchy associated with the attribute. It is, therefore, impractical to enumerate and evaluate all these tests in order to choose the best one. We introduce an efficient algorithm for solving this problem that guarantees maximizing the gain-ratio over all possible tests. For a training set of m examples and an attribute hierarchy of height d, our algorithm runs in time proportional to dm, which makes it efficient enough for practical use.

  8. Streamflow Ensemble Generation using Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Watkins, D. W.; O'Connell, S.; Wei, W.; Nykanen, D.; Mahmoud, M.

    2002-12-01

    Although significant progress has been made in understanding the correlation between large-scale atmospheric circulation patterns and regional streamflow anomalies, there is a general perception that seasonal climate forecasts are not being used to the fullest extent possible for optimal water resources management. Possible contributing factors are limited knowledge and understanding of climate processes and prediction capabilities, noise in climate signals and inaccuracies in forecasts, and hesitancy on the part of water managers to apply new information or methods that could expose them to greater liability. This work involves a decision support model based on streamflow ensembles developed for the Lower Colorado River Authority in Central Texas. Predicative skill is added to ensemble forecasts that are based on climatology by conditioning the ensembles on observable climate indicators, including streamflow (persistence), soil moisture, land surface temperatures, and large-scale recurrent patterns such as the El Ni¤o-Southern Oscillation, Pacific Decadal Oscillation, and the North Atlantic Oscillation. A Bayesian procedure for updating ensemble probabilities is outlined, and various skill scores are reviewed for evaluating forecast performance. Verification of the ensemble forecasts using a resampling procedure indicates a small but potentially significant improvement in forecast skill that could be exploited in seasonal water management decisions. The ultimate goal of this work will be explicit incorporation of climate forecasts in reservoir operating rules and estimation of the value of the forecasts.

  9. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.

  10. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  11. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. PMID:20136746

  12. Using Decision Tree Analysis to Understand Foundation Science Student Performance. Insight Gained at One South African University

    NASA Astrophysics Data System (ADS)

    Kirby, Nicola Frances; Dempster, Edith Roslyn

    2014-11-01

    The Foundation Programme of the Centre for Science Access at the University of KwaZulu-Natal, South Africa provides access to tertiary science studies to educationally disadvantaged students who do not meet formal faculty entrance requirements. The low number of students proceeding from the programme into mainstream is of concern, particularly given the national imperative to increase participation and levels of performance in tertiary-level science. An attempt was made to understand foundation student performance in a campus of this university, with the view to identifying challenges and opportunities for remediation in the curriculum and processes of selection into the programme. A classification and regression tree analysis was used to identify which variables best described student performance. The explanatory variables included biographical and school-history data, performance in selection tests, and socio-economic data pertaining to their year in the programme. The results illustrate the prognostic reliability of the model used to select students, raise concerns about the inefficiency of school performance indicators as a measure of students' academic potential in the Foundation Programme, and highlight the importance of accommodation arrangements and financial support for student success in their access year.

  13. Higher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data

    NASA Astrophysics Data System (ADS)

    Leibovici, D. G.; Bastin, L.; Jackson, M.

    2011-03-01

    Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods.

  14. Ensemble Data Mining Methods

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  15. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    USGS Publications Warehouse

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  16. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including information…

  17. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  18. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena

    2015-04-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  19. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment.

    PubMed

    Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen

    2015-12-28

    Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.

  20. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment.

    PubMed

    Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen

    2015-01-01

    Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114

  1. Assessing the safety of cosmetic chemicals: Consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC (Threshold of Toxicological Concern).

    PubMed

    Williams, Faith M; Rothe, Helga; Barrett, Gordon; Chiodini, Alessandro; Whyte, Jacqueline; Cronin, Mark T D; Monteiro-Riviere, Nancy A; Plautz, James; Roper, Clive; Westerhout, Joost; Yang, Chihae; Guy, Richard H

    2016-04-01

    Threshold of Toxicological Concern (TTC) aids assessment of human health risks from exposure to low levels of chemicals when toxicity data are limited. The objective here was to explore the potential refinement of exposure for applying the oral TTC to chemicals found in cosmetic products, for which there are limited dermal absorption data. A decision tree was constructed to estimate the dermally absorbed amount of chemical, based on typical skin exposure scenarios. Dermal absorption was calculated using an established predictive algorithm to derive the maximum skin flux adjusted to the actual 'dose' applied. The predicted systemic availability (assuming no local metabolism), can then be ranked against the oral TTC for the relevant structural class. The predictive approach has been evaluated by deriving the experimental/prediction ratio for systemic availability for 22 cosmetic chemical exposure scenarios. These emphasise that estimation of skin penetration may be challenging for penetration enhancing formulations, short application times with incomplete rinse-off, or significant metabolism. While there were a few exceptions, the experiment-to-prediction ratios mostly fell within a factor of 10 of the ideal value of 1. It can be concluded therefore, that the approach is fit-for-purpose when used as a screening and prioritisation tool.

  2. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment

    PubMed Central

    Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen

    2015-01-01

    Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114

  3. Complex System Ensemble Analysis

    NASA Astrophysics Data System (ADS)

    Pearson, Carl A.

    A new measure for interaction network ensembles and their dynamics is presented: the ensemble transition matrix, T, the proportions of networks in an ensemble that support particular transitions. That presentation begins with generation of the ensemble and application of constraint perturbations to compute T, including estimating alternatives to accommodate cases where the problem size becomes computationally intractable. Then, T is used to predict ensemble dynamics properties in expected-value like calculations. Finally, analyses from the two complementary assumptions about T - that it represents uncertainty about a unique system or that it represents stochasticity around a unique constraint - are presented: entropy-based experiment selection and generalized potentials/heat dissipation of the system, respectively. Extension of these techniques to more general graph models is described, but not demonstrated. Future directions for research using T are proposed in the summary chapter. Throughout this work, the presentation of various calculations involving T are motivated by the Budding Yeast Cell Cycle example, with argument for the generality of the approaches presented by the results of their application to a database of pseudo-randomly generated dynamic constraints.

  4. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  5. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  6. Online breakage detection of multitooth tools using classifier ensembles for imbalanced data

    NASA Astrophysics Data System (ADS)

    Bustillo, Andrés; Rodríguez, Juan J.

    2014-12-01

    Cutting tool breakage detection is an important task, due to its economic impact on mass production lines in the automobile industry. This task presents a central limitation: real data-sets are extremely imbalanced because breakage occurs in very few cases compared with normal operation of the cutting process. In this paper, we present an analysis of different data-mining techniques applied to the detection of insert breakage in multitooth tools. The analysis applies only one experimental variable: the electrical power consumption of the tool drive. This restriction profiles real industrial conditions more accurately than other physical variables, such as acoustic or vibration signals, which are not so easily measured. Many efforts have been made to design a method that is able to identify breakages with a high degree of reliability within a short period of time. The solution is based on classifier ensembles for imbalanced data-sets. Classifier ensembles are combinations of classifiers, which in many situations are more accurate than individual classifiers. Six different base classifiers are tested: Decision Trees, Rules, Naïve Bayes, Nearest Neighbour, Multilayer Perceptrons and Logistic Regression. Three different balancing strategies are tested with each of the classifier ensembles and compared to their performance with the original data-set: Synthetic Minority Over-Sampling Technique (SMOTE), undersampling and a combination of SMOTE and undersampling. To identify the most suitable data-mining solution, Receiver Operating Characteristics (ROC) graph and Recall-precision graph are generated and discussed. The performance of logistic regression ensembles on the balanced data-set using the combination of SMOTE and undersampling turned out to be the most suitable technique. Finally a comparison using industrial performance measures is presented, which concludes that this technique is also more suited to this industrial problem than the other techniques presented in

  7. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone

  8. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. PMID:27516599

  9. The Ensembl REST API: Ensembl Data for Any Language

    PubMed Central

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R. S.; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    Motivation: We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. Availability and implementation: The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. Contact: ayates@ebi.ac.uk or flicek@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236461

  10. Music Ensemble: Course Proposal.

    ERIC Educational Resources Information Center

    Kovach, Brian

    A proposal is presented for a Music Ensemble course to be offered at the Community College of Philadelphia for music students who have had previous vocal or instrumental training. A standardized course proposal cover form is followed by a statement of purpose for the course, a list of major course goals, a course outline, and a bibliography. Next,…

  11. The use of the decision tree technique and image cytometry to characterize aggressiveness in World Health Organization (WHO) grade II superficial transitional cell carcinomas of the bladder.

    PubMed

    Decaestecker, C; van Velthoven, R; Petein, M; Janssen, T; Salmon, I; Pasteels, J L; van Ham, P; Schulman, C; Kiss, R

    1996-03-01

    The aggressiveness of human bladder tumours can be assessed by means of various classification systems, including the one proposed by the World Health Organization (WHO). According to the WHO classification, three levels of malignancy are identified as grades I (low), II (intermediate), and III (high). This classification system operates satisfactorily for two of the three grades in forecasting clinical progression, most grade I tumours being associated with good prognoses and most grade III with bad. In contrast, the grade II group is very heterogeneous in terms of their clinical behaviour. The present study used two computer-assisted methods to investigate whether it is possible to sub-classify grade II tumours: computer-assisted microscope analysis (image cytometry) of Feulgen-stained nuclei and the Decision Tree Technique. This latter technique belongs to the Supervised Learning Algorithm and enables an objective assessment to be made of the diagnostic value associated with a given parameter. The combined use of these two methods in a series of 292 superficial transitional cell carcinomas shows that it is possible to identify one subgroup of grade II tumours which behave clinically like grade I tumours and a second subgroup which behaves clinically like grade III tumours. Of the nine ploidy-related parameters computed by means of image cytometry [the DNA index (DI), DNA histogram type (DHT), and the percentages of diploid, hyperdiploid, triploid, hypertriploid, tetraploid, hypertetraploid, and polyploid cell nuclei], it was the percentage of hyperdiploid and hypertetraploid cell nuclei which enabled identification, rather than conventional parameters such as the DI or the DHT. PMID:8778332

  12. Can multimodel ensembles improve medium range precipitation forecasts?

    NASA Astrophysics Data System (ADS)

    Flowerdew, J.

    2010-09-01

    Ensemble forecasts aim to improve decision-making by predicting the full distribution of possible outcomes. Forecasts from a single ensemble may suffer from systematic errors due to the model and assimilation processes used. By combining results from multiple ensembles which have different systematic errors and are more skilful in different situations, it should be possible to produce a composite forecast superior to that from any individual ensemble. The value of ensemble combination has been demonstrated by several authors for variables such as surface temperature, but there has been relatively little investigation of the potential benefit for the key forecast variable of precipitation. This work uses a subset of the TIGGE dataset to investigate the benefit of multimodel ensembles over single ensembles for medium range forecasts of precipitation. Early results verifying raw output against short range control forecasts show noticeable benefit across a range of score measures and thresholds, particularly for the reliability component of the Brier Skill Score. We plan to extend this verification to radar- and gauge-based observations, examining the nature and independence of the forecast errors to understand how multimodel combination might be beneficial. Further work would consider appropriate methods of calibration, along with the question of whether the multimodel advantage survives against calibrated single ensembles.

  13. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  14. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of

  15. Matlab Cluster Ensemble Toolbox

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less

  16. The Protein Ensemble Database.

    PubMed

    Varadi, Mihaly; Tompa, Peter

    2015-01-01

    The scientific community's major conceptual notion of structural biology has recently shifted in emphasis from the classical structure-function paradigm due to the emergence of intrinsically disordered proteins (IDPs). As opposed to their folded cousins, these proteins are defined by the lack of a stable 3D fold and a high degree of inherent structural heterogeneity that is closely tied to their function. Due to their flexible nature, solution techniques such as small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy and fluorescence resonance energy transfer (FRET) are particularly well-suited for characterizing their biophysical properties. Computationally derived structural ensembles based on such experimental measurements provide models of the conformational sampling displayed by these proteins, and they may offer valuable insights into the functional consequences of inherent flexibility. The Protein Ensemble Database (http://pedb.vib.be) is the first openly accessible, manually curated online resource storing the ensemble models, protocols used during the calculation procedure, and underlying primary experimental data derived from SAXS and/or NMR measurements. By making this previously inaccessible data freely available to researchers, this novel resource is expected to promote the development of more advanced modelling methodologies, facilitate the design of standardized calculation protocols, and consequently lead to a better understanding of how function arises from the disordered state.

  17. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    SciTech Connect

    Pangilinan, Monica

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the right-handed neutrino is

  18. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2013-02-01

    The purpose of the present study is to compare the prediction performances of three different approaches such as decision tree (DT), support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) for landslide susceptibility mapping at Penang Hill area, Malaysia. The necessary input parameters for the landslide susceptibility assessments were obtained from various sources. At first, landslide locations were identified by aerial photographs and field surveys and a total of 113 landslide locations were constructed. The study area contains 340,608 pixels while total 8403 pixels include landslides. The landslide inventory was randomly partitioned into two subsets: (1) part 1 that contains 50% (4000 landslide grid cells) was used in the training phase of the models; (2) part 2 is a validation dataset 50% (4000 landslide grid cells) for validation of three models and to confirm its accuracy. The digitally processed images of input parameters were combined in GIS. Finally, landslide susceptibility maps were produced, and the performances were assessed and discussed. Total fifteen landslide susceptibility maps were produced using DT, SVM and ANFIS based models, and the resultant maps were validated using the landslide locations. Prediction performances of these maps were checked by receiver operating characteristics (ROC) by using both success rate curve and prediction rate curve. The validation results showed that, area under the ROC curve for the fifteen models produced using DT, SVM and ANFIS varied from 0.8204 to 0.9421 for success rate curve and 0.7580 to 0.8307 for prediction rate curves, respectively. Moreover, the prediction curves revealed that model 5 of DT has slightly higher prediction performance (83.07), whereas the success rate showed that model 5 of ANFIS has better prediction (94.21) capability among all models. The results of this study showed that landslide susceptibility mapping in the Penang Hill area using the three approaches (e

  19. Application of a Multi-Scheme Ensemble Prediction System and an Ensemble Classification Method to Streamflow Forecasting

    NASA Astrophysics Data System (ADS)

    Pahlow, M.; Moehrlen, C.; Joergensen, J.; Hundecha, Y.

    2007-12-01

    Europe has experienced a number of unusually long-lasting and intense rainfall events in the last decade, resulting in severe floods in most European countries. Ensemble forecasts emerged as a valuable resource to provide decision makers in case of emergency with adequate information to protect downstream areas. However, forecasts should not only provide a best guess of the state of the stream network, but also an estimate of the range of possible outcomes. Ensemble forecast techniques are a suitable tool to obtain the required information. Furthermore a wide range of uncertainty that may impact hydrological forecasts can be accounted for using an ensemble of forecasts. The forecasting system used in this study is based on a multi-scheme ensemble prediction method and forecasts the meteorological uncertainty on synoptic scales as well as the resulting forecast error in weather derived products. Statistical methods are used to directly transform raw weather output to derived products and thereby utilize the statistical capabilities of each ensemble forecast. The forecasting system MS-EPS (Multi-Scheme Ensemble Prediction System) used in this study is a limited area ensemble prediction system using 75 different numerical weather prediction (NWP) model parameterisations. These individual 'schemes' each differ in their formulation of the fast meteorological processes. The MS-EPS forecasts are used as input for a hydrological model (HBV) to generate an ensemble of streamflow forecasts. Determining the most probable forecast from an ensemble of forecasts requires suitable statistical tools. They must enable a forecaster to interpret the model output, to condense the information and to provide the desired product. For this purpose, a probabilistic multi-trend filter (pmt-filter) for statistical post-processing of the hydrological ensemble forecasts is used in this study. An application of the forecasting system is shown for a watershed located in the eastern part of

  20. Nucleic acid sequence design via efficient ensemble defect optimization.

    PubMed

    Zadeh, Joseph N; Wolfe, Brian R; Pierce, Niles A

    2011-02-01

    We describe an algorithm for designing the sequence of one or more interacting nucleic acid strands intended to adopt a target secondary structure at equilibrium. Sequence design is formulated as an optimization problem with the goal of reducing the ensemble defect below a user-specified stop condition. For a candidate sequence and a given target secondary structure, the ensemble defect is the average number of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of unpseudoknotted secondary structures. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, candidate mutations are evaluated on the leaf nodes of a tree-decomposition of the target structure. During leaf optimization, defect-weighted mutation sampling is used to select each candidate mutation position with probability proportional to its contribution to the ensemble defect of the leaf. As subsequences are merged moving up the tree, emergent structural defects resulting from crosstalk between sibling sequences are eliminated via reoptimization within the defective subtree starting from new random subsequences. Using a Θ(N(3) ) dynamic program to evaluate the ensemble defect of a target structure with N nucleotides, this hierarchical approach implies an asymptotic optimality bound on design time: for sufficiently large N, the cost of sequence design is bounded below by 4/3 the cost of a single evaluation of the ensemble defect for the full sequence. Hence, the design algorithm has time complexity Ω(N(3) ). For target structures containing N ∈{100,200,400,800,1600,3200} nucleotides and duplex stems ranging from 1 to 30 base pairs, RNA sequence designs at 37°C typically succeed in satisfying a stop condition with ensemble defect less than N/100. Empirically, the sequence design algorithm exhibits asymptotic optimality and the exponent in the time complexity bound is sharp.

  1. Lung Cancer Survival Prediction using Ensemble Data Mining on Seer Data

    DOE PAGES

    Agrawal, Ankit; Misra, Sanchit; Narayanan, Ramanathan; Polepeddi, Lalith; Choudhary, Alok

    2012-01-01

    We analyze the lung cancer data available from the SEER program with the aim of developing accurate survival prediction models for lung cancer. Carefully designed preprocessing steps resulted in removal/modification/splitting of several attributes, and 2 of the 11 derived attributes were found to have significant predictive power. Several supervised classification methods were used on the preprocessed data along with various data mining optimizations and validations. In our experiments, ensemble voting of five decision tree based classifiers and meta-classifiers was found to result in the best prediction performance in terms of accuracy and area under the ROC curve. We have developedmore » an on-line lung cancer outcome calculator for estimating the risk of mortality after 6 months, 9 months, 1 year, 2 year and 5 years of diagnosis, for which a smaller non-redundant subset of 13 attributes was carefully selected using attribute selection techniques, while trying to retain the predictive power of the original set of attributes. Further, ensemble voting models were also created for predicting conditional survival outcome for lung cancer (estimating risk of mortality after 5 years of diagnosis, given that the patient has already survived for a period of time), and included in the calculator. The on-line lung cancer outcome calculator developed as a result of this study is available at http://info.eecs.northwestern.edu:8080/LungCancerOutcomeCalculator/.« less

  2. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  3. Multilevel ensemble Kalman filtering

    DOE PAGES

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-06-14

    This study embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. Finally, the resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  4. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  5. Improving Climate Projections Using "Intelligent" Ensembles

    NASA Technical Reports Server (NTRS)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and

  6. The Importance of Bass Ensemble.

    ERIC Educational Resources Information Center

    Bitz, Michael

    1997-01-01

    States that bass players should be allowed to play chamber music because it is an essential component to all string students' musical development. Expounds that bassists can successfully enjoy chamber music through participation in a bass ensemble. Gives suggestions on how to form a bass ensemble and on the repertoire of music. (CMK)

  7. Seeing the forest through the trees: improving decision making on the Iowa gambling task by shifting focus from short- to long-term outcomes

    PubMed Central

    Buelow, Melissa T.; Okdie, Bradley M.; Blaine, Amber L.

    2013-01-01

    Introduction: The present study sought to examine two methods by which to improve decision making on the Iowa Gambling Task (IGT): inducing a negative mood and providing additional learning trials. Method: In the first study, 194 undergraduate students [74 male; Mage = 19.44 (SD = 3.69)] were randomly assigned to view a series of pictures to induce a positive, negative, or neutral mood immediately prior to the IGT. In the second study, 276 undergraduate students [111 male; Mage = 19.18 (SD = 2.58)] completed a delay discounting task and back-to-back administrations of the IGT. Results: Participants in an induced negative mood selected more from Deck C during the final trials than those in an induced positive mood. Providing additional learning trials resulted in better decision making: participants shifted their focus from the frequency of immediate gains/losses (i.e., a preference for Decks B and D) to long-term outcomes (i.e., a preference for Deck D). In addition, disadvantageous decision making on the additional learning trials was associated with larger delay discounting (i.e., a preference for more immediate but smaller rewards). Conclusions: The present results indicate that decision making is affected by negative mood state, and that decision making can be improved by increasing the number of learning trials. In addition, the current results provide evidence of a relationship between performance on the IGT and on a separate measure of decision making, the delay discounting task. Moreover, the present results indicate that improved decision making on the IGT can be attributed to shifting focus toward long-term outcomes, as evidenced by increased selections from advantageous decks as well as correlations between the IGT and delay discounting task. Implications for the assessment of decision making using the IGT are discussed. PMID:24151485

  8. The Behavioral Relevance of Cortical Neural Ensemble Responses Emerges Suddenly

    PubMed Central

    Sadacca, Brian F.; Mukherjee, Narendra; Vladusich, Tony; Li, Jennifer X.

    2016-01-01

    Whereas many laboratory-studied decisions involve a highly trained animal identifying an ambiguous stimulus, many naturalistic decisions do not. Consumption decisions, for instance, involve determining whether to eject or consume an already identified stimulus in the mouth and are decisions that can be made without training. By standard analyses, rodent cortical single-neuron taste responses come to predict such consumption decisions across the 500 ms preceding the consumption or rejection itself; decision-related firing emerges well after stimulus identification. Analyzing single-trial ensemble activity using hidden Markov models, we show these decision-related cortical responses to be part of a reliable sequence of states (each defined by the firing rates within the ensemble) separated by brief state-to-state transitions, the latencies of which vary widely between trials. When we aligned data to the onset of the (late-appearing) state that dominates during the time period in which single-neuron firing is correlated to taste palatability, the apparent ramp in stimulus-aligned choice-related firing was shown to be a much more precipitous coherent jump. This jump in choice-related firing resembled a step function more than it did the output of a standard (ramping) decision-making model, and provided a robust prediction of decision latency in single trials. Together, these results demonstrate that activity related to naturalistic consumption decisions emerges nearly instantaneously in cortical ensembles. SIGNIFICANCE STATEMENT This paper provides a description of how the brain makes evaluative decisions. The majority of work on the neurobiology of decision making deals with “what is it?” decisions; out of this work has emerged a model whereby neurons accumulate information about the stimulus in the form of slowly increasing firing rates and reach a decision when those firing rates reach a threshold. Here, we study a different kind of more naturalistic decision

  9. Ensemble Forecasts for Water Management Optimization Procedures (EOP)

    NASA Astrophysics Data System (ADS)

    Howard, C. D.

    2007-12-01

    Science and technology support water management through weather forecasts, hydrologic forecasts, and water management models. In modern water management practice these three tools and their data are integrated into seamless "Decision Support Systems" with convenient user interfaces. This paper discusses the last step in such systems for reservoir operations management. This is an optimization step that incorporates uncertainties into suggestions for making the best possible decisions. Ensemble weather forecasts typically provide a set of alternative equally likely weather sequences over the forecast period. These are used as inputs to hydrologic models to provide a suite of hydrologic time series that represent equally likely alternative water supply and flood forecasts that are conditional on current weather and watershed initial conditions. The decision making process at the water management level includes the following steps: evaluate risks, develop contingency plans, implement mitigative actions, determine optimal operating decisions. These steps each require a probabilistic analysis that may be optimized with an appropriate procedure for the specific application. If the right programs and data management tools are available, and readily accessible, hydrologic ensemble forecasts can provide inputs to an Ensemble Optimization Procedure (EOP) to support decision making. This paper discusses practical implementation issues and demonstrates three EOP methods for scheduling operation of a hypothetical hydroelectric reservoir.

  10. Decision Trees in the Analysis of the Intensity of Damage to Portal Frame Buildings in Mining Areas / Drzewa Decyzyjne W Analizie Intensywności Uszkodzeń Budynków Halowych Na Terenach Górniczych

    NASA Astrophysics Data System (ADS)

    Firek, Karol; Rusek, Janusz; Wodyński, Aleksander

    2015-09-01

    The article presents a preliminary database analysis regarding the technical condition of 94 portal frame buildings located in the mining area of Legnica-Głogów Copper District (LGOM), using the methodology of decision trees. The scope of the analysis was divided into two stages. The first one included creating a decision tree by a standard CART method, and determining the importance of individual damage indices in the values of the technical wear of buildings. The second one was based on verification of the created decision tree and the importance of these indices in the technical wear of buildings by means of a simulation of individual dendritic models using the method of random forest. The obtained results confirmed the usefulness of decision trees in the early stage of data analysis. This methodology allows to build the initial model to describe the interaction between variables and to infer about the importance of individual input variables. Celem prezentowanych w artykule badań było sprawdzenie możliwości pozyskiwania informacji na temat udziału uszkodzeń w zużyciu technicznym zabudowy terenu górniczego z wykorzystaniem metody drzew decyzyjnych. Badania przeprowadzono na podstawie utworzonej przez autorów bazy danych o stanie technicznym i uszkodzeniach 94 budynków typu halowego, usytuowanych na terenie górniczym Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). Do analiz przyjęto metodę drzew decyzyjnych CART - Classification & Regression Tree, na bazie której utworzono model aproksymujący wartość zużycia technicznego budynków. W efekcie ustalono wpływ poszczególnych zmiennych na przebieg modelowanego procesu (Rys. 3 i 4). W drugim etapie, stosując metodę losowych lasów przeprowadzono weryfikację wyników uzyskanych dla modelu utworzonego metodą CART (Tab. 2). Przeprowadzone badania pozwoliły na ustalenie udziałów wyspecyfikowanych kategorii uszkodzeń elementów badanych budynków w ich stopniu zużycia technicznego. Najwi

  11. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  12. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  13. Tree Lifecycle.

    ERIC Educational Resources Information Center

    Nature Study, 1998

    1998-01-01

    Presents a Project Learning Tree (PLT) activity that has students investigate and compare the lifecycle of a tree to other living things and the tree's role in the ecosystem. Includes background material as well as step-by-step instructions, variation and enrichment ideas, assessment opportunities, and student worksheets. (SJR)

  14. Comparing climate change impacts on crops in Belgium based on CMIP3 and EU-ENSEMBLES multi-model ensembles

    NASA Astrophysics Data System (ADS)

    Vanuytrecht, E.; Raes, D.; Willems, P.; Semenov, M.

    2012-04-01

    Global Circulation Models (GCMs) are sophisticated tools to study the future evolution of the climate. Yet, the coarse scale of GCMs of hundreds of kilometers raises questions about the suitability for agricultural impact assessments. These assessments are often made at field level and require consideration of interactions at sub-GCM grid scale (e.g., elevation-dependent climatic changes). Regional climate models (RCMs) were developed to provide climate projections at a spatial scale of 25-50 km for limited regions, e.g. Europe (Giorgi and Mearns, 1991). Climate projections from GCMs or RCMs are available as multi-model ensembles. These ensembles are based on large data sets of simulations produced by modelling groups worldwide, who performed a set of coordinated climate experiments in which climate models were run for a common set of experiments and various emissions scenarios (Knutti et al., 2010). The use of multi-model ensembles in climate change studies is an important step in quantifying uncertainty in impact predictions, which will underpin more informed decisions for adaptation and mitigation to changing climate (Semenov and Stratonovitch, 2010). The objective of our study was to evaluate the effect of the spatial scale of climate projections on climate change impacts for cereals in Belgium. Climate scenarios were based on two multi-model ensembles, one comprising 15 GCMs of the Coupled Model Intercomparison Project phase 3 (CMIP3; Meehl et al., 2007) with spatial resolution of 200-300 km, the other comprising 9 RCMs of the EU-ENSEMBLES project (van der Linden and Mitchell, 2009) with spatial resolution of 25 km. To be useful for agricultural impact assessments, the projections of GCMs and RCMs were downscaled to the field level. Long series (240 cropping seasons) of local-scale climate scenarios were generated by the LARS-WG weather generator (Semenov et al., 2010) via statistical inference. Crop growth and development were simulated with the Aqua

  15. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  16. Decadal Trends in Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Liess, S.; Snyder, P. K.; Kumar, A.; Kumar, V.

    2012-12-01

    A simple method to rank multi-model ensemble members of CMIP3 simulations by their representation of phases of decadal oscillations is introduced. A period of 22 years (1979-2000) from the 20th century simulations is used to generate ensemble projections of trends for an 11-year (2001-2011) lead time for the SRES A1B scenario. Although greenhouse-gas forcing is identical for all 20th century simulations, the phases of decadal oscillations are quite different. Thus, the suggested minimum requirements for a simple selection criterion for adequate ensemble members are that (a) trends in high-, mid-, and low-latitude zones need to be treated separately and (b) information about the state of teleconnections between the zones needs to be included, when projecting decadal variability and trends in climate. The new method indicates that half (19 out of 38) ensemble members retain their rank when each GCM is treated separately without any assumptions of which model might be superior. Thus, the overall ensemble size can be reduced without a large loss of information but with a greatly reduced range of uncertainty, when only the least well performing ensemble members of each GCM are omitted for an 11-year projection.

  17. Teleportation of an atomic ensemble quantum state.

    PubMed

    Dantan, A; Treps, N; Bramati, A; Pinard, M

    2005-02-11

    We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.

  18. Independent component ensemble of EEG for brain-computer interface.

    PubMed

    Chuang, Chun-Hsiang; Ko, Li-Wei; Lin, Yuan-Pin; Jung, Tzyy-Ping; Lin, Chin-Teng

    2014-03-01

    Recently, successful applications of independent component analysis (ICA) to electroencephalographic (EEG) signals have yielded tremendous insights into brain processes that underlie human cognition. Many studies have further established the feasibility of using independent processes to elucidate human cognitive states. However, various technical problems arise in the building of an online brain-computer interface (BCI). These include the lack of an automatic procedure for selecting independent components of interest (ICi) and the potential risk of not obtaining a desired ICi. Therefore, this study proposes an ICi-ensemble method that uses multiple classifiers with ICA processing to improve upon existing algorithms. The mechanisms that are used in this ensemble system include: 1) automatic ICi selection; 2) extraction of features of the resultant ICi; 3) the construction of parallel pipelines for effectively training multiple classifiers; and a 4) simple process that combines the multiple decisions. The proposed ICi-ensemble is demonstrated in a typical BCI application, which is the monitoring of participants' cognitive states in a realistic sustained-attention driving task. The results reveal that the proposed ICi-ensemble outperformed the previous method using a single ICi with  ∼ 7% (91.6% versus 84.3%) in the cognitive state classification. Additionally, the proposed ICi-ensemble method that characterizes the EEG dynamics of multiple brain areas favors the application of BCI in natural environments.

  19. Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range

    NASA Astrophysics Data System (ADS)

    Dibb, S. D.; Ustin, S.; Grigsby, S.

    2015-12-01

    Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.

  20. Comparative Visualization of Ensembles Using Ensemble Surface Slicing

    PubMed Central

    Alabi, Oluwafemi S.; Wu, Xunlei; Harter, Jonathan M.; Phadke, Madhura; Pinto, Lifford; Petersen, Hannah; Bass, Steffen; Keifer, Michael; Zhong, Sharon; Healey, Chris; Taylor, Russell M.

    2012-01-01

    By definition, an ensemble is a set of surfaces or volumes derived from a series of simulations or experiments. Sometimes the series is run with different initial conditions for one parameter to determine parameter sensitivity. The understanding and identification of visual similarities and differences among the shapes of members of an ensemble is an acute and growing challenge for researchers across the physical sciences. More specifically, the task of gaining spatial understanding and identifying similarities and differences between multiple complex geometric data sets simultaneously has proved challenging. This paper proposes a comparison and visualization technique to support the visual study of parameter sensitivity. We present a novel single-image view and sampling technique which we call Ensemble Surface Slicing (ESS). ESS produces a single image that is useful for determining differences and similarities between surfaces simultaneously from several data sets. We demonstrate the usefulness of ESS on two real-world data sets from our collaborators. PMID:23560167

  1. Gradient Flow and Scale Setting on MILC HISQ Ensembles

    DOE PAGES

    Bazavov, A.; Bernard, C.; Brown, N.; Komijani, J.; DeTar, C.; Foley, J.; Levkova, L.; Gottlieb, Steven; Heller, U. M.; Laiho, J.; et al

    2016-05-25

    We report on a scale determination with gradient-flow techniques on the Nf = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales p √t0/a and w0/a and their tree-level improvements,√t0;imp and w0;imp, are computed on each ensemble using Symanzik ow and the cloverleaf definition of the energy density E. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolatedmore » to the continuum and interpolated to physical quark masses. We also determine the scales p t0 = 0:1416(+8-5) fm and w0 = 0:1717(+12-11) fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w0 and √t0 is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of w0 that will be useful for estimating the scales of other ensembles. Furthermore, we estimate the integrated autocorrelation length of . For long flow times, the autocorrelation length of appears to be comparable to or smaller than that of the topological charge.« less

  2. Efficient Gene Tree Correction Guided by Genome Evolution

    PubMed Central

    Lafond, Manuel; Seguin, Jonathan; Boussau, Bastien; Guéguen, Laurent; El-Mabrouk, Nadia; Tannier, Eric

    2016-01-01

    Motivations Gene trees inferred solely from multiple alignments of homologous sequences often contain weakly supported and uncertain branches. Information for their full resolution may lie in the dependency between gene families and their genomic context. Integrative methods, using species tree information in addition to sequence information, often rely on a computationally intensive tree space search which forecloses an application to large genomic databases. Results We propose a new method, called ProfileNJ, that takes a gene tree with statistical supports on its branches, and corrects its weakly supported parts by using a combination of information from a species tree and a distance matrix. Its low running time enabled us to use it on the whole Ensembl Compara database, for which we propose an alternative, arguably more plausible set of gene trees. This allowed us to perform a genome-wide analysis of duplication and loss patterns on the history of 63 eukaryote species, and predict ancestral gene content and order for all ancestors along the phylogeny. Availability A web interface called RefineTree, including ProfileNJ as well as a other gene tree correction methods, which we also test on the Ensembl gene families, is available at: http://www-ens.iro.umontreal.ca/~adbit/polytomysolver.html. The code of ProfileNJ as well as the set of gene trees corrected by ProfileNJ from Ensembl Compara version 73 families are also made available. PMID:27513924

  3. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2015-04-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  4. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2014-11-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  5. Ensemble algorithms in reinforcement learning.

    PubMed

    Wiering, Marco A; van Hasselt, Hado

    2008-08-01

    This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms.

  6. CME Ensemble Forecasting - A Primer

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C. A.; Cash, M. D.; Millward, G. H.; Biesecker, D. A.; Codrescu, M.; Puga, L.; Odstrcil, D.

    2014-12-01

    SWPC has been evaluating various approaches for ensemble forecasting of Earth-directed CMEs. We have developed the software infrastructure needed to support broad-ranging CME ensemble modeling, including composing, interpreting, and making intelligent use of ensemble simulations. The first step is to determine whether the physics of the interplanetary propagation of CMEs is better described as chaotic (like terrestrial weather) or deterministic (as in tsunami propagation). This is important, since different ensemble strategies are to be pursued under the two scenarios. We present the findings of a comprehensive study of CME ensembles in uniform and structured backgrounds that reveals systematic relationships between input cone parameters and ambient flow states and resulting transit times and velocity/density amplitudes at Earth. These results clearly indicate that the propagation of single CMEs to 1 AU is a deterministic process. Thus, the accuracy with which one can forecast the gross properties (such as arrival time) of CMEs at 1 AU is determined primarily by the accuracy of the inputs. This is no tautology - it means specifically that efforts to improve forecast accuracy should focus upon obtaining better inputs, as opposed to developing better propagation models. In a companion paper (deKoning et al., this conference), we compare in situ solar wind data with forecast events in the SWPC operational archive to show how the qualitative and quantitative findings presented here are entirely consistent with the observations and may lead to improved forecasts of arrival time at Earth.

  7. Ensemble algorithms in reinforcement learning.

    PubMed

    Wiering, Marco A; van Hasselt, Hado

    2008-08-01

    This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms. PMID:18632380

  8. Estimating preselected and postselected ensembles

    SciTech Connect

    Massar, Serge; Popescu, Sandu

    2011-11-15

    In analogy with the usual quantum state-estimation problem, we introduce the problem of state estimation for a pre- and postselected ensemble. The problem has fundamental physical significance since, as argued by Y. Aharonov and collaborators, pre- and postselected ensembles are the most basic quantum ensembles. Two new features are shown to appear: (1) information is flowing to the measuring device both from the past and from the future; (2) because of the postselection, certain measurement outcomes can be forced never to occur. Due to these features, state estimation in such ensembles is dramatically different from the case of ordinary, preselected-only ensembles. We develop a general theoretical framework for studying this problem and illustrate it through several examples. We also prove general theorems establishing that information flowing from the future is closely related to, and in some cases equivalent to, the complex conjugate information flowing from the past. Finally, we illustrate our approach on examples involving covariant measurements on spin-1/2 particles. We emphasize that all state-estimation problems can be extended to the pre- and postselected situation. The present work thus lays the foundations of a much more general theory of quantum state estimation.

  9. Excitation energies from ensemble DFT

    NASA Astrophysics Data System (ADS)

    Borgoo, Alex; Teale, Andy M.; Helgaker, Trygve

    2015-12-01

    We study the evaluation of the Gross-Oliveira-Kohn expression for excitation energies E1-E0=ɛ1-ɛ0+∂E/xc,w[ρ] ∂w | ρ =ρ0. This expression gives the difference between an excitation energy E1 - E0 and the corresponding Kohn-Sham orbital energy difference ɛ1 - ɛ0 as a partial derivative of the exchange-correlation energy of an ensemble of states Exc,w[ρ]. Through Lieb maximisation, on input full-CI density functions, the exchange-correlation energy is evaluated accurately and the partial derivative is evaluated numerically using finite difference. The equality is studied numerically for different geometries of the H2 molecule and different ensemble weights. We explore the adiabatic connection for the ensemble exchange-correlation energy. The latter may prove useful when modelling the unknown weight dependence of the exchange-correlation energy.

  10. Tree Amigos.

    ERIC Educational Resources Information Center

    Center for Environmental Study, Grand Rapids, MI.

    Tree Amigos is a special cross-cultural program that uses trees as a common bond to bring the people of the Americas together in unique partnerships to preserve and protect the shared global environment. It is a tangible program that embodies the philosophy that individuals, acting together, can make a difference. This resource book contains…

  11. Talking Trees

    ERIC Educational Resources Information Center

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  12. Application Bayesian Model Averaging method for ensemble system for Poland

    NASA Astrophysics Data System (ADS)

    Guzikowski, Jakub; Czerwinska, Agnieszka

    2014-05-01

    The aim of the project is to evaluate methods for generating numerical ensemble weather prediction using a meteorological data from The Weather Research & Forecasting Model and calibrating this data by means of Bayesian Model Averaging (WRF BMA) approach. We are constructing height resolution short range ensemble forecasts using meteorological data (temperature) generated by nine WRF's models. WRF models have 35 vertical levels and 2.5 km x 2.5 km horizontal resolution. The main emphasis is that the used ensemble members has a different parameterization of the physical phenomena occurring in the boundary layer. To calibrate an ensemble forecast we use Bayesian Model Averaging (BMA) approach. The BMA predictive Probability Density Function (PDF) is a weighted average of predictive PDFs associated with each individual ensemble member, with weights that reflect the member's relative skill. For test we chose a case with heat wave and convective weather conditions in Poland area from 23th July to 1st August 2013. From 23th July to 29th July 2013 temperature oscillated below or above 30 Celsius degree in many meteorology stations and new temperature records were added. During this time the growth of the hospitalized patients with cardiovascular system problems was registered. On 29th July 2013 an advection of moist tropical air masses was recorded in the area of Poland causes strong convection event with mesoscale convection system (MCS). MCS caused local flooding, damage to the transport infrastructure, destroyed buildings, trees and injuries and direct threat of life. Comparison of the meteorological data from ensemble system with the data recorded on 74 weather stations localized in Poland is made. We prepare a set of the model - observations pairs. Then, the obtained data from single ensemble members and median from WRF BMA system are evaluated on the basis of the deterministic statistical error Root Mean Square Error (RMSE), Mean Absolute Error (MAE). To evaluation

  13. Identification of the geometrical isomers of α-linolenic acid using gas chromatography/mass spectrometry with a binary decision tree.

    PubMed

    Hejazi, Leila; Hibbert, David Brynn; Ebrahimi, Diako

    2011-01-30

    Gas chromatography, using a highly polar column, low energy (30 eV) electron ionization mass spectrometry and multivariate curve resolution, are combined to obtain the mass spectra of all eight geometrical isomers of α-linolenic acid. A step by step Student's t-test is performed on the m/z 50-294 to identify the m/z by which the geometries of the double bonds could be discriminated. The most intense peak discriminates between cis (m/z 79) and trans (m/z 95) at the central (carbon 12) position. The configuration at carbon 15 is then distinguished by m/z 68 and 236, and finally the geometry at carbon 9 is determined by m/z 93, 173, 191 and 236. A three-question binary tree is developed based on the normalized intensities of these ions by which the identity of any given isomer of α-linolenic is accurately determined. Application of Bayes theorem to data from independent samples shows that the complete configuration is determined correctly with a minimum probability of 87%.

  14. EuroCORDEX ensemble analysis and comparison to ENSEMBLES ensemble of regional simulations

    NASA Astrophysics Data System (ADS)

    Halenka, Tomas; Klukova, Zuzana; Belda, Michal

    2015-04-01

    Basic assessment of the ensemble of available EuroCORDEX simulations is provided in terms of monthly mean analysis of surface temperature and precipitation monthly amount. Both ERA-Interim perfect boundary conditions simulations and historical runs driven by different GCMs from CMIP5 are validated against E.OBS data and compared for both available resolutions (0.11 and 0.44 deg.). The results are presented using the maps of model biases as well as in terms of the areal statistics for PRUDENCE regions, where former ENSEMBLES ensemble of regional simulations is used for comparison. No significantly better results can be seen when comparing the results of 0.11 deg. resolution with respect to the 0.44 deg. Moreover, while both ensembles (basically all the members) are in very good agreement in annual cycle for temperature and very close to the reality, for precipitation quite significant disagreements appear for many of the simulations over some regions, in both ensembles.

  15. Quantum metrology with molecular ensembles

    SciTech Connect

    Schaffry, Marcus; Gauger, Erik M.; Morton, John J. L.; Fitzsimons, Joseph; Benjamin, Simon C.; Lovett, Brendon W.

    2010-10-15

    The field of quantum metrology promises measurement devices that are fundamentally superior to conventional technologies. Specifically, when quantum entanglement is harnessed, the precision achieved is supposed to scale more favorably with the resources employed, such as system size and time required. Here, we consider measurement of magnetic-field strength using an ensemble of spin-active molecules. We identify a third essential resource: the change in ensemble polarization (entropy increase) during the metrology experiment. We find that performance depends crucially on the form of decoherence present; for a plausible dephasing model, we describe a quantum strategy, which can indeed beat the standard strategy.

  16. Quantum Gibbs ensemble Monte Carlo

    SciTech Connect

    Fantoni, Riccardo; Moroni, Saverio

    2014-09-21

    We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.

  17. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms

    NASA Astrophysics Data System (ADS)

    Erdal, Halil Ibrahim; Karakurt, Onur

    2013-01-01

    SummaryStreamflow forecasting is one of the most important steps in the water resources planning and management. Ensemble techniques such as bagging, boosting and stacking have gained popularity in hydrological forecasting in the recent years. The study investigates the potential usage of two ensemble learning paradigms (i.e., bagging; stochastic gradient boosting) in building classification and regression trees (CARTs) ensembles to advance the streamflow prediction accuracy. The study, initially, investigates the use of classification and regression trees for monthly streamflow forecasting and employs a support vector regression (SVR) model as the benchmark model. The analytic results indicate that CART outperforms SVR in both training and testing phases. Although the obtained results of CART model in training phase are considerable, it is not in testing phase. Thus, to optimize the prediction accuracy of CART for monthly streamflow forecasting, we incorporate bagging and stochastic gradient boosting which are rooted in same philosophy, advancing the prediction accuracy of weak learners. Comparing with the results of bagged regression trees (BRTs) and stochastic gradient boosted regression trees (GBRTs) models possess satisfactory monthly streamflow forecasting performance than CART and SVR models. Overall, it is found that ensemble learning paradigms can remarkably advance the prediction accuracy of CART models in monthly streamflow forecasting.

  18. Numerical weather prediction model tuning via ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.

    2011-12-01

    This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.

  19. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  20. Greedy and Linear Ensembles of Machine Learning Methods Outperform Single Approaches for QSPR Regression Problems.

    PubMed

    Kew, William; Mitchell, John B O

    2015-09-01

    The application of Machine Learning to cheminformatics is a large and active field of research, but there exist few papers which discuss whether ensembles of different Machine Learning methods can improve upon the performance of their component methodologies. Here we investigated a variety of methods, including kernel-based, tree, linear, neural networks, and both greedy and linear ensemble methods. These were all tested against a standardised methodology for regression with data relevant to the pharmaceutical development process. This investigation focused on QSPR problems within drug-like chemical space. We aimed to investigate which methods perform best, and how the 'wisdom of crowds' principle can be applied to ensemble predictors. It was found that no single method performs best for all problems, but that a dynamic, well-structured ensemble predictor would perform very well across the board, usually providing an improvement in performance over the best single method. Its use of weighting factors allows the greedy ensemble to acquire a bigger contribution from the better performing models, and this helps the greedy ensemble generally to outperform the simpler linear ensemble. Choice of data preprocessing methodology was found to be crucial to performance of each method too.

  1. Classification trees with neural network feature extraction.

    PubMed

    Guo, H; Gelfand, S B

    1992-01-01

    The ideal use of small multilayer nets at the decision nodes of a binary classification tree to extract nonlinear features is proposed. The nets are trained and the tree is grown using a gradient-type learning algorithm in the multiclass case. The method improves on standard classification tree design methods in that it generally produces trees with lower error rates and fewer nodes. It also reduces the problems associated with training large unstructured nets and transfers the problem of selecting the size of the net to the simpler problem of finding a tree of the right size. An efficient tree pruning algorithm is proposed for this purpose. Trees constructed with the method and the CART method are compared on a waveform recognition problem and a handwritten character recognition problem. The approach demonstrates significant decrease in error rate and tree size. It also yields comparable error rates and shorter training times than a large multilayer net trained with backpropagation on the same problems.

  2. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  3. African Drum and Steel Pan Ensembles.

    ERIC Educational Resources Information Center

    Sunkett, Mark E.

    2000-01-01

    Discusses how to develop both African drum and steel pan ensembles providing information on teacher preparation, instrument choice, beginning the ensemble, and lesson planning. Includes additional information for the drum ensembles. Lists references and instructional materials, sources of drums and pans, and common note layout/range for steel pan…

  4. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches.

    PubMed

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2016-04-01

    Human intestinal absorption (HIA) of the drugs administered through the oral route constitutes an important criterion for the candidate molecules. The computational approach for predicting the HIA of molecules may potentiate the screening of new drugs. In this study, ensemble learning (EL) based qualitative and quantitative structure-activity relationship (SAR) models (gradient boosted tree, GBT and bagged decision tree, BDT) have been established for the binary classification and HIA prediction of the chemicals, using the selected molecular descriptors. The structural diversity of the chemicals and the nonlinear structure in the considered data were tested by the similarity index and Brock-Dechert-Scheinkman statistics. The external predictive power of the developed SAR models was evaluated through the internal and external validation procedures recommended in the literature. All the statistical criteria parameters derived for the performance of the constructed SAR models were above their respective thresholds suggesting for their robustness for future applications. In complete data, the qualitative SAR models rendered classification accuracy of >99%, while the quantitative SAR models yielded correlation (R(2)) of >0.91 between the measured and predicted HIA values. The performances of the EL-based SAR models were also compared with the linear models (linear discriminant analysis, LDA and multiple linear regression, MLR). The GBT and BDT SAR models performed better than the LDA and MLR methods. A comparison of our models with the previously reported QSARs for HIA prediction suggested for their better performance. The results suggest for the appropriateness of the developed SAR models to reliably predict the HIA of structurally diverse chemicals and can serve as useful tools for the initial screening of the molecules in the drug development process.

  5. Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species.

    PubMed

    Prasad, Anantha M

    2015-11-01

    I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis,Betula lenta,Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the differences in environmental heterogeneity and demographic responses among climatic zones, map regional species groups based on decision tree rules, and evaluate univariate and multivariate patterns of species demography with respect to environmental variables. I use the Forest Inventory Analysis (FIA) data to derive abundance, mortality, and regeneration indices and split the range into three climatic zones based on USDA PHZs: (1) cold adapted, leading region; (2) middle, well-adapted region; and (3) warm adapted, trailing region. I employ decision tree ensemble methods to assess the importance of environmental predictors on the abundance of the species between the cold and warm zones and map zonal variations in species groups. Multivariate regression trees are used to simultaneously explore abundance, mortality, and regeneration in tandem to assess species vulnerability. Analyses point to the relative importance of climate in the warm adapted, trailing zone (especially moisture) compared to the cold adapted, leading zone. Higher mortality and lower regeneration patterns in the warm trailing zone point to its vulnerability to growing season temperature and precipitation changes that could figure more prominently in the future. This study highlights the need to account for intraspecific variation of demography in order to understand environmental heterogeneity and differential adaptation. It provides a methodology for assessing the vulnerability of tree species by delineating climatic zones based on easily available PHZ data, and FIA derived abundance, mortality, and regeneration indices as a proxy for overall growth and fitness. Based on

  6. Application of knowledge-based decision tree classification method to monitoring ecological environment in mining areas based on the multi-temporal Landsat TM(ETM) images: a case study at Daye, Hubei, China

    NASA Astrophysics Data System (ADS)

    Yu, Shiyong

    2008-11-01

    This paper presents a case study of Daye, Hubei, China, to trace mining activities and related environment changes during the past 10 years, with an emphasis on land cover changes. Two sets of satellite data have been used: TM and ETM+ image data. A multi-temporal dataset consisting of two Land sat 5 Thematic Mapper (TM) images and one Enhanced Thematic Mapper Plus (ETM+) image in 1986, 1994 and 2002 have been used to compare the land cover changes of the Daye area, Hubei Province, China. Combined bands method and iron oxide index and the NDVI index method have been used to investigate the spectrum character and the space character of the different ground objects. The knowledge-based decision tree classification method has been used to get highly accurate classification result from the TM and ETM+ image data. The results of change detection show that quality of whole water body was still bad, although the water quality has been improved in some areas. Vegetation shows that degradation trend occurs especially in those areas close to the mining areas, large areas of wood land and plantations are reduced, the increasing bare areas appear and the reclamation percentage of the abandoned mining is only 20% from 1986 to 2002. The ecological environment in the study area may become worse unless the efficient management of mining and effective eco-environment protection are carried out instantly.

  7. Modeling of stage-discharge relationship for Gharraf River, southern Iraq using backpropagation artificial neural networks, M5 decision trees, and Takagi-Sugeno inference system technique: a comparative study

    NASA Astrophysics Data System (ADS)

    Al-Abadi, Alaa M.

    2014-12-01

    The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi-Sugeno (TS) inference system for mimic stage-discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models' results were compared using root mean squared error (RMSE) and coefficient of determination (R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi-Sugeno techniques have certain advantages for setting up stage-discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage-discharge relationship in the study area.

  8. State Ensembles and Quantum Entropy

    NASA Astrophysics Data System (ADS)

    Kak, Subhash

    2016-06-01

    This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.

  9. Statistical Ensemble of Large Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.

  10. Dimensionality Reduction Through Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  11. Ensemble Modeling of Cancer Metabolism

    PubMed Central

    Khazaei, Tahmineh; McGuigan, Alison; Mahadevan, Radhakrishnan

    2012-01-01

    The metabolic behavior of cancer cells is adapted to meet their proliferative needs, with notable changes such as enhanced lactate secretion and glucose uptake rates. In this work, we use the Ensemble Modeling (EM) framework to gain insight and predict potential drug targets for tumor cells. EM generates a set of models which span the space of kinetic parameters that are constrained by thermodynamics. Perturbation data based on known targets are used to screen the entire ensemble of models to obtain a sub-set, which is increasingly predictive. EM allows for incorporation of regulatory information and captures the behavior of enzymatic reactions at the molecular level by representing reactions in the elementary reaction form. In this study, a metabolic network consisting of 58 reactions is considered and accounts for glycolysis, the pentose phosphate pathway, lipid metabolism, amino acid metabolism, and includes allosteric regulation of key enzymes. Experimentally measured intracellular and extracellular metabolite concentrations are used for developing the ensemble of models along with information on established drug targets. The resulting models predicted transaldolase (TALA) and succinyl-CoA ligase (SUCOAS1m) to cause a significant reduction in growth rate when repressed, relative to currently known drug targets. Furthermore, the results suggest that the synergistic repression of transaldolase and glycine hydroxymethyltransferase (GHMT2r) will lead to a threefold decrease in growth rate compared to the repression of single enzyme targets. PMID:22623918

  12. Thermodynamic curvature and ensemble nonequivalence

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Nettel, Francisco

    2014-08-01

    In this work we consider thermodynamic geometries defined as Hessians of different potentials and derive some useful formulas that show their complementary role in the description of thermodynamic systems with 2 degrees of freedom that show ensemble nonequivalence. From the expressions derived for the metrics, we can obtain the curvature scalars in a very simple and compact form. We explain here the reason why each curvature scalar diverges over the line of divergence of one of the specific heats. This application is of special interest in the study of changes of stability in black holes as defined by Davies. From these results we are able to prove on a general footing a conjecture first formulated by Liu, Lü, Luo, and Shao stating that different Hessian metrics can correspond to different behaviors in the various ensembles. We study the case of two thermodynamic dimensions. Moreover, comparing our result with the more standard turning point method developed by Poincaré, we obtain that the divergence of the scalar curvature of the Hessian metric of one potential exactly matches the change of stability in the corresponding ensemble.

  13. Short-term optimal operation of water systems using ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Raso, L.; Schwanenberg, D.; van de Giesen, N. C.; van Overloop, P. J.

    2014-09-01

    Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate. Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management. The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance. TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.

  14. Doubly robust survival trees.

    PubMed

    Steingrimsson, Jon Arni; Diao, Liqun; Molinaro, Annette M; Strawderman, Robert L

    2016-09-10

    Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data. Simulations and a data analysis demonstrate strong performance of the doubly robust survival trees compared with previously used methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037609

  15. Image Segmentation Using Hierarchical Merge Tree

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-10-01

    This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other very recent methods on six public data sets demonstrate that our approach achieves the state-of-the-art region accuracy and is very competitive in image segmentation without semantic priors.

  16. SRNL PARTICIPATION IN THE MULTI-SCALE ENSEMBLE EXERCISES

    SciTech Connect

    Buckley, R

    2007-10-29

    Consequence assessment during emergency response often requires atmospheric transport and dispersion modeling to guide decision making. A statistical analysis of the ensemble of results from several models is a useful way of estimating the uncertainty for a given forecast. ENSEMBLE is a European Union program that utilizes an internet-based system to ingest transport results from numerous modeling agencies. A recent set of exercises required output on three distinct spatial and temporal scales. The Savannah River National Laboratory (SRNL) uses a regional prognostic model nested within a larger-scale synoptic model to generate the meteorological conditions which are in turn used in a Lagrangian particle dispersion model. A discussion of SRNL participation in these exercises is given, with particular emphasis on requirements for provision of results in a timely manner with regard to the various spatial scales.

  17. Ensemble Learning Approaches to Predicting Complications of Blood Transfusion

    PubMed Central

    Murphree, Dennis; Ngufor, Che; Upadhyaya, Sudhindra; Madde, Nagesh; Clifford, Leanne; Kor, Daryl J.; Pathak, Jyotishman

    2016-01-01

    Of the 21 million blood components transfused in the United States during 2011, approximately 1 in 414 resulted in complication [1]. Two complications in particular, transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO), are especially concerning. These two alone accounted for 62% of reported transfusion-related fatalities in 2013 [2]. We have previously developed a set of machine learning base models for predicting the likelihood of these adverse reactions, with a goal towards better informing the clinician prior to a transfusion decision. Here we describe recent work incorporating ensemble learning approaches to predicting TACO/TRALI. In particular we describe combining base models via majority voting, stacking of model sets with varying diversity, as well as a resampling/boosting combination algorithm called RUSBoost. We find that while the performance of many models is very good, the ensemble models do not yield significantly better performance in terms of AUC. PMID:26737958

  18. Graphic Representations as Tools for Decision Making.

    ERIC Educational Resources Information Center

    Howard, Judith

    2001-01-01

    Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)

  19. Audubon Tree Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…

  20. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  1. Decoding the cognitive map: ensemble hippocampal sequences and decision making

    PubMed Central

    Wikenheiser, Andrew M.

    2014-01-01

    Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the “map” component of Tolman’s theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be important for supporting the inferential mental operations associated with cognitive map function. New findings that hippocampal sequences play an important causal role in mediating adaptive behavior on a moment-by-moment basis suggest specific neural processes that may underlie Tolman’s cognitive map framework. PMID:25463559

  2. A Modified Ensemble Framework for Drought Estimation

    NASA Astrophysics Data System (ADS)

    Alobaidi, M. H.; Marpu, P. R.; Ouarda, T.

    2014-12-01

    Drought estimation at ungauged sites is a difficult task due to various challenges such as scale and limited availability and information about hydrologic neighborhoods. Ensemble regression has been recently utilized in modeling various hydrologic systems and showed advantage over classical regression approaches to such studies. A challenging task in ensemble modeling is the proper training of the ensemble's individual learners and the ensemble combiners. In this work, an ensemble framework is proposed to enhance the generalization ability of the sub-ensemble models and its combiner. Information mixtures between the subsamples are introduced. Such measure is dedicated to the ensemble members and ensemble combiners. Controlled homogeneity magnitudes are then stimulated and induced in the proposed model via a two-stage resampling algorithm. Artificial neural networks (ANNs) were used as ensemble members in addition to different ensemble integration plans. The model provided superior results when compared to previous models applied to the case study in this work. The root mean squared error (RMSE) in the testing phase for the drought quantiles improved by 67% - 76%. The bias error (BIAS) also showed 61% - 95% improvement.

  3. Gradient flow and scale setting on MILC HISQ ensembles

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Bernard, C.; Brown, N.; Komijani, J.; DeTar, C.; Foley, J.; Levkova, L.; Gottlieb, Steven; Heller, U. M.; Laiho, J.; Sugar, R. L.; Toussaint, D.; Van de Water, R. S.; MILC Collaboration

    2016-05-01

    We report on a scale determination with gradient-flow techniques on the Nf=2 +1 +1 highly improved staggered quark ensembles generated by the MILC Collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales √{t0}/a and w0/a and their tree-level improvements, √{t0 ,imp} and w0 ,imp, are computed on each ensemble using Symanzik flow and the cloverleaf definition of the energy density E . Using a combination of continuum chiral-perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We determine the scales √{t0 }=0.1416 (+8/-5) fm and w0=0.1714 (+15/-12) fm , where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w0 and √{t0} is comparable to or more precise than the best previous estimates, respectively. We then find the continuum mass dependence of √{t0} and w0, which will be useful for estimating the scales of new ensembles. We also estimate the integrated autocorrelation length of ⟨E (t )⟩. For long flow times, the autocorrelation length of ⟨E ⟩ appears to be comparable to that of the topological charge.

  4. Tree harvesting

    SciTech Connect

    Badger, P.C.

    1995-12-31

    Short rotation intensive culture tree plantations have been a major part of biomass energy concepts since the beginning. One aspect receiving less attention than it deserves is harvesting. This article describes an method of harvesting somewhere between agricultural mowing machines and huge feller-bunchers of the pulpwood and lumber industries.

  5. Aspen Trees.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2002-01-01

    Describes a fifth-grade art activity that offers a new approach to creating pictures of Aspen trees. Explains that the students learned about art concepts, such as line and balance, in this lesson. Discusses the process in detail for creating the pictures. (CMK)

  6. Navigating a Path Toward Operational, Short-term, Ensemble Based, Probablistic Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Hartman, R. K.; Schaake, J.

    2004-12-01

    The National Weather Service (NWS) has federal responsibility for issuing public flood warnings in the United States. Additionally, the NWS has been engaged in longer range water resources forecasts for many years, particularly in the Western U.S. In the past twenty years, longer range forecasts have increasingly incorporated ensemble techniques. Ensemble techniques are attractive because they allow a great deal of flexibility, both temporally and in content. This technique also provides for the influence of additional forcings (i.e. ENSO), through either pre or post processing techniques. More recently, attention has turned to the use of ensemble techniques in the short-term streamflow forecasting process. While considerably more difficult, the development of reliable short-term probabilistic streamflow forecasts has clear application and value for many NWS customers and partners. During flood episodes, expensive mitigation actions are initialed or withheld and critical reservoir management decisions are made in the absence of uncertainty and risk information. Limited emergency services resources and the optimal use of water resources facilities necessitates the development of a risk-based decision making process. The development of reliable short-term probabilistic streamflow forecasts are an essential ingredient in the decision making process. This paper addresses the utility of short-term ensemble streamflow forecasts and the considerations that must be addressed as techniques and operational capabilities are developed. Verification and validation information are discussed from both a scientific and customer perspective. Education and training related to the interpretation and use of ensemble products are also addressed.

  7. A Localized Ensemble Kalman Smoother

    NASA Technical Reports Server (NTRS)

    Butala, Mark D.

    2012-01-01

    Numerous geophysical inverse problems prove difficult because the available measurements are indirectly related to the underlying unknown dynamic state and the physics governing the system may involve imperfect models or unobserved parameters. Data assimilation addresses these difficulties by combining the measurements and physical knowledge. The main challenge in such problems usually involves their high dimensionality and the standard statistical methods prove computationally intractable. This paper develops and addresses the theoretical convergence of a new high-dimensional Monte-Carlo approach called the localized ensemble Kalman smoother.

  8. Gibbs Ensembles of Nonintersecting Paths

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Shlosman, Senya

    2010-01-01

    We consider a family of determinantal random point processes on the two-dimensional lattice and prove that members of our family can be interpreted as a kind of Gibbs ensembles of nonintersecting paths. Examples include probability measures on lozenge and domino tilings of the plane, some of which are non-translation-invariant. The correlation kernels of our processes can be viewed as extensions of the discrete sine kernel, and we show that the Gibbs property is a consequence of simple linear relations satisfied by these kernels. The processes depend on infinitely many parameters, which are closely related to parametrization of totally positive Toeplitz matrices.

  9. Ensemble averaging of acoustic data

    NASA Technical Reports Server (NTRS)

    Stefanski, P. K.

    1982-01-01

    A computer program called Ensemble Averaging of Acoustic Data is documented. The program samples analog data, analyzes the data, and displays them in the time and frequency domains. Hard copies of the displays are the program's output. The documentation includes a description of the program and detailed user instructions for the program. This software was developed for use on the Ames 40- by 80-Foot Wind Tunnel's Dynamic Analysis System consisting of a PDP-11/45 computer, two RK05 disk drives, a tektronix 611 keyboard/display terminal, and FPE-4 Fourier Processing Element, and an analog-to-digital converter.

  10. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  11. A comparison of breeding and ensemble transform vectors for global ensemble generation

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan

    2012-02-01

    To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.

  12. Measuring social interaction in music ensembles.

    PubMed

    Volpe, Gualtiero; D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano

    2016-05-01

    Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances.

  13. Soil texture reclassification by an ensemble model

    NASA Astrophysics Data System (ADS)

    Cisty, Milan; Hlavcova, Kamila

    2015-04-01

    a prerequisite for solving some subsequent task, this bias is propagated to the subsequent modelling or other work. Therefore, for the sake of achieving more general and precise outputs while solving such tasks, the authors of the present paper are proposing a hybrid approach, which has the potential for obtaining improved results. Although the authors continue recommending the use of the mentioned parametric PSD models in the proposed methodology, the final prediction is made by an ensemble machine learning algorithm based on regression trees, the so-called Random Forest algorithm, which is built on top of the outputs of such models, which serves as an ensemble members. An improvement in precision was proved, and it is documented in the paper that the ensemble model worked better than any of its constituents. References Nemes, A., Wosten, J.H.M., Lilly, A., Voshaar, J.H.O.: Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 90, 187- 202 (1999) Hwang, S.: Effect of texture on the performance of soil particle-size distribution models. Geoderma 123, 363-371 (2004) Botula, Y.D., Cornelis, W.M., Baert, G., Mafuka, P., Van Ranst, E.: Particle size distribution models for soils of the humid tropics. J Soils Sediments. 13, 686-698 (2013)

  14. Unimodular trees versus Einstein trees

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio; Martín, Carmelo P.

    2016-10-01

    The maximally helicity violating tree-level scattering amplitudes involving three, four or five gravitons are worked out in Unimodular Gravity. They are found to coincide with the corresponding amplitudes in General Relativity. This a remarkable result, insofar as both the propagators and the vertices are quite different in the two theories.

  15. Particle number fluctuations in a canonical ensemble

    SciTech Connect

    Begun, V.V.; Gazdzicki, M.; Gorenstein, M.I.; Zozulya, O.S.

    2004-09-01

    Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus, the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations. In view of the possible relevance of the results for the analysis of fluctuations in nuclear collisions at high energies, a role of the limited kinematical acceptance is studied.

  16. Potential and limitations of ensemble docking.

    PubMed

    Korb, Oliver; Olsson, Tjelvar S G; Bowden, Simon J; Hall, Richard J; Verdonk, Marcel L; Liebeschuetz, John W; Cole, Jason C

    2012-05-25

    A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of pharmaceutical interest. Starting from single protein structure docking results, for each ensemble size up to 500,000 combinations of protein structures were generated, and, for each ensemble, pose prediction and virtual screening results were derived. Comparison of single to multiple protein structure results suggests improvements when looking at the performance of the worst and the average over all single protein structures to the performance of the worst and average over all protein ensembles of size two or greater, respectively. We identified several key factors affecting ensemble docking performance, including the sampling accuracy of the docking algorithm, the choice of the scoring function, and the similarity of database ligands to the cocrystallized ligands of ligand-bound protein structures in an ensemble. Due to these factors, the prospective selection of optimum ensembles is a challenging task, shown by a reassessment of published ensemble selection protocols. PMID:22482774

  17. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Ahmad, Nash'at N.; Holzaepfel, Frank; VanValkenburg, Randal L.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  18. Forecast of iceberg ensemble drift

    SciTech Connect

    El-Tahan, M.S.; El-Tahan, H.W.; Venkatesh, S.

    1983-05-01

    The objectives of the study are to gain a better understanding of the characteristics of iceberg motion and the factors controlling iceberg drift, and to develop an iceberg ensemble drift forecast system to be operated by the Canadian Atmospheric Environment Service. An extensive review of field and theoretical studies on iceberg behaviour, and the factors controlling iceberg motion has been carried out. Long term and short term behaviour of icebergs are critically examined. A quantitative assessment of the effects of the factors controlling iceberg motion is presented. The study indicated that wind and currents are the primary driving forces. Coriolis Force and ocean surface slope also have significant effects. As for waves, only the higher waves have a significant effect. Iceberg drift is also affected by iceberg size characteristics. Based on the findings of the study a comprehensive computerized forecast system to predict the drift of iceberg ensembles off Canada's east coast has been designed. The expected accuracy of the forecast system is discussed and recommendations are made for future improvements to the system.

  19. Visualizing ensembles in structural biology.

    PubMed

    Melvin, Ryan L; Salsbury, Freddie R

    2016-06-01

    Displaying a single representative conformation of a biopolymer rather than an ensemble of states mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. However, there are few apparent options due to the fixed nature of print media. Here we suggest a standardized methodology for visually indicating the distribution width, standard deviation and uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single representative conformation. Of particular note is that the visualization method employed clearly distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this method to ligand binding, suggesting a way to indicate the expected error in many high throughput docking programs when visualizing the structural spread of the output. We provide several examples in the context of nucleic acids and proteins with particular insights gained via this method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-deoxyuridine-5-O-monophosphate) - a topoisomerase-1 (Top1), apoptosis-inducing poison - and nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss how these methods can be extended to any macromolecular data set with an underlying distribution, including experimental data such as NMR structures.

  20. The ENSEMBLES Statistical Downscaling Portal

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; San-Martín, Daniel; Gutiérrez, Jose M.

    2010-05-01

    The demand for high-resolution seasonal and ACC predictions is continuously increasing due to the multiple end-user applications in a variety of sectors (hydrology, agronomy, energy, etc.) which require regional meteorological inputs. To fill the gap between the coarse-resolution grids used by global weather models and the regional needs of applications, a number of statistical downscaling techniques have been proposed. Statistical downscaling is a complex multi-disciplinary problem which requires a cascade of different scientific tools to access and process different sources of data, from GCM outputs to local observations and to run complex statistical algorithms. Thus, an end-to-end approach is needed in order to link the outputs of the ensemble prediction systems to a range of impact applications. To accomplish this task in an interactive and user-friendly form, a Web portal has been developed within the European ENSEMBLES project, integrating the necessary tools and providing the appropriate technology for distributed data access and computing. In this form, users can obtain their downscaled data testing and validating different statistical methods (from the categories weather typing, regression or weather generators) in a transparent form, not worrying about the details of the downscaling techniques and the data formats and access.

  1. Technical Tree Climbing.

    ERIC Educational Resources Information Center

    Jenkins, Peter

    Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…

  2. Joys of Community Ensemble Playing: The Case of the Happy Roll Elastic Ensemble in Taiwan

    ERIC Educational Resources Information Center

    Hsieh, Yuan-Mei; Kao, Kai-Chi

    2012-01-01

    The Happy Roll Elastic Ensemble (HREE) is a community music ensemble supported by Tainan Culture Centre in Taiwan. With enjoyment and friendship as its primary goals, it aims to facilitate the joys of ensemble playing and the spirit of social networking. This article highlights the key aspects of HREE's development in its first two years…

  3. Using Bayesian Belief Networks and event trees for volcanic hazard assessment and decision support : reconstruction of past eruptions of La Soufrière volcano, Guadeloupe and retrospective analysis of 1975-77 unrest.

    NASA Astrophysics Data System (ADS)

    Komorowski, Jean-Christophe; Hincks, Thea; Sparks, Steve; Aspinall, Willy; Legendre, Yoann; Boudon, Georges

    2013-04-01

    the contemporary volcanological narrative, and demonstrates that a formal evidential case could have been made to support the authorities' concerns and decision to evacuate. Revisiting the circumstances of the 1976 crisis highlights many contemporary challenges of decision-making under conditions of volcanological uncertainty. We suggest the BBN concept is a suitable framework for marshalling multiple observations, model results and interpretations - and all associated uncertainties - in a methodical manner. Base-rate eruption probabilities for Guadeloupe can be updated now with a new chronology of activity suggesting that 10 major explosive phases and 9 dome-forming phases occurred in the last 9150 years, associated with ≥ 8 flank-collapses and ≥ 6-7 high-energy pyroclastic density currents (blasts). Eruptive recurrence, magnitude and intensity place quantitative constraints on La Soufrière's event tree to elaborate credible scenarios. The current unrest offers an opportunity to update the BBN model and explore the uncertainty on inferences about the system's internal state. This probabilistic formalism would provoke key questions relating to unrest evolution: 1) is the unrest hydrothermal or magmatic? 2) what controls dyke/intrusion arrest and hence failed-magmatic eruptions like 1976? 3) what conditions could lead to significant pressurization with potential for explosive activity and edifice instability, and what monitoring signs might be manifest?

  4. Ensemble flood forecasting on the Tocantins River - Brazil

    NASA Astrophysics Data System (ADS)

    Fan, Fernando; Collischonn, Walter; Jiménez, Karena; Sorribas, Mino; Buarque, Diogo; Siqueira, Vinicius

    2014-05-01

    The Tocantins River basin is located in the northern region of Brazil and has about 300.000 km2 of drainage area upstream of its confluence with river Araguaia, its major tributary. The Tocantins River is intensely used for hydropower production, with seven major dams, including Tucuruí, world's fourth largest in terms of installed capacity. In this context, the use of hydrological streamflow forecasts at this basin is very useful to support the decision making process for reservoir operation, and can produce benefits by reducing damages from floods, increasing dam safety and upgrading efficiency in power generation. The occurrence of floods along the Tocantins River is a relatively frequent event, where one recent example is the year of 2012, when a large flood occurred in the Tocantins River with discharge peaks exceeding 16.000m³/s, and causing damages to cities located along the river. After this flooding event, a hydrological forecasting system was developed and is operationally in use since mid-2012 in order to assist the decision making of dam operation along the river basin. The forecasting system is based on the MGB-IPH model, a large scale distributed hydrological model, and initially used only telemetric data as observed information and deterministic rainfall forecasts from the Brazilian Meteorological Forecasting Centre (CPTEC) with 7-days lead time as input. Since August-2013 the system has been updated and now works with two new features: (i) a technique for merging satellite TRMM real-time precipitation estimative with gauged information is applied to reduce the uncertainty due to the lack of observed information over a portion of the basin, since the total number of rain gages available is scarce compared to the total basin area; (ii) rainfall ensemble forecasts with 16-days lead time provided by the Global Ensemble Forecasting System (GEFs), from the 2nd Generation of NOAA Global Ensemble Reforecast Data Set, maintained by the National Center for

  5. Ensemble perception of size in 4-5-year-old children.

    PubMed

    Sweeny, Timothy D; Wurnitsch, Nicole; Gopnik, Alison; Whitney, David

    2015-07-01

    Groups of objects are nearly everywhere we look. Adults can perceive and understand the 'gist' of multiple objects at once, engaging ensemble-coding mechanisms that summarize a group's overall appearance. Are these group-perception mechanisms in place early in childhood? Here, we provide the first evidence that 4-5-year-old children use ensemble coding to perceive the average size of a group of objects. Children viewed a pair of trees, with each containing a group of differently sized oranges. We found that, in order to determine which tree had the larger oranges overall, children integrated the sizes of multiple oranges into ensemble representations. This pooling occurred rapidly, and it occurred despite conflicting information from numerosity, continuous extent, density, and contrast. An ideal observer analysis showed that although children's integration mechanisms are sensitive, they are not yet as efficient as adults'. Overall, our results provide a new insight into the way children see and understand the environment, and they illustrate the fundamental nature of ensemble coding in visual perception.

  6. Fine-Tuning Your Ensemble's Jazz Style.

    ERIC Educational Resources Information Center

    Garcia, Antonio J.

    1991-01-01

    Proposes instructional strategies for directors of jazz groups, including guidelines for developing of skills necessary for good performance. Includes effective methods for positive changes in ensemble style. Addresses jazz group problems such as beat, tempo, staying in tune, wind power, and solo/ensemble lines. Discusses percussionists, bassists,…

  7. Visual stimuli recruit intrinsically generated cortical ensembles.

    PubMed

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-09-23

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes. PMID:25201983

  8. Characterizing Ensembles of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  9. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  10. SIMULATION OF THE ICELAND VOLCANIC ERUPTION OF APRIL 2010 USING THE ENSEMBLE SYSTEM

    SciTech Connect

    Buckley, R.

    2011-05-10

    The Eyjafjallajokull volcanic eruption in Iceland in April 2010 disrupted transportation in Europe which ultimately affected travel plans for many on a global basis. The Volcanic Ash Advisory Centre (VAAC) is responsible for providing guidance to the aviation industry of the transport of volcanic ash clouds. There are nine such centers located globally, and the London branch (headed by the United Kingdom Meteorological Office, or UKMet) was responsible for modeling the Iceland volcano. The guidance provided by the VAAC created some controversy due to the burdensome travel restrictions and uncertainty involved in the prediction of ash transport. The Iceland volcanic eruption provides a useful exercise of the European ENSEMBLE program, coordinated by the Joint Research Centre (JRC) in Ispra, Italy. ENSEMBLE, a decision support system for emergency response, uses transport model results from a variety of countries in an effort to better understand the uncertainty involved with a given accident scenario. Model results in the form of airborne concentration and surface deposition are required from each member of the ensemble in a prescribed format that may then be uploaded to a website for manipulation. The Savannah River National Laboratory (SRNL) is the lone regular United States participant throughout the 10-year existence of ENSEMBLE. For the Iceland volcano, four separate source term estimates have been provided to ENSEMBLE participants. This paper focuses only on one of those source terms. The SRNL results in relation to other modeling agency results along with useful information obtained using an ensemble of transport results will be discussed.

  11. ENCORE: Software for Quantitative Ensemble Comparison.

    PubMed

    Tiberti, Matteo; Papaleo, Elena; Bengtsen, Tone; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-10-01

    There is increasing evidence that protein dynamics and conformational changes can play an important role in modulating biological function. As a result, experimental and computational methods are being developed, often synergistically, to study the dynamical heterogeneity of a protein or other macromolecules in solution. Thus, methods such as molecular dynamics simulations or ensemble refinement approaches have provided conformational ensembles that can be used to understand protein function and biophysics. These developments have in turn created a need for algorithms and software that can be used to compare structural ensembles in the same way as the root-mean-square-deviation is often used to compare static structures. Although a few such approaches have been proposed, these can be difficult to implement efficiently, hindering a broader applications and further developments. Here, we present an easily accessible software toolkit, called ENCORE, which can be used to compare conformational ensembles generated either from simulations alone or synergistically with experiments. ENCORE implements three previously described methods for ensemble comparison, that each can be used to quantify the similarity between conformational ensembles by estimating the overlap between the probability distributions that underlie them. We demonstrate the kinds of insights that can be obtained by providing examples of three typical use-cases: comparing ensembles generated with different molecular force fields, assessing convergence in molecular simulations, and calculating differences and similarities in structural ensembles refined with various sources of experimental data. We also demonstrate efficient computational scaling for typical analyses, and robustness against both the size and sampling of the ensembles. ENCORE is freely available and extendable, integrates with the established MDAnalysis software package, reads ensemble data in many common formats, and can work with large

  12. ENCORE: Software for Quantitative Ensemble Comparison

    PubMed Central

    Tiberti, Matteo; Papaleo, Elena; Bengtsen, Tone; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    There is increasing evidence that protein dynamics and conformational changes can play an important role in modulating biological function. As a result, experimental and computational methods are being developed, often synergistically, to study the dynamical heterogeneity of a protein or other macromolecules in solution. Thus, methods such as molecular dynamics simulations or ensemble refinement approaches have provided conformational ensembles that can be used to understand protein function and biophysics. These developments have in turn created a need for algorithms and software that can be used to compare structural ensembles in the same way as the root-mean-square-deviation is often used to compare static structures. Although a few such approaches have been proposed, these can be difficult to implement efficiently, hindering a broader applications and further developments. Here, we present an easily accessible software toolkit, called ENCORE, which can be used to compare conformational ensembles generated either from simulations alone or synergistically with experiments. ENCORE implements three previously described methods for ensemble comparison, that each can be used to quantify the similarity between conformational ensembles by estimating the overlap between the probability distributions that underlie them. We demonstrate the kinds of insights that can be obtained by providing examples of three typical use-cases: comparing ensembles generated with different molecular force fields, assessing convergence in molecular simulations, and calculating differences and similarities in structural ensembles refined with various sources of experimental data. We also demonstrate efficient computational scaling for typical analyses, and robustness against both the size and sampling of the ensembles. ENCORE is freely available and extendable, integrates with the established MDAnalysis software package, reads ensemble data in many common formats, and can work with large

  13. ENCORE: Software for Quantitative Ensemble Comparison.

    PubMed

    Tiberti, Matteo; Papaleo, Elena; Bengtsen, Tone; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-10-01

    There is increasing evidence that protein dynamics and conformational changes can play an important role in modulating biological function. As a result, experimental and computational methods are being developed, often synergistically, to study the dynamical heterogeneity of a protein or other macromolecules in solution. Thus, methods such as molecular dynamics simulations or ensemble refinement approaches have provided conformational ensembles that can be used to understand protein function and biophysics. These developments have in turn created a need for algorithms and software that can be used to compare structural ensembles in the same way as the root-mean-square-deviation is often used to compare static structures. Although a few such approaches have been proposed, these can be difficult to implement efficiently, hindering a broader applications and further developments. Here, we present an easily accessible software toolkit, called ENCORE, which can be used to compare conformational ensembles generated either from simulations alone or synergistically with experiments. ENCORE implements three previously described methods for ensemble comparison, that each can be used to quantify the similarity between conformational ensembles by estimating the overlap between the probability distributions that underlie them. We demonstrate the kinds of insights that can be obtained by providing examples of three typical use-cases: comparing ensembles generated with different molecular force fields, assessing convergence in molecular simulations, and calculating differences and similarities in structural ensembles refined with various sources of experimental data. We also demonstrate efficient computational scaling for typical analyses, and robustness against both the size and sampling of the ensembles. ENCORE is freely available and extendable, integrates with the established MDAnalysis software package, reads ensemble data in many common formats, and can work with large

  14. Medium Range Ensembles Flood Forecasts for Community Level Applications

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S.; Kawasaki, A.; Babel, M. S.; AIT

    2013-05-01

    Early warning is a key element for disaster risk reduction. In recent decades, there has been a major advancement in medium range and seasonal forecasting. These could provide a great opportunity to improve early warning systems and advisories for early action for strategic and long term planning. This could result in increasing emphasis on proactive rather than reactive management of adverse consequences of flood events. This can be also very helpful for the agricultural sector by providing a diversity of options to farmers (e.g. changing cropping pattern, planting timing, etc.). An experimental medium range (1-10 days) flood forecasting model has been developed for Bangladesh which provides 51 set of discharge ensembles forecasts of one to ten days with significant persistence and high certainty. This could help communities (i.e. farmer) for gain/lost estimation as well as crop savings. This paper describe the application of ensembles probabilistic flood forecast at the community level for differential decision making focused on agriculture. The framework allows users to interactively specify the objectives and criteria that are germane to a particular situation, and obtain the management options that are possible, and the exogenous influences that should be taken into account before planning and decision making. risk and vulnerability assessment was conducted through community consultation. The forecast lead time requirement, users' needs, impact and management options for crops, livestock and fisheries sectors were identified through focus group discussions, informal interviews and questionnaire survey.

  15. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.

    PubMed

    Simidjievski, Nikola; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting), significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.

  16. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models

    PubMed Central

    Simidjievski, Nikola; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting), significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient. PMID:27078633

  17. Hybrid Data Assimilation without Ensemble Filtering

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Office is preparing to upgrade its three-dimensional variational system to a hybrid approach in which the ensemble is generated using a square-root ensemble Kalman filter (EnKF) and the variational problem is solved using the Grid-point Statistical Interpolation system. As in most EnKF applications, we found it necessary to employ a combination of multiplicative and additive inflations, to compensate for sampling and modeling errors, respectively and, to maintain the small-member ensemble solution close to the variational solution; we also found it necessary to re-center the members of the ensemble about the variational analysis. During tuning of the filter we have found re-centering and additive inflation to play a considerably larger role than expected, particularly in a dual-resolution context when the variational analysis is ran at larger resolution than the ensemble. This led us to consider a hybrid strategy in which the members of the ensemble are generated by simply converting the variational analysis to the resolution of the ensemble and applying additive inflation, thus bypassing the EnKF. Comparisons of this, so-called, filter-free hybrid procedure with an EnKF-based hybrid procedure and a control non-hybrid, traditional, scheme show both hybrid strategies to provide equally significant improvement over the control; more interestingly, the filter-free procedure was found to give qualitatively similar results to the EnKF-based procedure.

  18. The Tree Worker's Manual.

    ERIC Educational Resources Information Center

    Smithyman, S. J.

    This manual is designed to prepare students for entry-level positions as tree care professionals. Addressed in the individual chapters of the guide are the following topics: the tree service industry; clothing, eqiupment, and tools; tree workers; basic tree anatomy; techniques of pruning; procedures for climbing and working in the tree; aerial…

  19. The effect of member configuration of Ensemble Transform Kalman Filter on the performance of ensemble prediction

    NASA Astrophysics Data System (ADS)

    Kay, Jun Kyung; Kim, Hyun Mee; Park, Young-Youn; Son, Joohyung; Moon, Seonok

    2010-05-01

    Using Met Office Global and Regional Ensemble Prediction System (MOGREPS), the effect of member configuration of Ensemble Transform Kalman Filter (ETKF) on the performance of ensemble prediction is evaluated. Because Korea Meteorological Administration (KMA) is implementing Unified model (UM) and related pre/post processing imported from United Kingdom Meteorological Office (UKMO) operationally from year 2010, it is necessary to investigate the effect of ensemble size on the prediction capability of MOGREPS before operating the UM in KMA. Currently the ensemble size of MOGREPS is 24, 1-control and 23-perturbation members. The finite ensemble size causes the sampling error of the full forecast probability distribution function (PDF), so the ensemble size is closely related to the efficiency of EPS. The prediction capability depending on the ensemble size has been evaluated by increasing the number of ensemble from 24 to 48. In addition to that, a new method of selecting 24 ensemble members that best approximate the forecast PDF from 48 ensemble members of ETKF (Reduced Ensemble Transform Kalman Filter; RETKF) is proposed to decrease computing cost by increasing ensemble size from 24 to 48, and the result of RETKF is compared with that of ETKF in terms of the statistical reliability and resolution. In the northern hemisphere, the best performance was obtained by the 48 ETKF members, followed by the 24 ETKF members. The performance of 24 RETKF members was the worst. However, in the southern hemisphere, the 24 RETKF members showed the best performance. 48 and 24 ETKF members had a little difference, but the performance of 48 members is slightly better than 24 members.

  20. Evaluating reliability and resolution of ensemble forecasts using information theory

    NASA Astrophysics Data System (ADS)

    Weijs, Steven; van de Giesen, Nick

    2010-05-01

    Ensemble forecasts are increasingly popular for the communication of uncertainty towards the public and decision makers. Ideally, an ensemble forecast reflects both the uncertainty and the information in a forecast, which means that the spread in the ensemble should accurately represent the true uncertainty. For ensembles to be useful, they should be probabilistic, as probability is the language to precisely describe an incomplete state of knowledge, that is typical for forecasts. Information theory provides the ideal tools to deal with uncertainty and information in forecasts. Essential to the use and development of models and forecasts are ways to evaluate their quality. Without a proper definition of what is good, it is impossible to improve forecasts. In contrast to forecast value, which is user dependent, forecast quality, which is defined as the correspondence between forecasts and observations, can be objectively defined, given the question that is asked. The evaluation of forecast quality is known as forecast verification. Numerous techniques for forecast verification have been developed over the past decades. The Brier score (BS) and the derived Ranked Probability Score (RPS) are among the most widely used scores for measuring forecast quality. Both of these scores can be split into three additive components: uncertainty, reliability and resolution. While the first component, uncertainty, just depends on the inherent variability in the forecasted event, the latter two measure different aspects of the quality of forecasts themselves. Resolution measures the difference between the conditional probabilities and the marginal probabilities of occurrence. The third component, reliability, measures the conditional bias in the probability estimates, hence unreliability would be a better name. In this work, we argue that information theory should be adopted as the correct framework for measuring quality of probabilistic ensemble forecasts. We use the information

  1. Derivation of Mayer Series from Canonical Ensemble

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  2. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  3. Multiobjective information theoretic ensemble selection

    NASA Astrophysics Data System (ADS)

    Card, Stuart W.; Mohan, Chilukuri K.

    2009-05-01

    In evolutionary learning, the sine qua non is evolvability, which requires heritability of fitness and a balance between exploitation and exploration. Unfortunately, commonly used fitness measures, such as root mean squared error (RMSE), often fail to reward individuals whose presence in the population is needed to explain important data variance; and indicators of diversity generally are not only incommensurate with those of fitness but also essentially arbitrary. Thus, due to poor scaling, deception, etc., apparently relatively high fitness individuals in early generations may not contain the building blocks needed to evolve optimal solutions in later generations. To reward individuals for their potential incremental contributions to the solution of the overall problem, heritable information theoretic functionals are developed that incorporate diversity considerations into fitness, explicitly identifying building blocks suitable for recombination (e.g. for non-random mating). Algorithms for estimating these functionals from either discrete or continuous data are illustrated by application to input selection in a high dimensional industrial process control data set. Multiobjective information theoretic ensemble selection is shown to avoid some known feature selection pitfalls.

  4. Towards reliable seasonal ensemble streamflow forecasts for ephemeral rivers

    NASA Astrophysics Data System (ADS)

    Bennett, James; Wang, Qj; Li, Ming; Robertson, David

    2016-04-01

    Despite their inherently variable nature, ephemeral rivers are an important water resource in many dry regions. Water managers are likely benefit considerably from even mildly skilful ensemble forecasts of streamflow in ephemeral rivers. As with any ensemble forecast, forecast uncertainty - i.e., the spread of the ensemble - must be reliably quantified to allow users of the forecasts to make well-founded decisions. Correctly quantifying uncertainty in ephemeral rivers is particularly challenging because of the high incidence of zero flows, which are difficult to handle with conventional statistical techniques. Here we apply a seasonal streamflow forecasting system, the model for generating Forecast Guided Stochastic Scenarios (FoGSS), to 26 Australian ephemeral rivers. FoGSS uses post-processed ensemble rainfall forecasts from a coupled ocean-atmosphere prediction system to force an initialised monthly rainfall runoff model, and then applies a staged hydrological error model to describe and propagate hydrological uncertainty in the forecast. FoGSS produces 12-month streamflow forecasts; as forecast skill declines with lead time, the forecasts are designed to transit seamlessly to stochastic scenarios. The ensemble rainfall forecasts used in FoGSS are known to be unbiased and reliable, and we concentrate here on the hydrological error model. The FoGSS error model has several features that make it well suited to forecasting ephemeral rivers. First, FoGSS models the error after data is transformed with a log-sinh transformation. The log-sinh transformation is able to normalise even highly skewed data and homogenise its variance, allowing us to assume that errors are Gaussian. Second, FoGSS handles zero values using data censoring. Data censoring allows streamflow in ephemeral rivers to be treated as a continuous variable, rather than having to model the occurrence of non-zero values and the distribution of non-zero values separately. This greatly simplifies parameter

  5. A 4D-Ensemble-Variational System for Data Assimilation and Ensemble Initialization

    NASA Astrophysics Data System (ADS)

    Bowler, Neill; Clayton, Adam; Jardak, Mohamed; Lee, Eunjoo; Jermey, Peter; Lorenc, Andrew; Piccolo, Chiara; Pring, Stephen; Wlasak, Marek; Barker, Dale; Inverarity, Gordon; Swinbank, Richard

    2016-04-01

    The Met Office has been developing a four-dimensional ensemble variational (4DEnVar) data assimilation system over the past four years. The 4DEnVar system is intended both as data assimilation system in its own right and also an improved means of initializing the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The global MOGREPS ensemble has been initialized by running an ensemble of 4DEnVars (En-4DEnVar). The scalability and maintainability of ensemble data assimilation methods make them increasingly attractive, and 4DEnVar may be adopted in the context of the Met Office's LFRic project to redevelop the technical infrastructure to enable its Unified Model (MetUM) to be run efficiently on massively parallel supercomputers. This presentation will report on the results of the 4DEnVar development project, including experiments that have been run using ensemble sizes of up to 200 members.

  6. Effectiveness of Chamber Music Ensemble Experience

    ERIC Educational Resources Information Center

    Zorn, Jay D.

    1973-01-01

    This investigation was concerned with the effectiveness of chamber music ensemble experience for certain members of a ninth grade band and the evaluation of the effectiveness in terms of performing abilities, cognitive learnings, and attitude changes. (Author)

  7. The ensemble performance index: an improved measure for assessing ensemble pose prediction performance.

    PubMed

    Korb, Oliver; McCabe, Patrick; Cole, Jason

    2011-11-28

    We present a theoretical study on the performance of ensemble docking methodologies considering multiple protein structures. We perform a theoretical analysis of pose prediction experiments which is completely unbiased, as we make no assumptions about specific scoring functions, search paradigms, protein structures, or ligand data sets. We introduce a novel interpretable measure, the ensemble performance index (EPI), for the assessment of scoring performance in ensemble docking, which will be applied to simulated and real data sets. PMID:21962010

  8. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    SciTech Connect

    Singh, Kunwar P. Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  9. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra.

  10. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra. PMID:26903095

  11. Conductor gestures influence evaluations of ensemble performance.

    PubMed

    Morrison, Steven J; Price, Harry E; Smedley, Eric M; Meals, Cory D

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor's gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble's articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble's performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity. PMID:25104944

  12. Heterogeneous Ensemble Combination Search Using Genetic Algorithm for Class Imbalanced Data Classification.

    PubMed

    Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo

    2016-01-01

    Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911

  13. Evaluation of real-time hydrometeorological ensemble prediction on hydrologic scales in Northern California

    NASA Astrophysics Data System (ADS)

    Georgakakos, Konstantine P.; Graham, Nicholas E.; Modrick, Theresa M.; Murphy, Michael J.; Shamir, Eylon; Spencer, Cristopher R.; Sperfslage, Jason A.

    2014-11-01

    . Reservoir inflow forecasts exhibit also good skill for the shorter lead-times out to a week or so, and provide a good quantitative basis in support of reservoir management decisions pertaining to objectives with a short term horizon (e.g., flood control and energy production). For the northernmost basin of Trinity reservoir inflow forecasts exhibit good skill for lead times longer than 3 weeks in the snow melt season. Bias correction of the ensemble precipitation and temperature forecasts with fixed bias factors over the range of lead times improves forecast performance for almost all leads for precipitation and temperature and for the shorter lead times for reservoir inflow. The results constitute a first look at the performance of operational coupled hydrometeorological ensemble forecasts in support of reservoir management.

  14. Ensemble postprocessing for probabilistic quantitative precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Bentzien, S.; Friederichs, P.

    2012-12-01

    Precipitation is one of the most difficult weather variables to predict in hydrometeorological applications. In order to assess the uncertainty inherent in deterministic numerical weather prediction (NWP), meteorological services around the globe develop ensemble prediction systems (EPS) based on high-resolution NWP systems. With non-hydrostatic model dynamics and without parameterization of deep moist convection, high-resolution NWP models are able to describe convective processes in more detail and provide more realistic mesoscale structures. However, precipitation forecasts are still affected by displacement errors, systematic biases and fast error growth on small scales. Probabilistic guidance can be achieved from an ensemble setup which accounts for model error and uncertainty of initial and boundary conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) provides such an ensemble system based on the German-focused limited-area model COSMO-DE. With a horizontal grid-spacing of 2.8 km, COSMO-DE is the convection-permitting high-resolution part of the operational model chain at DWD. The COSMO-DE-EPS consists of 20 realizations of COSMO-DE, driven by initial and boundary conditions derived from 4 global models and 5 perturbations of model physics. Ensemble systems like COSMO-DE-EPS are often limited with respect to ensemble size due to the immense computational costs. As a consequence, they can be biased and exhibit insufficient ensemble spread, and probabilistic forecasts may be not well calibrated. In this study, probabilistic quantitative precipitation forecasts are derived from COSMO-DE-EPS and evaluated at more than 1000 rain gauges located all over Germany. COSMO-DE-EPS is a frequently updated ensemble system, initialized 8 times a day. We use the time-lagged approach to inexpensively increase ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Moreover, we will show that statistical

  15. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Regonda, Satish; Seo, Dong-Jun; Lawrence, Bill

    2010-05-01

    We present a statistical procedure that generates short-term streamflow ensemble forecasts from single-valued, or deterministic, forecasts operationally produced by the National Weather Service (NWS) River Forecast Centers (RFC). The resulting ensemble forecast provides an estimate of the uncertainty in the single-valued forecast to aid risk-based decision making by the emergency managers and by the users of the forecast products and services. The single-valued forecasts are produced at a 6-hr time step for 5 days into the future, and reflect single-valued short-term quantitative precipitation and temperature forecasts (QPF, QTF) and various run-time modifications (MOD), or manual data assimilation, by human forecasters to reduce various sources of error in the end-to-end forecast process. The proposed procedure generates 5 day-ahead ensemble traces of streamflow from a very parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecasts, QPF and recent streamflow observations. For parameter estimation and evaluation, we used a 10-year archive of the single-valued river stage forecasts for six forecast points in Oklahoma produced operationally by the Arkansas-Red River Basin River Forecast Center (ABRFC). To evaluate the procedure, we carried out dependent and leave-one-year-out cross validation. The resulting ensemble hindcasts are then verified using the Ensemble Verification System (EVS) developed at the NWS Office of Hydrologic Development (OHD).

  16. Ensemble approaches to structural seismology: seek many rather than one

    NASA Astrophysics Data System (ADS)

    Sambridge, M.; Bodin, T.; Tkalcic, H.; Gallagher, K.

    2011-12-01

    For the past forty years seismologists have built models of the Earth's seismic structure over local, regional and global distance scales using derived quantities of a seismogram covering the frequency spectrum. A feature common to (almost) all cases is the objective of building a single `best' Earth model, in some sense. This is despite the fact that the data by themselves often do not require, or even allow, a single best fit Earth model to exist. It is widely recognized that many seismic inverse problems are ill-posed and non-unique and hence require regularization or additional constraints to obtain a single structural model. Interpretation of optimal models can be fraught with difficulties, particularly when formal uncertainty estimates become heavily dependent on the regularization imposed. An alternative approach is to embrace the non-uniqueness directly and employ an inference process based on parameter space sampling. Instead of seeking a best model within an optimization framework one seeks an ensemble of solutions and derives properties of that ensemble for inspection. While this idea has itself been employed for more than 30 years, it is not commonplace in seismology. Recent work has shown that trans-dimensional and hierarchical sampling methods have some considerable benefits for seismological problems involving multiple parameter types, uncertain data errors and/or uncertain model parameterizations. Rather than being forced to make decisions on parameterization, level of data noise and weights between data types in advance, as is often the case in an optimization framework, these choices can be relaxed and instead constrained by the data themselves. Limitations exist with sampling based approaches in that computational cost is often considered to be high for large scale structural problems, i.e. many unknowns and data. However there are a surprising number of areas where they are now feasible. This presentation will describe recent developments in

  17. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  18. The Needs of Trees

    ERIC Educational Resources Information Center

    Boyd, Amy E.; Cooper, Jim

    2004-01-01

    Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…

  19. Class-specific Error Bounds for Ensemble Classifiers

    SciTech Connect

    Prenger, R; Lemmond, T; Varshney, K; Chen, B; Hanley, W

    2009-10-06

    The generalization error, or probability of misclassification, of ensemble classifiers has been shown to be bounded above by a function of the mean correlation between the constituent (i.e., base) classifiers and their average strength. This bound suggests that increasing the strength and/or decreasing the correlation of an ensemble's base classifiers may yield improved performance under the assumption of equal error costs. However, this and other existing bounds do not directly address application spaces in which error costs are inherently unequal. For applications involving binary classification, Receiver Operating Characteristic (ROC) curves, performance curves that explicitly trade off false alarms and missed detections, are often utilized to support decision making. To address performance optimization in this context, we have developed a lower bound for the entire ROC curve that can be expressed in terms of the class-specific strength and correlation of the base classifiers. We present empirical analyses demonstrating the efficacy of these bounds in predicting relative classifier performance. In addition, we specify performance regions of the ROC curve that are naturally delineated by the class-specific strengths of the base classifiers and show that each of these regions can be associated with a unique set of guidelines for performance optimization of binary classifiers within unequal error cost regimes.

  20. Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation.

    PubMed

    Haberman, Jason; Brady, Timothy F; Alvarez, George A

    2015-04-01

    Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. PMID:25844624

  1. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    NASA Astrophysics Data System (ADS)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    Probabilistic flood forecasting has an added value for decision making. The Norwegian flood forecasting service is based on a flood forecasting model that run for 145 basins. Covering all of Norway the basins differ in both size and hydrological regime. Currently the flood forecasting is based on deterministic meteorological forecasts, and an auto-regressive procedure is used to achieve probabilistic forecasts. An alternative approach is to use meteorological and hydrological ensemble forecasts to quantify the uncertainty in forecasted streamflow. The hydrological ensembles are based on forcing a hydrological model with meteorological ensemble forecasts of precipitation and temperature. However, the ensembles of precipitation are often biased and the spread is too small, especially for the shortest lead times, i.e. they are not calibrated. These properties will, to some extent, propagate to hydrological ensembles, that most likely will be uncalibrated as well. Pre- and post-processing methods are commonly used to obtain calibrated meteorological and hydrological ensembles respectively. Quantitative studies showing the effect of the combined processing of the meteorological (pre-processing) and the hydrological (post-processing) ensembles are however few. The aim of this study is to evaluate the influence of pre- and post-processing on the skill of streamflow predictions, and we will especially investigate if the forecasting skill depends on lead-time, basin size and hydrological regime. This aim is achieved by applying the 51 medium-range ensemble forecast of precipitation and temperature provided by the European Center of Medium-Range Weather Forecast (ECMWF). These ensembles are used as input to the operational Norwegian flood forecasting model, both raw and pre-processed. Precipitation ensembles are calibrated using a zero-adjusted gamma distribution. Temperature ensembles are calibrated using a Gaussian distribution and altitude corrected by a constant gradient

  2. Reacting to different types of concept drift: the Accuracy Updated Ensemble algorithm.

    PubMed

    Brzezinski, Dariusz; Stefanowski, Jerzy

    2014-01-01

    Data stream mining has been receiving increased attention due to its presence in a wide range of applications, such as sensor networks, banking, and telecommunication. One of the most important challenges in learning from data streams is reacting to concept drift, i.e., unforeseen changes of the stream's underlying data distribution. Several classification algorithms that cope with concept drift have been put forward, however, most of them specialize in one type of change. In this paper, we propose a new data stream classifier, called the Accuracy Updated Ensemble (AUE2), which aims at reacting equally well to different types of drift. AUE2 combines accuracy-based weighting mechanisms known from block-based ensembles with the incremental nature of Hoeffding Trees. The proposed algorithm is experimentally compared with 11 state-of-the-art stream methods, including single classifiers, block-based and online ensembles, and hybrid approaches in different drift scenarios. Out of all the compared algorithms, AUE2 provided best average classification accuracy while proving to be less memory consuming than other ensemble approaches. Experimental results show that AUE2 can be considered suitable for scenarios, involving many types of drift as well as static environments.

  3. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.

    PubMed

    Bolser, Dan; Staines, Daniel M; Pritchard, Emily; Kersey, Paul

    2016-01-01

    Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33). Data provided includes genome sequence, gene models, functional annotation, and polymorphic loci. Various additional information are provided for variation data, including population structure, individual genotypes, linkage, and phenotype data. In each release, comparative analyses are performed on whole genome and protein sequences, and genome alignments and gene trees are made available that show the implied evolutionary history of each gene family. Access to the data is provided through a genome browser incorporating many specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These access routes are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests, and pollinators.Ensembl Plants is updated 4-5 times a year and is developed in collaboration with our international partners in the Gramene ( http://www.gramene.org ) and transPLANT projects ( http://www.transplantdb.org ).

  4. A Bayesian ensemble approach for epidemiological projections.

    PubMed

    Lindström, Tom; Tildesley, Michael; Webb, Colleen

    2015-04-01

    Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks.

  5. Simulations in generalized ensembles through noninstantaneous switches

    NASA Astrophysics Data System (ADS)

    Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo

    2015-10-01

    Generalized-ensemble simulations, such as replica exchange and serial generalized-ensemble methods, are powerful simulation tools to enhance sampling of free energy landscapes in systems with high energy barriers. In these methods, sampling is enhanced through instantaneous transitions of replicas, i.e., copies of the system, between different ensembles characterized by some control parameter associated with thermodynamical variables (e.g., temperature or pressure) or collective mechanical variables (e.g., interatomic distances or torsional angles). An interesting evolution of these methodologies has been proposed by replacing the conventional instantaneous (trial) switches of replicas with noninstantaneous switches, realized by varying the control parameter in a finite time and accepting the final replica configuration with a Metropolis-like criterion based on the Crooks nonequilibrium work (CNW) theorem. Here we revise these techniques focusing on their correlation with the CNW theorem in the framework of Markovian processes. An outcome of this report is the derivation of the acceptance probability for noninstantaneous switches in serial generalized-ensemble simulations, where we show that explicit knowledge of the time dependence of the weight factors entering such simulations is not necessary. A generalized relationship of the CNW theorem is also provided in terms of the underlying equilibrium probability distribution at a fixed control parameter. Illustrative calculations on a toy model are performed with serial generalized-ensemble simulations, especially focusing on the different behavior of instantaneous and noninstantaneous replica transition schemes.

  6. Multiscale macromolecular simulation: role of evolving ensembles.

    PubMed

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.

  7. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  8. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble

  9. Disease and Phenotype Data at Ensembl

    PubMed Central

    Spudich, Giulietta M.; Fernández-Suárez, Xosè M.

    2011-01-01

    Biological databases are an important resource for the life sciences community. Accessing the hundreds of databases supporting molecular biology and related fields is a daunting and time-consuming task. Integrating this information into one access point is a necessity for the life sciences community, which includes researchers focusing on human disease. Here we discuss the Ensembl genome browser, which acts as a single entry point with Graphical User Interface to data from multiple projects, including OMIM, dbSNP, and the NHGRI GWAS catalog. Ensembl provides a comprehensive source of annotation for the human genome, along with other species of biomedical interest. In this unit, we explore how to use the Ensembl genome browser in example queries related to human genetic diseases. Support protocols demonstrate quick sequence export using the BioMart tool. PMID:21400687

  10. Ensemble approach for differentiation of malignant melanoma

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mojdeh; Morel, Olivier; Marzani, Franck; Garcia, Rafael

    2015-04-01

    Melanoma is the deadliest type of skin cancer, yet it is the most treatable kind depending on its early diagnosis. The early prognosis of melanoma is a challenging task for both clinicians and dermatologists. Due to the importance of early diagnosis and in order to assist the dermatologists, we propose an automated framework based on ensemble learning methods and dermoscopy images to differentiate melanoma from dysplastic and benign lesions. The evaluation of our framework on the recent and public dermoscopy benchmark (PH2 dataset) indicates the potential of proposed method. Our evaluation, using only global features, revealed that ensembles such as random forest perform better than single learner. Using random forest ensemble and combination of color and texture features, our framework achieved the highest sensitivity of 94% and specificity of 92%.

  11. Accounting for Skewness in Ensemble Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hodyss, D.

    2011-12-01

    I will discuss a new framework for understanding how a non-normal probability density function (pdf) may affect a state estimate and how one might usefully exploit the non-normal properties of the pdf when constructing a state estimate. A Bayesian framework is constructed that leads naturally to an expansion of the expected forecast error in a polynomial series consisting of powers of the innovation vector. This polynomial expansion in the innovation reveals a new view of the geometric nature of the state estimation problem. Among other things a direct relationship is shown between the degree to which the state estimate varies with the innovation and the moments of the distribution. A practical data assimilation algorithm will also be presented that explicitly accounts for skewness in the prior distribution. The algorithm operates as a global-solve using a conjugate-gradient technique and Schur/Hadamard (element-wise) localization, and as a general rule is only a factor of four more expensive than the traditional ensemble Kalman filter. The central feature of this technique is the squaring of the innovation and the ensemble perturbations so as to create an extended state-space that accounts for the second, third and fourth moments of the prior distribution. This new technique is illustrated in a simple scalar system as well as in a Boussinesq model of O(10000) variables configured to simulate nonlinearly evolving Kelvin-Helmholtz waves in shear flow. It is shown that ensemble sizes of at least 100 members is needed to adequately resolve the third and fourth moments required for the algorithm. For ensembles of this size it is shown that this new technique is superior to a state-of-the-art Ensemble Kalman Filter in situations with significant skewness, otherwise the new algorithm reduces to the performance of the Ensemble Kalman Filter.

  12. Theory of the decision/problem state

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    A theory of the decision-problem state was introduced and elaborated. Starting with the basic model of a decision-problem condition, an attempt was made to explain how a major decision-problem may consist of subsets of decision-problem conditions composing different condition sequences. In addition, the basic classical decision-tree model was modified to allow for the introduction of a series of characteristics that may be encountered in an analysis of a decision-problem state. The resulting hierarchical model reflects the unique attributes of the decision-problem state. The basic model of a decision-problem condition was used as a base to evolve a more complex model that is more representative of the decision-problem state and may be used to initiate research on decision-problem states.

  13. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.

    PubMed

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2015-02-01

    Modern healthcare is getting reshaped by growing Electronic Medical Records (EMR). Recently, these records have been shown of great value towards building clinical prediction models. In EMR data, patients' diseases and hospital interventions are captured through a set of diagnoses and procedures codes. These codes are usually represented in a tree form (e.g. ICD-10 tree) and the codes within a tree branch may be highly correlated. These codes can be used as features to build a prediction model and an appropriate feature selection can inform a clinician about important risk factors for a disease. Traditional feature selection methods (e.g. Information Gain, T-test, etc.) consider each variable independently and usually end up having a long feature list. Recently, Lasso and related l1-penalty based feature selection methods have become popular due to their joint feature selection property. However, Lasso is known to have problems of selecting one feature of many correlated features randomly. This hinders the clinicians to arrive at a stable feature set, which is crucial for clinical decision making process. In this paper, we solve this problem by using a recently proposed Tree-Lasso model. Since, the stability behavior of Tree-Lasso is not well understood, we study the stability behavior of Tree-Lasso and compare it with other feature selection methods. Using a synthetic and two real-world datasets (Cancer and Acute Myocardial Infarction), we show that Tree-Lasso based feature selection is significantly more stable than Lasso and comparable to other methods e.g. Information Gain, ReliefF and T-test. We further show that, using different types of classifiers such as logistic regression, naive Bayes, support vector machines, decision trees and Random Forest, the classification performance of Tree-Lasso is comparable to Lasso and better than other methods. Our result has implications in identifying stable risk factors for many healthcare problems and therefore can

  14. Quantum measurement of a mesoscopic spin ensemble

    SciTech Connect

    Giedke, G.; Taylor, J. M.; Lukin, M. D.; D'Alessandro, D.; Imamoglu, A.

    2006-09-15

    We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its coupling to a single two-level system. Our approach requires a minimal number of measurements on the two-level system for a given measurement precision. We consider the application of this method to the case of nuclear-spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within the reach of present day experiments.

  15. Ensemble computing for the petroleum industry

    SciTech Connect

    Annaratone, M.; Dossa, D.

    1995-02-01

    Computer downsizing is one of the most often used buzzwords in today`s competitive business, and the petroleum industry is at the forefront of this revolution. Ensemble computing provides the key for computer downsizing with its first incarnation, i.e., workstation farms. This paper concerns the importance of increasing the productivity cycle and not just the execution time of a job. The authors introduce the concept of ensemble computing and workstation farms. The they discuss how different computing paradigms can be addressed by workstation farms.

  16. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    NASA Astrophysics Data System (ADS)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  17. Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Mittman, David S.; Shams, Khawaja, S.; Bachmann, Andrew G.; Ludowise, Melissa

    2013-01-01

    This software simplifies the process of having to set up an Eclipse IDE programming environment for the members of the cross-NASA center project, Ensemble. It achieves this by assembling all the necessary add-ons and custom tools/preferences. This software is unique in that it allows developers in the Ensemble Project (approximately 20 to 40 at any time) across multiple NASA centers to set up a development environment almost instantly and work on Ensemble software. The software automatically has the source code repositories and other vital information and settings included. The Eclipse IDE is