Science.gov

Sample records for declarative memory deficits

  1. Declarative memory.

    PubMed

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended. PMID:25977084

  2. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice.

    PubMed

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S; Moskal, Joseph R; Meltzer, Herbert Y

    2016-02-15

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-D-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg.i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications.

  3. Working, declarative and procedural memory in specific language impairment.

    PubMed

    Lum, Jarrad A G; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T

    2012-10-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children's Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  4. Memory for items and memory for relations in the procedural/declarative memory framework.

    PubMed

    Cohen, N J; Poldrack, R A; Eichenbaum, H

    1997-01-01

    A major area of research in memory and amnesia concerns the item specificity of implicit memory. In this paper we address several issues about the nature of implicit memory phenomena and about what constitutes an "item", using the procedural/declarative memory theory to guide us. We consider the nature of memory for items and of memory for relations among items, within the context of the procedural/declarative framework, providing us with the foundation necessary to analyse the basis for item-specific implicit memory phenomena. We review recent work from our laboratories demonstrating the fundamentally relational and flexible nature of declarative memory representation, in both humans and animals, and the essential role of the hippocampal system in relational memory processing. We show, further, that the memory representations supporting implicit memory phenomena are inflexible and nonrelational, and are tied to specific processing modules. Finally, we introduce empirical approaches that blur the distinction between skill learning and repetition priming, and show computational modelling results that demonstrate how these two implicit memory phenomena can be mediated by a single incremental learning mechanism, in accord with the claims of the procedural-declarative theory. Taken together, these various analyses of memory for items and memory for relations help to illuminate the nature of the functional deficit in amnesia and the memory systems of the brain.

  5. Sleep Restores Daytime Deficits in Procedural Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Molzow, Ina; Munz, Manuel; Wilhelm, Ines; Muller, Kathrin; Freytag, Damaris; Wiesner, Christian D.; Baving, Lioba

    2011-01-01

    Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD)…

  6. Procedural and Declarative Memory in Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Gelgic, Celin; Conti-Ramsden, Gina

    2010-01-01

    Background: Much evidence has accumulated to indicate memory deficits in children with specific language impairment. However, most research has focused on working memory impairments in these children. Less is known about the functioning of other memory systems in this population. Aims: This study examined procedural and declarative memory in young…

  7. Amnesia is a deficit in relational memory.

    PubMed

    Ryan, J D; Althoff, R R; Whitlow, S; Cohen, N J

    2000-11-01

    Eye movements were monitored to assess memory for scenes indirectly (implicitly). Two eye movement-based memory phenomena were observed: (a) the repetition effect, a decrease in sampling of previously viewed scenes compared with new scenes, reflecting memory for those scenes, and (b) the relational manipulation effect, an increase in viewing of the regions where manipulations of relations among scene elements had occurred. In normal control subjects, the relational manipulation effect was expressed only in the absence of explicit awareness of the scene manipulations. Thus, memory representations of scenes contain information about relations among elements of the scenes, at least some of which is not accessible to verbal report. But amnesic patients with severe memory impairment failed to show the relational manipulation effect. Their failure to show any demonstrable memory for relations among the constituent elements of scenes suggests that amnesia involves a fundamental deficit in relational (declarative) memory processing.

  8. Reconsolidation of declarative memory in humans

    PubMed Central

    Forcato, Cecilia; Burgos, Valeria L.; Argibay, Pablo F.; Molina, Victor A.; Pedreira, María E.; Maldonado, Hector

    2007-01-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not the human declarative one. Here we provide evidence for both consolidation and reconsolidation in a paired-associate learning (i.e., learning an association between a cue syllable and the respective response syllable). Subjects were given two training sessions with a 24-h interval on distinct verbal material, and afterward, they received at testing two successive retrievals corresponding to the first and second learning, respectively. Two main results are noted. First, the first acquired memory was impaired when a reminder was presented 5 min before the second training (reconsolidation), and also when the second training was given 5 min instead of 24 h after the first one (consolidation). Second, the first retrieval proved to influence negatively on the later one (the retrieval-induced forgetting [RIF] effect), and we used the absence of this RIF effect as a very indicator of the target memory impairment. We consider the demonstration of reconsolidation in human declarative memory as backing the universality of this phenomenon and having potential clinical relevance. On the other hand, we discuss the possibility of using the human declarative memory as a model to address several key topics of the reconsolidation hypothesis. PMID:17522018

  9. Reconsolidation of declarative memory in humans.

    PubMed

    Forcato, Cecilia; Burgos, Valeria L; Argibay, Pablo F; Molina, Victor A; Pedreira, María E; Maldonado, Hector

    2007-04-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not the human declarative one. Here we provide evidence for both consolidation and reconsolidation in a paired-associate learning (i.e., learning an association between a cue syllable and the respective response syllable). Subjects were given two training sessions with a 24-h interval on distinct verbal material, and afterward, they received at testing two successive retrievals corresponding to the first and second learning, respectively. Two main results are noted. First, the first acquired memory was impaired when a reminder was presented 5 min before the second training (reconsolidation), and also when the second training was given 5 min instead of 24 h after the first one (consolidation). Second, the first retrieval proved to influence negatively on the later one (the retrieval-induced forgetting [RIF] effect), and we used the absence of this RIF effect as a very indicator of the target memory impairment. We consider the demonstration of reconsolidation in human declarative memory as backing the universality of this phenomenon and having potential clinical relevance. On the other hand, we discuss the possibility of using the human declarative memory as a model to address several key topics of the reconsolidation hypothesis.

  10. Declarative memory impairments in Alzheimer's disease and semantic dementia.

    PubMed

    Nestor, Peter J; Fryer, Tim D; Hodges, John R

    2006-04-15

    Semantic dementia (SD) and Alzheimer's disease (AD) are both disorders in which early pathology affects the temporal lobe yet they produce distinct syndromes of declarative memory impairment-loss of established semantic knowledge with relatively preserved episodic memory in the former and the converse in the latter. Groups with mild SD and mild AD who showed a double dissociation in these two aspects of declarative memory were studied-the SD group's episodic memory and the AD group's semantic knowledge each being comparable to controls. Positron emission tomography and volumetric magnetic resonance imaging were used to map deficits in regional cerebral metabolic rate and mesial temporal lobe (MTL) atrophy, respectively. Episodic memory impairment in AD was associated with dysfunction of an integrated network (mesial temporal lobe, mamillary bodies, dorso-mesial thalamus and posterior cingulate). Semantic memory impairment in SD was associated with bilateral rostral temporal lobe hypometabolism. The SD group had comparable MTL atrophy and hypometabolism to that found in AD but the remainder of their limbic-diencephalic network was preserved suggesting that the latter explains their ability to acquire new episodic memories. The results challenge the view that amnesia in early AD can be explained by the degree of MTL damage alone while showing that semantic impairment can occur with damage restricted to the rostral temporal lobes.

  11. Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…

  12. Declarative memory, awareness, and transitive inference.

    PubMed

    Smith, Christine; Squire, Larry R

    2005-11-01

    A characteristic usually attributed to declarative memory is that what is learned is accessible to awareness. Recently, the relationship between awareness and declarative (hippocampus-dependent) memory has been questioned on the basis of findings from transitive inference tasks. In transitive inference, participants are first trained on overlapping pairs of items (e.g., A+B-, B+C-, C+D-, and D+E-, where + and - indicate correct and incorrect choices). Later, participants who choose B over D when presented with the novel pair BD are said to demonstrate transitive inference. The ability to exhibit transitive inference is thought to depend on the fact that participants have represented the stimulus elements hierarchically (i.e., A>B>C>D>E). We found that performance on five-item and six-item transitive inference tasks was closely related to awareness of the hierarchical relationship among the elements of the training pairs. Participants who were aware of the hierarchy performed near 100% correct on all tests of transitivity, but participants who were unaware of the hierarchy performed poorly (e.g., on transitive pair BD in the five-item problem; on transitive pairs BD, BE, and CE in the six-item problem). When the five-item task was administered to memory-impaired patients with damage thought to be limited to the hippocampal region, the patients were impaired at learning the training pairs. All patients were unaware of the hierarchy and, like unaware controls, performed poorly on the BD pair. The findings indicate that awareness is critical for robust performance on tests of transitive inference and support the view that awareness of what is learned is a fundamental characteristic of declarative memory.

  13. The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment.

    PubMed

    Conti-Ramsden, Gina; Ullman, Michael T; Lum, Jarrad A G

    2015-01-01

    What memory systems underlie grammar in children, and do these differ between typically developing (TD) children and children with specific language impairment (SLI)? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females) and 46 TD children (30 males, 16 females), both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group × procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman's Declarative/Procedural model of language and procedural deficit hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children with SLI.

  14. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    PubMed Central

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  15. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    PubMed

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  16. Everyday life memory deficits in pregnant women.

    PubMed

    Cuttler, Carrie; Graf, Peter; Pawluski, Jodi L; Galea, Liisa A M

    2011-03-01

    Converging evidence indicates that pregnant women report experiencing problems with memory, but the results of studies using objective measures are ambiguous. The present study investigated potential reason(s) for the discrepancy between findings of subjective and objective memory deficits, as well as potential source(s) of pregnant women's problems with memory. Sixty-one pregnant and 24 nonpregnant women completed a series of memory tests which included field and laboratory measures of prospective memory. Three standardized questionnaires were used to assess subjective aspects of memory. The influence of cortisol, depressed mood, anxiety, physical symptoms, sleep/fatigue, and busyness on pregnancy-related deficits was also examined. The findings revealed objective pregnancy-related deficits on two of the field measures of prospective memory. Pregnancy-related subjective deficits were also detected on all of the questionnaires. In contrast, no objective pregnancy-related deficits were found on the laboratory measures of memory. Increased physical symptoms accounted for one of the objective deficits in memory, while depressed mood and physical symptoms accounted for two of the subjective memory deficits. Collectively, these findings suggest that pregnant women experience everyday life problems with memory that are not readily detected in the laboratory environment. The predominant use of laboratory tests may explain the myriad of previous failures to detect objective deficits in pregnant women's memory.

  17. Episodic and declarative memory: role of the hippocampus.

    PubMed

    Tulving, E; Markowitsch, H J

    1998-01-01

    The fact that medial temporal lobe structures, including the hippocampus, are critical for declarative memory is firmly established by now. The understanding of the role that these structures play in declarative memory, however, despite great efforts spent in the quest, has eluded investigators so far. Given the existing scenario, novel ideas that hold the promise of clarifying matters should be eagerly sought. One such idea was recently proposed by Vargha-Khadem and her colleagues (Science 1997; 277:376-380) on the basis of their study of three young people suffering from anterograde amnesia caused by early-onset hippocampal pathology. The idea is that the hippocampus is necessary for remembering ongoing life's experiences (episodic memory), but not necessary for the acquisition of factual knowledge (semantic memory). We discuss the reasons why this novel proposal makes good sense and why it and its ramifications should be vigorously pursued. We review and compare declarative and episodic theories of amnesia, and argue that the findings reported by Vargha-Khadem and her colleagues fit well into an episodic theory that retains components already publicized, and adds new ones suggested by the Vargha-Khadem et al. study. Existing components of this theory include the idea that acquisition of factual knowledge can occur independently of episodic memory, and the idea that in anterograde amnesia it is quite possible for episodic memory to be more severely impaired than semantic memory. We suggest a realignment of organization of memory such that declarative memory is defined in terms of features and properties that are common to both episodic and semantic memory. The organization of memory thus modified gives greater precision to the Vargha-Khadem et al. neuroanatomical model in which declarative memory depends on perihippocampal cortical regions but not on the hippocampus, whereas episodic memory, which is separate from declarative memory, depends on the hippocampus.

  18. Working and strategic memory deficits in schizophrenia

    NASA Technical Reports Server (NTRS)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  19. Hippocampus: cognitive processes and neural representations that underlie declarative memory.

    PubMed

    Eichenbaum, Howard

    2004-09-30

    The hippocampus serves a critical role in declarative memory--our capacity to recall everyday facts and events. Recent studies using functional brain imaging in humans and neuropsychological analyses of humans and animals with hippocampal damage have revealed some of the elemental cognitive processes mediated by the hippocampus. In addition, recent characterizations of neuronal firing patterns in behaving animals and humans have suggested how neural representations in the hippocampus underlie those elemental cognitive processes in the service of declarative memory.

  20. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage.

    PubMed

    Stulemeijer, Maja; Vos, Pieter E; van der Werf, Sieberen; van Dijk, Gert; Rijpkema, Mark; Fernández, Guillén

    2010-09-01

    Memory deficits are among the most frequently reported sequelae of mild traumatic brain injury (MTBI), especially early after injury. To date, these cognitive deficits remain poorly understood, as in most patients the brain is macroscopically intact. To identify the mechanism by which MTBI causes declarative memory impairments, we probed the functionality of the medial temporal lobe (MTL) and the prefrontal cortex (PFC), within 6 weeks after injury in 43 patients from a consecutive cohort, and matched healthy controls. In addition to neuropsychological measures of declarative memory and other cognitive domains, all subjects underwent functional magnetic resonance imaging (fMRI). Behavioral results showed poorer declarative memory performance in patients than controls, and decreasing performance with increasing duration of post-traumatic amnesia (a measure of injury severity). Task performance in the scanner was, as intended by the task and design, similar in patients and controls, and did not relate to injury severity. The task used reliably activated the MTL and PFC. Although we did not find significant differences in brain activity when comparing patients and controls, we revealed, in agreement with our neuropsychological findings, an inverse correlation between MTL activity and injury severity. In contrast, no difference in prefrontal activation was found between patients and controls, nor was there a relation with injury severity. On a behavioral level, injury severity was inversely related to declarative memory performance. In all, these findings suggest that reduced medial temporal functionality may contribute to poorer declarative memory performance in the post-acute stage of MTBI, especially in patients with longer post-traumatic amnesia.

  1. Impairing existing declarative memory in humans by disrupting reconsolidation.

    PubMed

    Chan, Jason C K; LaPaglia, Jessica A

    2013-06-01

    During the past decade, a large body of research has shown that memory traces can become labile upon retrieval and must be restabilized. Critically, interrupting this reconsolidation process can abolish a previously stable memory. Although a large number of studies have demonstrated this reconsolidation associated amnesia in nonhuman animals, the evidence for its occurrence in humans is far less compelling, especially with regard to declarative memory. In fact, reactivating a declarative memory often makes it more robust and less susceptible to subsequent disruptions. Here we show that existing declarative memories can be selectively impaired by using a noninvasive retrieval-relearning technique. In six experiments, we show that this reconsolidation-associated amnesia can be achieved 48 h after formation of the original memory, but only if relearning occurred soon after retrieval. Furthermore, the amnesic effect persists for at least 24 h, cannot be attributed solely to source confusion and is attainable only when relearning targets specific existing memories for impairment. These results demonstrate that human declarative memory can be selectively rewritten during reconsolidation.

  2. Declarative Memory Consolidation: Mechanisms Acting during Human Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Born, Jan

    2004-01-01

    Of late, an increasing number of studies have shown a strong relationship between sleep and memory. Here we summarize a series of our own studies in humans supporting a beneficial influence of slow-wave sleep (SWS) on declarative memory formation, and try to identify some mechanisms that might underlie this influence. Specifically, these…

  3. A compensatory role for declarative memory in neurodevelopmental disorders

    PubMed Central

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  4. Intact Conceptual Priming in the Absence of Declarative Memory

    PubMed Central

    Levy, D.A.; Stark, C.E.L.; Squire, L.R.

    2009-01-01

    Priming is an unconscious (nondeclarative) form of memory whereby identification or production of an item is improved by an earlier encounter. It has been proposed that declarative memory and priming might be related—for example, that conceptual priming results in more fluent processing, thereby providing a basis for familiarity judgments. In two experiments, we assessed conceptual priming and recognition memory across a 5-min interval in 5 memory-impaired patients. All patients exhibited fully intact priming in tests of both free association (study tent; at test, provide an association to canvas) and category verification (study lemon; at test, decide: Is lemon a type of fruit?). Yet the 2 most severely amnesic patients performed at chance on matched tests of recognition memory. These findings count against the notion that conceptual priming provides feelings of familiarity that can support accurate recognition judgments. We suggest that priming is inaccessible to conscious awareness and does not influence declarative memory. PMID:15447639

  5. Mechanisms of emotional arousal and lasting declarative memory.

    PubMed

    Cahill, L; McGaugh, J L

    1998-07-01

    Neuroscience is witnessing growing interest in understanding brain mechanisms of memory formation for emotionally arousing events, a development closely related to renewed interest in the concept of memory consolidation. Extensive research in animals implicates stress hormones and the amygdaloid complex as key, interacting modulators of memory consolidation for emotional events. Considerable evidence suggests that the amygdala is not a site of long-term explicit or declarative memory storage, but serves to influence memory-storage processes in other brain regions, such as the hippocampus, striatum and neocortex. Human-subject studies confirm the prediction of animal work that the amygdala is involved with the formation of enhanced declarative memory for emotionally arousing events.

  6. Declarative memory in unaffected adult relatives of patients with schizophrenia: a systematic review and meta-analysis.

    PubMed

    Whyte, Marie-Claire; McIntosh, Andrew M; Johnstone, Eve C; Lawrie, Stephen M

    2005-10-01

    Despite evidence for diverse neuropsychological impairment in schizophrenia, verbal declarative memory has emerged as a core deficit in the disorder. Similar but less marked impairments have been demonstrated in unaffected biological relatives of patients with schizophrenia, but the nature and extent of the memory impairment in relatives compared to controls is unclear. We have conducted a systematic review and meta-analysis of the literature investigating declarative memory in unaffected biological relatives of schizophrenics and controls, with the aim of quantifying memory deficits in relatives. The standardised mean difference between groups was calculated for nine measures of declarative memory and two measures of intellectual ability, based on 21 studies of several hundred relatives of schizophrenics and controls. Unaffected relatives showed poorer performance relative to controls on all tests of memory examined. Small to moderate effect sizes, with overlapping 95% confidence intervals, were greatest on immediate (trial 1) list recall (0.65), followed by immediate (0.53) and delayed story recall (0.52). Verbal and general IQ showed smaller standardised mean differences as the latter tests, while the smallest standardised mean difference was shown on delayed visual recall (0.32). Results suggest greater deficits on tests of increasing memory load or which place demands on effective encoding processes but more studies with these tasks are needed. Investigation of sub-groups within these cohorts (e.g. age groups within or beyond the maximum age of risk) is recommended in order to identify deficits specific to the disease process.

  7. Reconsolidation of Declarative Memory in Humans

    ERIC Educational Resources Information Center

    Forcato, Cecilia; Burgos, Valeria L.; Argibay, Pablo F.; Molina, Victor A.; Pedreira, Maria E.; Maldonado, Hector

    2007-01-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not…

  8. Measuring Working Memory Deficits in Aphasia

    ERIC Educational Resources Information Center

    Mayer, Jamie F.; Murray, Laura L.

    2012-01-01

    Purpose: Many adults with aphasia demonstrate concomitant deficits in working memory (WM), but such deficits are difficult to quantify because of a lack of validated measures as well as the complex interdependence between language and WM. We examined the feasibility, reliability, and internal consistency of an "n"-back task for evaluating WM in…

  9. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans

    PubMed Central

    Cedernaes, Jonathan; Rångtell, Frida H.; Axelsson, Emil K.; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L.; Schiöth, Helgi B.; Benedict, Christian

    2015-01-01

    Study Objective: This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Design: Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Setting: Sleep laboratory. Participants: 15 healthy young men. Results: The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. Conclusions: The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. Citation: Cedernaes J, Rångtell FH, Axelsson EK, Yeganeh A, Vogel H, Broman JE, Dickson SL, Schiöth HB, Benedict C. Short sleep makes declarative memories vulnerable to stress in humans. SLEEP 2015;38(12):1861–1868. PMID:26158890

  10. Effect of two prednisone exposures on mood and declarative memory.

    PubMed

    Brown, E Sherwood; Beard, Laura; Frol, Alan B; Rush, A John

    2006-07-01

    Corticosteroids are essential for life and an integral part of the stress response. However, in excess, corticosteroids can be associated with a variety of effects on the brain including hippocampal atrophy and even neuronal death, mood changes, and declarative memory impairment. The magnitude of mood change in patients receiving prednisone is reportedly associated with previous lifetime corticosteroid exposure, consistent with a sensitization or kindling process whereby greater effects are observed with repeated exposure. To our knowledge, the effect of multiple corticosteroid exposures on mood and memory has not been previously examined prospectively in animals or humans. In this study, 30 human volunteers, with no history of systemic prescription corticosteroid therapy, were given (in random order using a crossover design) two 3-day exposures of prednisone (60 mg/day) and one of identical placebo, with 11-day washouts between each medication exposure. Before and after each 3-day prednisone/placebo exposure, declarative memory was assessed using different versions of the Rey Auditory Verbal Learning Test (RAVLT) to minimize practice or learning effects, while mood was assessed with the 21-item Hamilton Rating Scale for Depression, Young Mania Rating Scale and Internal State Scale. No significant mood changes were found. However, a significant decrease in aspects of RAVLT performance was observed after the first prednisone exposure consistent with a decline in declarative memory performance. The decline in RAVLT performance was significantly smaller after the second prednisone exposure as compared to the initial prednisone exposure. Thus, a second prednisone exposure was associated with an attenuated prednisone-effect on declarative memory. These data suggest tolerance or habituation, rather than sensitization, to prednisone effects on declarative memory during a second exposure. Implications and possible explanations for the findings are discussed.

  11. Sleep in Children Enhances Preferentially Emotional Declarative But Not Procedural Memories

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Goder, Robert; Chirobeja, Stefania; Bressman, Inka; Ferstl, Roman; Baving, Lioba

    2009-01-01

    Although the consolidation of several memory systems is enhanced by sleep in adults, recent studies suggest that sleep supports declarative memory but not procedural memory in children. In the current study, the influence of sleep on emotional declarative memory (recognition task) and procedural memory (mirror tracing task) in 20 healthy children…

  12. Intact enhancement of declarative memory for emotional material in amnesia.

    PubMed

    Hamann, S B; Cahill, L; McGaugh, J L; Squire, L R

    1997-01-01

    Emotional arousal has been demonstrated to enhance declarative memory (conscious recollection) in humans in both naturalistic and experimental studies. Here, we examined this effect in amnesia. Amnesic patients and controls viewed a slide presentation while listening to an accompanying emotionally arousing story. In both groups, recognition memory was enhanced for the emotionally arousing story elements. The magnitude of the enhancement was proportional for both amnesic patients and controls. Emotional reactions to the story were also equivalent. The results suggest that the enhancement of declarative memory associated with emotional arousal is intact in amnesia. Together with findings from patients with bilateral amygdala lesions, the results indicate that the amygdala is responsible for the enhancement effect.

  13. Memory deficits and retrieval processes in ALS.

    PubMed

    Mantovan, M C; Baggio, L; Dalla Barba, G; Smith, P; Pegoraro, E; Soraru', G; Bonometto, P; Angelini, C

    2003-05-01

    Subtle neuropsychological deficits have been described in patients affected by amyotrophic lateral sclerosis (ALS) without dementia. Overall, selective impairment in memory function has been reported, but the source of memory impairment in ALS has yet to be defined. We performed neuropsychological screening in 20 ALS patients. Semantic encoding and post-encoding cue effects on the retrieval of word lists were investigated in the ALS patients and normal controls. Severity of memory impairment was correlated to cerebral blood perfusion detected by single photon emission computed tomography (SPECT). ALS patients showed moderate impairments in frontal and memory tests. Short-term memory was normal, while serial position retrieval of word lists with normal recency effect but poor primacy effect showed long-term memory deficit. ALS patients performed better in cued encoding than in cued post-encoding recall condition. In the cued post-encoding condition, the primacy effect in word list recall improved significantly in controls, but not in ALS patients, as compared with both the free recall and cued encoding conditions. SPECT hypoperfusion was observed in frontal and temporal areas in ALS patients. ALS patients showed a long-term memory deficit which did not improve in cued post-encoding condition as it does for controls. We hypothesize abnormal retrieval processes related to frontal lobe dysfunction which entails difficulties in generating stable long-memory traces at encoding.

  14. Memory deficits and retrieval processes in ALS.

    PubMed

    Mantovan, M C; Baggio, L; Dalla Barba, G; Smith, P; Pegoraro, E; Soraru', G; Bonometto, P; Angelini, C

    2003-05-01

    Subtle neuropsychological deficits have been described in patients affected by amyotrophic lateral sclerosis (ALS) without dementia. Overall, selective impairment in memory function has been reported, but the source of memory impairment in ALS has yet to be defined. We performed neuropsychological screening in 20 ALS patients. Semantic encoding and post-encoding cue effects on the retrieval of word lists were investigated in the ALS patients and normal controls. Severity of memory impairment was correlated to cerebral blood perfusion detected by single photon emission computed tomography (SPECT). ALS patients showed moderate impairments in frontal and memory tests. Short-term memory was normal, while serial position retrieval of word lists with normal recency effect but poor primacy effect showed long-term memory deficit. ALS patients performed better in cued encoding than in cued post-encoding recall condition. In the cued post-encoding condition, the primacy effect in word list recall improved significantly in controls, but not in ALS patients, as compared with both the free recall and cued encoding conditions. SPECT hypoperfusion was observed in frontal and temporal areas in ALS patients. ALS patients showed a long-term memory deficit which did not improve in cued post-encoding condition as it does for controls. We hypothesize abnormal retrieval processes related to frontal lobe dysfunction which entails difficulties in generating stable long-memory traces at encoding. PMID:12752394

  15. Structure and function of declarative and nondeclarative memory systems.

    PubMed

    Squire, L R; Zola, S M

    1996-11-26

    This article reviews recent studies of memory systems in humans and nonhuman primates. Three major conclusions from recent work are that (i) the capacity for nondeclarative (nonconscious) learning can now be studied in a broad array of tasks that assess classification learning, perceptuomotor skill learning, artificial grammar learning, and prototype abstraction; (ii) cortical areas adjacent to the hippocampal formation, including entorhinal, perirhinal, and parahippocampal cortices, are an essential part of the medial temporal lobe memory system that supports declarative (conscious) memory; and (iii) in humans, bilateral damage limited to the hippocampal formation is nevertheless sufficient to produce severe anterograde amnesia and temporally graded retrograde amnesia covering as much as 25 years.

  16. Disrupted rapid eye movement sleep predicts poor declarative memory performance in post-traumatic stress disorder.

    PubMed

    Lipinska, Malgorzata; Timol, Ridwana; Kaminer, Debra; Thomas, Kevin G F

    2014-06-01

    Successful memory consolidation during sleep depends on healthy slow-wave and rapid eye movement sleep, and on successful transition across sleep stages. In post-traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post-traumatic stress disorder. We recruited three matched groups of participants: post-traumatic stress disorder (n = 16); trauma-exposed non-post-traumatic stress disorder (n = 15); and healthy control (n = 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep-adapted electroencephalography. Post-traumatic stress disorder-diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post-traumatic stress disorder-diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post-traumatic stress disorder-diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post-traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post-traumatic stress disorder.

  17. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference.

    PubMed

    Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L

    2006-07-11

    Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.

  18. Visuospatial memory deficits in adolescent onset schizophrenia.

    PubMed

    Vance, A; Hall, N; Casey, M; Karsz, F; Bellgrove, M A

    2007-07-01

    Visuospatial memory encoding deficits have been reported in adults with schizophrenia, while adolescents with schizophrenia have not been specifically investigated with visuospatial memory encoding and retrieval paradigms. A cross sectional study of delayed matching-to-sample performance in 19 right handed, male, anti-psychotic medication naïve adolescents with undifferentiated schizophrenia and 28 age, gender, IQ and handedness matched healthy participants was completed. The adolescent-onset schizophrenia group demonstrated significant impairment in visuospatial memory, independent of the degree of delay, consistent with an encoding impairment. The impaired encoding phase of visuospatial memory in the adolescent-onset schizophrenia group is consistent with findings in adult onset schizophrenia samples, suggesting a developmental stage-independent deficit.

  19. Non-declarative memory in the rehabilitation of amnesia.

    PubMed

    Cavaco, S; Malec, J F; Bergquist, T

    2005-09-01

    The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.

  20. Sleep smart-optimizing sleep for declarative learning and memory.

    PubMed

    Feld, Gordon B; Diekelmann, Susanne

    2015-01-01

    The last decade has witnessed a spurt of new publications documenting sleep's essential contribution to the brains ability to form lasting memories. For the declarative memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial effect on the consolidation of memories acquired during preceding wakefulness. The finding that newly encoded memories become reactivated during subsequent sleep fostered the idea that reactivation leads to the strengthening and transformation of the memory trace. According to the active system consolidation account, trace reactivation leads to the redistribution of the transient memory representations from the hippocampus to the long-lasting knowledge networks of the cortex. Apart from consolidating previously learned information, sleep also facilitates the encoding of new memories after sleep, which probably relies on the renormalization of synaptic weights during sleep as suggested by the synaptic homeostasis theory. During wakefulness overshooting potentiation causes an imbalance in synaptic weights that is countered by synaptic downscaling during subsequent sleep. This review briefly introduces the basic concepts and central findings of the research on sleep and memory, and discusses implications of this lab-based work for everyday applications to make the best possible use of sleep's beneficial effect on learning and memory. PMID:26029150

  1. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory.

  2. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. PMID:27389345

  3. Striatal prediction errors support dynamic control of declarative memory decisions

    PubMed Central

    Scimeca, Jason M.; Katzman, Perri L.; Badre, David

    2016-01-01

    Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals. PMID:27713407

  4. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains

  5. Repeated labilization-reconsolidation processes strengthen declarative memory in humans.

    PubMed

    Forcato, Cecilia; Rodríguez, María L C; Pedreira, María E

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day 2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical

  6. Cohesion, coherence, and declarative memory: Discourse patterns in individuals with hippocampal amnesia.

    PubMed

    Kurczek, Jake; Duff, Melissa C

    2011-01-01

    BACKGROUND: Discourse cohesion and coherence gives our communication continuity. Deficits in cohesion and coherence have been reported in patients with cognitive-communication disorders (e.g., TBI, dementia). However, the diffuse nature of pathology and widespread cognitive deficits of these disorders have made identification of specific neural substrates and cognitive systems critical for cohesion and coherence challenging. AIMS: Taking advantage of a rare patient group with selective and severe declarative memory impairments, the current study attempts to isolate the contribution of declarative memory to the successful use of cohesion and coherence in discourse. METHODS #ENTITYSTARTX00026; PROCEDURES: Cohesion and coherence were examined in the discourse of six participants with hippocampal amnesia and six demographically matched comparison participants. Specifically, this study (1) documents the frequency, type, and completeness of cohesive ties; (2) evaluates discourse for local and global coherence; and (3) compares use of cohesive ties and coherence ratings in amnesia and healthy participants. OUTCOMES #ENTITYSTARTX00026; RESULTS: Overall, amnesia participants produced fewer cohesive ties per T-unit, the adequacy of their ties were more often judged to be incomplete, and the ratings of their local coherence were consistently lower than comparison participants. CONCLUSIONS: These findings suggest that declarative memory may contribute to the discursive use of cohesion and coherence. Broader notions of cohesion, or interactional cohesion, i.e., cohesion across speakers (two or more people), time (days, weeks), and communicative resources (gesture), warrant further study as the experimental tasks used in the literature, and here, may actually underestimate or overestimate the extent of impairment.

  7. Effects of Emotional Arousal on Multiple Memory Systems: Evidence from Declarative and Procedural Learning

    ERIC Educational Resources Information Center

    Anderson, Adam K.; Steidl, Stephan; Mohi-uddin, Salwa

    2006-01-01

    Extensive evidence documents emotional modulation of hippocampus-dependent declarative memory in humans. However, little is known about the emotional modulation of striatum-dependent procedural memory. To address how emotional arousal influences declarative and procedural memory, the current study utilized (1) a picture recognition and (2) a…

  8. Preterm Infant Hippocampal Volumes Correlate with Later Working Memory Deficits

    ERIC Educational Resources Information Center

    Beauchamp, Miriam H.; Thompson, Deanne K.; Howard, Kelly; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.; Anderson, Peter J.

    2008-01-01

    Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal…

  9. What differentiates declarative and procedural memories: reply to Cohen, Poldrack, and Eichenbaum (1997)

    PubMed

    Willingham, D B

    1998-11-01

    CPE claim that procedural and declarative representations differ on two important dimensions: flexibility and compositionality. I have proposed that the apparent flexibility of a memory depends entirely on the transfer conditions. Any retest is, in some sense, a test of flexibility, because something has changed since the original encoding episodic. I have argued that if one changes something that does not provide support to memory performance, the memory will appear flexible, and resistant to changes in the environment. If one changes the very thing that the representation codes, the memory will appear inflexible and easily disrupted by changes in the environment. This principle is equally true for procedural and declarative memory. CPE contend that procedural representations lack compositionality. An ideal test of this claim would examine the representation of a task that is widely agreed to be procedural (e.g. that has been demonstrated to be learned normally by amnesic patients, and in the absence of awareness by neurologically intact subjects). Such experiments appear not to have been conducted, and the fact is that many tasks that are widely agreed to be procedural probably are not compositional. They appear to be, as CPE contend, biases in a processing system; it is hard to imagine how repetition priming could be compositional. Nevertheless, this is not true of all procedural memories. There is a good deal of evidence that motor behaviour is organised hierarchically and has compositionality. There is every reason to think that most if not all motor behaviour is procedural; motor behaviour might be driven by goals that are declarative, but the low-level operations that actually manipulate effectors are closed to consciousness, do not depend on the medial temporal lobe or diencephalon, and would therefore be classified as procedural. CPE framed their theory of differences between procedural and declarative memory systems as an account of the deficit in amnesic

  10. Working Memory Deficit in Children with Mathematical Difficulties: A General or Specific Deficit?

    ERIC Educational Resources Information Center

    Andersson, Ulf; Lyxell, Bjorn

    2007-01-01

    This study examined whether children with mathematical difficulties (MDs) or comorbid mathematical and reading difficulties have a working memory deficit and whether the hypothesized working memory deficit includes the whole working memory system or only specific components. In the study, 31 10-year-olds with MDs and 37 10-year-olds with both…

  11. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  12. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. PMID:27395443

  13. Investigating the Contribution of Procedural and Declarative Memory to the Acquisition of Past Tense Morphology: Evidence from Finnish

    ERIC Educational Resources Information Center

    Kidd, Evan; Kirjavainen, Minna

    2011-01-01

    The present paper reports on a study that investigated the role of procedural and declarative memory in the acquisition of Finnish past tense morphology. Two competing models were tested. Ullman's (2004) declarative/procedural model predicts that procedural memory supports the acquisition of regular morphology, whereas declarative memory supports…

  14. The role of working memory and declarative memory in trace conditioning.

    PubMed

    Connor, David A; Gould, Thomas J

    2016-10-01

    Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.

  15. Declarative and Procedural Memory in Danish Speaking Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Bleses, Dorthe

    2012-01-01

    It has been proposed that the language problems in specific language impairment (SLI) arise from basal ganglia abnormalities that lead to impairments with procedural and working memory but not declarative memory. In SLI, this profile of memory functioning has been hypothesized to underlie grammatical impairment but leave lexical knowledge…

  16. Exploring the Effect of Sleep and Reduced Interference on Different Forms of Declarative Memory

    PubMed Central

    Schönauer, Monika; Pawlizki, Annedore; Köck, Corinna; Gais, Steffen

    2014-01-01

    Study Objectives: Many studies have found that sleep benefits declarative memory consolidation. However, fundamental questions on the specifics of this effect remain topics of discussion. It is not clear which forms of memory are affected by sleep and whether this beneficial effect is partly mediated by passive protection against interference. Moreover, a putative correlation between the structure of sleep and its memory-enhancing effects is still being discussed. Design: In three experiments, we tested whether sleep differentially affects various forms of declarative memory. We varied verbal content (verbal/nonverbal), item type (single/associate), and recall mode (recall/recognition, cued/free recall) to examine the effect of sleep on specific memory subtypes. We compared within-subject differences in memory consolidation between intervals including sleep, active wakefulness, or quiet meditation, which reduced external as well as internal interference and rehearsal. Participants: Forty healthy adults aged 18–30 y, and 17 healthy adults aged 24–55 y with extensive meditation experience participated in the experiments. Results: All types of memory were enhanced by sleep if the sample size provided sufficient statistical power. Smaller sample sizes showed an effect of sleep if a combined measure of different declarative memory scales was used. In a condition with reduced external and internal interference, performance was equal to one with high interference. Here, memory consolidation was significantly lower than in a sleep condition. We found no correlation between sleep structure and memory consolidation. Conclusions: Sleep does not preferentially consolidate a specific kind of declarative memory, but consistently promotes overall declarative memory formation. This effect is not mediated by reduced interference. Citation: Schönauer M, Pawlizki A, Köck C, Gais S. Exploring the effect of sleep and reduced interference on different forms of declarative memory

  17. Acquisition and transfer of declarative and procedural knowledge by memory-impaired patients: a computer data-entry task.

    PubMed

    Glisky, E L

    1992-10-01

    Previous research demonstrated that a single amnesic patient could acquire complex knowledge and processes required for the performance of a computer data-entry task. The present study extends the earlier work to a larger group of brain-damaged patients with memory disorders of varying severity and of various etiologies and with other accompanying cognitive deficits. All patients were able to learn both the data-entry procedures and the factual information associated with the task. Declarative knowledge was acquired by patients at a much slower rate than normal whereas procedural learning proceeded at approximately the same rate in patients and control subjects. Patients also showed evidence of transfer of declarative knowledge to the procedural task, as well as transfer of the data-entry procedures across changes in materials.

  18. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    PubMed Central

    Mantua, Janna; Mahan, Keenan M.; Henry, Owen S.; Spencer, Rebecca M. C.

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18–22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation. PMID:26097451

  19. Encoding, Memory, and Transcoding Deficits in Childhood Apraxia of Speech

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Strand, Edythe A.; Jakielski, Kathy J.

    2012-01-01

    A central question in Childhood Apraxia of Speech (CAS) is whether the core phenotype is limited to transcoding (planning/programming) deficits or if speakers with CAS also have deficits in auditory-perceptual "encoding" (representational) and/or "memory" (storage and retrieval of representations) processes. We addressed this and other questions…

  20. Midlife Decline in Declarative Memory Consolidation Is Correlated with a Decline in Slow Wave Sleep

    ERIC Educational Resources Information Center

    Backhaus, Jutta; Born, Jan; Hoeckesfeld, Ralf; Fokuhl, Sylvia; Hohagen, Fritz; Junghanns, Klaus

    2007-01-01

    Sleep architecture as well as memory function are strongly age dependent. Slow wave sleep (SWS), in particular, decreases dramatically with increasing age, starting already beyond the age of 30. SWS normally predominates during early nocturnal sleep and is implicated in declarative memory consolidation. However, the consequences of changes in…

  1. Contributions of the Medial Temporal Lobe to Declarative Memory Retrieval: Manipulating the Amount of Contextual Retrieval

    ERIC Educational Resources Information Center

    Tendolkar, Indira; Arnold, Jennifer; Petersson, Karl Magnus; Weis, Susanne; Brockhaus-Dumke, Anke; van Eijndhoven, Philip; Buitelaar, Jan; Fernandez, Guillen

    2008-01-01

    We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures…

  2. Declarative memory and skill-related knowledge: Evidence from a case study of amnesia and implications for theories of memory.

    PubMed

    Gregory, Emma; McCloskey, Michael; Ovans, Zoe; Landau, Barbara

    2016-01-01

    Theoretical and empirical studies of memory have long been framed by a distinction between declarative and non-declarative memory. We question the sharpness of the distinction by reporting evidence from amnesic L.S.J., who despite retrograde memory losses in declarative knowledge domains, shows sparing of declarative knowledge related to premorbid skill (e.g., playing an instrument). We previously showed that L.S.J. had severe losses of retrograde declarative knowledge across areas of premorbid expertise (e.g., artists of famous works) and everyday knowledge (e.g., company names for logos). Here we present evidence that L.S.J. has sparing of what we call skill-related declarative knowledge, in four domains in which she had premorbid skill (art, music, aviation, driving). L.S.J.'s pattern of loss and sparing raises questions about the strict separation between classically-defined memory types and aligns with a recent proposal by Stanley and Krakauer [2013. Motor skill depends on knowledge of facts. Frontiers in Human Neuroscience, 7,1-11].

  3. Dissociable properties of memory systems: differences in the flexibility of declarative and nondeclarative knowledge.

    PubMed

    Reber, P J; Knowlton, B J; Squire, L R

    1996-10-01

    Amnesic patients (n = 8), who have severely impaired declarative memory, learned a probabilistic classification task at the same rate as normal subjects (n = 16) but subsequently were impaired on transfer tests that required flexible use of their task knowledge. A second group of controls (n = 20) rated the questions on the transfer tests according to whether the questions simply reinstated the training conditions or required flexible use of task knowledge. The amnesic patients tended to be impaired on the same items that were rated as requiring indirect or flexible use of knowledge. Thus, control subjects acquired declarative knowledge about the task that could be applied flexibly to the transfer tests. The nondeclarative memory available to amnesic patients was relatively inflexible and available only in conditions that reinstantiated the conditions of training. These findings show that declarative memory has different operating characteristics than nondeclarative memory.

  4. Deficits in Working Memory in Young Adults with Reading Disabilities

    ERIC Educational Resources Information Center

    Cohen-Mimran, Ravit; Sapir, Shimon

    2007-01-01

    The purpose of the present study was to assess the extent to which reading disabilities (RD) in young adults are related to deficits in specific aspects of temporary storage of verbal information, namely, memory span and the central executive (CE) component of working memory. Thirty-two native Hebrew-speaking young adults with and without RD were…

  5. Altered neural network supporting declarative long-term memory in mild cognitive impairment.

    PubMed

    Poettrich, Katrin; Weiss, Peter H; Werner, Annett; Lux, Silke; Donix, Markus; Gerber, Johannes; von Kummer, Rüdiger; Fink, Gereon R; Holthoff, Vjera A

    2009-02-01

    Autobiographical episodic memory represents a subsystem of declarative long-term memory and largely depends on combining information from multiple sources. The purpose of this study was to assess neural correlates of declarative long-term memory in patients with amnestic mild cognitive impairment (MCI) and controls using fMRI and a task requiring autobiographical and semantic memory retrieval. Comparison of the network supporting episodic autobiographical and semantic memory irrespective of remoteness (recent and remote) revealed significant activations in right parietal cortex and precuneus bilaterally in the patients. Autobiographical episodic versus semantic memory retrieval in the controls led to significant bilateral activations of the parietal-temporal junction, left temporal pole, anterior cingulate, retrosplenial cortex and cerebellum. In contrast, MCI patients activated left supplementary motor area, left premotor and superior temporal cortex. In MCI patients compared to controls a dysfunction of the retrosplenial cortex during memory retrieval was revealed by a lack of differential activation in relation to recency of memories and memory type. Our data suggest that MCI leads to a loss of specificity in the neural network supporting declarative long-term memory.

  6. Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

    PubMed Central

    Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.

    2013-01-01

    Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined

  7. The Impact of Visual Memory Deficits on Academic Achievement in Children and Adolescents

    ERIC Educational Resources Information Center

    Larsen, Jessica Maria

    2011-01-01

    Memory assessment can often alert practitioners and educators to learning problems children may be experiencing. Results of a memory assessment may indicate that a child has a specific memory deficit in verbal memory, visual memory, or both. Deficits in visual or verbal modes of memory could potentially have adverse effects on academic…

  8. Age-related Changes in the Sleep-dependent Reorganization of Declarative Memories.

    PubMed

    Baran, Bengi; Mantua, Janna; Spencer, Rebecca M C

    2016-06-01

    Consolidation of declarative memories has been associated with slow wave sleep in young adults. Previous work suggests that, in spite of changes in sleep, sleep-dependent consolidation of declarative memories may be preserved with aging, although reduced relative to young adults. Previous work on young adults shows that, with consolidation, retrieval of declarative memories gradually becomes independent of the hippocampus. To investigate whether memories are similarly reorganized over sleep at the neural level, we compared functional brain activation associated with word pair recall following a nap and equivalent wake in young and older adults. SWS during the nap predicted better subsequent memory recall and was negatively associated with retrieval-related hippocampal activation in young adults. In contrast, in older adults there was no relationship between sleep and memory performance or with retrieval-related hippocampal activation. Furthermore, compared with young adults, postnap memory retrieval in older adults required strong functional connectivity of the hippocampus with the PFC, whereas there were no differences between young and older adults in the functional connectivity of the hippocampus following wakefulness. These results suggest that, although neural reorganization takes place over sleep in older adults, the shift is unique from that seen in young adults, perhaps reflecting memories at an earlier stage of stabilization.

  9. The temporal dynamics of enhancing a human declarative memory during reconsolidation.

    PubMed

    Coccoz, V; Sandoval, A V; Stehberg, J; Delorenzi, A

    2013-08-29

    When a consolidated memory is reactivated, it can become labile and prone to enhancement or disruption, a process known as reconsolidation. The reconsolidation hypothesis has challenged the traditional view that memories after consolidation are fixed and unchangeable. Recent studies suggest that the mechanisms mediating memory retrieval and the mechanisms that underlie the behavioral expression of memory can be dissociated, offering a new promise for the understanding of human memory persistence. Although reconsolidation studies typically use amnesic agents, it has also been shown that memory can be enhanced by pharmacological agents and real-life events during reconsolidation. Recently, we demonstrated that a mild stressor, cold pressor stress (CPS), can enhance human declarative memory during reconsolidation in a cued-recall test. Here we evaluate whether the recollection of 7- or 20-day-old long-term memories can be improved by exposure to two different neuromodulators: a mild stressor and glucose during reconsolidation. As expected, poor and very poor memory performance was found at the time of memory reactivation (days 6 and 20 after training). CPS during reconsolidation improved the long-term expression of a declarative memory 6 -but not 20-days after training. However, the administration of an oral source of glucose (juice), but not a diet juice, can enhance memory during reconsolidation even 20 days after training. Interestingly, when a recognition test was applied instead of a cued-recall test, memory performance was still robust at both 1 and 3 weeks after training. Here we show that the period in which this memory can be reactivated and become labile largely exceeds the period in which that memory is recalled, proving evidence that conscious access is not needed for reconsolidation. Present results are consistent with dissociation between the mechanisms mediating memory labilization and the mechanisms that underlie the behavioral expression of memory.

  10. Apolipoprotein E and Clusterin can Magnify Effects of Personality Vulnerability on Declarative Memory Performance in Non-Demented Older Adults

    PubMed Central

    Sapkota, Shraddha; Wiebe, Sandra A.; Small, Brent J.; Dixon, Roger A.

    2016-01-01

    Objectives Recent research has linked psychological (personality) factors and specific genetic risk polymorphisms to performance on neurocognitive phenotypes. We examined whether episodic or semantic memory performance is associated with (a) three personality traits (i.e., neuroticism, extraversion, openness to experience), (b) two neurodegenerative-related polymorphisms (i.e., Apolipoprotein E (APOE; rs7412; rs429358), Clusterin (CLU; rs11136000)), and (c) cross-domain risk interactions (magnification effects). Methods Linear growth models were examined to test independent associations between personality traits and declarative memory performance, and potential interaction effects with APOE and CLU genetic risk. Normal older adults (n = 282) with personality and genetic data from the Victoria Longitudinal Study were included at baseline and for up to 14 years of follow-up. Results First, we observed that higher openness to experience levels were associated with better episodic and semantic memory. Second, three significant gene × personality interactions were associated with poorer memory performance at baseline. These synergistic effects are: (a) APOE allelic risk (ε4+) carriers with lower openness to experience levels, (b) CLU (no risk: T/T) homozygotes with higher extraversion levels, and (c) CLU (no risk: T/T) homozygotes with lower neuroticism levels. Conclusions Specific neurodegenerative-related genetic polymorphisms (i.e., APOE and CLU) moderate and magnify the risk contributed by selected personality trait levels (i.e., openness to experience, extraversion) on declarative memory performance in non-demented aging. Future research could target interactions of other personality traits and genetic polymorphisms in different clinical populations for predicting other neurocognitive deficits or transitions to cognitive impairment and dementia. PMID:26343804

  11. Analogous Mechanisms of Selection and Updating in Declarative and Procedural Working Memory: Experiments and a Computational Model

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam

    2013-01-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…

  12. Effect of antidepressants on spatial memory deficit induced by dizocilpine.

    PubMed

    Tao, Chenjuan; Yan, Weiwei; Li, Yuan; Lu, Xiaodong

    2016-10-30

    Cognitive deficits are a core symptom of schizophrenia. It is controversial whether antidepressants could improve cognitive symptoms in schizophrenia patients. The present study was designed to identify the therapeutic effect of antidepressants on cognitive deficits in schizophrenia. In the present study, adolescent rats were repeatedly exposed to dizocilpine, which can induce cognitive deficits associated with schizophrenia. Then these rats were treated by six antidepressants (fluvoxamine, sertraline, paroxetine, escitalopram, venlafaxine, mirtazapine) or vehicle. The rats in the control group were exposed to vehicle during the study. Lastly, all rats' spatial memory (a major part of cognition) was assessed using the Morris water maze (MWM) test, and the density of hippocampal parvalbumin (PV) interneurons was evaluated to explore possible mechanisms underlying spatial memory change in schizophrenia. The results of the present study supported the hypothesis of a therapeutic effect of fluvoxamine and escitalopram on spatial memory deficit induced by dizocilpine. Additionally, the data of the present study suggested that fluvoxamine and escitalopram remitted hippocampal PV interneuron reduction induced by dizocilpine. The neuroprotective effect of fluvoxamine and escitalopram may partly explain the therapeutic effect of antidepressants on spatial memory deficit in schizophrenia patients. PMID:27512913

  13. Rosmarinic acid prevents against memory deficits in ischemic mice.

    PubMed

    Fonteles, Analu Aragão; de Souza, Carolina Melo; de Sousa Neves, Julliana Catharina; Menezes, Ana Paula Fontenele; Santos do Carmo, Marta Regina; Fernandes, Francisco Diego Pinheiro; de Araújo, Patrícia Rodrigues; de Andrade, Geanne Matos

    2016-01-15

    Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.

  14. The use of definite references signals declarative memory: evidence from patients with hippocampal amnesia.

    PubMed

    Duff, Melissa C; Gupta, Rupa; Hengst, Julie A; Tranel, Daniel; Cohen, Neal J

    2011-05-01

    Language function in patients with impaired declarative memory presents a compelling opportunity to investigate the inter-dependence of memory and language in referential communication. We examined amnesic patients' use of definite references during a referential communication task. Discursively, definite references can be used to mark a referent as situationally unique (e.g., "the game," as in the case of a recently publicized game) or as shared information (e.g., "the game," as in one discussed previously). We found that despite showing normal collaborative learning after repeated referring-as indexed by consistent and increasingly efficient descriptive labels for previously unfamiliar tangram figures-amnesic patients did not consistently use definite references in referring to those figures. The use of definite references seems to be critically dependent on declarative memory, and the engagement of such memory is signaled by language.

  15. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice.

    PubMed

    Mingaud, Frédérique; Mormede, Cécile; Etchamendy, Nicole; Mons, Nicole; Niedergang, Betty; Wietrzych, Marta; Pallet, Véronique; Jaffard, Robert; Krezel, Wojciech; Higueret, Paul; Marighetto, Aline

    2008-01-01

    An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological

  16. Is All Motivation Good for Learning? Dissociable Influences of Approach and Avoidance Motivation in Declarative Memory

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…

  17. Procedural and Declarative Memory Processes: Individuals with and without Mental Retardation.

    ERIC Educational Resources Information Center

    Vakil, Eli; Shelef-Reshef, Edna; Levy-Shiff, Rachel

    1997-01-01

    Learning and retention of procedural versus declarative memory tasks were examined with 26 young adults with mild mental retardation and 27 school children matched for mental age. The MR adults performed more poorly on both types of tasks, although learning rate and retention over time were comparable, thereby maintaining the control group's…

  18. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  19. Working Memory Deficits and Social Problems in Children with ADHD

    ERIC Educational Resources Information Center

    Kofler, Michael J.; Rapport, Mark D.; Bolden, Jennifer; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt

    2011-01-01

    Social problems are a prevalent feature of ADHD and reflect a major source of functional impairment for these children. The current study examined the impact of working memory deficits on parent- and teacher-reported social problems in a sample of children with ADHD and typically developing boys (N = 39). Bootstrapped, bias-corrected mediation…

  20. Impact of Education on Memory Deficits in Subclinical Depression.

    PubMed

    McLaren, Molly E; Szymkowicz, Sarah M; Kirton, Joshua W; Dotson, Vonetta M

    2015-08-01

    Elevated depressive symptoms are associated with cognitive deficits, while higher education protects against cognitive decline. This study was conducted to test if education level moderates the relationship between depressive symptoms and cognitive function. Seventy-three healthy, dementia-free adults aged 18-81 completed neuropsychological tests, as well as depression and anxiety questionnaires. Controlling for age, sex, and state anxiety, we found a significant interaction of depressive symptoms and education for immediate and delayed verbal memory, such that those with a higher education level performed well regardless of depressive symptomatology, whereas those with lower education and high depressive symptoms had worse performance. No effects were found for executive functioning or processing speed. Results suggest that education protects against verbal memory deficits in individuals with elevated depressive symptoms. Further research on cognitive reserve in depression-related cognitive deficits and decline is needed to understand the mechanisms behind this phenomenon.

  1. Working memory deficits in children with specific learning disorders.

    PubMed

    Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus

    2008-01-01

    This article examines working memory functioning in children with specific developmental disorders of scholastic skills as defined by ICD-10. Ninety-seven second to fourth graders with a minimum IQ of 80 are compared using a 2 x 2 factorial (dyscalculia vs. no dyscalculia; dyslexia vs. no dyslexia) design. An extensive test battery assesses the three subcomponents of working memory described by Baddeley (1986): phonological loop, visual-spatial sketchpad, and central executive. Children with dyscalculia show deficits in visual-spatial memory; children with dyslexia show deficits in phonological and central executive functioning. When controlling for the influence of the phonological loop on the performance of the central executive, however, the effect is no longer significant. Although children with both reading and arithmetic disorders are consistently outperformed by all other groups, there is no significant interaction between the factors dyscalculia and dyslexia. PMID:18625783

  2. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. PMID:24184415

  3. Remembering: functional organization of the declarative memory system.

    PubMed

    Eichenbaum, Howard

    2006-08-22

    How do brain systems support our subjective experience of recollection and our senses of familiarity and novelty? A new functional imaging study concludes that each of these functions is accomplished by a distinct component of the medial temporal lobe, shedding new light on the functional organization of this memory system.

  4. Enhancing a declarative memory in humans: the effect of clonazepam on reconsolidation.

    PubMed

    Rodríguez, M L C; Campos, J; Forcato, C; Leiguarda, R; Maldonado, H; Molina, V A; Pedreira, M E

    2013-01-01

    A consolidated memory recalled by a specific reminder can become unstable (labile) and susceptible to facilitation or impairment for a discrete period of time. This labilization phase is followed by a process of stabilization called reconsolidation. The phenomenon has been shown in diverse types of memory, and different pharmacological agents have been used to disclose its presence. Several studies have revealed the relevance of the GABAergic system to this process. Consequently, our hypothesis is that the system is involved in the reconsolidation of declarative memory in humans. Thus, using our verbal learning task, we analyzed the effect of benzodiazepines on the re-stabilization of the declarative memory. On Day 1, volunteers learned an association between five cue- response-syllables. On Day 2, the verbal memory was labilized by a reminder presentation, and then a placebo capsule or 0.25 mg or 0.03 mg of clonazepam was administered to the subjects. The verbal memory was evaluated on Day 3. The volunteers who had received the 0.25 mg clonazepam along with the specific reminder on Day 2, exhibited memory improvement. In contrast, there was no effect when the drug was given without retrieval, when the memory was simply retrieved instead of being reactivated or when short-term memory testing was performed 4 h after reactivation. We discuss the GABAergic role in reconsolidation, which shows a collateral effect on other memories when the treatment is aimed at treating anxiety disorders. Further studies might elucidate the role of GABA in the reconsolidation process associated with dissimilar scenarios. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  5. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    PubMed

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. PMID:27217115

  6. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    PubMed

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain.

  7. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    ERIC Educational Resources Information Center

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  8. Can we reconcile the declarative memory and spatial navigation views on hippocampal function?

    PubMed

    Eichenbaum, Howard; Cohen, Neal J

    2014-08-20

    Some argue that hippocampus supports declarative memory, our capacity to recall facts and events, whereas others view the hippocampus as part of a system dedicated to calculating routes through space, and these two contrasting views are pursued largely independently in current research. Here we offer a perspective on where these views can and cannot be reconciled and update a bridging framework that will improve our understanding of hippocampal function.

  9. Can we reconcile the declarative memory and spatial navigation views on hippocampal function?

    PubMed

    Eichenbaum, Howard; Cohen, Neal J

    2014-08-20

    Some argue that hippocampus supports declarative memory, our capacity to recall facts and events, whereas others view the hippocampus as part of a system dedicated to calculating routes through space, and these two contrasting views are pursued largely independently in current research. Here we offer a perspective on where these views can and cannot be reconciled and update a bridging framework that will improve our understanding of hippocampal function. PMID:25144874

  10. Can we reconcile the declarative memory and spatial navigation views on hippocampal function?

    PubMed Central

    Eichenbaum, Howard; Cohen, Neal J.

    2014-01-01

    Some argue that hippocampus supports declarative memory, our capacity to recall facts and events, whereas others view the hippocampus as part of a system dedicated to calculating routes through space, and these two contrasting views are pursued largely independently in current research. Here we offer a perspective on where these views can and cannot be reconciled, and update a bridging framework that will improve our understanding of hippocampal function. PMID:25144874

  11. Short-term memory deficit after focal parietal damage.

    PubMed

    Markowitsch, H J; Kalbe, E; Kessler, J; von Stockhausen, H M; Ghaemi, M; Heiss, W D

    1999-12-01

    The neuropsychological symptomatology is reported for a 44-year-old patient of normal intelligence, EE, after removal of a circumscribed left hemispheric tumor the major part of which was located in the angular gyrus and in the subcortical white matter. EE had a distinct and persistent short-term memory impairment together with an equally severe impairment in transcoding numbers. On the other hand, his performance was flawless in calculation tasks and in all other tests involving number processing. Impairments in language tests could be attributed to his short-term memory deficit, which furthermore was characterized by a strong primacy effect in the absence of a recency effect. His graphomotoric output was temporarily inhibited. The patient, with a strong left-sided dominance, manifested a bi-hemispherical activation of the Broca and Wernicke regions in a positron-emission-tomographic investigation when required to produce verbs which he was to derive from nouns. The findings in EE suggest that unilateral and restricted lateral parietal damage can result in a profound short-term memory deficit together with a transcoding deficit for stimuli extending over only a few digits or syllables in the absence of any symptoms of the Gerstmann syndrome.

  12. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  13. Visual imagery deficits, impaired strategic retrieval, or memory loss: disentangling the nature of an amnesic person's autobiographical memory deficit.

    PubMed

    Rosenbaum, R Shayna; McKinnon, Margaret C; Levine, Brian; Moscovitch, Morris

    2004-01-01

    Conclusions about the duration of hippocampal contributions to our autobiographical record of personal episodes have come under intense scrutiny in recent years. Interpretation is complicated by such factors as extent and site of lesions as well as test sensitivity. We describe the case of an amnesic person, K.C., with large, bilateral hippocampal lesions who figured prominently in the development of theories of remote memory due to his severely impoverished autobiographical memory extending across his entire lifetime. However, the presence of lesions in higher-order visual cortex raises the possibility that K.C.'s retrograde autobiographical amnesia is mediated by loss of long-term visual images, whereas widespread frontal lesions suggest that his impairment may relate to deficits in strategic retrieval rather than storage. Normal performance on an extensive battery of visual imagery tests refutes the imagery loss interpretation. To test for deficits in strategic retrieval, we used a more formal autobiographical memory test requiring generation of personal events under varying levels of retrieval support. However, even with rigorous contextual prompting, K.C. produced few pre-injury recollections; all were schematic, lacking the richness of detail produced by control participants, raising doubt that his deficit is one of retrieval. Findings are discussed in the context of theories concerning the duration of hippocampal-neocortical interactions in supporting autobiographical re-experiencing. The approach we used to investigate the effects of different lesions on memory provides a framework for dealing with other patients who present with an interesting functional deficit whose neuroanatomical source is difficult to specify due to widespread lesions.

  14. Specificity of memory deficits after right or left temporal lobectomy.

    PubMed

    Pillon, B; Bazin, B; Deweer, B; Ehrlé, N; Baulac, M; Dubois, B

    1999-09-01

    An impairment of verbal memory has consistently been associated with resection of the left dominant temporal lobe, whereas non-verbal memory deficits have been less reliably observed following resection of the right temporal lobe. Such a dissociation may be due to material-specific differences of processing between verbal and non-verbal information. Alternatively, the influence of the left and right limbic structures may vary according to the stage of memory processing. The aim of the study was to test these hypotheses by comparing verbal and spatial learning in patients with left or right temporal lobe resection for intractable epilepsy, using verbal and visuospatial memory tasks with the same design: control of encoding, multiple trial learning, free and cued recall, short and long delays. The results showed: (1) a similar pattern of learning and recall in the two groups; (2) a higher performance in spatial learning for patients with left temporal lobe resection and in verbal learning for patients with right temporal lobe resection; (3) material-specific effects characterized by a higher sensitivity to cues in the verbal domain and a better retention of information during delays in the spatial domain. These results suggest parallel processing of the two temporal lobes at the various memory stages, rather than an interaction between memory stage and side of the lesion similar to that already proposed for the frontal lobes. They also confirm a double dissociation between verbal/spatial information processing and side of temporal lobe resection. PMID:10574081

  15. How sodium arsenite improve amyloid β-induced memory deficit?

    PubMed

    Nassireslami, Ehsan; Nikbin, Parmida; Amini, Elham; Payandemehr, Borna; Shaerzadeh, Fatemeh; Khodagholi, Fariba; Yazdi, Behnoosh Bonakdar; Kebriaeezadeh, Abbas; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2016-09-01

    Evidence has shown that arsenic exposure, besides its toxic effects results in impairment of learning and memory, but its molecular mechanisms are not fully understood. In the present study, we examined sodium arsenite (1, 5, 10, 100nM) effects on contextual and tone memory of male rats in Pavlovian fear conditioning paradigm alone and in co-administration with β-amyloid. We detected changes in the level of caspase-3, nuclear factor kappa-B (NF-κB), cAMP response element-binding (CREB), heme oxygenase-1 and NF-E2-related factor-2 (Nrf2) by Western blot. Sodium arsenite in high doses induced significant memory impairment 9 and 16days after infusion. By contrast, low doses of sodium arsenite attenuate memory deficit in Aβ injected rats after 16days. Our data revealed that treatment with high concentration of sodium arsenite increased caspase-3 cleavage and NF-κB level, 9days after injection. Whereas, low doses of sodium arsenite cause Nrf2 and HO-1 activation and increased CREB phosphorylation in the hippocampus. These findings suggest the concentration dependent effects of sodium arsenite on contextual and tone memory. Moreover, it seems that the neuroprotective effects of ultra-low concentrations of sodium arsenite on Aβ-induced memory impairment is mediated via an increase Nrf2, HO-1 and CREB phosphorylation levels and decrease caspase-3 and NF-κB amount. PMID:27129674

  16. Memory deficits associated with khat (Catha edulis) use in rodents.

    PubMed

    Kimani, S T; Patel, N B; Kioy, P G

    2016-02-01

    Khat products and chewing practices are common in East Africa, Middle East for centuries with concomitant socio-economic and public health repercussions. We assessed memory deficits associated with khat use in rodents. Young male CBA mice, 5-7 weeks old (n = 20), weighing 25-35 g were used. Mice were treated with either 40, 120 or 360 mg/kg body weight (bw) methanolic khat extract, or 0.5 ml saline for 10 days. Spatial acquisition, reversal and reference memory were assessed using modified Morris Water maze (MMWM). Mice treated with 40 mg/kg khat extract had longer (t4 = 4.12 p = 0.015) and t4 = 2.28 p = 0.065) escape latency on first and second day during reversal relative to the baseline. Under 120 mg/kg khat dose, the escape latency was shorter (t4 = -2.49 p = 0.05) vs (t3 = -2.5 p = 0.05) on third and fourth day. Further, treatment with 360 mg/kg khat extract resulted in significantly longer time (49.13, 33.5, 40.2 and 35.75) vs. (23.5 s), compared to baseline. Mice treated with khat or control preferred the target quadrant post acquisition while differential pattern was seen during reversal phase. Mice treated with 40 or 120 mg/kg khat showed significant preference for target quadrant. Substantial time (19.9) was spent in the old target compared to the new (16.9 s) by animals treated with highest dose however, the difference was not significant. There is a biological plausibility that chronic khat use may induce memory deficits and impair cognitive flexibility. The differential patterns of memory deficits may reflect the differences in dose effect as well as time dependent impairment.

  17. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    PubMed Central

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  18. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome.

    PubMed

    Skirrow, Caroline; Cross, J Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh; Baldeweg, Torsten

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5-15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  19. Memory deficit in patients with schizophrenia and posttraumatic stress disorder: relational vs item-specific memory

    PubMed Central

    Jung, Wookyoung; Lee, Seung-Hwan

    2016-01-01

    It has been well established that patients with schizophrenia have impairments in cognitive functioning and also that patients who experienced traumatic events suffer from cognitive deficits. Of the cognitive deficits revealed in schizophrenia or posttraumatic stress disorder (PTSD) patients, the current article provides a brief review of deficit in episodic memory, which is highly predictive of patients’ quality of life and global functioning. In particular, we have focused on studies that compared relational and item-specific memory performance in schizophrenia and PTSD, because measures of relational and item-specific memory are considered the most promising constructs for immediate tangible development of clinical trial paradigm. The behavioral findings of schizophrenia are based on the tasks developed by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative and the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRACS) Consortium. The findings we reviewed consistently showed that schizophrenia and PTSD are closely associated with more severe impairments in relational memory compared to item-specific memory. Candidate brain regions involved in relational memory impairment in schizophrenia and PTSD are also discussed. PMID:27274250

  20. Reconsolidation in humans opens up declarative memory to the entrance of new information.

    PubMed

    Forcato, Cecilia; Rodríguez, María L C; Pedreira, María E; Maldonado, Héctor

    2010-01-01

    A consolidated memory recalled by a reminder enters a vulnerability phase (labilization), followed by a process of stabilization (reconsolidation). Several authors have suggested that the labilization of the consolidated memory makes the incorporation of new information possible. Here, we demonstrate updating in the framework of memory declarative reconsolidation in humans by giving an opportune verbal instruction. Volunteers learn an association between five cue-syllables (L1) and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory is labilized by exposing the subjects to the reminder, and then they receive the verbal Instruction of adding three new cue-response syllables (INFO) with their respective responses to the former list of five. The new information is incorporated into the single former L1-memory and both INFO and L1 are successfully retrieved on the third day. However, when the Instruction is not preceded by a proper reminder, or when the instruction omits the order of adding the INFO into the former L1-memory, we observed interference in retrieval of both the original and the new information, suggesting that they are encoded independently and coexist as separate memories.

  1. Elevations of Endogenous Kynurenic Acid Produce Spatial Working Memory Deficits

    PubMed Central

    Chess, Amy C.; Simoni, Michael K.; Alling, Torey E.; Bucci, David J.

    2007-01-01

    Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the α7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787

  2. Positive modulation of a neutral declarative memory by a threatening social event.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Campos, Jorge; Allegri, Ricardo F; Molina, Victor A; Forcato, Cecilia; Pedreira, María E

    2015-12-01

    Memories can be altered by negative or arousing experiences due to the activation of the stress-responsive sympatho-adrenal-medullary axis (SYM). Here, we used a neutral declarative memory that was acquired during multi-trial training to determine the effect of a threatening event on memory without emotional valence. To this end, participants received a new threatening social protocol before learning pairs of meaningless syllables and were tested either 15 min, 2 days or 8 days after acquisition. We first demonstrated that this threatening social situation activates not only the SYM axis (Experiment 1) and the hypothalamus-pituitary-adrenal axis (HPA; Experiment 2), but also, it improves the acquisition or early consolidation of the syllable pairs (Experiment 3). This improvement is not a transient effect; it can be observed after the memory is consolidated. Furthermore, this modulation increases the persistence of memory (Experiment 4). Thus, it is possible to affect memories with specific events that contain unrelated content and a different valence.

  3. The deferred imitation task as a nonverbal measure of declarative memory.

    PubMed

    McDonough, L; Mandler, J M; McKee, R D; Squire, L R

    1995-08-01

    We tested amnesic patients, patients with frontal lobe lesions, and control subjects with the deferred imitation task, a nonverbal test used to demonstrate memory abilities in human infants. On day 1, subjects were given sets of objects to obtain a baseline measure of their spontaneous performance of target actions. Then different event sequences were modeled with the object sets. On day 2, the objects were given to the subjects again, first without any instructions to imitate the sequences, and then with explicit instructions to imitate the actions exactly as they had been modeled. Control subjects and frontal lobe patients reproduced the events under both uninstructed and instructed conditions. In contrast, performance by the amnesic patients did not significantly differ from that of a second control group who had the same opportunities to handle the objects but were not shown the modeled actions. These findings suggest that deferred imitation is dependent on the brain structures essential for declarative memory that are damaged in amnesia, and they support the view that infants who imitate actions after long delays have an early capacity for long-term declarative memory.

  4. Allocentric spatial learning and memory deficits in Down syndrome.

    PubMed

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  5. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  6. The enhancement of reconsolidation with a naturalistic mild stressor improves the expression of a declarative memory in humans.

    PubMed

    Coccoz, V; Maldonado, H; Delorenzi, A

    2011-06-30

    The reconsolidation hypothesis proposes that a previously consolidated memory recalled by a reminder enters an unstable state (memory labilization) during which it is transiently sensitive to disruption. Although this process has been shown in very diverse species and types of memories, including human declarative memory, elucidating the role of this process is still an open challenge. The hypothesis that reconsolidation allows the incorporation of new information has recently been demonstrated in humans. However, the findings show that, during the reconsolidation phase, memory retention can be increased by pharmacological modulation or real life events in animals have not been found in humans yet. In order to evaluate this, we used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a retrieved labile memory state and a retrieved but non-labile state. Volunteers learned an association between five cue-syllables and their respective response-syllables. 6 days later, the paired-associate memory was reactivated by exposing the subjects to the reminder, and then they received a mild stressor, cold pressor stress (CPS). Poor memory performance was found at both the time of memory reactivation (day 6 after training) and at testing of all groups that were designed as controls (day 7). Conversely, robust memory performance was shown at testing when the CPS administration was concurrent with the retrieved-labile memory state. Results from the present study reveal that a naturalistic mild stressor can enhance reconsolidation, improving the long-term expression of this declarative memory. This finding might have significant implications for the comprehension of memory persistence and memory expression, and add new evidence in order to understand the adaptive meaning of the reconsolidation process.

  7. An empirical test of the independence between declarative and procedural working memory in Oberauer's (2009) theory.

    PubMed

    Barrouillet, Pierre; Corbin, Lucie; Dagry, Isabelle; Camos, Valérie

    2015-08-01

    It has recently been suggested that working memory could be conceived as two symmetrical subsystems with analogous structure and processing principles: a declarative working memory storing objects of thought available for cognitive operations, and a procedural working memory holding representations of what to do with these objects (Oberauer, Psychology of learning and motivation 51: 45-100, 2009). Within this theoretical framework, the two subsystems are thought to be independent and fueled by their own capacity. The present study tested this hypothesis through two experiments using a complex span task in which participants were asked to maintain consonants for further recall while performing response selection tasks. In line with Oberauer's conception, the load of the procedural working memory was varied by manipulating the number of stimulus-response mappings of the response selection task. Increasing the number of these mappings had a strong detrimental effect on recall performance. Besides contradicting Oberauer's proposal, this finding supports models that assume a resource-sharing between processing and storage in working memory.

  8. Aspects of grammar sensitive to procedural memory deficits in children with specific language impairment.

    PubMed

    Sengottuvel, Kuppuraj; Rao, Prema K S

    2013-10-01

    Procedural deficit hypothesis claims that language deficit in children with specific language impairment is affiliated to sequence learning problems. However, studies did not explore on aspects of grammar vulnerable to sequence learning deficits. The present study makes predictions for aspects of grammar that could be sensitive to procedural deficits based on core ideas of procedural deficit hypothesis. The hypothesis for the present study was that the grammatical operations that require greater sequencing abilities (such as inflectional operations) would be more affected in children with language impairment. Further, the influence of sequencing difficulties would be even greater in agglutinating inflectional languages. An adapted serial reaction time task for sequence learning measurements along with grammatical tasks on derivation, inflection, and sentence complexity were examined on typically developing and language impaired children. Results were in favor of procedural deficit hypothesis and its close relation to non-adjacent grammatical operations. The findings were discussed using procedural deficits, declarative compensatory mechanism, and statistical learning deficits.

  9. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders

    PubMed Central

    Douet, Vanessa; Chang, Linda

    2015-01-01

    The fornix is a part of the limbic system and constitutes the major efferent and afferent white matter tracts from the hippocampi. The underdevelopment of or injuries to the fornix are strongly associated with memory deficits. Its role in memory impairments was suggested long ago with cases of surgical forniceal transections. However, recent advances in brain imaging techniques, such as diffusion tensor imaging, have revealed that macrostructural and microstructural abnormalities of the fornix correlated highly with declarative and episodic memory performance. This structure appears to provide a robust and early imaging predictor for memory deficits not only in neurodegenerative and neuroinflammatory diseases, such as Alzheimer's disease and multiple sclerosis, but also in schizophrenia and psychiatric disorders, and during neurodevelopment and “typical” aging. The objective of the manuscript is to present a systematic review regarding published brain imaging research on the fornix, including the development of its tracts, its role in various neurological diseases, and its relationship to neurocognitive performance in human studies. PMID:25642186

  10. Working Memory Deficits in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): The Contribution of Central Executive and Subsystem Processes

    ERIC Educational Resources Information Center

    Rapport, Mark D.; Alderson, R. Matt; Kofler, Michael J.; Sarver, Dustin E.; Bolden, Jennifer; Sims, Valerie

    2008-01-01

    The current study investigated contradictory findings from recent experimental and meta-analytic studies concerning working memory deficits in ADHD. Working memory refers to the cognitive ability to temporarily store and mentally manipulate limited amounts of information for use in guiding behavior. Phonological (verbal) and visuospatial…

  11. Suppressing Irrelevant Information from Working Memory: Evidence for Domain-Specific Deficits in Poor Comprehenders

    ERIC Educational Resources Information Center

    Pimperton, Hannah; Nation, Kate

    2010-01-01

    Previous research has suggested that children with specific reading comprehension deficits (poor comprehenders) show an impaired ability to suppress irrelevant information from working memory, with this deficit detrimentally impacting on their working memory ability, and consequently limiting their reading comprehension performance. However, the…

  12. Early postnatal effects of noopept and piracetam on declarative and procedural memory of adult male and female rats.

    PubMed

    Trofimov, S S; Voronina, T A; Guzevatykh, L S

    2005-06-01

    We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity. PMID:16224581

  13. True Memory, False Memory, and Subjective Recollection Deficits after Focal Parietal Lobe Lesions

    PubMed Central

    Drowos, David B.; Berryhill, Marian; André, Jessica M.; Olson, Ingrid R.

    2010-01-01

    Objective There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Our objective was to assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Method Two patients with bilateral PPC damage and matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. Results The patients exhibited significantly lower levels of false memory to words. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. It is unlikely that a failure of gist processing accounts for these results, as patients accurately remembered thematic elements of short vignettes, but failed to remember details. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection. PMID:20604621

  14. Enhancement of Declarative Memory Performance Following a Daytime Nap Is Contingent on Strength of Initial Task Acquisition

    PubMed Central

    Tucker, Matthew A.; Fishbein, William

    2008-01-01

    Study Objectives: In this study we examined the benefit of a daytime nap containing only NREM sleep on the performance of three declarative memory tasks: unrelated paired associates, maze learning, and the Rey-Osterrieth complex figure. Additionally, we explored the impact of factors related to task acquisition on sleep-related memory processing. To this end, we examined whether testing of paired associates during training leads to sleep-related enhancement of memory compared to simply learning the word pairs without test. We also examined whether strength of task acquisition modulates sleep-related processing for each of the three tasks. Subjects and Procedure: Subjects (11 male, 22 female) arrived at 11:30, were trained on each of the declarative memory tasks at 12:15, and at 13:00 either took a nap or remained awake in the sleep lab. After the nap period, all subjects remained in the lab until retest at 16:00. Results: Compared to subjects who stayed awake during the training-retest interval, subjects who took a NREM nap demonstrated enhanced performance for word pairs that were tested during training, but not for untested word pairs. For each of the three declarative memory tasks, we observed a sleep-dependent performance benefit only for subjects that most strongly acquired the tasks during the training session. Conclusions: NREM sleep obtained during a daytime nap benefits declarative memory performance, with these benefits being intimately tied to how well subjects acquire the tasks and the way in which the information is acquired. Citation: Tucker MA; Fishbein W. Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. SLEEP 2008;31(2):197–203. PMID:18274266

  15. Declarative memory is critical for sustained advantageous complex decision-making.

    PubMed

    Gupta, Rupa; Duff, Melissa C; Denburg, Natalie L; Cohen, Neal J; Bechara, Antoine; Tranel, Daniel

    2009-06-01

    Previous studies have reported conflicting evidence concerning the contribution of declarative memory to advantageous decision-making on the Iowa Gambling Task (IGT). One study, in which the measurement of psychophysiology during the task necessitated a 10-s delay between card selections, found that six participants with amnesia due to hippocampal damage failed to develop a preference for advantageous decks over disadvantageous decks [Gutbrod, K., Krouzel, C., Hofer, H., Muri, R., Perrig, W., & Ptak, R. (2006). Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices? Neuropsychologia, 44(8), 1315-1324]. However, a single-case study (where psychophysiology was not measured and no delay between card selections occurred) showed that an amnesic patient developed normal preference for advantageous decks [Turnbull, O. H., & Evans, C. E. (2006). Preserved complex emotion-based learning in amnesia. Neuropsychologia, 44(2), 300-306]. We sought to resolve these discrepant findings by examining IGT performances in five patients with profound amnesia (WMS-III General Memory Index M=63) and bilateral hippocampal damage caused by anoxia (n=4) or herpes simplex encephalitis (n=1). In one administration of the IGT, psychophysiology measurements were utilized and a 6-s delay was interposed between card selections. In a second administration, no delay between card selections was interposed. While age-, sex-, and education-matched healthy comparison participants showed significant learning with a gradual preference for advantageous decks in both conditions, amnesic patients, irrespective of IGT administration condition and extent of medial temporal lobe damage, failed to develop this preference. These findings strongly discount the possibility that the delay between card selections explains why amnesic participants fail to learn in the IGT, and suggest instead a significant role for medial temporal lobe declarative memory

  16. Deficits of learning and memory in Hemojuvelin knockout mice.

    PubMed

    Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping

    2015-10-01

    Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.

  17. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders.

    PubMed

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-03-04

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey's Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline.

  18. Naps in school can enhance the duration of declarative memories learned by adolescents

    PubMed Central

    Lemos, Nathalia; Weissheimer, Janaina; Ribeiro, Sidarta

    2014-01-01

    Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10–15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ~10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance

  19. Naps in school can enhance the duration of declarative memories learned by adolescents.

    PubMed

    Lemos, Nathalia; Weissheimer, Janaina; Ribeiro, Sidarta

    2014-01-01

    Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10-15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ~10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance

  20. Memory deficit in Swiss mice exposed to tannery effluent.

    PubMed

    Rabelo, Letícia Martins; Costa E Silva, Bianca; de Almeida, Sabrina Ferreira; da Silva, Wellington Alves Mizael; de Oliveira Mendes, Bruna; Guimarães, Abraão Tiago Batista; da Silva, Anderson Rodrigo; da Silva Castro, André Luis; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2016-01-01

    Although it is known that tannery effluents constitute highly toxic pollutants whose effects in humans represent public health problems in several countries, studies involving experimental mammalian models are rare. In this context, the objective of the present study was to assess the effect of the exposure to tannery effluent on the memory of male and female Swiss mice. Animals of each sex were distributed into two experimental groups: the control group, in which the animals received only drinking water and the effluent group, in which the mice received 1% of gross tannery effluent diluted in water. The animals were exposed to the effluent by gavage, oral dosing, for 15days, ensuring the administration of 0.1mL of liquid (water or effluent)/10g of body weight/day. On the 14th and 15th experimental days the animals were submitted to the object recognition test. It was observed that the new object recognition indices calculated for the animals exposed to the effluent (males and females) were significantly lower than those obtained with the control group. The exposure to tannery effluent caused memory deficit in Swiss mice in a similar way for both sexes, reinforcing previous findings that these pollutants affect the central nervous system. It contributes to the knowledge in the area by attesting harmful effects to the cognition of such animals. PMID:27063058

  1. Impaired strategic monitoring as the locus of a focal prospective memory deficit.

    PubMed

    West, Robert; McNerney, M Windy; Krauss, Iseli

    2007-04-01

    In this study we examine the locus of a prospective memory deficit in an individual with multiple sclerosis. Extensive psychometric and neuropsychological testing revealed above average to superior general intelligence, retrospective and autobiographical memory, short-term/working memory and executive functions. In contrast, the individual demonstrated poor prospective memory on a variety of measures incorporating naturalistic, self-report, and laboratory methods. This deficit appeared to arise from a disruption of processes underlying strategic monitoring. These data clearly demonstrate that impaired prospective memory can exist in the presence of an otherwise intact neuropsychological profile.

  2. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial.

  3. Learning about categories that are defined by object-like stimuli despite impaired declarative memory.

    PubMed

    Reed, J M; Squire, L R; Patalano, A L; Smith, E E; Jonides, J

    1999-06-01

    Exposure to members of a category facilitates later categorization of similar but novel instances of the category. Past studies have suggested that category knowledge can be acquired implicitly and independently of declarative memory. However, these studies have relied on dot pattern stimuli that, unlike most real-world objects, are difficult to verbalize and cannot be broken into component features. It is therefore unclear how relevant such studies are to an understanding of everyday categorization. In the present studies, category learning in amnesic patients was tested with stimuli that both exhibit discrete features and are easy to describe (namely, cartoon animals). Amnesic patients were as competent as healthy volunteers in learning to categorize these animals, despite their impairment in recalling the animals' features. The results suggest that the implicit acquisition of category knowledge is a common process in everyday experience, and that it can occur whenever individuals encounter a large group of related items.

  4. Exploring Memory in Infancy: Deferred Imitation and the Development of Declarative Memory

    ERIC Educational Resources Information Center

    Jones, Emily J. H.; Herbert, Jane S.

    2006-01-01

    Imitation is an important means by which infants learn new behaviours. When infants do not have the opportunity to immediately reproduce observed actions, they may form a memory representation of the event which can guide their behaviour when a similar situation is encountered again. Imitation procedures can, therefore, provide insight into infant…

  5. Methylphenidate Improves Visual-Spatial Memory in Children with Attention-Deficit- hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary

    2004-01-01

    Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…

  6. Deconstructing Spatial Working Memory and Attention Deficits in Multiple Sclerosis

    PubMed Central

    Gmeindl, Leon; Courtney, Susan M.

    2011-01-01

    Objective To investigate whether spatial working memory (WM) is impaired in multiple sclerosis (MS), and, if it is, to localize impairment to specific cognitive subprocess(es). Method In Experiment 1, MS and control participants performed computerized memory-span and visuomotor tasks. WM subprocesses were taxed by manipulating (1) the requirement to remember serial order, (2) delay duration, and (3) the presence of irrelevant stimuli during target presentation. In Experiment 2, recall and recognition tests varied the difficulty of WM retrieval. In Experiment 3, an attention-cueing task tested the ability to voluntarily and rapidly reorient attention. Results Performance was worse for MS than for control participants in both spatial recall (Exp. 1 span: 95% CIMS = [5.11, 5.57], 95% CIControls = [5.58, 6.03], p = 0.003, 1-tailed; Exp. 2 span: 95% CIMS = [4.44, 5.54], 95% CIControls = [5.47, 6.57], p = 0.006, 1-tailed) and recognition (accuracy: 95% CIMS = [0.71, 0.81], 95% CIControls = [0.79, 0.88], p = 0.01, 1-tailed) tests. However, there was no evidence for deficits in spatiotemporal binding, maintenance, retrieval, distractor suppression, or visuomotor processing. In contrast, MS participants were abnormally slow to reorient attention (cueing effect (ms): 95% CIMS: [90, 169], 95% CIControls: [29, 107], p = 0.015, 1-tailed). Conclusions Results suggest that, whereas spatial WM is impaired in MS, once spatial information has been adequately encoded into WM, individuals with MS are, on average, able to maintain and retrieve this information. Impoverished encoding of spatial information, however, may be due to inefficient voluntary orienting of attention. PMID:22059650

  7. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    PubMed Central

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  8. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories?

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of

  9. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories?

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of

  10. Analogous mechanisms of selection and updating in declarative and procedural working memory: experiments and a computational model.

    PubMed

    Oberauer, Klaus; Souza, Alessandra S; Druey, Michel D; Gade, Miriam

    2013-03-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a central capacity-limited component for building structures through temporary bindings, and a single-element focus of attention. Five experiments test the hypothesis of analogous mechanisms in declarative and procedural WM, investigating repetition effects across trials for individual representations (objects and responses) and for sets (memory sets and task sets), as well as set-congruency effects. Evidence for analogous processes was obtained from three phenomena: (1) Costs of task switching and of list switching are reduced with longer preparation interval. (2) The effects of task congruency and of list congruency are undiminished with longer preparation interval. (3) Response repetition interacts with task repetition in procedural WM; here we show an analogous interaction of list repetition with item repetition in declarative WM. All three patterns were reproduced by a connectionist model implementing the assumed selection and updating mechanisms. The model consists of two modules, an item-selection module selecting individual items from a memory set, or responses from a task set, and a set-selection module for selecting memory sets or task sets. The model codes the matrix of binding weights in the item-selection module as a pattern of activation in the set-selection module, thereby providing a mechanism for building chunks in LTM, and for unpacking them as structures into working memory.

  11. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  12. Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?

    ERIC Educational Resources Information Center

    Rapport, Mark D.; Bolden, Jennifer; Kofler, Michael J.; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt

    2009-01-01

    Hyperactivity is currently considered a core and ubiquitous feature of attention-deficit/hyperactivity disorder (ADHD); however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory (WM) and activity level. The current study investigated whether children's activity level is functionally…

  13. Shared Etiology of Phonological Memory and Vocabulary Deficits in School-Age Children

    ERIC Educational Resources Information Center

    Peterson, Robin L.; Pennington, Bruce F.; Samuelsson, Stefan; Byrne, Brian; Olson, Richard K.

    2013-01-01

    Purpose: The goal of this study was to investigate the etiologic basis for the association between deficits in phonological memory (PM) and vocabulary in school-age children. Method: Children with deficits in PM or vocabulary were identified within the International Longitudinal Twin Study (ILTS; Samuelsson et al., 2005). The ILTS includes 1,045…

  14. Assessment of Working Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Messina, Lucinete de Freitas; Tiedemann, Klaus Bruno; de Andrade, Enio Roberto; Primi, Ricardo

    2006-01-01

    Objective: This research investigated the cognitive abilities and the working memory in children and youngsters with three different types of attention-deficit/hyperactivity disorder (ADHD): (a) mainly with attention-deficit, (b) hyperactive and impulsive, and (c) combined. Method: A computerized test called Infant Cognitive Abilities Test, which…

  15. Explaining Semantic Short-Term Memory Deficits: Evidence for the Critical Role of Semantic Control

    ERIC Educational Resources Information Center

    Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.

    2011-01-01

    Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought…

  16. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders

    PubMed Central

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-01-01

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers’ cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey’s Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline. PMID:27072418

  17. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders.

    PubMed

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-03-01

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey's Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline. PMID:27072418

  18. Working Memory Deficits Affect Risky Decision-Making in Methamphetamine Users with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Duarte, Nichole A.; Woods, Steven Paul; Rooney, Alexandra; Atkinson, J. Hampton; Grant, Igor

    2012-01-01

    Methamphetamine (MA) use and Attention-Deficit/Hyperactivity Disorder (ADHD) commonly co-occur and are independently associated with dysregulation of frontostriatal loops and risky decision-making; however, whether their comorbidity exacerbates risky decision-making is not known. This study evaluated 23 participants with histories of MA dependence and ADHD (MA+ADHD+), 25 subjects with MA dependence alone (MA+ADHD−), and 22 healthy adults (MA−ADHD−), who completed the Iowa Gambling Task (IGT) as part of a larger neuropsychiatric research evaluation. Results showed a significant interaction between ADHD, MA, and working memory, such that individuals with working memory deficits in the ADHD+MA+ cohort demonstrated the strongest propensity to select cards from “disadvantageous” versus “advantageous” decks on the IGT. This effect was unique to working memory and was not better explained by other psychiatric, substance use, or neuromedical factors. Findings suggest that working memory deficits may moderate the expression of risky decision-making in MA users with ADHD. PMID:22305489

  19. Emerging Depression Is Associated with Face Memory Deficits in Adolescent Girls

    ERIC Educational Resources Information Center

    Guyer, Amanda E.; Choate, Victoria R.; Grimm, Kevin J.; Pine, Daniel S.; Keenan, Kate

    2011-01-01

    Objective: To examine the association between memory for previously encoded emotional faces and depression symptoms assessed over 4 years in adolescent girls. Investigating the interface between memory deficits and depression in adolescent girls may provide clues about depression pathophysiology. Method: Participants were 213 girls recruited from…

  20. Learning and Memory Impairments in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Andersen, Per N.; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive…

  1. Implicit and Explicit Memory Performance in Children with Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Aloisi, Bruno A.; McKone, Elinor; Heubeck, Bernd G.

    2004-01-01

    The present investigation examined implicit and explicit memory in 20 children diagnosed with attention deficit/hyperactivity disorder (AD/HD) and 20 matched controls. Consistent with previous research, children with AD/HD performed more poorly than controls on an explicit test of long-term memory for pictures. New results were that (a) there was…

  2. Disordered Connectivity Associated with Memory Deficits in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chan, Agnes S.; Han, Yvonne M. Y.; Sze, Sophia L.; Cheung, Mei-chun; Leung, Winnie Wing-man; Chan, Raymond C. K.; To, Cho Yee

    2011-01-01

    The present study examined the memory performance and cortical connectivity of children with ASD, and investigated whether the memory deficits exhibited by these children were associated with the cortical connectivity. Twenty-one children with ASD and 21 children with normal development (NC), aged 5-14 years, participated in the study. Each child…

  3. Are Working Memory Deficits in Readers with Learning Disabilities Hard To Change?

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2000-01-01

    A study compared 84 readers with learning disabilities, chronologically age-matched and reading level-matched, for the children's working memory performance for phonological, visual-spatial, and semantic information under initial, gain, and maintenance conditions. The working memory deficits of readers with learning disabilities were hard to…

  4. Letter Processing and the Formation of Memory Representations in Children with Naming Speed Deficits

    ERIC Educational Resources Information Center

    Conrad, Nicole J.; Levy, Betty Ann

    2007-01-01

    The ability to recognize letter patterns within words as a single unit is important for fluent reading. This skill is based on previously established memory representations of common letter patterns. The ability to form these memory representations may be impaired in some poor readers, particularly readers with naming speed deficits (NSD). This…

  5. A Comprehensive Investigation of Memory Impairment in Attention Deficit Hyperactivity Disorder and Oppositional Defiant Disorder

    ERIC Educational Resources Information Center

    Rhodes, Sinead M.; Park, Joanne; Seth, Sarah; Coghill, David R.

    2012-01-01

    Background: We conducted a comprehensive and systematic assessment of memory functioning in drug-naive boys with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Methods: Boys performed verbal and spatial working memory (WM) component (storage and central executive) and verbal and spatial storage load tasks,…

  6. Failing to forget: inhibitory-control deficits compromise memory suppression in posttraumatic stress disorder.

    PubMed

    Catarino, Ana; Küpper, Charlotte S; Werner-Seidler, Aliza; Dalgleish, Tim; Anderson, Michael C

    2015-05-01

    Most people have experienced distressing events that they would rather forget. Although memories of such events become less intrusive with time for the majority of people, those with posttraumatic stress disorder (PTSD) are afflicted by vivid, recurrent memories of their trauma. Often triggered by reminders in the daily environment, these memories can cause severe distress and impairment. We propose that difficulties with intrusive memories in PTSD arise in part from a deficit in engaging inhibitory control to suppress episodic retrieval. We tested this hypothesis by adapting the think/no-think paradigm to investigate voluntary memory suppression of aversive scenes cued by naturalistic reminders. Retrieval suppression was compromised significantly in PTSD patients, compared with trauma-exposed control participants. Furthermore, patients with the largest deficits in suppression-induced forgetting were also those with the most severe PTSD symptoms. These results raise the possibility that prefrontal mechanisms supporting inhibitory control over memory are impaired in PTSD.

  7. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    PubMed

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials.

  8. Deficit of the "primacy effect" in parkinsonians interpreted by means of the working memory model.

    PubMed

    Della Sala, S; Pasetti, C; Sempio, P

    1987-01-01

    29 Parkinsonians and 29 controls matched for age and schooling were tested for memory by means of a free recall test (serial position curve) and two spans (verbal and non-verbal). The free recall test yields three measures: primacy (item 1); secondary memory (items 2-7) and recency (items 8-12). The Parkinsonians displayed a selective deficit of primacy, which is taken to be evidence of defective functioning of the Central Executive in the Working Memory model.

  9. Disease recognition is related to specific autobiographical memory deficits in alcohol-dependence.

    PubMed

    Poncin, Marie; Neumann, Aurore; Luminet, Olivier; Vande Weghe, Noémie; Philippot, Pierre; de Timary, Philippe

    2015-12-15

    The particularly high treatment gap in alcohol-dependence suggests the existence of important barriers to treatment decision and in particular difficulties in problem recognition. This study tested the relation between problem recognition and self-related memories. Forty-one recently detoxified alcohol-dependent individuals (AD) were compared to twenty alcoholic subjects that were abstinent for 6 months or more (recruited among alcoholics-anonymous (AA)), and to twenty controls on autobiographical memories elicited by pictures depicting or not alcohol using the autobiographical memory test. Autonoetic consciousness was measured with the Remember/Know paradigm. We tested whether memories performances were related with data obtained on the readiness to change questionnaire (RCQ) or with consciousness of the severity of drinking. AD subjects provided less specific memories than control and AA subjects, and fewer Remember responses than controls. The deficits in AD subjects were not specific for memories elicited by pictures depicting alcohol, suggesting a global deficit. Autobiographical memories specificity was negatively correlated to scores of consciousness of the severity of drinking but not to RCQ. Our results support potential recovery of autobiographical memory with abstinence. AD's deficits in autobiographical memory were related to capacities to recognize the severity and therefore may be a barrier to treatment decision. PMID:26365688

  10. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    PubMed Central

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  11. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    PubMed

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  12. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    PubMed

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  13. Investigation of the component processes involved in verbal declarative memory function in bipolar disorder: utility of the Hopkins Verbal Learning Test-Revised.

    PubMed

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2014-08-01

    Evidence suggests that standard learning and recall indexes are sensitive markers of verbal declarative memory ability in bipolar disorder (BD), but no study has examined performance across the full range of component process measures on the Hopkins Verbal Learning Test (HVLT-R) in a BD cohort. As the HVLT-R is part of a widely used battery of cognitive functioning backed by the U.S. Federal Drug Administration as the accepted battery for use in pro-cognitive trials assessing cognitive-enhancing drugs in the related disorder schizophrenia, estimating the utility of its measures in BD is important. Forty-nine BD patients and 51 healthy controls completed the HVLT-R, which was scored for 13 variables of interest, across 4 indices: recall and learning, recognition, strategic organization, and errors. BD patients had greater difficulty in learning the HVLT-R word list compared to controls. They also demonstrated impairment in delayed recall/recognition. There were no differences between the groups in terms of their slope of learning, retrieval index, retention percentage, semantic or serial clustering, errors, or level of retrieval. This pattern was consistent across symptomatic and euthymic patients. The HVLT-R has some utility in characterizing the component processes involved in memory function in BD, such that memory impairments appear to be attributable to deficient encoding processes during the acquisition phase of learning. In the case of planning pro-cognitive clinical trials, the encoding deficits in BD observed here may be sensitive enough to potentially respond to medications designed to enhance the verbal memory performance.

  14. Visuospatial working memory underlies choice-impulsivity in boys with attention-deficit/hyperactivity disorder.

    PubMed

    Patros, Connor H G; Alderson, R Matt; Lea, Sarah E; Tarle, Stephanie J; Kasper, Lisa J; Hudec, Kristen L

    2015-03-01

    The present study examined the directional relationship between choice-impulsivity and separate indices of phonological and visuospatial working memory performance in boys (aged 8-12 years) with (n=16) and without ADHD (n=19). Results indicated that high ratings of overall ADHD, inattention, and hyperactivity were significantly associated with increased impulsivity and poorer phonological and visuospatial working memory performance. Further, results from bias-corrected bootstrapped mediation analyses revealed a significant indirect effect of visuospatial working memory performance, through choice-impulsivity, on overall ADHD, inattention, and hyperactivity/impulsivity. Collectively, the findings suggest that deficits of visuospatial working memory underlie choice-impulsivity, which in turn contributes to the ADHD phenotype. Moreover, these findings are consistent with a growing body of literature that identifies working memory as a central neurocognitive deficit of ADHD.

  15. Deficits in memory-guided limb movements impair obstacle avoidance locomotion in Alzheimer's disease mouse model

    PubMed Central

    Setogawa, Susumu; Yamaura, Hiroshi; Arasaki, Tomoko; Endo, Shogo; Yanagihara, Dai

    2014-01-01

    Memory function deficits induced by Alzheimer's disease (AD) are believed to be one of the causes of an increased risk of tripping in patients. Working memory contributes to accurate stepping over obstacles during locomotion, and AD-induced deficits of this memory function may lead to an increased risk of contact with obstacles. We used the triple transgenic (3xTg) mice to examine the effects of memory deficits in terms of tripping and contact with obstacles. We found that the frequency of contact of the hindlimbs during an obstacle avoidance task increased significantly in 10–13 month-old 3xTg (Old-3xTg) mice compared with control mice. However, no changes in limb kinematics during unobstructed locomotion or successful obstacle avoidance locomotion were observed in the Old-3xTg mice. Furthermore, we found that memory-based movements in stepping over an obstacle were impaired in these mice. Our findings suggest that working memory deficits as a result of AD are associated with an increased risk of tripping during locomotion. PMID:25427820

  16. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    PubMed

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE.

  17. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress.

  18. Steroid abnormalities and the developing brain: Declarative memory for emotionally arousing and neutral material in children with congenital adrenal hyperplasia

    PubMed Central

    Maheu, Françoise S.; Merke, Deborah P.; Schroth, Elizabeth A.; Keil, Margaret F.; Hardin, Julie; Poeth, Kaitlin; Pine, Daniel S.; Ernst, Monique

    2008-01-01

    Summary Steroid hormones modulate memory in animals and human adults. Little is known on the developmental effect of these hormones on the neural networks underlying memory. Using Congenital Adrenal Hyperplasia (CAH) as a naturalistic model of early steroid abnormalities, this study examines the consequences of CAH on memory and its neural correlates for emotionally arousing and neutral material in children. Seventeen patients with CAH and 17 age- and sex-matched healthy children (ages 12 to 14 years) completed the study. Subjects were presented positive, negative and neutral pictures. Memory recall occurred about 30 minutes after viewing the pictures. Children with CAH showed memory deficits for negative pictures compared to healthy children (p < 0.01). There were no group differences on memory performance for either positive or neutral pictures (p’s >0.1). In patients, 24h urinary-free cortisol levels (reflecting glucocorticoid replacement therapy) and testosterone levels were not associated with memory performance. These findings suggest that early steroid imbalances affect memory for negative material in children with CAH. Such memory impairments may result from abnormal brain organization and function following hormonal dysfunction during critical periods of development. PMID:18162329

  19. Selective deficits in cognition and memory in high-functioning parkinsonian patients.

    PubMed

    Mohr, E; Juncos, J; Cox, C; Litvan, I; Fedio, P; Chase, T N

    1990-07-01

    To evaluate the profile and extent of cognitive deficits in Parkinson's disease, afflicted patients of exceptional professional distinction, who continue to function successfully in leadership positions, were compared neuropsychologically to neurologically normal individuals, matched for sex, age, education and professional standing. While patients showed relative preservation of verbal skills and higher executive function, they exhibited a significant reduction in episodic memory and visuospatial function. The observation of circumscribed impairment in this select group of Parkinsonian patients further implicates cognitive and memory deficits as consistent features of Parkinson's disease. PMID:2391526

  20. Entorhinal cortex disruption causes memory deficit in early Alzheimer's disease as shown by PET.

    PubMed

    Eustache, F; Desgranges, B; Giffard, B; de la Sayette, V; Baron, J C

    2001-03-26

    Voxel-based mapping of the correlations between cognitive scores and resting-state brain glucose utilization measured by PET has recently emerged as a novel way to reveal in living patients with Alzheimer's disease (AD) the neural systems whose disruption underlies particular neuropsychological, especially mnemonic, deficits. We have now applied this approach using a novel cognitive paradigm designed to selectively assess verbal episodic memory, and show that in early AD disruption of the left entorhinal cortex underlies this memory deficit, consistent with post mortem data showing that this brain area is affected earliest and most severely by tau pathology in AD.

  1. Verbal memory deficits in children with less than 750 g birth weight.

    PubMed

    Taylor, G H; Klein, N M; Minich, N M; Hack, M

    2000-03-01

    Numerous studies have documented memory deficits in very low birthweight (VLBW, < 1500 g) children, yet we know little about the nature of these memory problems. To clarify memory sequelae and examine memory deficits in relation to the degree of low birth weight, we administered the California Verbal Learning Test-Children's Version (CVLT-C) to a regional sample of 57 < 750 g birthweight children and to groups of 53 750-1499 g birthweight children and 49 term-born controls. Group comparisons revealed significant differences between the < 750 g birthweight group and term-born children on measures of list learning, delayed recall, and inaccurate recall. In addition, the percentage improvement in correct recognitions relative to long-term delayed recall was greater in the < 750 g group than in the term-born controls. Similar differences were observed between VLBW children with and without abnormal neonatal cerebral ultrasounds (high- and low-risk groups). Differences in learning rate between the VLBW and term-born groups, and between high- and low-risk VLBW children, were evident even when vocabulary skill was covaried or when children with neurosensory deficits or IQ < 80 were excluded from analysis. The findings document deficits in verbal memory in the subset of VLBW children at greatest biological risk, and suggest that acquisition processes are selectively impaired.

  2. Physical exercise can reverse the deficit in fear memory induced by maternal deprivation.

    PubMed

    Mello, Pâmela Billig; Benetti, Fernando; Cammarota, Martín; Izquierdo, Iván

    2009-10-01

    Maternal deprivation during the first 10 days of life induces significant behavioral alterations in rodents which persist through adulthood. Physical exercise reduces the cognitive deficits associated with pharmacologic and pathological conditions. Here we investigated whether forced physical exercise alters memory deficits caused by postnatal maternal deprivation. Male rats were divided into four groups: (1) control, (2) deprived, (3) exercised, and (4) deprived+exercised. In groups 2 and 4, pups were deprived from their mothers for 3h/day during the first 10 days post-birth. In groups 3 and 4, from postnatal day 45 (PND-45) on, animals were submitted to forced treadmill exercise. At adulthood, animals were submitted to four different behavioral tasks: open field, Morris water maze (MWM), object recognition (OR) and inhibitory avoidance (IA). Maternal deprivation had no effect on open field behavior, but disrupted memory in the three other tasks. Physical exercise alone had no effect, except for a slight enhancement of MWM learning. Importantly, physical exercise reversed the deficit of IA and reduced the deficit of spatial memory but not that of OR seen in deprived animals. It is possible that physical exercise may counteract the influence of maternal deprivation on neurohumoral or hormonal memory modulatory systems related to stress. Indeed, the decreasing order of the effect of exercise on the memory disturbances induced by deprivation roughly follows the descending degree of stress associated with each task (IA>MWM>OR). Maternal deprivation is known to hinder hormonal mechanisms involved in coping with stress.

  3. Sequences assessed by declarative and procedural tests of memory in amnesic patients with hippocampal damage.

    PubMed

    Hopkins, Ramona O; Waldram, Kellie; Kesner, Raymond P

    2004-01-01

    Previous research indicates that amnesic subjects tested on sequential learning or serial reaction time tasks can learn a repeated procedural sequence but are unable to explicitly recall the correct sequence when asked to generate the sequence. Rats with hippocampal lesions are also able to learn and remember procedural or implicit sequences but were impaired for declarative sequences. We used analogous procedures used in rats to assess the role of the hippocampus in the acquisition of declarative and procedural sequences in amnesic and control participants. Amnesic participants with damage restricted to the hippocampus and control participants were administered analogous tasks of declarative and procedural sequential learning using a computer version of the radial arm maze. The amnesic participants had slower response times during the acquisition of procedural sequences, but were not impaired compared to controls when switched to a random sequence, suggesting that both groups learned the sequence. Alternatively, the amnesic but not control participants were significantly impaired in the declarative sequence task. Our findings provide support for evolutionary continuity in cognitive function of the hippocampus in rats and humans and the dissociation between the declarative and procedural sequential learning. The performance differences on the two sequence learning tasks are likely due to the use of different strategies associated with learning sequences based on procedural versus declarative knowledge.

  4. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    PubMed

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  5. Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    PubMed Central

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-01

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572

  6. Radiation-induced bilateral cystic temporal lobe necrosis: Reversal of memory deficit after fenestration and internal shunting. Case report

    SciTech Connect

    Bederson, J.B.; Harsh GR 4; Walker, J.A.; Wilson, C.B. )

    1990-03-01

    The authors report a case in which bilateral cystic temporal lobe necrosis developed after treatment of nasopharyngeal lymphoepithelioma with 7000 cGy of external beam radiation. The patient presented with an isolated memory deficit that was documented by neuropsychological testing. After fenestration and internal shunting of both cysts, there was striking resolution of the lesions and of the memory deficit.

  7. Association between Early Attention-Deficit/Hyperactivity Symptoms and Current Verbal and Visuo-Spatial Short-Term Memory

    ERIC Educational Resources Information Center

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…

  8. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    PubMed

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  9. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers

    PubMed Central

    Swartzwelder, H. Scott; Acheson, Shawn K.; Miller, Kelsey M.; Sexton, Hannah G.; Liu, Wen; Crews, Fulton T.; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE. PMID:26529506

  10. Higher body mass index is associated with episodic memory deficits in young adults

    PubMed Central

    Cheke, Lucy G.; Simons, Jon S.; Clayton, Nicola S.

    2016-01-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18–35 years, with BMIs ranging from 18 to 51, were tested on a novel what–where–when style episodic memory test: the “Treasure-Hunt Task”. This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what–where–when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation. PMID:26447832

  11. Higher body mass index is associated with episodic memory deficits in young adults.

    PubMed

    Cheke, Lucy G; Simons, Jon S; Clayton, Nicola S

    2016-11-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18-35 years, with BMIs ranging from 18 to 51, were tested on a novel what-where-when style episodic memory test: the "Treasure-Hunt Task". This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what-where-when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation. PMID:26447832

  12. Down Syndrome and Short-Term Memory Impairment: A Storage or Retrieval Deficit?

    ERIC Educational Resources Information Center

    Adler, Sol; McDade, Hiram L.

    1980-01-01

    Three groups of eight Ss (Down's syndrome, CA control, and MA control) received a battery of tests to assess recall and recognition memory using either auditory or visual input with verbal and nonverbal responses. Results indicated that the Down's syndrome group possessed deficits in both storage and retrieval abilities, with storage of visually…

  13. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  14. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  15. The Nature of Episodic Memory Deficits in MCI with and without Vascular Burden

    ERIC Educational Resources Information Center

    Villeneuve, Sylvia; Massoud, Fadi; Bocti, Christian; Gauthier, Serge; Belleville, Sylvie

    2011-01-01

    This study measured episodic memory deficits in individuals with mild cognitive impairment (MCI) as a function of their vascular burden. Vascular burden was determined clinically by computing the number of vascular risk factors and diseases and neuroradiologically by assessing the presence and severity of white matter lesions (WML). Strategic…

  16. Functional Deficits in Phonological Working Memory in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus

    2011-01-01

    Recent studies indicate that children with intellectual disabilities have functional limitations primarily in the phonological loop of working memory (Baddeley, 1986). These findings are indicative of a specific structural deficit. Building on this research, the present study examines whether it is possible to identify specific phonological…

  17. Memory in Early Onset Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder: Similarities and Differences

    ERIC Educational Resources Information Center

    Udal, Anne H.; Oygarden, Bjorg; Egeland, Jens; Malt, Ulrik F.; Groholt, Berit

    2012-01-01

    Differentiating between early-onset bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) can be difficult. Memory problems are commonly reported in BD, and forgetfulness is among the diagnostic criteria for ADHD. We compared children and adolescents with BD (n = 23), ADHD combined type (ADHD-C; n = 26), BD + ADHD-C (n = 15),…

  18. Congenital Amusia: A Short-Term Memory Deficit for Non-Verbal, but Not Verbal Sounds

    ERIC Educational Resources Information Center

    Tillmann, Barbara; Schulze, Katrin; Foxton, Jessica M.

    2009-01-01

    Congenital amusia refers to a lifelong disorder of music processing and is linked to pitch-processing deficits. The present study investigated congenital amusics' short-term memory for tones, musical timbres and words. Sequences of five events (tones, timbres or words) were presented in pairs and participants had to indicate whether the sequences…

  19. The Deficit Profile of Working Memory, Inhibition, and Updating in Chinese Children with Reading Difficulties

    ERIC Educational Resources Information Center

    Peng, Peng; Sha, Tao; Li, Beilei

    2013-01-01

    This study investigated executive function deficits among Chinese children with reading difficulties. Verbal and numerical measures of working memory, inhibition, updating, and processing speed were examined among children with only reading difficulties (RD), children with reading and mathematics difficulties (RDMD), and typically developing peers…

  20. Speech Perception and Short-Term Memory Deficits in Persistent Developmental Speech Disorder

    ERIC Educational Resources Information Center

    Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.

    2006-01-01

    Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech…

  1. Naringin and Rutin Alleviates Episodic Memory Deficits in Two Differentially Challenged Object Recognition Tasks

    PubMed Central

    Ramalingayya, Grandhi Venkata; Nampoothiri, Madhavan; Nayak, Pawan G.; Kishore, Anoop; Shenoy, Rekha R.; Mallikarjuna Rao, Chamallamudi; Nandakumar, Krishnadas

    2016-01-01

    Background: Cognitive decline or dementia is a debilitating problem of neurological disorders such as Alzheimer's and Parkinson's disease, including special conditions like chemobrain. Dietary flavonoids proved to be efficacious in delaying the incidence of neurodegenerative diseases. Two such flavonoids, naringin (NAR) and rutin (RUT) were reported to have neuroprotective potential with beneficial effects on spatial and emotional memories in particular. However, the efficacy of these flavonoids is poorly understood on episodic memory, which comprises an important form of autobiographical memory. Objective: This study objective is to evaluate NAR and RUT to reverse time-delay-induced long-term and scopolamine-induced short-term episodic memory deficits in Wistar rats. Materials and Methods: We have evaluated both short-term and long-term episodic memory forms using novel object recognition task. Open field paradigm was used to assess locomotor activity for any confounding influence on memory assessment. Donepezil was used as positive control and was effective in both models at 1 mg/kg, i.p. Results: Animals treated with NAR and RUT at 50 and 100 mg/kg, p.o. spent significantly more time exploring novel object compared to familiar one, whereas control animals spent almost equal time with both objects in choice trial. NAR and RUT dose-dependently increased recognition and discriminative indices in time-induced long-term as well as scopolamine-induced short-term episodic memory deficit models without interfering with the locomotor activity. Conclusion: We conclude that, NAR and RUT averted both short- and long-term episodic memory deficits in Wistar rats, which may be potential interventions for neurodegenerative diseases as well as chemobrain condition. SUMMARY Incidence of Alzheimer's disease is increasing globally and the current therapy is only symptomatic. Curative treatment is a major lacuna. NAR and RUT are natural flavonoids proven for their pleiotropic

  2. Working Memory Deficits in Children with Specific Learning Disorders

    ERIC Educational Resources Information Center

    Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus

    2008-01-01

    This article examines working memory functioning in children with specific developmental disorders of scholastic skills as defined by ICD-10. Ninety-seven second to fourth graders with a minimum IQ of 80 are compared using a 2 x 2 factorial (dyscalculia vs. no dyscalculia; dyslexia vs. no dyslexia) design. An extensive test battery assesses the…

  3. Working Memory Compensates for Hearing Related Phonological Processing Deficit

    ERIC Educational Resources Information Center

    Classon, Elisabet; Rudner, Mary; Ronnberg, Jerker

    2013-01-01

    Acquired hearing impairment is associated with gradually declining phonological representations. According to the Ease of Language Understanding (ELU) model, poorly defined representations lead to mismatch in phonologically challenging tasks. To resolve the mismatch, reliance on working memory capacity (WMC) increases. This study investigated…

  4. Reversing roles: a cognitive strategy for undoing memory deficits associated with token status.

    PubMed

    Saenz, D S; Lord, C G

    1989-05-01

    Tested whether having tokens (Ts) adopt the role of judge reduces cognitive deficits; examined several hypotheses to explain these deficits. In 3 experiments, Ss were asked to remember as many as possible of opinions exchanged in a group interaction with 3 actors. Experiment 1 demonstrated that judging majority members helped gender Ts improve their memory and ruled out self-denigration as a mediator of token deficits. Experiment 2 indicated that judging others was effective regardless of whether the others were said to know about it or not, ruling out insulation from evaluative scrutiny as a viable mediator for the judge role. Experiment 3 suggested the judge role restores completely the Ts, cognitive capacities and ruled out heightened responsibility as an explanation for the improved memory of judges. This work suggests that Ts may perform better if they can restructure cognitively their social environments.

  5. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    PubMed

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate. PMID:24293006

  6. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    PubMed

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.

  7. Silibinin ameliorates LPS-induced memory deficits in experimental animals.

    PubMed

    Joshi, Ritu; Garabadu, Debapriya; Teja, Gangineni Ravi; Krishnamurthy, Sairam

    2014-12-01

    Neuroinflammation is considered as one of the predisposing factor in the etiology of several neurodegenerative disorders. Therefore, the objective of the present study was to evaluate the protective effect of silibinin (SIL) in the lipopolysaccharide (LPS)-induced neuroinflammatory model. The effect of SIL on memory function was also evaluated on normal rats without LPS administration. In the first experiment, male rats were divided into five groups. Except control group animals, all rats received bilateral intracerebroventricular injection of LPS (5 μg/5 μl) into lateral ventricles on the first day of the experimental schedule. Control rats received bilateral intracerebroventricular injection of artificial cerebrospinal fluid into lateral ventricles. SIL in doses of 50, 100 and 200 mg/kg, p.o. was administered 1h before LPS injection and continued for 7 days. On Day-7, SIL attenuated the LPS-induced long-term and working memory loss in elevated plus and Y-maze test respectively. Further, SIL dose-dependently attenuated LPS-induced decrease in acetylcholine level and increase in the acetylcholinestrase activity in hippocampus and pre-frontal cortex. SIL ameliorated LPS-induced decrease in the mitochondrial complex activity (I, IV and V) and integrity, increase in lipid peroxidation and decrease in the activity of superoxide dismutase in both the brain regions. SIL attenuated amyloidogenesis in the hippocampus, while it decreased the LPS-induced increase in the level of NFκB in the pre-frontal cortex. In another study, SIL dose-dependently, enhanced memory functions in the normal rats, indicating its nootropic activity. Hence, SIL could be a potential candidate in the management of neuroinflammation-related memory disorders.

  8. Caffeic acid protects mice from memory deficits induced by focal cerebral ischemia.

    PubMed

    Pinheiro Fernandes, Francisco Diego; Fontenele Menezes, Ana Paula; de Sousa Neves, Julliana Catharina; Fonteles, Analu Aragão; da Silva, Ana Thais Araújo; de Araújo Rodrigues, Patrícia; Santos do Carmo, Marta Regina; de Souza, Carolina Melo; de Andrade, Geanne Matos

    2014-10-01

    Brain ischemia pathophysiology involves a complex cascade of events such as inflammation and oxidative stress that lead to neuronal loss and cognitive deficits. Caffeic acid (CA) is a natural phenolic compound with antioxidant and anti-inflammatory properties. To evaluate the neuroprotective efficacy of this compound in mice subjected to a permanent middle cerebral artery occlusion, animals were pretreated and post-treated with CA, 2, 20, and 60 mg/kg/day, intraperitoneally, at 24, 48, 72, 96, or 120 h after ischemia. Animals were evaluated at 24 h after the permanent middle cerebral artery occlusion for brain infarction and neurological deficit score. At 72 h after the occlusion, animals were evaluated for locomotor activity, working memory, and short-term aversive memory; long-term aversive memory was evaluated 24 h after the evaluation of short-term aversive memory. Finally, at 120 h after the event, spatial memory and the expression levels of synaptophysin (SYP), SNAP-25, and caspase 3 were evaluated. The treatment with CA reduced the infarcted area and improved neurological deficit scores. There was no difference in locomotor activity between groups. The working, spatial, and long-term aversive memory deficits improved with CA. Furthermore, western blotting data showed that the expression of SYP, which correlates with synaptic formation and function, decreased after ischemic insult, and CA inhibited the reduction of SYP expression. Ischemia also increased, and CA treatment decreased, caspase 3 expression. These results suggest that CA exerts neuroprotective and antidementia effects, at least in part, by preventing the loss of neural cells and synapses in ischemic brain injury. PMID:25171077

  9. Declarative and Procedural Memory as Individual Differences in Second Language Acquisition

    ERIC Educational Resources Information Center

    Morgan-Short, Kara; Faretta-Stutenberg, Mandy; Brill-Schuetz, Katherine A.; Carpenter, Helen; Wong, Patrick C. M.

    2014-01-01

    This study examined how individual differences in cognitive abilities account for variance in the attainment level of adult second language (L2) syntactic development. Participants completed assessments of declarative and procedural learning abilities. They subsequently learned an artificial L2 under implicit training conditions and received…

  10. [Verbal short-term memory deficit in Alzheimer's disease: an examination with the free recall paradigm].

    PubMed

    Yamashita, H

    1998-02-01

    To examine the relationship between short-term memory deficit and severity of the dementia in Alzheimer's disease, free recall of word lists was investigated. Twenty-seven patients with diagnosis of probable Alzheimer's disease according to NINCDS ADRDA criteria, and twelve age-matched controls participated in the study. Patients were divided into two subgroups: fourteen mild and thirteen moderate dementia by Clinical Dementia Rating (CDR). To evaluate short-term and long-term memory components separately, two measures were used: recency effect in the serial-position free-recall curve, and intra-trial retention interval developed by Tulving and Colotla (1970). Mildly demented patients showed a long-term memory deficit with almost normal short-term memory, but moderate ones showed an overall reduction in both measures. These results suggest that memory disorder in Alzheimer's disease changes not only quantitatively but also qualitatively with the progress of dementia, and short-term memory is relatively preserved in the early stage of the disease.

  11. Testosterone reverses ethanol-induced deficit in spatial reference memory in castrated rats.

    PubMed

    Khalil, Rafaat; King, Michael A; Soliman, Magdi R I

    2005-10-01

    The present study was designed to evaluate the effects of ethanol, testosterone and combination of ethanol and testosterone, on spatial reference memory and beta-endorphin (beta-EN) levels in castrated rats. Male Sprague-Dawley rats (120-150 g) were used in this study, Animals were castrated and ethanol, testosterone or combination of the drugs were administered to rats at 09:00 h. The drugs were administered after a training period of 5 days and spatial reference memory was evaluated for 7 days using the Morris water maze. One hour after the last injection, animals were sacrificed, their brains removed and dissected into cortex, hypothalamus, hippocampus and midbrain. The beta-EN levels in these brain regions were determined by radioimmunoassay. The time to find the platform (latency period) was significantly increased in ethanol-treated rats, indicating that ethanol induces deficit in spatial reference memory. On the other hand, testosterone administration improved spatial reference memory by significantly decreasing the latency period. In addition, there was a significant decrease in latency period in the animals treated with combination of ethanol and testosterone. Results also indicate that administration of ethanol resulted in a significant increase in beta-EN levels in the hippocampus and in the cortex while concurrent administration with testosterone abolished this increase. These findings clearly indicate that administration of testosterone did not only improve memory but also abolished the spatial memory deficit induced by ethanol in castrated rats.

  12. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  13. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice

    PubMed Central

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients. PMID:26383267

  14. Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control

    PubMed Central

    Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.

    2011-01-01

    Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105

  15. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba.

  16. Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders.

    PubMed

    Romero-Munguía, Miguel Ángel

    2013-01-01

    Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks.

  17. Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function

    PubMed Central

    Allen, Corinne M.; Martin, Randi C.; Martin, Nadine

    2012-01-01

    Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889

  18. Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders

    PubMed Central

    Romero-Munguía, Miguel Ángel

    2013-01-01

    Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks. PMID:23862063

  19. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba. PMID:24081631

  20. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult.

    PubMed

    O'Reilly, Kally C; Perica, Maria I; Fenton, André A

    2016-10-01

    Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM

  1. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult.

    PubMed

    O'Reilly, Kally C; Perica, Maria I; Fenton, André A

    2016-10-01

    Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM

  2. Visual short-term memory binding deficit in familial Alzheimer's disease.

    PubMed

    Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M; Henley, Susie M D; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C; Husain, Masud

    2016-05-01

    Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers - who performed similarly to healthy controls on standard neuropsychological tests - had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore

  3. Visual short-term memory binding deficit in familial Alzheimer's disease.

    PubMed

    Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M; Henley, Susie M D; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C; Husain, Masud

    2016-05-01

    Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers - who performed similarly to healthy controls on standard neuropsychological tests - had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore

  4. Visual short-term memory binding deficit in familial Alzheimer's disease

    PubMed Central

    Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M.; Henley, Susie M.D.; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C.; Husain, Masud

    2016-01-01

    Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers – who performed similarly to healthy controls on standard neuropsychological tests – had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may

  5. Theory of mind and verbal working memory deficits in parents of autistic children.

    PubMed

    Gokcen, Sezen; Bora, Emre; Erermis, Serpil; Kesikci, Hande; Aydin, Cahide

    2009-03-31

    The objective of this study was to investigate the potential values of executive function and social cognition deficits as endophenotypes of autism. While theory of mind (ToM) is generally accepted as a unitary concept, some have suggested that ToM may be separated into two components (mental state reasoning and decoding). In this study, both aspects of ToM and verbal working memory abilities were investigated with relatively demanding tasks. The authors used a neurocognitive battery to compare the executive function and social cognition skills of 76 parents of autistic probands with 41 parents of healthy children. Both groups were matched for IQ, age and gender. Index parents had verbal working memory deficits. They had also low performance on a mental state reasoning task. Index parents had difficulties in reasoning about others' emotions. In contrast to findings in the control group, low performance of mental state reasoning ability was not associated with working memory deficit in index parents. Social cognition and working memory impairments may represent potential endophenotypes, related to an underlying vulnerability for autistic spectrum disorders.

  6. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  7. Deficits in egocentric-updating and spatial context memory in a case of developmental amnesia.

    PubMed

    Gomez, A; Rousset, S; Bonniot, C; Charnallet, A; Moreaud, O

    2015-01-01

    Patients with developmental amnesia usually suffer from both episodic and spatial memory deficits. DM, a developmental amnesic, was impaired in her ability to process self-motion (i.e., idiothetic) information while her ability to process external stable landmarks (i.e., allothetic) was preserved when no self-motion processing was required. On a naturalistic and incidental episodic task, DM was severely and predictably impaired on both free and cued recall tasks. Interestingly, when cued, she was more impaired at recalling spatial context than factual or temporal information. Theoretical implications of that co-occurrence of deficits and those dissociations are discussed and testable cerebral hypothesis are proposed. PMID:24579921

  8. Is there a binding deficit in working memory in patients with schizophrenia? A meta-analysis.

    PubMed

    Grot, Stéphanie; Potvin, Stéphane; Luck, David

    2014-09-01

    In schizophrenia (SZ), a specific binding deficit in working memory (WM) has not yet been demonstrated, given that studies with various methodologies were conducted and the results obtained were heterogeneous. Thus, a meta-analysis of 10 WM studies was performed. Effect sizes were calculated for binding and control conditions. Analyses disclosed significantly lower scores in SZ patients relative to controls for both binding and control conditions. In addition, analyses revealed no greater impairments for the binding condition than for the control condition in SZ patients. Our meta-analysis suggests that there is no specific deficit of binding in WM in SZ.

  9. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze.

    PubMed

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S F; Serrano, Peter A

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600

  10. Age differences in brain activity related to unsuccessful declarative memory retrieval.

    PubMed

    Grady, Cheryl L; St-Laurent, Marie; Burianová, Hana

    2015-07-01

    Although memory recall is known to be reduced with normal aging, little is known about the patterns of brain activity that accompany these recall failures. By assessing faulty memory, we can identify the brain regions engaged during retrieval attempts in the absence of successful memory and determine the impact of aging on this functional activity. We used functional magnetic resonance imaging to examine age differences in brain activity associated with memory failure in three memory retrieval tasks: autobiographical (AM), episodic (EM) and semantic (SM). Compared to successful memory retrieval, both age groups showed more activity when they failed to recall a memory in regions consistent with the salience network (SLN), a brain network also associated with non-memory errors. Both groups also showed strong functional coupling among SLN regions during incorrect trials and in intrinsic patterns of functional connectivity. In comparison to young adults, older adults demonstrated (1) less activity within the SLN during unsuccessful AM trials; (2) weaker intrinsic functional connectivity between SLN nodes and dorsolateral prefrontal cortex; and (3) less differentiation of SLN functional connectivity during incorrect trials across memory conditions. These results suggest that the SLN is engaged during recall failures, as it is for non-memory errors, which may be because errors in general have particular salience for adapting behavior. In older adults, the dedifferentiation of functional connectivity within the SLN across memory conditions and the reduction of functional coupling between it and prefrontal cortex may indicate poorer inter-network communication and less flexible use of cognitive control processes, either while retrieval is attempted or when monitoring takes place after retrieval has failed. This article is part of a Special Issue entitled SI: Memory & Aging.

  11. Auraptene consolidates memory, reverses scopolamine-disrupted memory in passive avoidance task, and ameliorates retention deficits in mice

    PubMed Central

    Tabrizian, Kaveh; Yaghoobi, Najmeh Sadat; Iranshahi, Mehrdad; Shahraki, Jafar; Rezaee, Ramin; Hashemzaei, Mahmoud

    2015-01-01

    Objective(s): Auraptene (7-geranyloxycoumarin) (AUR), from Citrus species has shown anti-inflammatory, neuroprotective, and acetylcholinesterase (AChE) and beta-secretase inhibitory effects. Scopolamine is a nonselective muscarinic receptor antagonist which causes short-term memory impairments and is used for inducing animal model of Alzheimer’s disease (AD). This research aimed to investigate the effect of AUR on scopolamine-induced avoidance memory retention deficits in step-through task in mice. Materials and Methods: The effect of four-day pre-training injections of AUR (50, 75, and 100 mg/kg, subcutaneous (SC)) and scopolamine (1 mg/kg, IP), and their co-administration on avoidance memory retention in step-through passive avoidance task, was investigated by measuring the latency to enter to the dark chamber. Results: Pre-training administration of AUR caused significant increase in step-through latency in comparison with control group, 48, 96, and 168 hr after training trial. The findings of this study showed that scopolamine (1 mg/kg, IP, for four consecutive days) impaired passive avoidance memory retention compared to saline-treated animals. Step-through passive avoidance task results showed that AUR markedly reversed scopolamine-induced avoidance memory retention impairments, 24 and 168 hr after training trial in step-through task. Conclusion: Results from co-administration of AUR and scopolamine showed that AUR reversed scopolamine-induced passive avoidance memory retention impairments. PMID:26730337

  12. A cognitive psychometric model for the psychodiagnostic assessment of memory-related deficits.

    PubMed

    Alexander, Gregory E; Satalich, Timothy A; Shankle, W Rodman; Batchelder, William H

    2016-03-01

    Clinical tests used for psychodiagnostic purposes, such as the well-known Alzheimer's Disease Assessment Scale: Cognitive subscale (ADAS-Cog), include a free-recall task. The free-recall task taps into latent cognitive processes associated with learning and memory components of human cognition, any of which might be impaired with the progression of Alzheimer's disease (AD). A Hidden Markov model of free recall is developed to measure latent cognitive processes used during the free-recall task. In return, these cognitive measurements give us insight into the degree to which normal cognitive functions are differentially impaired by medical conditions, such as AD and related disorders. The model is used to analyze the free-recall data obtained from healthy elderly participants, participants diagnosed as having mild cognitive impairment, and participants diagnosed with early AD. The model is specified hierarchically to handle item differences because of the serial position curve in free recall, as well as within-group individual differences in participants' recall abilities. Bayesian hierarchical inference is used to estimate the model. The model analysis suggests that the impaired patients have the following: (1) long-term memory encoding deficits, (2) short-term memory (STM) retrieval deficits for all but very short time intervals, (3) poorer transfer into long-term memory for items successfully retrieved from STM, and (4) poorer retention of items encoded into long-term memory after longer delays. Yet, impaired patients appear to have no deficit in immediate recall of encoded words in long-term memory or for very short time intervals in STM.

  13. Exposure to Kynurenic Acid During Adolescence Produces Memory Deficits in Adulthood

    PubMed Central

    Akagbosu, Cynthia O.; Evans, Gretchen C.; Gulick, Danielle; Suckow, Raymond F.; Bucci, David J.

    2012-01-01

    The glia-derived molecule kynurenic acid (KYNA) is an antagonist of α7 nicotinic acetylcholine receptors and the glycineB binding site on n-methyl-d-aspartateglutamate receptors, both of which have critical roles in neural plasticity as well as learning and memory. KYNA levels are increased in the brains and cerebral spinal fluid of persons with schizophrenia, leading to the notion that changes in KYNA concentration might contribute to cognitive dysfunction associated with this disorder. Indeed, recent studies indicate that increasing endogenous KYNA concentration by administering l-kynurenine (L-KYN, the precursor of KYNA) impairs spatial as well as contextual learning and memory in adult rats. In the present study, rats were treated with L-KYN (100 mg/kg) throughout adolescence to increase endogenous KYNA concentration during this critical time in brain development. Rats were then tested drug-free as adults to test the hypothesis that exposure to elevated levels of KYNA during development may contribute to cognitive dysfunction later in life. Consistent with prior studies in which adult rats were treated acutely with L-KYN, juvenile rats exposed to increased KYNA concentration during adolescence exhibited deficits in contextual fear memory, but cue-specific fear memory was not impaired. In addition, rats treated with L-KYN as adolescents were impaired on a novel object recognition memory task when tested as adults. The memory deficits could not be explained by drug-induced changes in locomotor activity or shock sensitivity. Together, these findings add to the growing literature supporting the notion that exposure to increased concentration of KYNA may contribute to cognitive deficits typically observed in schizophrenia. PMID:21172906

  14. Antioxidant vitamins reduce acute meal-induced memory deficits in adults with type 2 diabetes.

    PubMed

    Chui, Michael Herman; Greenwood, Carol E

    2008-07-01

    Memory impairment is observed in adults with type 2 diabetes mellitus (T2DM), with further acute deficits after meal ingestion. This study explored whether postprandial oxidative stress was a contributor to these meal-induced memory deficits. Sixteen adults with T2DM (mean age, 63.5 +/- 2.1 years) who were not regularly taking high-dose antioxidant supplements were fed a high-fat meal, the same test meal with vitamins C (1000 mg) and E (800 IU) tablets, or water on 3 separate occasions. After meal ingestion, a battery of cognitive tests were administered, which included measures of delayed verbal memory, assessed at 60 and 105 minutes after meal ingestion. Relative to water consumption, the high-fat meal resulted in poorer performance at 105 minutes postingestion on measures of delayed verbal recall (word list and paragraph recall) and working memory (Digit-Span Forward). Coconsumption of antioxidant vitamins and high-fat meal prevented this meal-induced deficit such that performance on these tasks was indistinguishable from that after water intake. At the same time point, a small but significant improvement on the word-naming and color-naming components of Stroop was observed after meal ingestion, relative to water, irrespective of whether antioxidants were consumed, demonstrating the specificity of meal-induced impairments to memory function. Executive function, assessed by Trails Parts A and B, was not influenced by meal or antioxidant ingestion. In adults with T2DM, coconsumption of antioxidant vitamins minimizes meal-induced memory impairment, implicating oxidative stress as a potential contributor to these decrements. PMID:19083441

  15. Declarative verbal memory impairments in middle-aged women who are caregivers of offspring with autism spectrum disorders: The role of negative affect and testosterone.

    PubMed

    Romero-Martínez, A; González-Bono, E; Salvador, A; Moya-Albiol, L

    2016-01-01

    Caring for offspring diagnosed with a chronic psychological disorder such as autism spectrum disorder (ASD) is used in research as a model of chronic stress. This chronic stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory. Moreover, such cognitive decline may be mediated by testosterone (T) levels and negative affect, understood as depressive mood together with high anxiety and anger. This study aimed to compare declarative memory function in middle-aged women who were caregivers for individuals with ASD (n = 24; mean age = 45) and female controls (n = 22; mean age = 45), using a standardised memory test (Rey's Auditory Verbal Learning Test). It also sought to examine the role of care recipient characteristics, negative mood and T levels in memory impairments. ASD caregivers were highly sensitive to proactive interference and verbal forgetting. In addition, they had higher negative affect and T levels, both of which have been associated with poorer verbal memory performance. Moreover, the number of years of caregiving affected memory performance and negative affect, especially, in terms of anger feelings. On the other hand, T levels in caregivers had a curvilinear relationship with verbal memory performance; that is, increases in T were associated with improvements in verbal memory performance up to a certain point, but subsequently, memory performance decreased with increasing T. Chronic stress may produce disturbances in mood and hormonal levels, which in turn might increase the likelihood of developing declarative memory impairments although caregivers do not show a generalised decline in memory. These findings should be taken into account for understanding the impact of cognitive impairments on the ability to provide optimal caregiving.

  16. Declarative verbal memory impairments in middle-aged women who are caregivers of offspring with autism spectrum disorders: The role of negative affect and testosterone.

    PubMed

    Romero-Martínez, A; González-Bono, E; Salvador, A; Moya-Albiol, L

    2016-01-01

    Caring for offspring diagnosed with a chronic psychological disorder such as autism spectrum disorder (ASD) is used in research as a model of chronic stress. This chronic stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory. Moreover, such cognitive decline may be mediated by testosterone (T) levels and negative affect, understood as depressive mood together with high anxiety and anger. This study aimed to compare declarative memory function in middle-aged women who were caregivers for individuals with ASD (n = 24; mean age = 45) and female controls (n = 22; mean age = 45), using a standardised memory test (Rey's Auditory Verbal Learning Test). It also sought to examine the role of care recipient characteristics, negative mood and T levels in memory impairments. ASD caregivers were highly sensitive to proactive interference and verbal forgetting. In addition, they had higher negative affect and T levels, both of which have been associated with poorer verbal memory performance. Moreover, the number of years of caregiving affected memory performance and negative affect, especially, in terms of anger feelings. On the other hand, T levels in caregivers had a curvilinear relationship with verbal memory performance; that is, increases in T were associated with improvements in verbal memory performance up to a certain point, but subsequently, memory performance decreased with increasing T. Chronic stress may produce disturbances in mood and hormonal levels, which in turn might increase the likelihood of developing declarative memory impairments although caregivers do not show a generalised decline in memory. These findings should be taken into account for understanding the impact of cognitive impairments on the ability to provide optimal caregiving. PMID:25915711

  17. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  18. Age Differences in Brain Activity Related to Unsuccessful Declarative Memory Retrieval

    PubMed Central

    Grady, Cheryl L.; St-Laurent, Marie; Burianová, Hana

    2016-01-01

    Although memory recall is known to be reduced with normal aging, little is known about the patterns of brain activity that accompany these recall failures. By assessing faulty memory, we can identify the brain regions engaged during retrieval attempts in the absence of successful memory and determine the impact of aging on this functional activity. We used functional magnetic resonance imaging to examine age differences in brain activity associated with memory failure in three memory retrieval tasks: autobiographical (AM), episodic (EM) and semantic (SM). Compared to successful memory retrieval, both age groups showed more activity when they failed to recall a memory in regions consistent with the salience network (SLN), a brain network also associated with non-memory errors. Both groups also showed strong functional coupling among SLN regions during incorrect trials and in intrinsic patterns of functional connectivity. In comparison to young adults, older adults demonstrated (1) less activity within the SLN during unsuccessful AM trials; (2) weaker intrinsic functional connectivity between SLN nodes and dorsolateral prefrontal cortex; and (3) less differentiation of SLN functional connectivity during incorrect trials across memory conditions. These results suggest that the SLN is engaged during recall failures, as it is for non-memory errors, which may be because errors in general have particular salience for adapting behavior. In older adults, the dedifferentiation of functional connectivity within the SLN across memory conditions and the reduction of functional coupling between it and prefrontal cortex may indicate poorer internetwork communication and less flexible use of cognitive control processes, either while retrieval is attempted or when monitoring takes place after retrieval has failed. PMID:25541365

  19. Electroencephalography Correlates of Spatial Working Memory Deficits in Attention-Deficit/Hyperactivity Disorder: Vigilance, Encoding, and Maintenance

    PubMed Central

    Delorme, Arnaud; Walshaw, Patricia D.; Cho, Alex L.; Bilder, Robert M.; McGough, James J.; McCracken, James T.; Makeig, Scott; Loo, Sandra K.

    2014-01-01

    In the current study we sought to dissociate the component processes of working memory (WM) (vigilance, encoding and maintenance) that may be differentially impaired in attention-deficit/ hyperactivity disorder (ADHD). We collected electroencephalographic (EEG) data from 52 children with ADHD and 47 typically developing (TD) children, ages 7–14 years, while they performed a spatial Sternberg working memory task. We used independent component analysis and time-frequency analysis to identify midoccipital alpha (8–12 Hz) to evaluate encoding processes and frontal midline theta (4–7 Hz) to evaluate maintenance processes. We tested for effects of task difficulty and cue processing to evaluate vigilance. Children with ADHD showed attenuated alpha band event-related desynchronization (ERD) during encoding. This effect was more pronounced when task difficulty was low (consistent with impaired vigilance) and was predictive of memory task performance and symptom severity. Correlated with alpha ERD during encoding were alpha power increases during the maintenance period (relative to baseline), suggesting a compensatory effort. Consistent with this interpretation, midfrontal theta power increases during maintenance were stronger in ADHD and in high-load memory conditions. Furthermore, children with ADHD exhibited a maturational lag in development of posterior alpha power whereas age-related changes in frontal theta power deviated from the TD pattern. Last, subjects with ADHD showed age-independent attenuation of evoked responses to warning cues, suggesting low vigilance. Combined, these three EEG measures predicted diagnosis with 70% accuracy. We conclude that the interplay of impaired vigilance and encoding in ADHD may compromise maintenance and lead to impaired WM performance in this group. PMID:24453310

  20. A long-acting cholinesterase inhibitor reverses spatial memory deficits in mice.

    PubMed

    Sweeney, J E; Höhmann, C F; Moran, T H; Coyle, J T

    1988-09-01

    The effects of the long-acting acetylcholinesterase (AChE) inhibitor, galanthamine, on spatial memory were investigated in mice. Mice received ibotenic acid or sham lesions to the nucleus basalis magnocellularis (nBM). Groups of nBM-lesioned and control mice were then trained on a modified Morris swim maze task. Each mouse was first placed on a platform and then into quadrants of the swim tank in a random order. Time required to find the hidden platform was measured. In different phases of testing, the animal had to find a platform that either remained in the same quadrant (reference memory component) or was moved daily (working memory component). The nBM-lesioned mice took significantly longer to find the platform as compared to controls on the working, but not on the reference, memory component of the task. Galanthamine (5.0 mg/kg, IP), given 3.5 hours before testing, improved performance on the working memory task in nBM-lesioned mice by 70% and strikingly impaired performance in controls. Galanthamine's ability to reverse cognitive deficits induced by nBM lesions and its comparatively long half-life suggest that it may be effective in treating the central cholinergic deficits in Alzheimer's disease patients.

  1. Phenylbutyric acid protects against spatial memory deficits in a model of repeated electroconvulsive therapy.

    PubMed

    Yao, Zhao-Hui; Kang, Xiang; Yang, Liu; Niu, Yi; Lu, Ye; Gong, Cheng-Xin; Tian, Qing; Wang, Jian-Zhi

    2014-05-01

    Repeated electroconvulsive therapy (rECT) is widely applied in the treatment of refractory depression. Among the side effects of rECT, memory impairment is noticeable and needs effective protection. In this study, by employing a recognized repeated electroconvulsive shock (rECS) rat model, we found that rECS induced the significant spatial memory retention deficits with the simultaneous decreases in long-term potential (LTP), enhanced excitable postsynaptic potentials (EPSP), population spike (PS) and input/output curve in perforant pathway-dentate gyrus (PP-DG), but had no obvious neuron loss or dentritic spine loss in the brain by Nissle or Golgi stainings. Furthermore, the increased synaptic proteins of NR2A/B, PSD93, PSD95, the immediate early gene c-Fos and CREB protein were detected in hippocampus of rECS rats. rECS was also found to cause enhanced axon reorganization in DG region of hippocampus by Timm staining. Intraperitoneal injection of phenylbutyric acid (PBA), an aromatic short chain fatty acid acting as a molecule chaperon, could prevent rats from the rECS-induced memory deficits and synaptic potential enhancement by decreasing the levels of the abnormally increased memory-associated proteins and enhanced axon reorganization in hippocampus. Our data suggested that PBA might be potentially used to attenuate the rECS-induced memory impairment. PMID:24712645

  2. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    PubMed Central

    Beglopoulos, V.; Tulloch, J.; Roe, A. D.; Daumas, S.; Ferrington, L.; Watson, R.; Fan, Z.; Hyman, B. T.; Kelly, P. A. T.; Bard, F.; Morris, R. G. M.

    2016-01-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. PMID:27249364

  3. Predicting sensorimotor and memory deficits after neonatal ischemic stroke with reperfusion in the rat.

    PubMed

    Bouet, Valentine; Freret, Thomas; Ankri, Steve; Bezault, Madeleine; Renolleau, Sylvain; Boulouard, Michel; Jacotot, Etienne; Chauvier, David; Schumann-Bard, Pascale

    2010-09-01

    Among experimental models of perinatal ischemic stroke, Renolleau's model mimics selected types of stroke at birth, including ischemia and reperfusion. However, its behavioural consequences on development have been poorly described. Here, ischemia-reperfusion was performed in 7-day-old Wistar rats. Between the ages of 9 and 40 days, sensorimotor and memory functions were assessed. The infarcted area was analysed by immunohistochemistry at 40 days of age. The remaining lesion was in the parietal cortex, in the form of a cone-shaped area. This area contained glial cells but neither neurons nor macrophages. Transient focal neonatal ischemia led to sensorimotor alterations in early adulthood, such as postural asymmetry, motor coordination and somatosensory deficits, and hyperactivity, as well as cognitive impairments, such as spatial reference memory deficits. Based on these results, we propose here a selection of behavioural tests that should constitute meaningful tools for assessing sensory and cognitive functions after experimental neonatal ischemic stroke.

  4. Age-Related Deficits in Reality Monitoring of Action Memories

    PubMed Central

    McDaniel, Mark A.; Lyle, Keith B.; Butler, Karin M.; Dornburg, Courtney C.

    2008-01-01

    We describe three theoretical accounts of age-related increases in falsely remembering that imagined actions were performed (Thomas & Bulevich, 2006). To investigate these accounts and further explore age-related changes in reality monitoring of action memories, we used a new paradigm in which actions were (a) imagined-only (b) actually performed, or (c) both imagined and performed. Older adults were more likely than younger adults to misremember the source of imagined-only actions, with older adults’ more often specifying that the action was imagined and also that it was performed. For both age groups, as repetitions of the imagined-only events increased, illusions that the actions were only performed decreased. These patterns suggest that both older and younger adults utilize qualitative characteristics when making reality-monitoring judgments and that repeated imagination produces richer records of both sensory details and cognitive operations. However, sensory information derived from imagination appears to be more similar to that derived from performance for older than younger adults. PMID:18808253

  5. Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation.

    PubMed

    Benetti, Fernando; da Silveira, Clarice Kras Borges; da Silva, Weber Cláudio; Cammarota, Martín; Izquierdo, Iván

    2012-01-01

    Early partial maternal deprivation causes long-lasting neurochemical, behavioral and brain structural effects. In rats, it causes a deficit in memory consolidation visible in adult life. Some of these deficits can be reversed by donepezil and galantamine, which suggests that they may result from an impairment of brain cholinergic transmission. One such deficit, representative of all others, is an impairment of memory consolidation, clearly observable in a one-trial inhibitory avoidance task. Recent data suggest a role of brain histaminergic systems in the regulation of behavior, particularly inhibitory avoidance learning. Here we investigate whether histamine itself, its analog SKF-91844, or various receptor-selective histamine agonists and antagonists given into the CA1 region of the hippocampus immediately post-training can affect retention of one-trial inhibitory avoidance in rats submitted to early postnatal maternal deprivation. We found that histamine, SKF-91844 and the H2 receptor agonist, dimaprit enhance consolidation on their own and reverse the consolidation deficit induced by maternal deprivation. The enhancing effect of histamine was blocked by the H2 receptor antagonist, ranitidine, but not by the H1 receptor antagonist pyrilamine or by the H3 antagonist thioperamide given into CA1 at doses known to have other behavioral actions, without altering locomotor and exploratory activity or the anxiety state of the animals. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may in part be due to an impairment of histamine mediated mechanisms in the CA1 region of the rat hippocampus.

  6. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  7. Short forms of the "reference-" and "working-memory" Morris water maze for assessing age-related deficits.

    PubMed

    Lindner, M D; Balch, A H; VanderMaelen, C P

    1992-09-01

    Short forms of the reference- and working-memory versions of the Morris water maze, each limited to 10 trials, were examined for their reliability and sensitivity to age-related deficits in 16- and 24-month F-344 rats, relative to 2- to 2.5-month young controls. The reference-memory task used long intertrial intervals of 23 h, but required learning only one target location, while the working-memory task used shorter intertrial intervals of 60 min but required learning many different target locations. The reference-memory task was very reliable, revealed large age-related deficits, and correctly identified almost all aged rats as impaired relative to young controls. The working-memory task was less reliable, revealed smaller deficits than the reference memory task at 24 months, and did not discriminate as well between 2.5- and 24-month rats. Furthermore, in the working-memory task 16- and 24-month rats had longer swim paths than 2- to 2.5-month rats on the first trial of each trial pair, which is suggestive of a deficit in processing spatial information and raises questions about the validity of this test as a specific test of working memory. Although the working-memory procedures may be preferable under certain conditions, perhaps as a measure specific to hippocampal dysfunction, the reference-memory task seems more sensitive to age-related deficits and more accurately identifies older rats as impaired. These results are consistent with previous reports that age-related deficits in acquiring spatial learning tasks are common and that the magnitude of the deficit increases as the length of the retention interval increases.

  8. Working memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD): an examination of central executive and storage/rehearsal processes.

    PubMed

    Alderson, R Matt; Hudec, Kristen L; Patros, Connor H G; Kasper, Lisa J

    2013-05-01

    The current study was the first to use a regression approach to examine the unique contributions of central executive (CE) and storage/rehearsal processes to working memory (WM) deficits in adults with ADHD. Thirty-seven adults (ADHD = 21, HC = 16) completed phonological (PH) and visuospatial (VS) working memory tasks. While both groups performed significantly better during the PH task relative to the VS task, adults with ADHD exhibited significant deficits across both working memory modalities. Further, the ADHD group recalled disproportionately fewer PH and VS stimuli as set-size demands increased. Overall, the CE and PH storage/rehearsal processes of adults with ADHD were both significantly impaired relative to those of the healthy control adults; however, the magnitude of the CE effect size was much smaller compared to previous studies of children with the disorder. Collectively, results provide support for a lifelong trajectory of WM deficits in ADHD.

  9. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice.

    PubMed

    Knoferle, Johanna; Yoon, Seo Yeon; Walker, David; Leung, Laura; Gillespie, Anna K; Tong, Leslie M; Bien-Ly, Nga; Huang, Yadong

    2014-10-15

    Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.

  10. Antiretroviral Non-Adherence is Associated With a Retrieval Profile of Deficits in Verbal Episodic Memory.

    PubMed

    Obermeit, Lisa C; Morgan, Erin E; Casaletto, Kaitlin B; Grant, Igor; Woods, Steven Paul

    2015-01-01

    HIV-associated deficits in verbal episodic memory are commonly associated with antiretroviral non-adherence; however, the specific aspects of memory functioning (e.g., encoding, consolidation, or retrieval) that underlie this established relationship are not well understood. This study evaluated verbal memory profiles of 202 HIV+ participants who underwent a 30-day electronic monitoring of antiretroviral adherence. At the group level, non-adherence was significantly associated with lower scores on immediate and delayed passage recall and word list learning. Retention and recognition of passages and word lists were not related to adherence. Participants were then classified as having either a normal verbal memory profile, a "subcortical" retrieval profile (i.e., impaired free recall with relatively spared recognition), or a "cortical" encoding profile (e.g., cued recall intrusions) based on the Massman et al. ( 1990 ) algorithm for the California Verbal Learning Test. HIV+ participants with a classic retrieval deficit had significantly greater odds of being non-adherent than participants with a normal or encoding profile. These findings suggest that adherence to prescribed antiretroviral regimens may be particularly vulnerable to disruption in HIV+ individuals due to deficits in the complex process of efficiently accessing verbal episodic information with minimal cues. A stronger relationship between non-adherence and passage (vs. word list) recall was also found and may reflect the importance of contextual features in remembering to take medications. Targeted interventions for enhancing and supporting episodic memory retrieval processes may improve antiretroviral adherence and overall health outcomes among persons living with HIV. PMID:25781903

  11. Inflammation During Gestation Induced Spatial Memory and Learning Deficits: Attenuated by Physical Exercise in Juvenile Rats

    PubMed Central

    Thangarajan, Rajesh; Rai, Kiranmai. S.; Gopalakrishnan, Sivakumar; Perumal, Vivek

    2015-01-01

    Background Gestational infections induced inflammation (GIII) is a cause of various postnatal neurological deficits in developing countries. Such intra uterine insults could result in persistent learning-memory disabilities. There are no studies elucidating the efficacy of adolescence exercise on spatial learning- memory abilities of young adult rats pre-exposed to inflammatory insult during fetal life. Aims and Objectives The present study addresses the efficacy of physical (running) exercise during adolescent period in attenuating spatial memory deficits induced by exposure to GIII in rats. Materials and Methods Pregnant Wistar dams were randomly divided into control and lipopolysaccharide (LPS) groups, injected intra peritoneally (i.p) with saline (0.5ml) or lipopolysaccharide (LPS) (0.5mg/kg) on alternate days from gestation day 14 (GD 14) till delivery. After parturition, pups were divided into 3 groups (n=6/group) a) Sham control and LPS group divided into 2 subgroups- b) LPS and c) LPS exercise group. Running exercise was given only to LPS exercise group during postnatal days (PNDs) 30 to 60 (15min/day). Spatial learning and memory performance was assessed by Morris water maze test (MWM), on postnatal day 61 to 67 in all groups. Results Young rats pre-exposed to GIII and subjected to running exercise through juvenile period displayed significant decrease in latency to reach escape platform and spent significant duration in target quadrant in MWM test, compared to age matched LPS group. Results of the current study demonstrated that exercise through juvenile/adolescent period effectively mitigates gestational inflammation-induced cognitive deficits in young adult rats. Conclusion Inflammation during gestation impairs offspring’s spatial memory and learning abilities. Whereas, early postnatal physical exercise attenuates, to higher extent, cognitive impairment resulted from exposure to LPS induced inflammation during intrauterine growth period. PMID:26266117

  12. Antiretroviral Non-Adherence is Associated with a Retrieval Profile of Deficits in Verbal Episodic Memory

    PubMed Central

    Obermeit, Lisa C.; Morgan, Erin E.; Casaletto, Kaitlin B.; Grant, Igor; Woods, Steven Paul

    2015-01-01

    Objective HIV-associated deficits in verbal episodic memory are commonly associated with antiretroviral non-adherence; however, the specific aspects of memory functioning (e.g., encoding, consolidation, or retrieval) that underlie this established relationship are not well understood. Method This study evaluated verbal memory profiles of 202 HIV+ participants who underwent a 30-day electronic monitoring of antiretroviral adherence. Results At the group level, non-adherence was significantly associated with lower scores on immediate and delayed passage recall and word list learning. Retention and recognition of passages and word lists were not related to adherence. Participants were then classified as having either a normal verbal memory profile, a “subcortical” retrieval profile (i.e., impaired free recall with relatively spared recognition), or a “cortical” encoding profile (e.g., cued recall intrusions) based on the Massman et al. (1990) algorithm for the California Verbal Learning Test. HIV+ participants with a classic retrieval deficit had significantly greater odds of being non-adherent than participants with a normal or encoding profile. Conclusions These findings suggest that adherence to prescribed antiretroviral regimens may be particularly vulnerable to disruption in HIV+ individuals due to deficits in the complex process of efficiently accessing verbal episodic information with minimal cues. A stronger relationship between non-adherence and passage (vs. word list) recall was also found and may reflect the importance of contextual features in remembering to take medications. Targeted interventions for enhancing and supporting episodic memory retrieval processes may improve antiretroviral adherence and overall health outcomes among persons living with HIV. PMID:25781903

  13. Prospective memory in thalamic amnesia.

    PubMed

    Carlesimo, G A; Costa, A; Serra, L; Bozzali, M; Fadda, L; Caltagirone, C

    2011-07-01

    The contribution of the thalamus to the functioning of prospective memory (PM) is currently unknown. Here we report an experimental investigation of the performance of two patients with bilateral infarcts in the anterior-mesial regions of the thalami on an event-based PM paradigm. One patient, G.P., had a pervasive declarative memory impairment but no significant executive deficit. The other patient, R.F., had a memory deficit limited to verbal material with associated behavioral abnormalities (inertia and apathy); she performed poorly on tests of executive functions. Although both patients performed poorly on the PM task, a qualitative analysis of performance revealed different mechanisms at the base of their impaired PM. G.P. had reduced declarative memory for target words compared with normal controls; but, unforgotten words were normally able to elicit his recall of the prospective intention. Conversely, R.F.'s declarative memory for target words was as accurate as that of normal controls, but she presented a dramatically reduced ratio between the number of target words she recalled and the number of times she activated the prospective intention on the PM task, suggesting that her deficit consisted of difficulty in activating the intention despite normal declarative memory for the target events. In conclusion, results of the present study demonstrate that thalamic structures have an important role in PM processes. They also document that damage to the anterior-mesial regions of the thalami affects PM abilities by two different mechanisms, respectively based on the relative disruption of declarative memory or executive processes functioning, which, in turn, is related to the specific intrathalamic structures involved by the lesions. Indeed, while G.P.'s pervasive declarative memory deficit was underlain by bilateral involvement of the mammillo-thalamic tract, R.F.'s executive and behavioral abnormalities were likely related to bilateral damage of the midline

  14. Sleep-Related Declarative Memory Consolidation and Verbal Replay during Sleep Talking in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    Objective To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Methods Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Results Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Conclusion Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level. PMID:24349492

  15. Working Memory, Processing Speed, and Set-Shifting in Children with Developmental Coordination Disorder and Attention-Deficit-Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Piek, Jan P.; Dyck, Murray J.; Francis, Mona; Conwell, Alistair

    2007-01-01

    It has been suggested that the high levels of comorbidity between attention-deficit-hyperactivity disorder (ADHD) and developmental coordination disorder (DCD) may be attributed to a common underlying neurocognitive mechanism. This study assessed whether children with DCD and ADHD share deficits on tasks measuring working memory, set-shifting, and…

  16. How word decoding skill impacts text memory: The centrality deficit and how domain knowledge can compensate.

    PubMed

    Miller, Amanda C; Keenan, Janice M

    2009-12-01

    We examined text memory in children with word reading deficits to determine how these difficulties impact representations of text meaning. We show that even though children with poor word decoding recall more central than peripheral information, they show a significantly bigger deficit relative to controls on central than on peripheral information. We call this the centrality deficit and argue that it is the consequence of insufficient cognitive resources for connecting ideas together due to these children's resources being diverted from comprehension to word decoding. We investigated a possible compensatory mechanism for making these connections. Because a text representation is a synthesis of text information and a reader's prior knowledge, we hypothesized that having knowledge of the passage topic might reduce or eliminate the centrality deficit. Our results support this knowledge compensation hypothesis: The centrality deficit was evident when poor readers did not have prior knowledge, but was eliminated when they did. This presents an exciting avenue to pursue for possible remediation of reading comprehension in children with word identification difficulties.

  17. How Word Reading Skill Impacts Text Memory: The Centrality Deficit and How Domain Knowledge Can Compensate

    PubMed Central

    Miller, Amanda C.; Keenan, Janice M.

    2010-01-01

    We examined text memory in children with word reading deficits to determine how these difficulties impact representations of text meaning. We show that even though children with poor word decoding recall more central than peripheral information, they show a significantly bigger deficit relative to controls on central than on peripheral information. We call this the centrality deficit and argue that it is the consequence of insufficient cognitive resources for connecting ideas together due to these children's resources being diverted from comprehension to word decoding. We investigated a possible compensatory mechanism for making these connections. Because a text representation is a synthesis of text information and a reader's prior knowledge, we hypothesized that having knowledge of the passage topic might reduce or eliminate the centrality deficit. Our results support this knowledge compensation hypothesis: the centrality deficit was evident when poor readers did not have prior knowledge, but was eliminated when they did. This presents an exciting avenue to pursue for possible remediation of reading comprehension in children with word identification difficulties. PMID:19475514

  18. Everyday prospective memory and executive function deficits associated with exposure to second-hand smoke.

    PubMed

    Heffernan, Thomas M; O'Neill, Terence S

    2013-01-01

    This study explored whether exposure to second-hand smoke (SHS) has a detrimental impact upon everyday memory in two groups of non-smokers; one which reported regular exposure to SHS and one that reported never having been exposed to SHS. Thirty-four non-smokers who reported having been regularly exposed to SHS (SHS group) and 34 non-smokers who reported never having been exposed to SHS (non-SHS group) were compared on self-reports of prospective memory (PM: remembering future intentions and/or activities) and executive function (EF: those processes involved in attention, multitasking and decision-making). The Prospective and Retrospective Memory Questionnaire (PRMQ) assessed everyday PM lapses; the Executive Function Questionnaire (EFQ) assessed self-reported problems in EF; a drug-use questionnaire and a mood questionnaire were also administered. Two univariate ANCOVAs were applied to the PM and EF data, controlling for between-group differences in age, weekly alcohol use, anxiety and depression scores, and self-reported retrospective memory scores. The SHS group reported significantly more lapses on the PRMQ and more deficits on the EFQ than the non-SHS group. These findings provide new insights into PM and EF deficits associated with prolonged exposure to SHS in a group of non-smokers. Possible explanations and suggestions for future research are also considered.

  19. Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls.

    PubMed

    van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap

    2015-08-30

    Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty.

  20. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

    PubMed

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. PMID:27549340

  1. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction

    PubMed Central

    Sajja, Venkata S. S. S.; Hlavac, Nora; VandeVord, Pamela J.

    2016-01-01

    Historically, glial cells have been recognized as a structural component of the brain. However, it has become clear that glial cells are intimately involved in the complexities of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes have dynamic responsibilities which substantially impact neuronal function and activities. Moreover, the importance of glia following brain injury has come to the forefront in discussions to improve axonal regeneration and functional recovery. The numerous activities of glia following injury can either promote recovery or underlie the pathobiology of memory deficits. This review outlines the pathological states of glial cells which evolve from their positive supporting roles to those which disrupt synaptic function and neuroplasticity following injury. Evidence suggests that glial cells interact extensively with neurons both chemically and physically, reinforcing their role as pivotal for higher brain functions such as learning and memory. Collectively, this mini review surveys investigations of how glial dysfunction following brain injury can alter mechanisms of synaptic plasticity and how this may be related to an increased risk for persistent memory deficits. We also include recent findings, that demonstrate new molecular avenues for clinical biomarker discovery. PMID:26973475

  2. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    PubMed Central

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  3. Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts.

    PubMed

    de Heering, Adélaïde; Maurer, Daphne

    2014-01-01

    Patients treated for bilateral congenital cataract are later impaired on several hallmarks of adults' expertise with upright faces but report no problem with remembering faces. Here, we provide the first formal data on their face memory. We compared 12 adults with a history of visual deprivation from bilateral congenital cataracts to 24 age-matched controls with normal vision on their ability to recognize famous and recently learned faces, and on their subjective impression of their face memory. Bilateral congenital cataract patients demonstrated a prosopagnosic-like deficit, being slower and less accurate in recognizing both famous faces and recently learned faces, despite not differing on most questions about their impression of their face memory. Patients' results on three perceptual tasks (the composite face effect, the Benton test of recognizing faces through a change in point of view, and the Jane test of sensitivity to feature spacing) were also not correlated with their face memory deficits. These results suggest that early visual input is necessary not only for perceptual expertise in differentiating among unfamiliar upright faces, but also for normal accuracy in remembering the identity of individual faces.

  4. Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts.

    PubMed

    de Heering, Adélaïde; Maurer, Daphne

    2014-01-01

    Patients treated for bilateral congenital cataract are later impaired on several hallmarks of adults' expertise with upright faces but report no problem with remembering faces. Here, we provide the first formal data on their face memory. We compared 12 adults with a history of visual deprivation from bilateral congenital cataracts to 24 age-matched controls with normal vision on their ability to recognize famous and recently learned faces, and on their subjective impression of their face memory. Bilateral congenital cataract patients demonstrated a prosopagnosic-like deficit, being slower and less accurate in recognizing both famous faces and recently learned faces, despite not differing on most questions about their impression of their face memory. Patients' results on three perceptual tasks (the composite face effect, the Benton test of recognizing faces through a change in point of view, and the Jane test of sensitivity to feature spacing) were also not correlated with their face memory deficits. These results suggest that early visual input is necessary not only for perceptual expertise in differentiating among unfamiliar upright faces, but also for normal accuracy in remembering the identity of individual faces. PMID:23192566

  5. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  6. Everyday Prospective Memory and Executive Function Deficits Associated with Exposure to Second-Hand Smoke

    PubMed Central

    Heffernan, Thomas M.; O'Neill, Terence S.

    2013-01-01

    This study explored whether exposure to second-hand smoke (SHS) has a detrimental impact upon everyday memory in two groups of non-smokers; one which reported regular exposure to SHS and one that reported never having been exposed to SHS. Thirty-four non-smokers who reported having been regularly exposed to SHS (SHS group) and 34 non-smokers who reported never having been exposed to SHS (non-SHS group) were compared on self-reports of prospective memory (PM: remembering future intentions and/or activities) and executive function (EF: those processes involved in attention, multitasking and decision-making). The Prospective and Retrospective Memory Questionnaire (PRMQ) assessed everyday PM lapses; the Executive Function Questionnaire (EFQ) assessed self-reported problems in EF; a drug-use questionnaire and a mood questionnaire were also administered. Two univariate ANCOVAs were applied to the PM and EF data, controlling for between-group differences in age, weekly alcohol use, anxiety and depression scores, and self-reported retrospective memory scores. The SHS group reported significantly more lapses on the PRMQ and more deficits on the EFQ than the non-SHS group. These findings provide new insights into PM and EF deficits associated with prolonged exposure to SHS in a group of non-smokers. Possible explanations and suggestions for future research are also considered. PMID:24804137

  7. Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson's patients during performance of implicit and declarative memory tasks: a report of two subjects.

    PubMed

    Buchanan, Robert J; Gjini, Klevest; Darrow, David; Varga, Georgeta; Robinson, Jennifer L; Nadasdy, Zoltan

    2015-03-01

    The basal ganglia, typically associated with motor function, are involved in human cognitive processes, as demonstrated in behavioral, lesion, and noninvasive functional neuroimaging studies. Here we report task-contingent changes in concentrations of the neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) in the globus pallidus internus (GPi) of two patients with Parkinson's disease undergoing deep brain stimulation surgery by utilizing in-vivo microdialysis measurements during performance of implicit and declarative memory tasks. Performance of an implicit memory task (weather prediction task-WPT) was associated with increased levels of glutamate and GABA in the GPi compared to their concentrations at baseline. On the other hand, performance of a declarative memory task (verbal learning task-VLT) was associated with decreased levels of glutamate and GABA in GPi compared to baseline during the encoding and immediate recall phase with less conclusive results during the delayed recall phase. These results are in line with hypothesized changes in these neurotransmitter levels: an increase of excitatory (Glu) input from subthalamic nucleus (STN) to GPi during implicit memory task performance and a decrease of inhibitory inputs (GABA) from globus pallidus externus (GPe) and striatum to GPi during declarative memory performance. Consistent with our previous report on in-vivo neurotransmitter changes during tasks in STN, these data provide corroborative evidence for the direct involvement of basal ganglia in cognitive functions and complements our model of the functional circuitry of basal ganglia in the healthy and Parkinson's disease affected brain.

  8. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382

    PubMed Central

    Ishiwari, Keita

    2016-01-01

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3–10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  9. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382.

    PubMed

    Ishiwari, Keita; Sircar, Ratna

    2016-06-15

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3-10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  10. Unrealistic representations of "the self": A cognitive neuroscience assessment of anosognosia for memory deficit.

    PubMed

    Berlingeri, Manuela; Ravasio, Alessandra; Cranna, Silvia; Basilico, Stefania; Sberna, Maurizio; Bottini, Gabriella; Paulesu, Eraldo

    2015-12-01

    Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains "semantic" representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment. We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB. AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity. PMID:26397037

  11. The contribution of executive functions deficits to impaired episodic memory in individuals with alcoholism.

    PubMed

    Noël, Xavier; Van der Linden, Martial; Brevers, Damien; Campanella, Salvatore; Hanak, Catherine; Kornreich, Charles; Verbanck, Paul

    2012-06-30

    Individuals with alcoholism commonly exhibit impaired performance on episodic memory tasks. However, the contribution of their impaired executive functioning to poor episodic memory remains to be clarified. Thirty-six recently detoxified and sober asymptomatic alcoholic men and 36 matched non-alcoholic participants were tested for processing speed, prepotent response inhibition, mental flexibility, coordination of dual-task and a verbal episodic memory task. Compared with non-alcoholic individuals, the alcoholic patients showed impaired executive functions combined with below normal performance on both free and delayed recall. In contrast, processing speed, cued recall and recognition were preserved. Regression analyses revealed that 47% of alcoholics' episodic memory's free recall performance was predicted by mental flexibility and that 49% of their delayed recall performance was predicted by mental flexibility, manipulation of dual-task and prepotent response inhibition. Regarding participants' executive predictors of episodic memory performance, the slopes of β coefficients were significantly different between the two groups, with alcoholics requiring more their executive system than non-alcoholics. Once detoxified, alcoholic patients showed episodic memory deficits mainly characterized by impaired effortful (executive) processes. Compared with controls, patients used effortful learning strategies, which are nonetheless less efficient. PMID:22377577

  12. Relationship between hippocampal subfield volumes and memory deficits in patients with thalamus infarction.

    PubMed

    Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang

    2016-09-01

    Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus. PMID:26614098

  13. Toward an understanding of anticipatory pleasure deficits in schizophrenia: Memory, prospection, and emotion experience.

    PubMed

    Painter, Janelle M; Kring, Ann M

    2016-04-01

    Anticipatory pleasure deficits have been observed in people with schizophrenia. Less is known about the extent to which interrelated processes that comprise anticipatory pleasure, including memory, prospection, and emotion experience are disrupted. We asked people with (n = 32) and without (n = 29) schizophrenia or schizoaffective disorder to provide memory and prospection narratives in response to specific cues. Half of the prospections followed a memory task, and half followed a control task. People with schizophrenia generated memories similar in content and experience as controls even as they described them less clearly. However, people with schizophrenia were less likely to explicitly reference the past in their prospections, and their prospections were less detailed and richly experienced than controls, regardless of the task completed before prospection. People with schizophrenia reported similar levels of positive emotion (current and predicted) in positive prospections that followed the memory task, but less positive emotion than controls in positive prospections that followed the control task. Taken together, these results suggest that people with schizophrenia experience difficulties drawing from past experiences and generating detailed prospections. However, asking people with schizophrenia to recall and describe memories prior to prospection may increase the likelihood of drawing from the past in prospections, and may help boost current and predicted pleasure.

  14. Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.

    PubMed

    Zokaei, Nahid; McNeill, Alisdair; Proukakis, Christos; Beavan, Michelle; Jarman, Paul; Korlipara, Prasad; Hughes, Derralynn; Mehta, Atul; Hu, Michele T M; Schapira, Anthony H V; Husain, Masud

    2014-08-01

    Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short

  15. Clove oil reverses learning and memory deficits in scopolamine-treated mice.

    PubMed

    Halder, Sumita; Mehta, Ashish Krishan; Kar, Rajarshi; Mustafa, Mohammad; Mediratta, Pramod Kumari; Sharma, Krishna Kishore

    2011-05-01

    The present study was performed to examine the effect of Eugenia caryophyllata (Myrtaceae) on learning and memory, and also evaluate whether it can modulate oxidative stress in mice. Passive avoidance step-down task and elevated plus-maze were used to assess learning and memory in scopolamine-treated mice. Oxidative stress parameters were also assessed in brain samples by estimating the malondialdehyde (MDA) and reduced glutathione (GSH) levels at the end of the study. Scopolamine (0.3 mg/kg, i. p.) produced impairment of acquisition memory as evidenced by a decrease in step-down latency and an increase in transfer latency on day 1, and also impairment of retention of memory on day 2. Pretreatment with clove oil (0.05 mL/kg and 0.1 mL/kg) for 3 weeks significantly reversed the increase in acquisition latency and all the doses (0.025, 0.05, 0.1 mL/kg, i. p.) reversed the increase in retention latency induced by scopolamine (0.3 mg/kg, i. p.) in elevated plus-maze. However, 0.05 mL/kg clove oil attenuated memory deficits in the passive avoidance step-down task. Brain samples showed a significant decrease in MDA levels in the group treated with clove oil (0.05 and 0.025 mL/kg). GSH levels were also increased in clove oil-treated mice though the results were not significant. Thus, it can be concluded that clove oil can reverse the short-term and long-term memory deficits induced by scopolamine (0.3 mg/kg, i. p.) and this effect can, to some extent, be attributed to decreased oxidative stress.

  16. Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory.

    PubMed

    Carey, Amanda N; Lyons, Angela M; Shay, Christopher F; Dunton, Ocean; McLaughlin, Jay P

    2009-04-01

    We hypothesized that mice subjected to prolonged stress would demonstrate decreased performance in a learning and memory task attributable to the endogenous activation of the kappa opioid receptor (KOR). C57BL/6J mice were tested using the novel object recognition (NOR) assay at various time points after exposure to repeated forced swim stress (FSS). Unstressed mice demonstrated recognition of the novel object at the end of a procedure using three 10-min object interaction phases, with a recognition index (RI) for the novel object of 71.7+/-3.4%. However, 1 h after exposure to FSS, vehicle-pretreated mice displayed a significant deficit in performance (RI=58.2+/-4.1%) compared with unstressed animals. NOR was still significantly reduced 4 but not 24 h after FSS. Treatment with the KOR-selective antagonist norbinaltorphimine (10 mg/kg, i.p.) prevented the decline in learning and memory performance. Moreover, direct activation of the KOR induced performance deficits in NOR, as exogenous administration of the KOR agonist U50,488 [(+/-)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide] (0.3 mg/kg, i.p.) suppressed NOR (RI=56.0+/-3.9%). The effect of FSS on NOR performance was further examined in mice lacking the gene for the endogenous KOR agonist dynorphin (Dyn). Dyn gene-disrupted mice exposed to FSS did not show the subsequent learning and memory deficits (RI=66.8+/-3.8%) demonstrated by their wild-type littermates (RI=49.7+/-2.9%). Overall, these results suggest that stress-induced activation of the KOR may be both necessary and sufficient to produce subsequent deficits in novel object recognition.

  17. A mouse model for the learning and memory deficits associated with neurofibromatosis type I.

    PubMed

    Silva, A J; Frankland, P W; Marowitz, Z; Friedman, E; Laszlo, G S; Cioffi, D; Jacks, T; Bourtchuladze, R; Lazlo, G

    1997-03-01

    Neurofibromatosis type I (NF1) is one of the most commonly inherited neurological disorders in humans, affecting approximately one in 4,000 individuals. NF1 results in a complex cluster of developmental and tumour syndromes that include benign neurofibromas, hyperpigmentation of melanocytes and hamartomas of the iris. Some NF1 patients may also show neurologic lesions, such as optic pathway gliomas, dural ectasia and aqueduct stenosis. Importantly, learning disabilities occur in 30% to 45% of patients with NF1, even in the absence of any apparent neural pathology. The learning disabilities may include a depression in mean IQ scores, visuoperceptual problems and impairments in spatial cognitive abilities. Spatial learning has been assessed with a variety of cognitive tasks and the most consistent spatial learning deficits have been observed with the Judgement of Line Orientation test. It is important to note that some of these deficits could be secondary to developmental abnormalities and other neurological problems, such as poor motor coordination and attentional deficits. Previous studies have suggested a role for neurofibromin in brain function. First, the expression of the Nf1 gene is largely restricted to neuronal tissues in the adult. Second, this GTPase activating protein may act as a negative regulator of neurotrophin-mediated signalling. Third, immunohistochemical studies suggest that activation of astrocytes may be common in the brain of NF1 patients. Here, we show that the Nf1+/- mutation also affects learning and memory in mice. As in humans, the learning and memory deficits of the Nf1+/- mice are restricted to specific types of learning, they are not fully penetrant, they can be compensated for with extended training, and they do not involve deficits in simple associative learning.

  18. Set shifting and working memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Rohlf, Helena; Jucksch, Viola; Gawrilow, Caterina; Huss, Michael; Hein, Jakob; Lehmkuhl, Ulrike; Salbach-Andrae, Harriet

    2012-01-01

    Compared to the high number of studies that investigated executive functions (EF) in children with attention-deficit/hyperactivity disorder (ADHD), a little is known about the EF performance of adults with ADHD. This study compared 37 adults with ADHD (ADHD(total)) and 32 control participants who were equivalent in age, intelligence quotient (IQ), sex, and years of education, in two domains of EF--set shifting and working memory. Additionally, the ADHD(total) group was subdivided into two subgroups: ADHD patients without comorbidity (ADHD(-), n = 19) and patients with at least one comorbid disorder (ADHD(+), n = 18). Participants fulfilled two measures for set shifting (i.e., the trail making test, TMT and a computerized card sorting test, CKV) and one measure for working memory (i.e., digit span test, DS). Compared to the control group the ADHD(total) group displayed deficits in set shifting and working memory. The differences between the groups were of medium-to-large effect size (TMT: d = 0.48; DS: d = 0.51; CKV: d = 0.74). The subgroup comparison of the ADHD(+) group and the ADHD(-) group revealed a poorer performance in general information processing speed for the ADHD(+) group. With regard to set shifting and working memory, no significant differences could be found between the two subgroups. These results suggest that the deficits of the ADHD(total) group are attributable to ADHD rather than to comorbidity. An influence of comorbidity, however, could not be completely ruled out as there was a trend of a poorer performance in the ADHD(+) group on some of the outcome measures.

  19. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice.

    PubMed

    Lee, Bomi; Jung, Kangsik; Kim, Dong-Hyun

    2009-08-01

    Anemarrhena asphodeloides Bunge (AA, family Liliaceae), which primarily contains xantones, such as mangiferin, and steroidal saponins, such as timosaponin AIII and sarsasapogenin, has been used as an anti-pyretic, anti-inflammatory, anti-diabetic, anti-platelet aggregation, and anti-depressant agent in traditional Chinese medicine. In the present study, the memory-enhancing effects of these saponins were investigated in scopolamine-treated mice. Among saponins, timosaponin AIII (TA3) significantly reversed the scopolamine-induced deficits in a passive avoidance test and in the Morris water maze test. TA3 also increased hippocampal acetylcholine levels in scopolamine-treated mice and dose-dependently inhibited acetylcholinesterase (AChE) activity (IC(50) value, 35.4 microM). When TA3 (50 mg/kg) was orally administered to mice and its blood concentration was measured by liquid chromatography and tandem mass spectrometry, the C(max) of TA3 occurred 4-6 h after TA3 treatment. The memory-enhancing effect of TA3 was greater when it was administered 5 h before the acquisition trial than 1 h before. Scopolamine treatment in mice increased brain levels of TNF-alpha and IL-1beta expression. However, treatment with TA3 and scopolamine inhibited the increase of TNF-alpha and IL-1beta expression. These results suggest that scopolamine may cause learning and memory deficits that are further complicated by inflammation. TA3 also inhibited the activation of NF-kappaB signaling in BV-2 microglia and in SK-N-SH neuroblastoma cells induced with TNF-alpha or scopolamine. Nevertheless, TA3 may ameliorate memory deficits, mainly by inhibiting AChE. PMID:19426756

  20. Serial Order Reconstruction in Down Syndrome: Evidence for a Selective Deficit in Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Brock, Jon; Jarrold, Christopher

    2005-01-01

    Background: Individuals with Down syndrome consistently perform less well than appropriately matched comparison groups on tests of verbal short-term memory, despite performing relatively well on non-verbal short-term memory tasks. However, it is not clear whether these findings constitute evidence for a selective deficit in verbal short-term…

  1. The Effects of Incentives on Visual-Spatial Working Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Shiels, Keri; Hawk, Larry W., Jr.; Lysczek, Cynthia L.; Tannock, Rosemary; Pelham, William E., Jr.; Spencer, Sarah V.; Gangloff, Brian P.; Waschbusch, Daniel A.

    2008-01-01

    Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of…

  2. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    PubMed

    Axmacher, Nikolai; Haupt, Sven; Fernández, Guillén; Elger, Christian E; Fell, Juergen

    2008-03-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking state but may become saturated after some time awake. Sleep, in this model, specifically favors restoration of synaptic plasticity and accelerated memory consolidation while asleep and briefly afterwards. To distinguish between these different views, we recorded intracranial electroencephalograms from the hippocampus and rhinal cortex of human subjects while they retrieved information acquired either before or after a "nap" in the afternoon or on a control day without nap. Reaction times, hippocampal event-related potentials, and oscillatory gamma activity indicated a temporal gradient of hippocampal involvement in information retrieval on the control day, suggesting hippocampal-neocortical information transfer during waking state. On the day with nap, retrieval of recent items that were encoded briefly after the nap did not involve the hippocampus to a higher degree than retrieval of items encoded before the nap. These results suggest that sleep facilitates rapid processing through the hippocampus but is not necessary for information transfer into the neocortex per se.

  3. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  4. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    PubMed

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  5. Reduction of amyloid-β deposition and attenuation of memory deficits by tolfenamic acid.

    PubMed

    Subaiea, Gehad M; Ahmed, Aseef H; Adwan, Lina I; Zawia, Nasser H

    2015-01-01

    We have previously reported that tolfenamic acid treatment decreases the amyloidogenic proteins in C57BL/6 and in old hemizygous R1.40 transgenic mice via the degradation of the transcription factor specificity 1 protein (Sp1). The lowering of amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in hemizygous R1.40 transgenic mice was accompanied by reversal of the identified spatial reference and working memory deficits observed in the mouse model. In this study, we examined the ability of tolfenamic acid to reduce the amyloid plaque burden, as well as to ameliorate spatial learning and memory deficits in homozygous R1.40 mice. Results from immunohistochemical analysis indicated that tolfenamic acid treatment resulted in a profound decrease in cerebral Aβ plaque burden that was accompanied by improvements in spatial working memory assessed by spontaneous alternation ratio in the Y-maze. These results provide further evidence that tolfenamic acid could be utilized as a repurposed drug to modify Alzheimer's disease pathogenesis.

  6. Effect size of memory deficits in mice with adult-onset P301L tau expression.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Weitzner, Daniel S; Zhang, Chong; Tosto, David E; Knowlan, Kevin; Xu, Ying; Reed, Miranda N

    2014-10-01

    Transgenic mice expressing mutations in tau have yielded essential discoveries for Alzheimer's disease. One of the most commonly used tau mouse models is the tet-off Tg(tauP301L)4510 model that expresses P301L human tau driven by the calcium-calmodulin kinase IIα (CaMKIIα) promoter system. Tau expression in this model is regulatable, allowing for suppression of mutant tau expression until adulthood and prevention of possible developmental alterations resulting from P301L tau expression during development. Here, we compared the effect and sample sizes needed for three learning and memory tasks in mice with adult-onset P301L tau expression. Our findings indicate that the Incremental Repeated Acquisition (IRA) and trace fear conditioning tasks, neither of which have previously been published with these mice, were highly sensitive to P301L tau expression, whereas the Morris water maze, the most commonly used task with this model, was the least sensitive. Memory deficits were observed at a time when tau pathology was subtle and prior to readily detectable neuronal loss. Thus, we provide essential information (effect and sample sizes needed) for establishing experimental designs at a time point when memory deficits are likely to go undetected if inadequate sample sizes are used. Our work also suggests the tet-off Tg4510 model provides a way to avoid mutant tau expression during the perinatal and early postnatal stages, thereby preventing possible developmental alterations unrelated to Alzheimer's disease.

  7. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  8. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    PubMed

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.

  9. Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats

    SciTech Connect

    Kuttner-Hirshler, Y.; Biegon, A.; Kuttner-Hirshler, Y.; Polat, U.; Biegon, A.

    2009-12-21

    Deep brain stimulation (DBS) is an established treatment for advanced Parkinson's disease (PD). The procedure entails intracranial implantation of an electrode in a specific brain structure followed by chronic stimulation. Although the beneficial effects of DBS on motor symptoms in PD are well known, it is often accompanied by cognitive impairments, the origin of which is not fully understood. To explore the possible contribution of the surgical procedure itself, we studied the effect of electrode implantation in the subthalamic nucleus (STN) on regional neuroinflammation and memory function in rats implanted bilaterally with stainless steel electrodes. Age-matched sham and intact rats were used as controls. Brains were removed 1 or 8 weeks post-implantation and processed for in vitro autoradiography with [(3)H]PK11195, an established marker of microglial activation. Memory function was assessed by the novel object recognition test (ORT) before surgery and 2 and 8 weeks after surgery. Electrode implantation produced region-dependent changes in ligand binding density in the implanted brains at 1 as well as 8 weeks post-implantation. Cortical regions showed more intense and widespread neuroinflammation than striatal or thalamic structures. Furthermore, implanted animals showed deficits in ORT performance 2 and 8 weeks post-implantation. Thus, electrode implantation resulted in a widespread and persistent neuroinflammation and sustained memory impairment. These results suggest that the insertion and continued presence of electrodes in the brain, even without stimulation, may lead to inflammation-mediated cognitive deficits in susceptible individuals, as observed in patients treated with DBS.

  10. Age and individual differences in visual working memory deficit induced by overload.

    PubMed

    Matsuyoshi, Daisuke; Osaka, Mariko; Osaka, Naoyuki

    2014-01-01

    Many studies on working memory have assumed that one can determine an individual's fixed memory capacity. In the current study, we took an individual differences approach to investigate whether visual working memory (VWM) capacity was stable irrespective of the number of to-be-remembered objects and participant age. Younger and older adults performed a change detection task using several objects defined by color. Results showed wide variability in VWM capacity across memory set sizes, age, and individuals. A marked decrease in the number of objects held in VWM was observed in both younger and older adults with low memory capacity, but not among high-capacity individuals, when set size went well beyond the limits of VWM capacity. In addition, a decrease in the number of objects held in VWM was alleviated among low-capacity younger adults by increasing VWM encoding time; however, increasing encoding time did not benefit low-capacity older adults. These findings suggest that low-capacity individuals are likely to show decreases in VWM capacity induced by overload, and aging exacerbates this deficit such that it cannot be recovered by simply increasing encoding time. Overall, our findings challenge the prevailing assumption that VWM capacity is fixed and stable, encouraging a revision to the strict view that VWM capacity is constrained by a fixed number of distinct "slots" in which high-resolution object representations are stored. PMID:24847293

  11. Experimental sleep deprivation as a tool to test memory deficits in rodents

    PubMed Central

    Colavito, Valeria; Fabene, Paolo F.; Grassi-Zucconi, Gigliola; Pifferi, Fabien; Lamberty, Yves; Bentivoglio, Marina; Bertini, Giuseppe

    2013-01-01

    Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed. PMID:24379759

  12. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    PubMed Central

    Nasehi, Mohammad

    2015-01-01

    Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline. Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-190) were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively. Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg), RS67333 (0.5 ng/mouse) and RS23597-190 (0.5 ng/mouse) decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse) or RS23597-190 (0.005 ng/mouse) with subthreshold dose of harmaline (0.5 mg/kg, i.p.) intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors. Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia. PMID:26904173

  13. Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats.

    PubMed

    Fernandes, Jansen; Baliego, Luiz Guilherme Zaccaro; Peixinho-Pena, Luiz Fernando; de Almeida, Alexandre Aparecido; Venancio, Daniel Paulino; Scorza, Fulvio Alexandre; de Mello, Marco Tulio; Arida, Ricardo Mario

    2013-09-01

    The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. Adult Wistar rats were subjected to 4 weeks of treadmill exercise training for 35 min, five times per week. Twenty-four hours after the last exercise session, the rats were sleep-deprived for 96 h using the modified multiple platform method. To assess memory after SD, all animals underwent training for the inhibitory avoidance task and were tested 24h later. The aerobic exercise attenuated the long-term memory deficit induced by 96 h of paradoxical SD. Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study.

  14. Shared Etiology of Phonological Memory and Vocabulary Deficits in School-Age Children

    PubMed Central

    Peterson, Robin L.; Pennington, Bruce F.; Samuelsson, Stefan; Byrne, Brian; Olson, Richard K.

    2012-01-01

    Purpose The goal of this study was to investigate the etiologic basis for the association between deficits in phonological memory (PM) and vocabulary in school-age children. Method Children with deficits in PM or vocabulary were identified within the International Longitudinal Twin Study (ILTS). The ILTS includes 1,045 twin pairs from the United States, Australia, and Scandinavia aged 5 to 8 years. We applied the DeFries-Fulker regression method to determine whether problems in PM and vocabulary tend to co-occur because of overlapping genes, overlapping environmental risk factors, or both. Results Among children with isolated PM deficits, we found significant bivariate heritability of PM and vocabulary weaknesses both within and across time. However, when probands were selected for a vocabulary deficit, there was no evidence for bivariate heritability. In this case, the PM-vocabulary relationship appeared to owe to common shared environmental experiences. Conclusions The findings are consistent with previous research on the heritability of specific language impairment and suggest that there are etiologic subgroups of children with poor vocabulary for different reasons, one more influenced by genes and another more influenced by environment. PMID:23275423

  15. Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model.

    PubMed

    Ponce-Lopez, Teresa; Liy-Salmeron, Gustavo; Hong, Enrique; Meneses, Alfredo

    2011-12-01

    Intracerebroventricular (ICV) streptozotocin (STZ) treated rat has been described as a suitable model for sporadic Alzheimer's disease (AD). Central application of STZ has demonstrated behavioral and neurochemical features that resembled those found in human AD. Chronic treatments with antioxidants, acetylcholinesterase (AChE) inhibitors, or improving glucose utilization drugs have reported a beneficial effect in ICV STZ-treated rats. In the present study the post-training administration of a glycogen synthase kinase (GSK3) inhibitor, lithium; antidementia drugs: phenserine and memantine, and insulin sensitizer, pioglitazone on memory function of ICV STZ-rats was assessed. In these same animals the phosphorylated GSK3β (p-GSK3β) and total GSK3β levels were determined, and importantly GSK3β regulates the tau phosphorylation responsible for neurofibrillary tangle formation in AD. Wistar rats received ICV STZ application (3mg/kg twice) and 2 weeks later short- (STM) and long-term memories (LTM) were assessed in an autoshaping learning task. Animals were sacrificed immediately following the last autoshaping session, their brains removed and dissected. The enzymes were measured in the hippocampus and prefrontal cortex (PFC) by western blot. ICV STZ-treated rats showed a memory deficit and significantly decreased p-GSK3β levels, while total GSK3β did not change, in both the hippocampus and PFC. Memory impairment was reversed by lithium (100mg/kg), phenserine (1mg/kg), memantine (5mg/kg) and pioglitazone (30 mg/kg). The p-GSK3β levels were restored by lithium, phenserine and pioglitazone in the hippocampus, and restored by lithium in the PFC. Memantine produced no changes in p-GSK3β levels in neither the hippocampus nor PFC. Total GSK3β levels did not change with either drug. Altogether these results show the beneficial effects of drugs with different mechanisms of actions on memory impairment induced by ICV STZ, and restored p-GSK3β levels, a kinase key of

  16. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia

    PubMed Central

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-01

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants’ performance in discrimination and short-term memory. Our results show that amusics’ performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics’ pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders. PMID:26732511

  17. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  18. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-01

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders. PMID:26732511

  19. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits.

    PubMed

    Ward, Andrew M; Mormino, Elizabeth C; Huijbers, Willem; Schultz, Aaron P; Hedden, Trey; Sperling, Reisa A

    2015-01-01

    Advanced aging negatively impacts memory performance. Brain aging has been associated with shrinkage in medial temporal lobe structures essential for memory--including hippocampus and entorhinal cortex--and with deficits in default-mode network connectivity. Yet, whether and how these imaging markers are relevant to age-related memory deficits remains a topic of debate. Using a sample of 182 older (age 74.6 ± 6.2 years) and 66 young (age 22.2 ± 3.6 years) participants, this study examined relationships among memory performance, hippocampus volume, entorhinal cortex thickness, and default-mode network connectivity across aging. All imaging markers and memory were significantly different between young and older groups. Each imaging marker significantly mediated the relationship between age and memory performance and collectively accounted for most of the variance in age-related memory performance. Within older participants, default-mode connectivity and hippocampus volume were independently associated with memory. Structural equation modeling of cross-sectional data within older participants suggest that entorhinal thinning may occur before reduced default-mode connectivity and hippocampal volume loss, which in turn lead to deficits in memory performance. PMID:25113793

  20. Working memory deficits in boys with attention deficit/hyperactivity disorder (ADHD): An examination of orthographic coding and episodic buffer processes.

    PubMed

    Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E

    2015-01-01

    The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.

  1. Working Memory Deficits in Children with Reading Difficulties: Memory Span and Dual Task Coordination

    ERIC Educational Resources Information Center

    Wang, Shinmin; Gathercole, Susan E.

    2013-01-01

    The current study investigated the cause of the reported problems in working memory in children with reading difficulties. Verbal and visuospatial simple and complex span tasks, and digit span and reaction times tasks performed singly and in combination, were administered to 46 children with single word reading difficulties and 45 typically…

  2. Treatment effects of tanshinone IIA against intracerebroventricular streptozotocin induced memory deficits in mice.

    PubMed

    Liu, Chang; Wu, Youxuan; Zha, Shuai; Liu, Mengping; Wang, Ying; Yang, Guangde; Ma, Kaige; Fei, Yulang; Zhang, Yaojie; Hu, Xiaodan; Yang, Weina; Qian, Yihua

    2016-01-15

    Our previous studies demonstrated that tanshinone IIA (tan IIA) has significant protective effects against the neurotoxicity induced by β-amyloid protein (Aβ) in cultured cortical neurons and PC12 cells. This study was designed to investigate the protective effects of tan IIA against memory deficits induced by streptozotocin (STZ) in a model of sporadic Alzheimer's disease (AD). STZ was injected twice intracerebroventrically (3mg/kg ICV) on alternate days (day 1 and day 3) in mice. Daily treatment with tan IIA (20, 40, and 80mg/kg, i.g.) starting from the first dose of STZ for 28 days showed a dose dependent improvement in STZ induced memory deficits as assessed by Morris water maze (MWM) test. Nissl staining results confirmed the protective effects of tan IIA on cerebral cortical and hippocampal neurons damage induced by STZ. In addition, tan IIA markedly reduced STZ induced elevation in acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and significantly inhibited STZ induced reduction in superoxide dismutases (SOD) and glutathione peroxidase (GSH-Px) activities in the parietal cortex and hippocampus. Moreover, tan IIA attenuated p38 mitogen activated protein kinase (MAPK) phosphorylation in the parietal cortex and hippocampus. These findings demonstrate that tan IIA prevents STZ induced memory deficits may be attributed to ameliorating neuronal damage, restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. Based on our previous studies, the present study provides further support for the potential use of tan IIA in the treatment of AD. PMID:26656068

  3. Tau Reduction Diminishes Spatial Learning and Memory Deficits after Mild Repetitive Traumatic Brain Injury in Mice

    PubMed Central

    Cheng, Jason S.; Craft, Ryan; Yu, Gui-Qiu; Ho, Kaitlyn; Wang, Xin; Mohan, Geetha; Mangnitsky, Sergey; Ponnusamy, Ravikumar; Mucke, Lennart

    2014-01-01

    Objective Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). Methods We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. Results Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. Interpretation Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects. PMID:25551452

  4. Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice

    PubMed Central

    Santini, Emanuela; Turner, Kathryn L.; Ramaraj, Akila B.; Murphy, Michael P.

    2015-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder associated with developmental delay, lack of speech, motor dysfunction, and epilepsy. In the majority of the patients, AS is caused by the deletion of small portions of maternal chromosome 15 harboring the UBE3A gene. This results in a lack of expression of the UBE3A gene because the paternal allele is genetically imprinted. The UBE3A gene encodes an enzyme termed ubiquitin ligase E3A (E6-AP) that targets proteins for degradation by the 26S proteasome. Because neurodegenerative disease and other neurodevelopmental disorders have been linked to oxidative stress, we asked whether mitochondrial reactive oxygen species (ROS) played a role in impaired synaptic plasticity and memory deficits exhibited by AS model mice. We discovered that AS mice have increased levels of superoxide in area CA1 of the hippocampus that is reduced by MitoQ 10-methanesuflonate (MitoQ), a mitochondria-specific antioxidant. In addition, we found that MitoQ rescued impairments in hippocampal synaptic plasticity and deficits in contextual fear memory exhibited by AS model mice. Our findings suggest that mitochondria-derived oxidative stress contributes to hippocampal pathophysiology in AS model mice and that targeting mitochondrial ROS pharmacologically could benefit individuals with AS. SIGNIFICANCE STATEMENT Oxidative stress has been hypothesized to contribute to the pathophysiology of neurodevelopmental disorders, including autism spectrum disorders and Angelman syndrome (AS). Herein, we report that AS model mice exhibit elevated levels of mitochondria-derived reactive oxygen species in pyramidal neurons in hippocampal area CA1. Moreover, we demonstrate that the administration of MitoQ (MitoQ 10-methanesuflonate), a mitochondria-specific antioxidant, to AS model mice normalizes synaptic plasticity and restores memory. Finally, our findings suggest that antioxidants that target the mitochondria could be used therapeutically to ameliorate

  5. Early hippocampal volume loss as a marker of eventual memory deficits caused by repeated stress

    PubMed Central

    Rahman, Mohammed Mostafizur; Callaghan, Charlotte K.; Kerskens, Christian M.; Chattarji, Sumantra; O’Mara, Shane M.

    2016-01-01

    Exposure to severe and prolonged stress has detrimental effects on the hippocampus. However, relatively little is known about the gradual changes in hippocampal structure, and its behavioral consequences, over the course of repeated stress. Behavioral analyses during 10 days of chronic stress pointed to a delayed decline in spatial memory, the full impact of which is evident only after the end of stress. In contrast, concurrent volumetric measurements in the same animals revealed significant reduction in hippocampal volumes in stressed animals relative to their unstressed counterparts, as early as the third day of stress. Notably, animals that were behaviorally the worst affected at the end of chronic stress suffered the most pronounced early loss in hippocampal volume. Together, these findings support the view that not only is smaller hippocampal volume linked to stress-induced memory deficits, but it may also act as an early risk factor for the eventual development of cognitive impairments seen in stress-related psychiatric disorders. PMID:27374165

  6. Visuo-spatial memory deficits following medial temporal lobe damage: A comparison of three patient groups.

    PubMed

    Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J

    2016-01-29

    The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in

  7. Verbal memory decline in Alzheimer's disease: a multiple-processes deficit.

    PubMed

    Pepin, E P; Eslinger, P J

    1989-11-01

    Memory dysfunction is a primary diagnostic criterion and one of the earliest clinical manifestations of dementia of the Alzheimer type (DAT). The profile of progression of this memory deficit is assumed to represent a unitary decline. We studied the profile of verbal memory decline using an immediate free recall learning task in 18 DAT patients judged to be at 3 different stages of severity (mildly, moderately, and severely affected), using the serial-position function as the dependent measure. Results showed that the pattern of performance of DAT patients depended upon the severity of the disease. With mild dementia, the U-shaped curve was qualitatively similar to that observed in normals (presence of primacy and recency effects). With increasing severity of dementia, there was a consistent modification of the serial-position function with, in moderately affected subjects, a progression toward a unimodal curve devoid of a primacy effect and, later on, a decrease of the recency effect. These findings suggest that the serial-position function shows dynamic changes across stages of DAT. These dynamic changes may imply distinct disturbances of 2 or more learning-memory processes in this condition. The processes involved presumably reflect the temporal nature of the pathologic involvement of distinct neural systems, both structural and neurochemical.

  8. Working memory deficits in developmental dyscalculia: The importance of serial order.

    PubMed

    Attout, Lucie; Majerus, Steve

    2015-01-01

    Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.

  9. Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits

    PubMed Central

    Koshimizu, Hisatsugu; Fukui, Yasuyuki; Takao, Keizo; Ohira, Koji; Tanda, Koichi; Nakanishi, Kazuo; Toyama, Keiko; Oshima, Masanobu; Taketo, Makoto Mark; Miyakawa, Tsuyoshi

    2011-01-01

    A tumor suppressor gene, Adenomatous polyposis coli (Apc), is expressed in the nervous system from embryonic to adulthood stages, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4) and calcineurin (CN), are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc+/−) mice. Apc+/− mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc+/− mice exhibited hypoactivity. In the eight-arm radial maze, Apc+/− mice 6–7 weeks of age displayed almost normal performance, whereas those 11–12 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc+/− mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance. PMID:22347851

  10. Diminished CRE-Induced Plasticity is Linked to Memory Deficits in Familial Alzheimer's Disease Mice.

    PubMed

    Bartolotti, Nancy; Segura, Laura; Lazarov, Orly

    2015-01-01

    The mechanism underlying impaired learning and memory in Alzheimer's disease is not fully elucidated. The phosphorylation of cyclic-AMP response element binding protein (pCREB) in the hippocampus is thought to be a critical initiating step in the formation of long-term memories. Here, we tested CRE-driven gene expression following learning in mice harboring the familial Alzheimer's disease-linked APPswe/PS1ΔE9 mutations using CRE-β galactosidase reporter. We show that young adult APPswe/PS1ΔE9 mice exhibit impaired recognition memory and reduced levels of pCREB, and its cofactors CREB binding protein (CBP) and p-300 following a learning task, compared to their wild type littermate counterparts. Impairments in learning-induced activation of CREB in these mice are manifested by reduced CRE-driven gene transcription. Importantly, expression of the CRE-driven immediate early gene, Egr-1 (Zif268) is decreased in the CA1 region of the hippocampus. These studies implicate defective CREB-dependent plasticity in the mechanism underlying learning and memory deficits in Alzheimer's disease. PMID:26682682

  11. Memory Deficit is Associated with Worse Functional Trajectories Among Older Adults in Low Vision Rehabilitation for Macular Disease

    PubMed Central

    Whitson, Heather E.; Whitaker, Diane; Sanders, Linda L.; Potter, Guy G.; Cousins, Scott W.; Ansah, Deidra; McConnell, Eleanor; Pieper, Carl F.; Landerman, Lawrence; Steffens, David C.; Cohen, Harvey J.

    2012-01-01

    Objectives Older adults with macular disease are at increased risk of memory decline and incident dementia. Low vision rehabilitation (LVR) aims to preserve independence in people with irreversible vision loss, but comorbid memory problems could limit the success of rehabilitation. This study examined whether performance on a brief memory test is related to functional outcomes among older patients undergoing LVR for macular disease. Design Observational cohort study of patients receiving outpatient LVR Setting Academic center Participants 91 seniors (average age 80.1 years) with macular disease Measurements Memory was assessed at baseline with a 10-word list; memory deficit was defined as immediate recall of ≤ two words. Vision-related function was measured with the 25-item Visual Function Questionnaire (VFQ-25)administered at baseline and during subsequent interviews (mean length of follow up = 115 days). Linear mixed models (LMMs) were constructed to compare average trajectories of four VFQ-25 subscales: near activities, distance activities, dependency, and role difficulty. Results The 29.7% of patients with memory deficit tended to decline in ability to accomplish activities that involve near vision. Controlling for age, sex, and education, the functional trajectory of participants with memory deficit differed significantly from that of participants with better memory (p=0.002), who tended to report improvements in ability to accomplish near activities. Conclusion Among older adults receiving LVR for macular disease, those with memory deficit experienced worse functional trajectories in their ability to perform specific visually mediated tasks. A brief memory screen may help explain variability in rehabilitation outcomes and identify patients who might require special accommodations. PMID:23126548

  12. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson’s disease

    PubMed Central

    Rolinski, Michal; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E.; Husain, Masud; Hu, Michele T. M.

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson’s disease. Here we examined visual short-term memory deficits—long associated with Parkinson’s disease—in patients with REM sleep behaviour disorder without Parkinson’s disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson’s disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson’s disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson’s disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson’s disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of ‘prodromal’ Parkinson’s disease that might be useful in tracking disease progression and for disease-modifying intervention trials. PMID:26582557

  13. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model

    PubMed Central

    Hüttenrauch, M; Brauß, A; Kurdakova, A; Borgers, H; Klinker, F; Liebetanz, D; Salinas-Riester, G; Wiltfang, J; Klafki, H W; Wirths, O

    2016-01-01

    The evidence for a protective role of physical activity on the risk and progression of Alzheimer's disease (AD) has been growing in the last years. Here we studied the influence of a prolonged physical and cognitive stimulation on neurodegeneration, with special emphasis on hippocampal neuron loss and associated behavioral impairment in the Tg4-42 mouse model of AD. Tg4-42 mice overexpress Aβ4-42 without any mutations, and develop an age-dependent hippocampal neuron loss associated with a severe memory decline. We demonstrate that long-term voluntary exercise diminishes CA1 neuron loss and completely rescues spatial memory deficits in different experimental settings. This was accompanied by changes in the gene expression profile of Tg4-42 mice. Deep sequencing analysis revealed an upregulation of chaperones involved in endoplasmatic reticulum protein processing, which might be intimately linked to the beneficial effects seen upon long-term exercise. We believe that we provide evidence for the first time that enhanced physical activity counteracts neuron loss and behavioral deficits in a transgenic AD mouse model. The present findings underscore the relevance of increased physical activity as a potential strategy in the prevention of dementia. PMID:27138799

  14. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model.

    PubMed

    Hüttenrauch, M; Brauß, A; Kurdakova, A; Borgers, H; Klinker, F; Liebetanz, D; Salinas-Riester, G; Wiltfang, J; Klafki, H W; Wirths, O

    2016-01-01

    The evidence for a protective role of physical activity on the risk and progression of Alzheimer's disease (AD) has been growing in the last years. Here we studied the influence of a prolonged physical and cognitive stimulation on neurodegeneration, with special emphasis on hippocampal neuron loss and associated behavioral impairment in the Tg4-42 mouse model of AD. Tg4-42 mice overexpress Aβ4-42 without any mutations, and develop an age-dependent hippocampal neuron loss associated with a severe memory decline. We demonstrate that long-term voluntary exercise diminishes CA1 neuron loss and completely rescues spatial memory deficits in different experimental settings. This was accompanied by changes in the gene expression profile of Tg4-42 mice. Deep sequencing analysis revealed an upregulation of chaperones involved in endoplasmatic reticulum protein processing, which might be intimately linked to the beneficial effects seen upon long-term exercise. We believe that we provide evidence for the first time that enhanced physical activity counteracts neuron loss and behavioral deficits in a transgenic AD mouse model. The present findings underscore the relevance of increased physical activity as a potential strategy in the prevention of dementia. PMID:27138799

  15. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

    PubMed

    Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana; Terwel, Dick; Eichele, Gregor; Witten, Anika; Figura, Stefanie; Stoll, Monika; Schwartz, Stephanie; Pape, Hans-Christian; Schultze, Joachim L; Weinshenker, David; Heneka, Michael T; Urban, Inga

    2014-06-25

    To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD.

  16. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer's disease.

    PubMed

    Gu, Xun-Hu; Xu, Li-Jun; Liu, Zhi-Qiang; Wei, Bo; Yang, Yuan-Jian; Xu, Guo-Gang; Yin, Xiao-Ping; Wang, Wei

    2016-09-15

    Increasing evidence suggests that disruptions of synaptic functions correlate with the severity of cognitive deficit in Alzheimer's disease (AD). Our previous study demonstrated that baicalein enhances long-term potentiation (LTP) in acute rat hippocampal slices and improves hippocampus-dependent contextual fear conditioning in rats. Given that baicalein possess various biological activities, especially its effects on synaptic plasticity and cognitive function, we examined the effect of baicalein on synaptic function both in vitro and in vivo in AD model. The effect of baicalein on Aβ42 oligomer impaired LTP was investigated by electrophysiological methods. Baicalein was administered orally via drinking water to the APP/PS1 mice and sex- and age-matched wild-type mice. Treatment started at 5 months of age and mice were assessed for cognition and AD-like pathology at 7-month-old. Cognition was analyzed by Morris water maze test, fear conditioning test, and novel object recognition test. Changes in hippocampal 12/15 Lipoxygenase (12/15LO) and glycogen synthase kinase 3β (GSK3β) activity, Aβ production, tau phosphorylation, synaptic plasticity, and dendritic spine density were evaluated. Baicalein prevented Aβ-induced impairments in hippocampal LTP through activation of serine threonine Kinase (Akt) phosphorylation. Long-term oral administration of baicalein inhibited 12/15LO and GSK3β activity, reduced β-secretase enzyme (BACE1), decreased the concentration of total Aβ, and prevented phosphorylation of tau in APP/PS1 mice. Meanwhile, baicalein restored spine number, synaptic plasticity, and memory deficits. Our results strengthen the potential of the flavonoid baicalein as a novel and promising oral bioactive therapeutic agent that prevents memory deficits in AD.

  17. Memory outcomes following cognitive interventions in children with neurological deficits: A review with a focus on under-studied populations.

    PubMed

    Schaffer, Yael; Geva, Ronny

    2016-01-01

    Given the primary role of memory in children's learning and well-being, the aim of this review was to examine the outcomes of memory remediation interventions in children with neurological deficits as a function of the affected memory system and intervention method. Fifty-seven studies that evaluated the outcome of memory interventions in children were identified. Thirty-four studies met the inclusion criteria, and were included in a systematic review. Diverse rehabilitation methods for improving explicit and implicit memory in children were reviewed. The analysis indicates that teaching restoration strategies may improve, and result in the generalisation of, semantic memory and working memory performance in children older than 7 years with mild to moderate memory deficits. Factors such as longer protocols, emotional support, and personal feedback contribute to intervention efficacy. In addition, the use of compensation aids seems to be highly effective in prospective memory tasks. Finally, the review unveiled a lack of studies with young children and the absence of group interventions. These findings point to the importance of future evidence-based intervention protocols in these areas.

  18. Psychiatric and demographic predictors of memory deficits in African Americans with schizophrenia: the moderating role of cultural mistrust.

    PubMed

    Whaley, Arthur L

    2012-06-01

    Although African Americans are overrepresented among schizophrenia diagnoses, assessments of memory deficits in schizophrenia often do not consider issues of race, ethnicity, and culture. Digit span testing (DST) is often used to assess memory problems associated with schizophrenia. The purpose of the current study was to examine the effects of psychiatric symptoms and demographic background on the DST performances of 128 African American schizophrenic patients. It was hypothesized that level of cultural mistrust would moderate the relationship of psychiatric and demographic variables to memory deficits. The study involved the secondary analysis of data from the Culturally-Sensitive Diagnostic Interview Research Project. Different models of the relationship among predictor variables in their impact on DST performance were tested via structural equation modeling (SEM); and the moderating effects of level of cultural mistrust were evaluated with the best SEM model. The results supported the hypothesis that level of cultural mistrust moderates the relationship among variables in the SEM model. Specifically, psychiatric symptoms negatively impacted DST performance in the low cultural mistrust group, but they had no significant association to the memory deficits of the high cultural mistrust group. The pattern of findings for the effects of psychiatric symptoms on DST performance is consistent with the view of cultural mistrust as an adaptive mechanism in African Americans. One implication is that cultural factors should be taken into account when assessing memory deficits in African Americans with schizophrenia.

  19. Heterozygous deletion of the LRFN2 gene is associated with working memory deficits.

    PubMed

    Thevenon, Julien; Souchay, Céline; Seabold, Gail K; Dygai-Cochet, Inna; Callier, Patrick; Gay, Sébastien; Corbin, Lucie; Duplomb, Laurence; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; El Chehadeh, Salima; Avila, Magali; Minot, Delphine; Guedj, Eric; Chancenotte, Sophie; Bonnet, Marlène; Lehalle, Daphne; Wang, Ya-Xian; Kuentz, Paul; Huet, Frédéric; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Petralia, Ronald S; Faivre, Laurence

    2016-06-01

    Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective working memory deficits, with borderline intellectual functioning. Further investigations identified a defect in executive function, and auditory-verbal processes. These data were consistent with brain MRI and FDG-PET functional brain imaging, which, when compared with controls, revealed abnormal brain volume and hypometabolism of gray matter structures implicated in working memory. We performed electron microscopy immunogold labeling demonstrating the localization of LRFN2 at synapses of cerebellar and hippocampal rat neurons, often associated with the NR1 subunit of N-methyl-D-aspartate receptors (NMDARs). Altogether, the combined approaches imply a role for LRFN2 in LD, specifically for working memory processes and executive function. In conclusion, the identification of familial cases of clinically homogeneous endophenotypes of LD might help in both the management of patients and genetic counseling for families.

  20. Prospective Memory Deficits in Ecstasy Users: Effects of Longer Ongoing Task Delay Interval

    PubMed Central

    WEINBORN, MICHAEL; WOODS, STEVEN PAUL; NULSEN, CLAIRE; PARK, KATHERINE

    2011-01-01

    Ecstasy use has been associated with neurotoxicity and neurocognitive impairment in a variety of domains, including prospective memory (ProM), which involves the delayed execution of a previously encoded intention in response to a specific cue. The present study adopted the multiprocess theory of ProM to evaluate the hypothesis that ecstasy users would evidence differentially impaired ProM on longer versus shorter ongoing task delays. Ecstasy (n = 31) users, high-risk alcohol users (n = 21) and healthy nonusers (n = 31) completed the short (2-min) and long (15-min) delay ProM scales of the Memory for Intentions Screening Test. Results showed a significant group by ProM delay interaction, such that ecstasy users performed comparably to the comparison groups on short-delay trials, but were impaired on long-delay ProM, particularly for time-based cues. Among the ecstasy users, long-delay ProM was positively associated with risky decision-making, but not with retrospective memory or other aspects of executive functions. These findings suggest that ecstasy users may be particularly susceptible to deficits in strategic target monitoring and maintenance of cue-intention pairings over longer ProM delays. Findings are discussed in the context of their potential everyday functioning (e.g., academic, vocational) and treatment implications for ecstasy users. PMID:22047194

  1. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice

    PubMed Central

    Pascual-Lucas, Maria; Viana da Silva, Silvia; Di Scala, Marianna; Garcia-Barroso, Carolina; González-Aseguinolaza, Gloria; Mulle, Christophe; Alberini, Cristina M; Cuadrado-Tejedor, Mar; Garcia-Osta, Ana

    2014-01-01

    Insulin-like growth factor 2 (IGF2) was recently found to play a critical role in memory consolidation in rats and mice, and hippocampal or systemic administration of recombinant IGF2 enhances memory. Here, using a gene therapy-based approach with adeno-associated virus (AAV), we show that IGF2 overexpression in the hippocampus of aged wild-type mice enhances memory and promotes dendritic spine formation. Furthermore, we report that IGF2 expression decreases in the hippocampus of patients with Alzheimer's disease, and this leads us to hypothesize that increased IGF2 levels may be beneficial for treating the disease. Thus, we used the AAV system to deliver IGF2 or IGF1 into the hippocampus of the APP mouse model Tg2576 and demonstrate that IGF2 and insulin-like growth factor 1 (IGF1) rescue behavioural deficits, promote dendritic spine formation and restore normal hippocampal excitatory synaptic transmission. The brains of Tg2576 mice that overexpress IGF2 but not IGF1 also show a significant reduction in amyloid levels. This reduction probably occurs through an interaction with the IGF2 receptor (IGF2R). Hence, IGF2 and, to a lesser extent, IGF1 may be effective treatments for Alzheimer's disease. PMID:25100745

  2. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications. PMID:26767366

  3. Deficits in Executive and Memory Processes in Delusional Disorder: A Case-Control Study

    PubMed Central

    Ibanez-Casas, Inmaculada; De Portugal, Enrique; Gonzalez, Nieves; McKenney, Kathryn A.; Haro, Josep M.; Usall, Judith; Perez-Garcia, Miguel; Cervilla, Jorge A.

    2013-01-01

    Objective Delusional disorder has been traditionally considered a psychotic syndrome that does not evolve to cognitive deterioration. However, to date, very little empirical research has been done to explore cognitive executive components and memory processes in Delusional Disorder patients. This study will investigate whether patients with delusional disorder are intact in both executive function components (such as flexibility, impulsivity and updating components) and memory processes (such as immediate, short term and long term recall, learning and recognition). Methods A large sample of patients with delusional disorder (n = 86) and a group of healthy controls (n = 343) were compared with regard to their performance in a broad battery of neuropsychological tests including Trail Making Test, Wisconsin Card Sorting Test, Colour-Word Stroop Test, and Complutense Verbal Learning Test (TAVEC). Results When compared to controls, cases of delusional disorder showed a significantly poorer performance in most cognitive tests. Thus, we demonstrate deficits in flexibility, impulsivity and updating components of executive functions as well as in memory processes. These findings held significant after taking into account sex, age, educational level and premorbid IQ. Conclusions Our results do not support the traditional notion of patients with delusional disorder being cognitively intact. PMID:23844005

  4. Arithmetic facts storage deficit: the hypersensitivity-to-interference in memory hypothesis.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale

    2014-05-01

    Dyscalculia, or mathematics learning disorders, is currently known to be heterogeneous (Wilson & Dehaene, ). While various profiles of dyscalculia coexist, a general and persistent hallmark of this math learning disability is the difficulty in memorizing arithmetic facts (Geary, Hoard & Hamson, ; Jordan & Montani, ; Slade & Russel, ). Arithmetic facts are simple arithmetic problems that are solved by direct retrieval from memory. Recently, De Visscher and Noël () showed hypersensitivity-to-interference in memory in an adult suffering from a specific deficit of arithmetic facts storage. According to the authors, arithmetic facts share many features. The overlapping of these features between arithmetic facts may provoke interference. Consequently, learners who are hypersensitive-to-interference could have considerable difficulties in storing arithmetic facts. The present study aims at testing this new hypothesis on fourth-grade children who are learning multiplication tables. Among 101 children that were assessed, 23 low arithmetic facts learners were selected because of their low score in arithmetic facts fluency (controlling for processing speed). Twenty-three control children were selected, matched for classroom, gender, and age. In addition to a subtest of global reasoning, these participants were given a multiplication production task and a memorization task of low- and high-interference associations. The results show that children with low arithmetic fluencies experience hypersensitivity-to-interference in memory compared with children with typical arithmetic fluencies.

  5. Gene expression profile in rat hippocampus with and without memory deficit.

    PubMed

    Paban, Véronique; Farioli, Fernand; Romier, Béatrice; Chambon, Caroline; Alescio-Lautier, Béatrice

    2010-07-01

    The cholinergic neuronal system, through its projections to the hippocampus, plays an important role in learning and memory. The aim of the study was to identify genes and networks in rat hippocampus with and without memory deficit. Genome-scale screening was used to analyze gene expression changes in rats submitted or not to intraparenchymal injection of 192 IgG-saporin and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes that could be grouped into several clusters of similar expression profiles and that are involved in biological functions, namely lipid metabolism, signal transduction, protein metabolism and modification, and transcription regulation. Memory loss following hippocampal cholinergic deafferentation was associated with significant expression of genes that did not show similar cluster organization. Only one cluster of genes could be identified; it included genes that would be involved in tissue remodeling. More important, most of the genes significantly altered in lesioned rats were down-regulated. PMID:20359541

  6. The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure

    PubMed Central

    Raghuveer, Vasudeva C.; Rao, Mallikarjuna C.; Somayaji, Nagabhooshana S.; Babu, Prakash B.

    2013-01-01

    Chronic exposure to fluoride causes dental and skeletal fluorosis. Fluoride exposure is also detrimental to soft tissues and organs. The present study aimed at evaluation of the effect of Ginkgo biloba and ascorbic acid on learning and memory deficits caused by fluoride exposure. Male Wistar rats were divided into five groups (n=6). Group 1 control. Groups 2 to 5 received 100 ppm of sodium fluoride over 30 days. Groups 3, 4 and 5 were further treated for 15 days receiving respectively 1% gum acacia solution, 100 mg/kg body weight ascorbic acid, and 100mg/kg body weight Ginkgo biloba extract. After 45 days, all animals were subjected to behavioural tests. The results showed that fluoride affected learning and memory. Fluoride causes oxidative stress and neurodegeneration, thereby affecting learning and memory. Ascorbic acid and Ginkgo biloba were found to augment the reversal of learning and memory deficits caused by fluoride ingestion. PMID:24678261

  7. Genetic ablation of the mammillary bodies in the Foxb1 mutant mouse leads to selective deficit of spatial working memory.

    PubMed

    Radyushkin, Konstantin; Anokhin, Konstantin; Meyer, Barbara I; Jiang, Qiuhong; Alvarez-Bolado, Gonzalo; Gruss, Peter

    2005-01-01

    Mammillary bodies and the mammillothalamic tract are parts of a classic neural circuitry that has been implicated in severe memory disturbances accompanying Korsakoff's syndrome. However, the specific role of mammillary bodies in memory functions remains controversial, often being considered as just an extension of the hippocampal memory system. To study this issue we used mutant mice with a targeted mutation in the transcription factor gene Foxb1. These mice suffer perinatal degeneration of the medial and most of the lateral mammillary nuclei, as well as of the mammillothalamic bundle. Foxb1 mutant mice showed no deficits in such hippocampal-dependent tasks as contextual fear conditioning and social transmission of food preference. They were also not impaired in the spatial reference memory test in the radial arm maze. However, Foxb1 mutants showed deficits in the task for spatial navigation within the Barnes maze. Furthermore, they showed impairments in spatial working memory tasks such as the spontaneous alternation and the working memory test in the radial arm maze. Thus, our behavioural analysis of Foxb1 mutants suggests that the medial mammillary nuclei and mammillothalamic tract play a role in a specific subset of spatial tasks, which require combined use of both spatial and working memory functions. Therefore, the mammillary bodies and the mammillothalamic tract may form an important route through which the working memory circuitry receives spatial information from the hippocampus.

  8. Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming

    ERIC Educational Resources Information Center

    Dovis, Sebastiaan; van der Oord, Saskia; Wiers, Reinout W.; Prins, Pier J. M.

    2012-01-01

    Visual-spatial "Working Memory" (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with-…

  9. Faster Forgetting Contributes to Impaired Spatial Memory in the PDAPP Mouse: Deficit in Memory Retrieval Associated with Increased Sensitivity to Interference?

    ERIC Educational Resources Information Center

    Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G. M.

    2008-01-01

    Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous…

  10. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  11. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  12. The neurocognitive phenotype of the 22q11.2 deletion syndrome: selective deficit in visual-spatial memory.

    PubMed

    Bearden, C E; Woodin, M F; Wang, P P; Moss, E; McDonald-McGinn, D; Zackai, E; Emannuel, B; Cannon, T D

    2001-08-01

    The 22q11.2 deletion syndrome (velocardiofacial/DiGeorge syndrome) is associated with a high frequency of learning disabilities. Although previous work has demonstrated that verbal skills are typically better preserved than non-verbal skills on both IQ and academic achievement testing in children with this syndrome, such measures are not sufficiently specific to determine a selective cognitive deficit. As part of an ongoing prospective study of patients with this syndrome, 29 children aged 5-17 with confirmed 22q11.2 deletions were assessed with a comprehensive neuropsychological test battery, including matched tasks of verbal and visuospatial memory. Results indicate that 22q patients displayed a selective deficit in visual-spatial memory, which was mirrored by deficits in arithmetic and general visual-spatial cognition. Further, a dissociation between visual-spatial and object memory was observed, indicating further selectivity of this pattern of deficit, and providing evidence for the dissociability of these components of visual cognition. These results indicate that children with 22q11.2 deletions display a specific neurocognitive phenotype, and suggest that this region of Chromosome 22q11 may harbor a gene or genes relevant to the etiology of nonverbal learning deficits. PMID:11780945

  13. Effects of semantic relatedness on age-related associative memory deficits: the role of theta oscillations.

    PubMed

    Crespo-Garcia, Maite; Cantero, Jose L; Atienza, Mercedes

    2012-07-16

    Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC.

  14. Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring.

    PubMed

    Mishra, Divya; Tiwari, Shashi Kant; Agarwal, Swati; Sharma, Vinod Praveen; Chaturvedi, Rajnish Kumar

    2012-05-01

    Neurogenesis is a process of generation of new neurons in the hippocampus and associated with learning and memory. Carbofuran, a carbamate pesticide, elicits several neurochemical, neurophysiological, and neurobehavioral deficits. We evaluated whether chronic prenatal oral exposure of carbofuran during gestational days 7-21 alters postnatal hippocampal neurogenesis at postnatal day 21. We found carbofuran treatment significantly decreased bromodeoxyuridine (BrdU) positive cell proliferation and long-term survival in the hippocampus only but not in the cerebellum. We observed a reduced number of transcription factor SOX-2 and glial fibrillary acidic protein (GFAP) colabeled cells, decreased nestin messenger RNA (mRNA) expression, and decreased histone-H3 phosphorylation following carbofuran treatment, suggesting a decreased pool of neural progenitor cells (NPC). Colocalization of BrdU with doublecortin (DCX), neuronal nuclei (NeuN), and GFAP suggested decreased neuronal differentiation and increased glial differentiation by carbofuran. The number of DCX(+) and NeuN(+) neurons, NeuN protein levels, and fibers length of DCX(+) neurons were decreased by carbofuran. Carbofuran caused a significant downregulation of mRNA expression of the neurogenic genes/transcription factors such as neuregulin, neurogenin, and neuroD1 and upregulation of the gliogenic gene Stat3. Carbofuran exposure led to increased BrdU/caspase 3 colabeled cells, an increased number of degenerative neurons and profound deficits in learning and memory processes. The number and size of primary neurospheres derived from the hippocampus of carbofuran-treated rats were decreased. These results suggest that early gestational carbofuran exposure diminishes neurogenesis, reduces the NPC pool, produces neurodegeneration in the hippocampus, and causes cognitive impairments in rat offspring.

  15. Amnesic H.M. Exhibits Parallel Deficits and Sparing in Language and Memory: Systems versus Binding Theory Accounts

    ERIC Educational Resources Information Center

    MacKay, Donald G.; James, Lori E.; Taylor, Jennifer K.; Marian, Diane E.

    2007-01-01

    This study examines sentence-level language abilities of amnesic H.M. to test competing theoretical conceptions of relations between language and memory. We present 11 new sources of experimental evidence indicating deficits in H.M's comprehension and production of non-cliche sentences. Contrary to recent claims that H.M.'s comprehension is…

  16. ADHD and Working Memory: The Impact of Central Executive Deficits and Exceeding Storage/Rehearsal Capacity on Observed Inattentive Behavior

    ERIC Educational Resources Information Center

    Kofler, Michael J.; Rapport, Mark D.; Bolden, Jennifer; Sarver, Dustin E.; Raiker, Joseph S.

    2010-01-01

    Inattentive behavior is considered a core and pervasive feature of ADHD; however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory deficits and inattentive behavior. The current study investigated whether inattentive behavior in children with ADHD is functionally related to the…

  17. Creativity and Working Memory in Gifted Students with and without Characteristics of Attention Deficit Hyperactive Disorder: Lifting the Mask

    ERIC Educational Resources Information Center

    Fugate, C. Matthew; Zentall, Sydney S.; Gentry, Marcia

    2013-01-01

    There have been some behavioral indicators and some types of task performance that suggest greater creativity in students with attention deficit hyperactive disorder (ADHD). This evidence would appear counterintuitive given that lower working memory (i.e., holding information in mind for novel recombinations) has often been documented in students…

  18. Elements of Working Memory as Predictors of Goal-Setting Skills in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nyman, Anna; Taskinen, Taina; Gronroos, Matti; Haataja, Leena; Lahdetie, Jaana; Korhonen, Tapio

    2010-01-01

    The aim of the study was to examine how goal-setting skills of children with attention-deficit/hyperactivity disorder (ADHD) can be predicted with elements of working memory. The study involved 30 children with an ADHD diagnosis and 30 healthy volunteers. The IQ of the participants was assessed, and ADHD symptoms were evaluated by parents. Each of…

  19. Prospective memory deficits are associated with poorer everyday functioning in Parkinson's disease.

    PubMed

    Pirogovsky, Eva; Woods, Steven Paul; Vincent Filoteo, J; Gilbert, Paul E

    2012-11-01

    Although individuals with Parkinson's disease (PD) evidence moderate deficits in prospective memory (PM), it is not known whether PM deficits confer an increased risk of poorer everyday functioning. In the current study, 33 individuals with PD and 26 demographically similar normal controls (NC) were administered performance-based and self-report measures of PM and everyday functioning, including medication and financial management. As compared to NC, PD participants demonstrated significantly lower scores on performance-based measures of PM and financial capacity, worse performance at a trend level on performance-based medication management and endorsed significantly greater self-reported declines in PM and instrumental activities of daily living (iADLs). In the PD sample, the laboratory measure of PM significantly correlated with performance-based measures of financial capacity and medication management and a self-report measure of medication management. Self-reported PM failures significantly correlated with perceived declines in iADLs, worse medication management, and poorer health-related quality of life. Although future studies are needed to examine the incremental ecological validity of PM in PD, findings from this study extend prior research by providing preliminary evidence that PM impairment may play a significant role in a range of critical everyday functions in PD.

  20. Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities.

    PubMed

    Anticevic, Alan; Repovs, Grega; Barch, Deanna M

    2013-01-01

    Substantial evidence implicates working memory (WM) as a core deficit in schizophrenia (SCZ), purportedly due to primary deficits in dorsolateral prefrontal cortex functioning. Recent findings suggest that SCZ is also associated with abnormalities in suppression of certain regions during cognitive engagement--namely the default mode system--that may further contribute to WM pathology. However, no study has systematically examined activation and suppression abnormalities across both encoding and maintenance phases of WM in SCZ. Twenty-eight patients and 24 demographically matched healthy subjects underwent functional magnetic resonance imaging at 3T while performing a delayed match-to-sample WM task. Groups were accuracy matched to rule out performance effects. Encoding load was identical across subjects to facilitate comparisons across WM phases. We examined activation differences using an assumed model approach at the whole-brain level and within meta-analytically defined WM areas. Despite matched performance, we found regions showing less recruitment during encoding and maintenance for SCZ subjects. Furthermore, we identified 2 areas closely matching the default system, which SCZ subjects failed to deactivate across WM phases. Lastly, activation in prefrontal regions predicted the degree of deactivation for healthy but not SCZ subjects. Current results replicate and extend prefrontal recruitment abnormalities across WM phases in SCZ. Results also indicate deactivation abnormalities across WM phases, possibly due to inefficient prefrontal recruitment. Such regional deactivation may be critical for suppressing sources of interference during WM trace formation. Thus, deactivation deficits may constitute an additional source of impairments, which needs to be further characterized for a complete understanding of WM pathology in SCZ.

  1. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.

    PubMed

    Luo, Yi; Zhou, Jun; Li, Ming-Xing; Wu, Peng-Fei; Hu, Zhuang-Li; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2015-04-01

    Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit.

  2. Early life inflammatory pain induces long-lasting deficits in hippocampal-dependent spatial memory in male and female rats.

    PubMed

    Henderson, Yoko O; Victoria, Nicole C; Inoue, Kiyoshi; Murphy, Anne Z; Parent, Marise B

    2015-02-01

    The present experiment tested the hypothesis that neonatal injury disrupts adult hippocampal functioning and that normal aging or chronic stress during adulthood, which are known to have a negative impact on hippocampal function, exacerbate these effects. Male and female Sprague-Dawley rats were given an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth and their memory was tested in the hippocampal-dependent spatial water maze in adulthood and again in middle age. We found that neonatal injury impaired hippocampal-dependent memory in adulthood, that the effects of injury on memory were more pronounced in middle-aged male rats, and that chronic stress accelerated the onset of these memory deficits. Neonatal injury also decreased glucocorticoid receptor mRNA in the dorsal CA1 area of middle-aged rats, a brain region critical for spatial memory. Morphine administration at the time of injury completely reversed injury-induced memory deficits, but neonatal morphine treatments in the absence of injury produced significant memory impairments in adulthood. Collectively, these findings are consistent with our hypothesis that neonatal injury produces long-lasting disruption in adult hippocampal functioning.

  3. Adjuvant anticholinesterase therapy for the management of epilepsy-induced memory deficit: a critical pre-clinical study.

    PubMed

    Mishra, Awanish; Goel, Rajesh Kumar

    2014-12-01

    Epilepsy is one of the major neurological disorders still awaiting safer drugs with improved antiepileptic effect and lesser side effects. Apart from epilepsy itself, AEDs also have been shown to induce cognitive impairment in patients with epilepsy. There are limited data for the treatment of this menace. As cholinergic approach has widely been practiced for the restoration of memory in various neurodegenerative disorders, this study was envisaged to evaluate add on effect of acetylcholinesterase inhibitor (tacrine) with phenytoin in pentylenetetrazole-kindling-induced learning and memory deficit in mice. In this study, mice were kindled using subconvulsive dose of pentylenetetrazole (35 mg/kg, i.p.; at interval of 48 ± 2 hr) and successfully kindled animals were divided into different groups and treated with vehicle, phenytoin and phenytoinin in combination with tacrine (0.3 mg/kg), atropine (1 mg/kg) and tacrine + atropine. Effect of different interventions on learning and memory was evaluated using elevated plus maze and passive shock avoidance on days 5, 10, 15 and 20. Phenytoin-treated kindled animals were associated with learning and memory deficit, while tacrine supplementation improved memory deficit with increased seizure severity score. Atropine treatment significantly reversed the protective effect of tacrine. Neurochemical findings also support the behavioural finding of the study. Our results suggest the use of anticholinesterases, with better seizure tolerance, for the management of cognitive impairment of epilepsy, as adjunct therapy.

  4. Comparative Effect of Lisinopril and Fosinopril in Mitigating Learning and Memory Deficit in Scopolamine-Induced Amnesic Rats.

    PubMed

    Deb, Debasree; Bairy, K L; Nayak, Veena; Rao, Mohandas

    2015-01-01

    Lisinopril and fosinopril were compared on scopolamine-induced learning and memory deficits in rats. A total of eighty-four male Wistar rats were divided into seven groups. Group I received 2% gum acacia orally for 4 weeks, group II received normal saline, and group III received scopolamine (2 mg/kg/ip) as single dose. Groups IV and V received lisinopril ( 0.225 mg/kg and 0.45 mg/kg), while Groups VI and VII received fosinopril (0.90 mg/kg and 1.80 mg/kg), respectively, orally for four weeks, followed by scopolamine (2 mg/kg/ip) given 45 minutes prior to experimental procedure. Evaluation of learning and memory was assessed by using passive avoidance, Morris water maze, and elevated plus maze tests followed by analysis of hippocampal morphology and quantification of the number of surviving neurons. Scopolamine induced marked impairment of memory in behavioral tests which correlated with morphological changes in hippocampus. Pretreatment with fosinopril 1.80 mg/kg was found to significantly ameliorate the memory deficits and hippocampal degeneration induced by scopolamine. Fosinopril exhibits antiamnesic activity, indicating its possible role in preventing memory deficits seen in dementia though the precise mechanism underlying this effect needs to be further evaluated. PMID:26300914

  5. Comparative studies using the Morris water maze to assess spatial memory deficits in two transgenic mouse models of Alzheimer's disease.

    PubMed

    Edwards, Stephen R; Hamlin, Adam S; Marks, Nicola; Coulson, Elizabeth J; Smith, Maree T

    2014-10-01

    Evaluation of the efficacy of novel therapeutics for potential treatment of Alzheimer's disease (AD) requires an animal model that develops age-related cognitive deficits reproducibly between independent groups of investigators. Herein we assessed comparative temporal changes in spatial memory function in two commercially available transgenic mouse models of AD using the Morris water maze (MWM), incorporating both visible and hidden platform training. Individual cohorts of cDNA-based 'line 85'-derived double-transgenic mice coexpressing the 'Swedish' mutation of amyloid precursor protein (APPSwe) and the presenillin 1 (PS1) 'dE9' mutation were assessed in the MWM at mean ages of 3.6, 9.3 and 14.8 months. We found significant deficits in spatial memory retention in APPSwe/PS1dE9 mice aged 3.6 months and robust deficits in spatial memory acquisition and retention in APPSwe/PS1dE9 mice aged 9.3 months, with a further significant decline by age 14.8 months. β-Amyloid deposits were present in brain sections by 7.25 months of age. In contrast, MWM studies with individual cohorts (aged 4-21 months) of single-transgenic genomic-based APPSwe mice expressing APPSwe on a yeast artificial chromosomal (YAC) construct showed no significant deficits in spatial memory acquisition until 21 months of age. There were no significant deficits in spatial memory retention up to 21 months of age and β-amyloid deposits were not present in brain sections up to 24 months of age. These data, generated using comprehensive study designs, show that APPSwe/PS1dE9 but not APPSwe YAC mice appear to provide a suitably robust model of AD for efficacy assessment of novel AD treatments in development.

  6. proBDNF Attenuates Hippocampal Neurogenesis and Induces Learning and Memory Deficits in Aged Mice.

    PubMed

    Chen, Jia; Li, Cheng-Ren; Yang, Heng; Liu, Juan; Zhang, Tao; Jiao, Shu-Sheng; Wang, Yan-Jiang; Xu, Zhi-Qiang

    2016-01-01

    Mature brain-derived neurotrophic factor has shown promotive effect on neural cells in rodents, including neural proliferation, differentiation, survival, and synaptic formation. Conversely, the precursor of brain-derived neurotrophic factor (proBDNF) has been emerging as a differing protein against its mature form, for its critical role in aging process and neurodegenerative diseases. In the present study, we investigated the role of proBDNF in neurogenesis in the hippocampal dentate gyrus of aged mice and examined the changes in mice learning and memory functions. The results showed that the newborn cells in the hippocampus revealed a significant decline in proBDNF-treated group compared with bovine serum albumin group, but an elevated level in anti-proBDNF group. During the maturation period, no significant change was observed in the proportions of phenotype of the newborn cells among the three groups. In water maze, proBDNF-treated mice had poorer scores in place navigation test and probe test, compared with those from any other group. Thus, we conclude that proBDNF attenuates neurogenesis in the hippocampus and induces the deficits in learning and memory functions of aged mice.

  7. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice.

    PubMed

    Lv, Cui; Liu, Xiaoli; Liu, Hongjuan; Chen, Tong; Zhang, Wensheng

    2014-01-01

    Oxidative stress and mitochondrial dysfunction appear early and contribute to the disease progression in Alzheimer's disease (AD), which can be detected extensively in AD patients brains as well as in transgenic AD mice brains. Thus, treatments that result in attenuation of oxidative stress and mitochondrial dysfunction may hold potential for AD treatment. Geniposide, a pharmacologically active component purified from gardenia fruit, exhibits anti-oxidative, antiinflammatory and other important therapeutic properties. However, whether geniposide has any protective effect on oxidative stress and mitochondrial dysfunction in AD transgenic mouse model has not yet been reported. Here, we demonstrate that intragastric administration of geniposide significantly reduces oxidative stress and mitochondrial dysfunction in addition to improving learning and memory in APP/PS1 mice. Geniposide exerts protective effects on mitochondrial dysfunction in APP/PS1 mice through suppressing the mitochondrial oxidative damage and increasing the mitochondrial membrane potential and activity of cytochrome c oxidase. These studies indicate that geniposide may attenuate memory deficits through the suppression of mitochondrial oxidative stress. Thus, geniposide may be a potential therapeutic reagent for halting and preventing AD progress.

  8. Growth hormone secretagogue receptor (GHS-R1a) knockout mice exhibit improved spatial memory and deficits in contextual memory.

    PubMed

    Albarran-Zeckler, Rosie G; Brantley, Alicia Faruzzi; Smith, Roy G

    2012-06-15

    Although the hormone ghrelin is best known for its stimulatory effect on appetite and regulation of growth hormone release, it is also reported to have beneficial effects on learning and memory formation in mice. Nevertheless, controversy exists about whether endogenous ghrelin acts on its receptors in extra-hypothalamic areas of the brain. The ghrelin receptor (GHS-R1a) is co-expressed in neurons that express dopamine receptor type-1 (DRD1a) and type-2 (DRD2), and we have shown that a subset of GHS-R1a, which are not occupied by the agonist (apo-GHSR1a), heterodimerize with these two receptors to regulate dopamine signaling in vitro and in vivo. To determine the consequences of ghsr ablation on brain function, congenic ghsr -/- mice on the C57BL6/J background were subjected to a battery of behavioral tests. We show that the ghsr -/- mice exhibit normal balance, movement, coordination, and pain sensation, outperform ghsr +/+ mice in the Morris water maze, but show deficits in contextual fear conditioning.

  9. D-cycloserine in Prelimbic Cortex Reverses Scopolamine-Induced Deficits in Olfactory Memory in Rats

    PubMed Central

    Portero-Tresserra, Marta; Cristóbal-Narváez, Paula; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2013-01-01

    A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks. PMID:23936452

  10. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition.

    PubMed

    Brownlow, Milene L; Joly-Amado, Aurelie; Azam, Sana; Elza, Mike; Selenica, Maj-Linda; Pappas, Colleen; Small, Brent; Engelman, Robert; Gordon, Marcia N; Morgan, Dave

    2014-09-01

    Calorie restriction (CR) was shown previously to improve cognition and decrease pathology in transgenic mouse models with Alzheimer-like amyloid deposition. In the present study, we investigated the effects of CR on the Tg4510 model of tau deposition. Mice in the calorie restriction group had food intake gradually decreased until they reached an average of 35% body weight reduction. Body weight and food intake were monitored throughout the study. After being on their respective diets for 3 months, all animals were submitted to behavioral testing. Tg4510 mice fed ad libitum showed lower body weight than nontransgenic littermates despite their increased food intake. Additionally, Tg4510 showed increased locomotor activity in the open field regardless of diet. Calorie restricted Tg4510 mice performed significantly better than ad libitum fed mice in the novel object recognition test, suggesting improved short-term memory. CR Tg4510 mice also performed significantly better in contextual fear conditioning than mice fed ad libitum. However, in a modified version of the novelty test that allows for interaction with other mice instead of inanimate objects, CR was not able to rescue the deficit found in Tg4510 mice in this ethologically more salient version of the task. No treatment differences in motor performance or spatial memory were observed in the rotarod or radial arm water maze tests, respectively. Histopathological and biochemical assessments showed no diet-induced changes in total or phospho-tau levels. Moreover, increased activation of both astrocytes and microglia in Tg4510 mice was not rescued by calorie restriction. Taken together, our data suggests that, despite an apparent rescue of associative memory, CR had no consistent effects on pathological outcomes of a mouse model of tau deposition.

  11. Escitalopram improves memory deficits induced by maternal separation in the rat.

    PubMed

    Couto, Frederico Simões do; Batalha, Vânia L; Valadas, Jorge S; Data-Franca, João; Ribeiro, Joaquim A; Lopes, Luísa V

    2012-11-15

    Maternal separation (MS) induces depressive-like behavior and long-term changes in cognition in rats. Escitalopram is an antidepressant drug shown to reverse the depressive-like features caused by this stress model. However, it is not known if it can ameliorate the affected cognition. We now characterized the effect of escitalopram on hippocampal-dependent memory in rats submitted to the MS protocol. Male Wistar rats were assigned either to control (CTR) or maternal separated (MS) group. MS were separated from their dams between 2-14 postnatal days (PND) for 180min daily. Escitalopram was given in food pellets (0.34g/kg/day first 2 weeks and 0.41g/kg/day the subsequent period, average dose 25mg/kg) from PND 43 onwards, during 1 month. Depressive behavior was assessed in the forced swimming test (FST), and memory performance in the Morris water maze (MWM). Escitalopram significantly improved the FST's latency to despair in the MS group (n=6), but did not change the immobility time. All groups showed a significant learning effect in the MWM over time, but no differences have been found upon treatment (n=6). However, escitalopram treatment significantly increased the time spent on the platform quadrant in the probe trial in the MS group. We report here that chronic treatment with escitalopram is able to improve hippocampal dependent memory in a chronic stress model, while not changing the learning ability. Moreover, this is accompanied by an amelioration of the depressive like behavior. These results support the use of escitalopram to tackle underlying cognitive deficits caused by stress in early-life.

  12. Competing Core Processes in Attention-Deficit/Hyperactivity Disorder (ADHD): Do Working Memory Deficiencies Underlie Behavioral Inhibition Deficits?

    ERIC Educational Resources Information Center

    Alderson, R. Matt; Rapport, Mark D.; Hudec, Kristen L.; Sarver, Dustin E.; Kofler, Michael J.

    2010-01-01

    The current study examined competing predictions of the working memory and behavioral inhibition models of ADHD. Behavioral inhibition was measured using a conventional stop-signal task, and central executive, phonological, and visuospatial working memory components (Baddeley 2007) were assessed in 14 children with ADHD and 13 typically developing…

  13. Hippocampal brain-derived neurotrophic factor mediates recovery from chronic stress-induced spatial reference memory deficits.

    PubMed

    Ortiz, J Bryce; Mathewson, Coy M; Hoffman, Ann N; Hanavan, Paul D; Terwilliger, Ernest F; Conrad, Cheryl D

    2014-11-01

    Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain.

  14. Listening comprehension and working memory are impaired in attention-deficit hyperactivity disorder irrespective of language impairment.

    PubMed

    McInnes, Alison; Humphries, Tom; Hogg-Johnson, Sheilah; Tannock, Rosemary

    2003-08-01

    This study investigated listening comprehension and working memory abilities in children with attention-deficit hyperactivity disorder (ADHD), presenting with and without language impairments (LI). A 4-group design classified a community sample (n = 77) of boys aged 9-12 into ADHD, ADHD + LI, LI, and Normal groups. Children completed tests of basic language and cognitive skills, verbal and spatial working memory, and passage-level listening comprehension. Multivariate analyses and post hoc comparisons indicated that ADHD children who did not have co-occurring LI comprehended factual information from spoken passages as well as normal children, but were poorer at comprehending inferences and monitoring comprehension of instructions. ADHD children did not differ from normal children in verbal span, but showed significantly poorer verbal working memory, spatial span, and spatial working memory. The ADHD + LI and LI groups were most impaired in listening comprehension and working memory performance, but did not differ from each other. Listening comprehension skills were significantly correlated with both verbal and spatial working memory, and parent-teacher ratings of inattention and hyperactivity/impulsivity. Findings that children with ADHD but no LI showed subtle higher-level listening comprehension deficits have implications for both current diagnostic practices and conceptualizations of ADHD.

  15. Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats.

    PubMed

    Hasanein, Parisa

    2011-06-01

    Cognitive impairment occurs in diabetes mellitus. Glabridin as a major active flavonoids in Glycyrrhiza glabra (licorice) improves learning and memory in mice. In the present study, we investigated the effect of chronic treatment with glabridin (5, 25 and 50 mg/kg, p.o.) on cognitive function in control and streptozotocin (STZ)-induced diabetic rats.Animals were divided into untreated control, glabridin-treated control (5, 25 and 50 mg/kg), untreated diabetic and glabridin treated diabetic (5, 25 and 50 mg/kg) groups. Treatments were begun at the onset of hyperglycemia. Passive avoidance learning (PAL) and memory was assessed 30 days later. Diabetes caused cognition deficits in the PAL and memory paradigm. While oral glabridin administration (25 and 50 mg/kg) improved learning and memory in non-diabetic rats, it reversed learning and memory deficits of diabetic rats. Low dose glabridin (5 mg/kg) did not alter cognitive function in non-diabetic and diabetic groups. Glabridin treatment partially improved the reduced body weight and hyperglycemia of diabetic rats although the differences were not significant. The combination of antioxidant, neuroprotective and anticholinesterase properties of glabridin may all be responsible for the observed effects. These results show that glabridin prevented the deleterious effects of diabetes on learning and memory in rats. Further studies are warranted for clinical use of glabridin in the management of demented diabetic patients.

  16. Neural Correlates of the Interactive Relationship between Memory Deficits and Depressive Symptoms in Nondemented Elderly: Resting fMRI Study

    PubMed Central

    Goveas, Joseph; Xie, Chunming; Wu, Zhilin; Ward, B. Douglas; Li, Wenjun; Franczak, Malgorzata B.; Jones, Jennifer L.; Antuono, Piero G.; Yang, Zheng; Li, Shi-Jiang

    2011-01-01

    Prospective studies have shown an association between depressive symptoms and cognitive impairment among older adults. However, the neural correlates of this relationship are poorly understood. Our aim was to examine whether interactive effects of memory deficits and depressive symptoms are present in the memory-associated functional networks, in nondemented elderly subjects. Fifteen subjects with amnestic mild cognitive impairment (aMCI) and 20 age-matched normal (CN) elderly subjects participated in this cross-sectional study. Resting-state functional connectivity MRI (R-fMRI) measured the hippocampal functional connectivity (HFC) alterations between the two groups. Voxelwise linear regression analysis was performed to correlate hippocampal network strength with the Rey Auditory Verbal Learning Test delayed recall and the Geriatric Depression Scale scores, after adjusting for age and group effects. Poorer memory performance was associated with decreased positively correlated HFC connectivity in the specific frontal lobe and default mode network (DMN) structures. Poorer memory performance also was associated with decreased anticorrelated HFC connectivity in the bilateral inferior parietal and right dorsolateral prefrontal cortices. In contrast, greater depressive symptom severity was associated with increased HFC connectivity in several frontal lobes and DMN regions. Depressive symptoms and memory functions had interactive effects on the HFC, in the frontal, temporal, and PCC structures. Our findings suggest that the R-fMRI technique can be used to examine the changes in functional neural networks where memory deficits and depressive symptoms coexist in the geriatric population. PMID:21238490

  17. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits.

    PubMed

    Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia

    2016-01-01

    Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.

  18. Association between early attention-deficit/hyperactivity symptoms and current verbal and visuo-spatial short-term memory.

    PubMed

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all p<0.001) in a model that included all three ADHD symptoms. After further controlling for comorbidity, age of assessment, treatment with methylphenidate, and Full-scale IQ, the severity of childhood inattention symptoms was still significantly associated with worse verbal (p = 0.008) and spatial (p ranging from 0.017 to 0.002) short-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood.

  19. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch

  20. The effect of BLA GABA(A) receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA

    PubMed Central

    Kangarlu-Haghighi, Katayoon; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2015-01-01

    The roles of GABAergic receptors of the Basolateral amygdala (BLA) in the cannabinoid CB1 receptor agonist (arachydonilcyclopropylamide; ACPA)-induced anxiolytic-like effect and aversive memory deficit in adult male mice were examined in elevated plus-maze task. Results showed that pre-test intra-peritoneal injection of ACPA induced anxiolytic-like effect (at dose of 0.05 mg/kg) and aversive memory deficit (at doses of 0.025 and 0.05 mg/kg). The results revealed that Pre-test intra-BLA infusion of muscimol (GABAA receptor agonist; at doses of 0.1 and 0.2 µg/mouse) or bicuculline (GABAA receptor antagonist; at all doses) impaired and did not alter aversive memory, respectively. All previous GABA agents did not have any effects on anxiety-like behaviors. Interestingly, pretreatment with a sub-threshold dose of muscimol (0.025 µg/mouse) and bicuculline (0.025 µg/mouse) did not alter anxiolytic-like behaviors induced by ACPA, while both drugs restored ACPA-induced amnesia. Moreover, muscimol or bicuculline increased and decreased ACPA-induced locomotor activity, respectively. Finally the data may indicate that BLA GABAA receptors have critical and different roles in anxiolytic-like effect, aversive memory deficit and locomotor activity induced by ACPA. PMID:26648818

  1. Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder

    PubMed Central

    Tibu, F.; Sheridan, M. A.; McLaughlin, K. A.; Nelson, C. A.; Fox, N. A.; Zeanah, C. H.

    2016-01-01

    Background Young children raised in institutions are exposed to extreme psychosocial deprivation that is associated with elevated risk for psychopathology and other adverse developmental outcomes. The prevalence of attention deficit hyperactivity disorder (ADHD) is particularly high in previously institutionalized children, yet the mechanisms underlying this association are poorly understood. We investigated whether deficits in executive functioning (EF) explain the link between institutionalization and ADHD. Method A sample of 136 children (aged 6–30 months) was recruited from institutions in Bucharest, Romania, and 72 never institutionalized community children matched for age and gender were recruited through general practitioners’ offices. At 8 years of age, children’s performance on a number of EF components (working memory, response inhibition and planning) was evaluated. Teachers completed the Health and Behavior Questionnaire, which assesses two core features of ADHD, inattention and impulsivity. Results Children with history of institutionalization had higher inattention and impulsivity than community controls, and exhibited worse performance on working memory, response inhibition and planning tasks. Lower performances on working memory and response inhibition, but not planning, partially mediated the association between early institutionalization and inattention and impulsivity symptom scales at age 8 years. Conclusions Institutionalization was associated with decreased EF performance and increased ADHD symptoms. Deficits in working memory and response inhibition were specific mechanisms leading to ADHD in previously institutionalized children. These findings suggest that interventions that foster the development of EF might reduce risk for psychiatric problems in children exposed to early deprivation. PMID:26470598

  2. Association of amyloid burden, brain atrophy and memory deficits in aged apolipoprotein ε4 mice.

    PubMed

    Yin, Junxiang; Turner, Gregory H; Coons, Stephen W; Maalouf, Marwan; Reiman, Eric M; Shi, Jiong

    2014-03-01

    Apolipoprotein E ε4 allele (ApoE4) has been associated with increased risk of sporadic Alzheimer's disease (AD) and of conversion from mild cognitive impairment to AD. But the underlying mechanism of ApoE4 affecting brain atrophy and cognition is not fully understood. We investigated the effect of ApoE4 on amyloid beta (Aβ) protein burden and its correlation with the structure change of hippocampus and cortex, cognitive and behavioral changes in ApoE4 transgenic mice. Male ApoE4 transgenic mice and age-matched control mice at age 12 months and 24 months were tested in the Morris Water Maze (MWM). Brain volume changes (including whole brain, hippocampus, cortex, total ventricles and caudate putamen) were assessed by using small animal 7T-MRI. Aβ level was assessed by immunohistochemistry (IHC) and immunoprecipitation/western blot. In MWM, escape latency was longer and time spent in the target quadrant was shorter in aged ApoE4 mice (12- and 24-month-old), suggesting age- and ApoE4-dependent visuospatial deficits. Atrophy on MRI was prominent in the hippocampus (p=0.039) and cortex (p=0.013) of ApoE4 mice (24-month-old) as compared to age-matched control mice. IHC revealed elevated Aβ deposition in the hippocampus. Consistently, both soluble and insoluble Aβ aggregates were increased in aged ApoE4 mice. This increase was correlated inversely with hippocampal atrophy and cognitive deficits. These data give further evidence that ApoE4 plays an important role in brain atrophy and memory impairment by modulating amyloid production and deposition.

  3. Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats.

    PubMed

    Dias, Glaecir Roseni Mundstock; Vieira, Francielli Araújo; Dobrachinski, Fernando; Bridi, Jéssika Cristina; Balk, Rodrigo de Souza; Soares, Félix Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice de Vargas

    2012-04-01

    Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test.

  4. Serotonin Transporter and Tryptophan Hydroxylase Gene Variations Mediate Working Memory Deficits of Cocaine Users.

    PubMed

    Havranek, Michael M; Vonmoos, Matthias; Müller, Christian P; Büetiger, Jessica R; Tasiudi, Eve; Hulka, Lea M; Preller, Katrin H; Mössner, Rainald; Grünblatt, Edna; Seifritz, Erich; Quednow, Boris B

    2015-12-01

    Cocaine users consistently develop working memory (WM) impairments but the mediating molecular mechanisms are unknown so far. Recent evidence suggests that the serotonin (5-HT) system is altered by chronic cocaine use, while also being involved in WM processing. Thus, we investigated the effects of genetic variations impacting 5-HT activity and of peripheral 5-HT transporter (5-HTT) mRNA expression on WM performance in cocaine users and stimulant naive controls. Two hundred twenty participants (126 cocaine users, 94 controls) were assessed with visuospatial, spatial, and verbal WM tasks, genotyped for the length polymorphism in the promoter region of the 5-HTT (5-HTTLPR), the variable number of tandem repeats in the second intron of the 5-HTT (VNTR In2), two single-nucleotide polymorphisms (rs4570625 and rs1386497) in the tryptophan hydroxylase-2 (TPH2) gene and quantified for peripheral 5-HTT mRNA expression in whole-blood samples. Several significant gene × environment interactions between 5-HT genotypes and cocaine use on WM emerged: in cocaine users, the long/long (5-HTTLPR), 9+10/9+10 (VNTR In2) and C/C (TPH2 rs1386497) genotypes were risk alleles for WM impairments, whereas in healthy controls these polymorphisms were associated with improved WM performance. Analogously, high 5-HTT mRNA levels were associated with worse executive WM performance in cocaine users but with increased performance in controls. These gene × environment interactions suggest that the 5-HT system has an important role in the development of cognitive deficits in chronic cocaine users. Hence, pharmacological compounds targeting 5-HT neurotransmission might be promising for the treatment of cognitive deficits in cocaine dependence. PMID:26013962

  5. Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects.

    PubMed

    Smith, Matthew J; Cobia, Derin J; Reilly, James L; Gilman, Jodi M; Roberts, Andrea G; Alpert, Kathryn I; Wang, Lei; Breiter, Hans C; Csernansky, John G

    2015-09-01

    Cannabis use has been associated with episodic memory (EM) impairments and abnormal hippocampus morphology among both healthy individuals and schizophrenia subjects. Considering the hippocampus' role in EM, research is needed to evaluate the relationship between cannabis-related hippocampal morphology and EM among healthy and clinical groups. We examined differences in hippocampus morphology between control and schizophrenia subjects with and without a past (not current) cannabis use disorder (CUD). Subjects group-matched on demographics included 44 healthy controls (CON), 10 subjects with a CUD history (CON-CUD), 28 schizophrenia subjects with no history of substance use disorders (SCZ), and 15 schizophrenia subjects with a CUD history (SCZ-CUD). Large-deformation, high-dimensional brain mapping with MRI produced surface-based representations of the hippocampus that were compared across all four groups and correlated with EM and CUD history. Surface maps of the hippocampus were generated to visualize morphological differences. CON-CUD and SCZ-CUD were characterized by distinct cannabis-related hippocampal shape differences and parametric deficits in EM performance. Shape differences observed in CON-CUD were associated with poorer EM performance, while shape differences observed in SCZ-CUD were associated with a longer duration of CUD and shorter duration of CUD remission. A past history of CUD may be associated with notable differences in hippocampal morphology and EM impairments among adults with and without schizophrenia. Although the results may be compatible with a causal hypothesis, we must consider that the observed cannabis-related shape differences in the hippocampus could also be explained as biomarkers of a neurobiological susceptibility to poor memory or the effects of cannabis.

  6. Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects.

    PubMed

    Smith, Matthew J; Cobia, Derin J; Reilly, James L; Gilman, Jodi M; Roberts, Andrea G; Alpert, Kathryn I; Wang, Lei; Breiter, Hans C; Csernansky, John G

    2015-09-01

    Cannabis use has been associated with episodic memory (EM) impairments and abnormal hippocampus morphology among both healthy individuals and schizophrenia subjects. Considering the hippocampus' role in EM, research is needed to evaluate the relationship between cannabis-related hippocampal morphology and EM among healthy and clinical groups. We examined differences in hippocampus morphology between control and schizophrenia subjects with and without a past (not current) cannabis use disorder (CUD). Subjects group-matched on demographics included 44 healthy controls (CON), 10 subjects with a CUD history (CON-CUD), 28 schizophrenia subjects with no history of substance use disorders (SCZ), and 15 schizophrenia subjects with a CUD history (SCZ-CUD). Large-deformation, high-dimensional brain mapping with MRI produced surface-based representations of the hippocampus that were compared across all four groups and correlated with EM and CUD history. Surface maps of the hippocampus were generated to visualize morphological differences. CON-CUD and SCZ-CUD were characterized by distinct cannabis-related hippocampal shape differences and parametric deficits in EM performance. Shape differences observed in CON-CUD were associated with poorer EM performance, while shape differences observed in SCZ-CUD were associated with a longer duration of CUD and shorter duration of CUD remission. A past history of CUD may be associated with notable differences in hippocampal morphology and EM impairments among adults with and without schizophrenia. Although the results may be compatible with a causal hypothesis, we must consider that the observed cannabis-related shape differences in the hippocampus could also be explained as biomarkers of a neurobiological susceptibility to poor memory or the effects of cannabis. PMID:25760303

  7. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    PubMed

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities. PMID:24189776

  8. Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects

    PubMed Central

    Smith, Matthew J.; Cobia, Derin J.; Reilly, James L.; Gilman, Jodi; Roberts, Andrea G.; Alpert, Kathryn I.; Wang, Lei; Breiter, Hans C.; Csernansky, John G.

    2015-01-01

    Cannabis use has been associated with episodic memory (EM) impairments and abnormal hippocampus morphology among both healthy individuals and schizophrenia subjects. Considering the hippocampus' role in EM, research is needed to evaluate the relationship between cannabis-related hippocampal morphology and EM among healthy and clinical groups. We examined differences in hippocampus morphology between control and schizophrenia subjects with and without a past (not current) cannabis use disorder (CUD). Subjects group-matched on demographics included 44 healthy controls (CON), 10 subjects with a CUD history (CON-CUD), 28 schizophrenia subjects with no history of substance use disorders (SCZ), and 15 schizophrenia subjects with a CUD history (SCZ-CUD). Large- deformation, high-dimensional brain mapping with MRI produced surface-based representations of the hippocampus that were compared across all four groups and correlated with EM and CUD history. Surface maps of the hippocampus were generated to visualize morphological differences. CON-CUD and SCZ- CUD were characterized by distinct cannabis-related hippocampal shape differences and parametric deficits in EM. Shape differences observed in CON-CUD were associated with poorer EM, while shape differences observed in SCZ-CUD were associated with a longer duration of CUD and shorter duration of CUD abstinence. A past history of CUD may be associated with notable differences in hippocampal morphology and EM impairments among adults with and without schizophrenia. Although the results may be compatible with a causal hypothesis, we must consider that the observed cannabis-related shape differences in the hippocampus could also be explained as biomarkers of a neurobiological susceptibility to poor memory or the effects of cannabis. PMID:25760303

  9. A simple spatial working memory and attention test on paired symbols shows developmental deficits in schizophrenia patients.

    PubMed

    Song, Wei; Zhang, Kai; Sun, Jinhua; Ma, Lina; Jesse, Forrest Fabian; Teng, Xiaochun; Zhou, Ying; Bao, Hechen; Chen, Shiqing; Wang, Shuai; Yang, Beimeng; Chu, Xixia; Ding, Wenhua; Du, Yasong; Cheng, Zaohuo; Wu, Bin; Chen, Shanguang; He, Guang; He, Lin; Chen, Xiaoping; Li, Weidong

    2013-01-01

    People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer's judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20-27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders.

  10. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes.

  11. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation.

    PubMed

    Shukitt-Hale, B; Casadesus, G; McEwen, J J; Rabin, B M; Joseph, J A

    2000-07-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  12. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  13. Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury

    PubMed Central

    Sajja, Venkata Siva Sai Sujith; Hubbard, W. Brad; Hall, Christina S.; Ghoddoussi, Farhad; Galloway, Matthew P.; VandeVord, Pamela J.

    2015-01-01

    Few preclinical studies have assessed the long-term neuropathology and behavioral deficits after sustaining blast-induced neurotrauma (BINT). Previous studies have shown extensive astrogliosis and cell death at acute stages (<7 days) but the temporal response at a chronic stage has yet to be ascertained. Here, we used behavioral assays, immmunohistochemistry and neurochemistry in limbic areas such as the amygdala (Amy), Hippocampus (Hipp), nucleus accumbens (Nac), and prefrontal cortex (PFC), to determine the long-term effects of a single blast exposure. Behavioral results identified elevated avoidance behavior and decreased short-term memory at either one or three months after a single blast event. At three months after BINT, markers for neurodegeneration (FJB) and microglia activation (Iba-1) increased while index of mature neurons (NeuN) significantly decreased in all brain regions examined. Gliosis (GFAP) increased in all regions except the Nac but only PFC was positive for apoptosis (caspase-3). At three months, tau was selectively elevated in the PFC and Hipp whereas α-synuclein transiently increased in the Hipp at one month after blast exposure. The composite neurochemical measure, myo-inositol+glycine/creatine, was consistently increased in each brain region three months following blast. Overall, a single blast event resulted in enduring long-term effects on behavior and neuropathological sequelae. PMID:26537106

  14. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat.

    PubMed

    Cechetti, Fernanda; Worm, Paulo Valdeci; Elsner, Viviane Rostirolla; Bertoldi, Karine; Sanches, Eduardo; Ben, Juliana; Siqueira, Ionara Rodrigues; Netto, Carlos Alexandre

    2012-01-01

    Physical activity impacts functional recovery following stroke in humans, however its effects in experimental animals submitted to chronic cerebral hypoperfusion have not been investigated. The aim of this study was to evaluate the therapeutic potential of exercise, as assessed by cognitive activity in the Morris water maze and the brain oxidative status, through measurement of macromolecules damage, TBARS levels and total cellular thiols, as well as antioxidant enzymes in hippocampus, striatum and cerebral cortex. Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested 3 months after the ischemic event. The effects of three different exercise protocols were examined: pre-ischemia, post-ischemia and pre+post-ischemia. Physical exercise consisted of sessions of 20-min, 3 times per week during 12 weeks (moderate intensity). Rats were submitted to cognitive assessment, in both reference and working spatial memory and after the last testing session were sacrificed to have oxidative stress parameters determined. Hypoperfusion caused a significant cognitive deficit in both spatial water maze tasks and this effect was reversed in rats receiving exercise protocol post and pre+post the ischemic event. Moreover, forced regular treadmill exercise regulated oxidative damage and antioxidant enzyme activity in the hippocampus. These results suggest that physical exercise protects against cognitive and biochemical impairments caused by chronic cerebral hypoperfusion.

  15. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus.

    PubMed

    Portero-Tresserra, Marta; Del Olmo, Nuria; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2014-11-01

    Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.

  16. Memory deficits and oxidative stress in cerebral ischemia-reperfusion: neuroprotective role of physical exercise and green tea supplementation.

    PubMed

    Schimidt, Helen L; Vieira, Aline; Altermann, Caroline; Martins, Alexandre; Sosa, Priscila; Santos, Francielli W; Mello-Carpes, Pâmela B; Izquierdo, Ivan; Carpes, Felipe P

    2014-10-01

    Ischemic stroke is a major cause of morbidity and mortality all over the world. Among impairments observed in survivors there is a significant cognitive learning and memory deficit. Neuroprotective strategies are being investigated to minimize such deficits after an ischemia event. Here we investigated the neuroprotective potential of physical exercise and green tea in an animal model of ischemia-reperfusion. Eighty male rats were divided in 8 groups and submitted to either transient brain ischemia-reperfusion or a sham surgery after 8 weeks of physical exercise and/or green tea supplementation. Ischemia-reperfusion was performed by bilateral occlusion of the common carotid arteries during 30 min. Later, their memory was evaluated in an aversive and in a non-aversive task, and hippocampus and prefrontal cortex were removed for biochemical analyses of possible oxidative stress effects. Ischemia-reperfusion impaired learning and memory. Reactive oxygen species were increased in the hippocampus and prefrontal cortex. Eight weeks of physical exercise and/or green tea supplementation before the ischemia-reperfusion event showed a neuroprotective effect; both treatments in separate or together reduced the cognitive deficits and were able to maintain the functional levels of antioxidant enzymes and glutathione.

  17. Memory-related deficits following selective hippocampal expression of Swedish mutation amyloid precursor protein in the rat.

    PubMed

    Gong, Yan; Meyer, Edwin M; Meyers, Craig A; Klein, Ronald L; King, Michael A; Hughes, Jeffrey A

    2006-08-01

    The gene encoding for the Swedish double mutation (K595N/M596L) of amyloid precursor protein (APP695Swe) was expressed bilaterally in adult rat hippocampus to determine its long-term effects on memory-related behavior as well as amyloid deposition. Recombinant adeno-associated viral serotype 2 (rAAV2) vectors were injected that contained either non-expressing DNA or cDNA encoding for APP695Swe under control of a chicken beta actin/cytomegalovirus promoter/enhancer. Immunolabeling human APP with the antibody 6E10 was observed throughout the cytoplasm of aspiny and, to a lesser extent, spine-bearing hippocampal neurons 6 and 12 months post-injection of the APP695Swe but not control vector. Abeta1-42 immunolabeling was identified in unusual immunoreactive objects within the hilus of the dentate gyrus and in the granule cell layer, proximal to the injection site. At 12 months post-transduction, rats that received the APP695Swe gene also demonstrated significant deficits in the acquisition and probe components of the spatial-memory-related Morris water task compared to control animals. These behavioral deficits occurred in the absence of any amyloid plaques, gliosis, or FluoroJade labeling of dying neurons. In conclusion, prolonged and localized APP695Swe expression in hippocampal neurons is sufficient to produce memory deficits without plaque formation or neuronal loss. PMID:16780838

  18. Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury.

    PubMed

    Myers, Catherine E; Hopkins, Ramona O; Hopkins, Romona O; DeLuca, John; Moore, Nancy B; Wolansky, Leo J; Sumner, Jennifer M; Gluck, Mark A

    2008-09-01

    Human anterograde amnesia can result from a variety of etiologies, including hypoxic brain injury and anterior communicating artery (ACoA) aneurysm rupture. Although each etiology can cause a similarly severe disruption in declarative memory for verbal and visual material, there may be differences in incrementally acquired, feedback-based learning, as well as generalization. Here, 6 individuals who survived hypoxic brain injury, 7 individuals who survived ACoA aneurysm rupture, and 13 matched controls were tested on 2 tasks that included a feedback-based learning phase followed by a transfer phase in which familiar information is presented in new ways. In both tasks, the ACoA group was slow on initial learning, but those patients who completed the learning phase went on to transfer as well as controls. In the hypoxic group, 1 patient failed to complete either task; the remaining hypoxic group did not differ from controls during learning of either task, but was impaired on transfer. These results highlight a difference in feedback-based learning in 2 amnesic etiologies, despite similar levels of declarative memory impairment.

  19. Treatment with a γ-ketoaldehyde scavenger prevents working memory deficits in hApoE4 mice.

    PubMed

    Davies, Sean S; Bodine, Chris; Matafonova, Elena; Pantazides, Brooke G; Bernoud-Hubac, Nathalie; Harrison, Fiona E; Olson, Sandra J; Montine, Thomas J; Amarnath, Venkataraman; Roberts, L Jackson

    2011-01-01

    Both inflammation and oxidative injury are features of Alzheimer's disease (AD), but the contribution of these intertwined phenomena to the loss of working memory in this disease is unclear. We tested the hypothesis that highly reactive γ-ketoaldehydes that are formed both by non-enzymatic free radical catalyzed lipid peroxidation and by cyclooxygenases may be causally linked to the development of memory impairment in AD. We found that levels of γ-ketoaldehyde protein adducts were increased in the hippocampus of brains obtained postmortem from patients with AD compared to age-matched controls, but that levels of γ-ketoaldehyde protein adducts in the cerebellum were not different in the two groups. Moreover, immunohistochemistry revealed that adducts localized to hippocampal pyramidal neurons. We tested the effect of an orally available γ-ketoaldehyde scavenger, salicylamine, on the development of spatial working memory deficits in hApoE4 targeted replacement mice, a mouse model of dementia. Long-term salicylamine supplementation did not significantly alter body weight or survival, but protected against the development of age-related deficits in spatial working memory in 12-14 month old ApoE4 mice. These findings suggest that γ-ketoaldehyde adduct formation is associated with damage to hippocampal neurons in patients with AD and can contribute to the pathogenesis of spatial working memory deficits in hApoE4 mice. These data provide a rational basis for future studies exploring whether γ-ketoaldehyde scavengers may mitigate the development of cognitive dysfunction in patients with AD.

  20. Non-Verbal Episodic Memory Deficits in Primary Progressive Aphasias are Highly Predictive of Underlying Amyloid Pathology.

    PubMed

    Ramanan, Siddharth; Flanagan, Emma; Leyton, Cristian E; Villemagne, Victor L; Rowe, Christopher C; Hodges, John R; Hornberger, Michael

    2016-01-01

    Diagnostic distinction of primary progressive aphasias (PPA) remains challenging, in particular for the logopenic (lvPPA) and nonfluent/agrammatic (naPPA) variants. Recent findings highlight that episodic memory deficits appear to discriminate these PPA variants from each other, as only lvPPA perform poorly on these tasks while having underlying amyloid pathology similar to that seen in amnestic dementias like Alzheimer's disease (AD). Most memory tests are, however, language based and thus potentially confounded by the prevalent language deficits in PPA. The current study investigated this issue across PPA variants by contrasting verbal and non-verbal episodic memory measures while controlling for their performance on a language subtest of a general cognitive screen. A total of 203 participants were included (25 lvPPA; 29 naPPA; 59 AD; 90 controls) and underwent extensive verbal and non-verbal episodic memory testing, with a subset of patients (n = 45) with confirmed amyloid profiles as assessed by Pittsburgh Compound B and PET. The most powerful discriminator between naPPA and lvPPA patients was a non-verbal recall measure (Rey Complex Figure delayed recall), with 81% of PPA patients classified correctly at presentation. Importantly, AD and lvPPA patients performed comparably on this measure, further highlighting the importance of underlying amyloid pathology in episodic memory profiles. The findings demonstrate that non-verbal recall emerges as the best discriminator of lvPPA and naPPA when controlling for language deficits in high load amyloid PPA cases.

  1. The origins of repetitive thought in rumination: Separating cognitive style from deficits in inhibitory control over memory

    PubMed Central

    Fawcett, Jonathan M.; Benoit, Roland G.; Gagnepain, Pierre; Salman, Amna; Bartholdy, Savani; Bradley, Caroline; Chan, Daniel K.-Y.; Roche, Ayesha; Brewin, Chris R.; Anderson, Michael C.

    2015-01-01

    Background and objectives Rumination is a major contributor to the maintenance of affective disorders and has been linked to memory control deficits. However, ruminators often report intentionally engaging in repetitive thought due to its perceived benefits. Deliberate re-processing may lead to the appearance of a memory control deficit that is better explained as a difference in cognitive style. Methods Ninety-six undergraduate students volunteered to take part in a direct-suppression variant of the Think/No-Think paradigm after which they completed self-report measures of rumination and the degree to which they deliberately re-processed the to-be-suppressed items. Results We demonstrate a relation between rumination and impaired suppression-induced forgetting. This relation is robust even when controlling for deliberate re-processing of the to-be-suppressed items, a behavior itself related to both rumination and suppression. Therefore, whereas conscious fixation on to-be-suppressed items reduced memory suppression, it did not fully account for the relation between rumination and memory suppression. Limitations The current experiment employed a retrospective measure of deliberate re-processing in the context of an unscreened university sample; future research might therefore generalize our findings using an online measure of deliberate re-processing or within a clinical population. Conclusions We provide evidence that deliberate re-processing accounts for some – but not all – of the relation between rumination and suppression-induced forgetting. The present findings, observed in a paradigm known to engage top-down inhibitory modulation of mnemonic processing, provide the most theoretically focused evidence to date for the existence of a memory control deficit in rumination. PMID:25462596

  2. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress. PMID:26975895

  3. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress.

  4. Non-Verbal Episodic Memory Deficits in Primary Progressive Aphasias are Highly Predictive of Underlying Amyloid Pathology.

    PubMed

    Ramanan, Siddharth; Flanagan, Emma; Leyton, Cristian E; Villemagne, Victor L; Rowe, Christopher C; Hodges, John R; Hornberger, Michael

    2016-01-01

    Diagnostic distinction of primary progressive aphasias (PPA) remains challenging, in particular for the logopenic (lvPPA) and nonfluent/agrammatic (naPPA) variants. Recent findings highlight that episodic memory deficits appear to discriminate these PPA variants from each other, as only lvPPA perform poorly on these tasks while having underlying amyloid pathology similar to that seen in amnestic dementias like Alzheimer's disease (AD). Most memory tests are, however, language based and thus potentially confounded by the prevalent language deficits in PPA. The current study investigated this issue across PPA variants by contrasting verbal and non-verbal episodic memory measures while controlling for their performance on a language subtest of a general cognitive screen. A total of 203 participants were included (25 lvPPA; 29 naPPA; 59 AD; 90 controls) and underwent extensive verbal and non-verbal episodic memory testing, with a subset of patients (n = 45) with confirmed amyloid profiles as assessed by Pittsburgh Compound B and PET. The most powerful discriminator between naPPA and lvPPA patients was a non-verbal recall measure (Rey Complex Figure delayed recall), with 81% of PPA patients classified correctly at presentation. Importantly, AD and lvPPA patients performed comparably on this measure, further highlighting the importance of underlying amyloid pathology in episodic memory profiles. The findings demonstrate that non-verbal recall emerges as the best discriminator of lvPPA and naPPA when controlling for language deficits in high load amyloid PPA cases. PMID:26890745

  5. Working Memory Arrest in Children with High-Functioning Autism Compared to Children with Attention-Deficit/Hyperactivity Disorder: Results from a 2-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Andersen, Per N.; Skogli, Erik W.; Hovik, Kjell T.; Geurts, Hilde; Egeland, Jens; Øie, Merete

    2015-01-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with attention-deficit/hyperactivity disorder and 45 typically…

  6. A Meta-Analysis of Working Memory Deficits in Children with Learning Difficulties: Is There a Difference between Verbal Domain and Numerical Domain?

    ERIC Educational Resources Information Center

    Peng, Peng; Fuchs, Douglas

    2016-01-01

    Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…

  7. A Characterization of Visual, Semantic and Auditory Memory in Children with Combination-Type Attention Deficit, Primarily Inattentive, and a Control Group

    ERIC Educational Resources Information Center

    Ramirez, Luz Angela; Arenas, Angela Maria; Henao, Gloria Cecilia

    2005-01-01

    Introduction: This investigation describes and compares characteristics of visual, semantic and auditory memory in a group of children diagnosed with combined-type attention deficit with hyperactivity, attention deficit predominating, and a control group. Method: 107 boys and girls were selected, from 7 to 11 years of age, all residents in the…

  8. Improving Working Memory in Children with Attention-Deficit/Hyperactivity Disorder: The Separate and Combined Effects of Incentives and Stimulant Medication

    ERIC Educational Resources Information Center

    Strand, Michael T.; Hawk, Larry W., Jr.; Bubnik, Michelle; Shiels, Keri; Pelham, William E., Jr.; Waxmonsky, James G.

    2012-01-01

    Working memory (WM) is considered a core deficit in Attention-Deficit/Hyperactivity Disorder (ADHD), with numerous studies demonstrating impaired WM among children with ADHD. We tested the degree to which WM in children with ADHD was improved by performance-based incentives, an analog of behavioral intervention. In two studies, WM performance was…

  9. Endothelin-1-induced mini-stroke in the dorsal hippocampus or lateral amygdala results in deficits in learning and memory.

    PubMed

    Sheng, Tao; Zhang, Xueting; Wang, Shaoli; Zhang, Jingyun; Lu, Wei; Dai, Yifan

    2015-09-01

    Functional and structural alterations in brain connectivity associated with brain ischemia have been extensively studied. However, the mechanism whereby local ischemia in deep brain region affect brain functions is still unknown. Here, we first established a mini-stroke model by infusion of endothelin-1 (ET-1) into the dorsal hippocampus or the lateral amygdala, and then investigated how these mini-infarcts affected brain functions associated with these regions. We found that rats with ET-1 infusion showed deficit in recall of contextual fear memory, but not in learning process and recall of tone fear memory. In novel object task, ET-1 in the hippocampus also eliminated object identity memory. ET-1 in the lateral amygdale affected acquisition of fear conditioning and disrupted retention of tone-conditioned fear, but did not impair retention of contextual fear. These findings suggest that ET-1-induced mini-infarct in deep brain area leads to functional deficits in learning and memory associated with these regions. PMID:26445569

  10. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling.

    PubMed

    Yin, Yaling; Gao, Di; Wang, Yali; Wang, Zhi-Hao; Wang, Xin; Ye, Jinwang; Wu, Dongqin; Fang, Lin; Pi, Guilin; Yang, Ying; Wang, Xiao-Chuan; Lu, Chengbiao; Ye, Keqiang; Wang, Jian-Zhi

    2016-06-28

    Intracellular accumulation of wild-type tau is a hallmark of sporadic Alzheimer's disease (AD), but the molecular mechanisms underlying tau-induced synapse impairment and memory deficit are poorly understood. Here we found that overexpression of human wild-type full-length tau (termed hTau) induced memory deficits with impairments of synaptic plasticity. Both in vivo and in vitro data demonstrated that hTau accumulation caused remarkable dephosphorylation of cAMP response element binding protein (CREB) in the nuclear fraction. Simultaneously, the calcium-dependent protein phosphatase calcineurin (CaN) was up-regulated, whereas the calcium/calmodulin-dependent protein kinase IV (CaMKIV) was suppressed. Further studies revealed that CaN activation could dephosphorylate CREB and CaMKIV, and the effect of CaN on CREB dephosphorylation was independent of CaMKIV inhibition. Finally, inhibition of CaN attenuated the hTau-induced CREB dephosphorylation with improved synapse and memory functions. Together, these data indicate that the hTau accumulation impairs synapse and memory by CaN-mediated suppression of nuclear CaMKIV/CREB signaling. Our findings not only reveal new mechanisms underlying the hTau-induced synaptic toxicity, but also provide potential targets for rescuing tauopathies. PMID:27298345

  11. A neurodevelopmental approach to understanding memory processes among intellectually gifted youth with attention-deficit hyperactivity disorder.

    PubMed

    Whitaker, Ashley M; Bell, Terece S; Houskamp, Beth M; O'Callaghan, Erin T

    2015-01-01

    Intellectual giftedness is associated with strong strategic verbal memory while attention-deficit hyperactivity disorder (ADHD) is associated with strategic verbal memory deficits; however, no previous research has explored how this contradiction manifests in gifted populations with diagnoses of ADHD. The purpose of this study was to explore strategic verbal memory processes among intellectually gifted youth with and without ADHD to provide clarification regarding this specific aspect of neuropsychological functioning within this population. One hundred twenty-five youth completed neuropsychological evaluations including the Wechsler Intelligence Scale for Children-Fourth Edition and California Verbal Learning Test-Children's Version (CVLT-C). Results revealed significant differences between groups, with intellectually gifted youth with ADHD achieving lower T scores on CVLT-C Trials 1 through 5 compared with intellectually gifted youth without ADHD, and intellectually gifted youth with ADHD achieving higher T scores than youth of average intellectual abilities with ADHD. Additionally, repeated-measures analysis of variance revealed a main effect improvement among gifted youth with ADHD in short-delay recall when provided with organizational cues. Findings revealed new evidence about the role of twice exceptionality (specifically intellectual giftedness and ADHD) in strategic verbal memory and have important implications for parents, educators, psychologists and neuropsychologists, and other mental health professionals working with this population.

  12. Understanding phonological memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): dissociation of short-term storage and articulatory rehearsal processes.

    PubMed

    Bolden, Jennifer; Rapport, Mark D; Raiker, Joseph S; Sarver, Dustin E; Kofler, Michael J

    2012-08-01

    The current study dissociated and examined the two primary components of the phonological working memory subsystem--the short-term store and articulatory rehearsal mechanism--in boys with ADHD (n = 18) relative to typically developing boys (n = 15). Word lists of increasing length (2, 4, and 6 words per trial) were presented to and recalled by children following a brief (3 s) interval to assess their phonological short-term storage capacity. Children's ability to utilize the articulatory rehearsal mechanism to actively maintain information in the phonological short-term store was assessed using word lists at their established memory span but with extended rehearsal times (12 s and 21 s delays). Results indicate that both phonological shortterm storage capacity and articulatory rehearsal are impaired or underdeveloped to a significant extent in boys with ADHD relative to typically developing boys, even after controlling for age, SES, IQ, and reading speed. Larger magnitude deficits, however, were apparent in short-term storage capacity (ES = 1.15 to 1.98) relative to articulatory rehearsal (ES = 0.47 to 1.02). These findings are consistent with previous reports of deficient phonological short-term memory in boys with ADHD, and suggest that future attempts to develop remedial cognitive interventions for children with ADHD will need to include active components that require children to hold increasingly more information over longer time intervals.

  13. Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-є4.

    PubMed

    Olofsson, Jonas K; Josefsson, Maria; Ekström, Ingrid; Wilson, Donald; Nyberg, Lars; Nordin, Steven; Nordin Adolfsson, Annelie; Adolfsson, Rolf; Nilsson, Lars-Göran; Larsson, Maria

    2016-05-01

    The ɛ4 allele of the Apolipoprotein E gene is a genetic risk factor for late-onset dementia of the Alzheimers' type (DAT), which is characterized by loss of both episodic memory and olfactory functions. Little is known about the possible role of ɛ4 in the association between ongoing episodic memory decline and olfactory deficits in the general population, but such information is relevant in determining the relevance of olfaction as a marker of DAT risk. The present study was based on a large, population-based sample (n=1087, aged 45-90 years, of which 324 were ɛ4-carriers). Episodic memory change rates were established using data collected every 5 years for a 10-20 year interval leading up to an olfactory assessment using the Scandinavian Odor Identification Test at the last wave of data collection. Participants were classified according to whether or not their episodic memory ability declined more rapidly than the age-typical norm (by >1SD). Our main result is that only in ɛ4-carriers was episodic memory decline associated with odor identification impairment. In individuals without ɛ4, odor identification was unrelated to episodic memory decline status. Follow-up analyses indicated that this moderation by ɛ4 was due to the olfactory nature of the identification test, and that the effect was not caused by 63 individuals with dementia. Our results suggest that the ɛ4 determines the functional association between ongoing episodic memory decline and olfaction. These findings are consistent with the notion that ɛ4-carriers with DAT, compared to non-carriers, display a cortical atrophy pattern that is more focused on mediotemporal lobe regions supporting olfactory and episodic memory functions. Olfactory and memory assessments might provide complementary information on mediotemporal atrophy prior to clinical dementia onset, but the ɛ4 should be considered when using olfactory assessment as an early-stage indicator.

  14. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures.

    PubMed

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang; Xiao, Jinglei; Yu, Buwei

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures. PMID:27597963

  15. A high-fructose diet induces hippocampal insulin resistance and exacerbates memory deficits in male Sprague-Dawley rats.

    PubMed

    Wu, Hui-Wen; Ren, Lai-Feng; Zhou, Xing; Han, De-Wu

    2015-10-01

    The purpose of this study was to investigate the effects of a long-term high-fructose diet on the insulin-signaling pathway of the hippocampus. Sprague-Dawley rats were fed either on a control (0% fructose solution) or high-fructose diet (10% fructose solution). Food intake and body mass were measured regularly. Eight months later, peripheral insulin sensitivity, the activity of the hippocampal insulin pathway, and memory tasks were assessed. Compared to the control group, the high fructose group exhibited more weight gain, peripheral insulin resistance, metabolic disorders, and memory impairments. In addition, insulin signaling in the hippocampus was attenuated in the high fructose group. These results suggested that a high-fructose diet induced peripheral insulin resistance and an abnormal insulin-signaling pathway in the hippocampus which exacerbated memory deficits in the rats.

  16. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures

    PubMed Central

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures. PMID:27597963

  17. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures

    PubMed Central

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures.

  18. Minocycline ameliorates D-galactose-induced memory deficits and loss of Arc/Arg3.1 expression.

    PubMed

    Li, Xu; Lu, Fen; Li, Wei; Xu, Jun; Sun, Xiao-Jing; Qin, Ling-Zhi; Zhang, Qian-Lin; Yao, Yong; Yu, Qing-Kai; Liang, Xin-Liang

    2016-10-01

    Dysfunction of learning and memory is widely found in many neurological diseases. Understanding how to preserve the normal function of learning and memory will be extremely beneficial for the treatment of these diseases. However, the possible protective effect of minocycline in memory impairment is unknown. We used the well-established D-galactose rat amnesia model and two behavioral tasks, the Morris water maze and the step-down task, for memory evaluation. Western blot and PCR were used to examine the protein and mRNA levels of Arc/Arg3.1. We report that minocycline supplementation ameliorates both the spatial and fear memory deficits caused by D-galactose. We also found that Arc/Arg3.1, c-fos, and brain-derived neurotrophic factor levels are decreased in the D-galactose animal model, and that minocycline reverses the protein and mRNA levels of Arc in the hippocampus, suggesting the potential role of Arc/Arg3.1 in minocycline's neuroprotective mechanism. Our study strongly suggests that minocycline can be used as a novel treatment for memory impairment in neurological diseases.

  19. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    PubMed Central

    Smith, Amanda L.; Hill, Courtney A.; Alexander, Michelle; Szalkowski, Caitlin E.; Chrobak, James J.; Rosenkrantz, Ted S.; Fitch, R. Holly

    2014-01-01

    Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36–38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to

  20. Impaired event memory and recollection in a case of developmental amnesia.

    PubMed

    Rosenbaum, R S; Carson, N; Abraham, N; Bowles, B; Kwan, D; Köhler, S; Svoboda, E; Levine, B; Richards, B

    2011-10-01

    A current debate in the literature is whether all declarative memories and associated memory processes rely on the same neural substrate. Here, we show that H.C., a developmental amnesic person with selective bilateral hippocampal volume loss, has a mild deficit in personal episodic memory, and a more pronounced deficit in public event memory; semantic memory for personal and general knowledge was unimpaired. This was accompanied by a subtle difference in impairment between recollection and familiarity on lab-based tests of recognition memory. Strikingly, H.C.'s recognition did not benefit from a levels-of-processing manipulation. Thus, not all types of declarative memory and related processes can exist independently of the hippocampus even if it is damaged early in life.

  1. Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

    PubMed Central

    Debette, Stéphanie; Ibrahim Verbaas, Carla A.; Bressler, Jan; Schuur, Maaike; Smith, Albert; Bis, Joshua C.; Davies, Gail; Wolf, Christiane; Gudnason, Vilmundur; Chibnik, Lori B.; Yang, Qiong; deStefano, Anita L.; de Quervain, Dominique J.F.; Srikanth, Velandai; Lahti, Jari; Grabe, Hans J.; Smith, Jennifer A.; Priebe, Lutz; Yu, Lei; Karbalai, Nazanin; Hayward, Caroline; Wilson, James F.; Campbell, Harry; Petrovic, Katja; Fornage, Myriam; Chauhan, Ganesh; Yeo, Robin; Boxall, Ruth; Becker, James; Stegle, Oliver; Mather, Karen A.; Chouraki, Vincent; Sun, Qi; Rose, Lynda M.; Resnick, Susan; Oldmeadow, Christopher; Kirin, Mirna; Wright, Alan F.; Jonsdottir, Maria K.; Au, Rhoda; Becker, Albert; Amin, Najaf; Nalls, Mike A.; Turner, Stephen T.; Kardia, Sharon L.R.; Oostra, Ben; Windham, Gwen; Coker, Laura H.; Zhao, Wei; Knopman, David S.; Heiss, Gerardo; Griswold, Michael E.; Gottesman, Rebecca F.; Vitart, Veronique; Hastie, Nicholas D.; Zgaga, Lina; Rudan, Igor; Polasek, Ozren; Holliday, Elizabeth G.; Schofield, Peter; Choi, Seung Hoan; Tanaka, Toshiko; An, Yang; Perry, Rodney T.; Kennedy, Richard E.; Sale, Michèle M.; Wang, Jing; Wadley, Virginia G.; Liewald, David C.; Ridker, Paul M.; Gow, Alan J.; Pattie, Alison; Starr, John M.; Porteous, David; Liu, Xuan; Thomson, Russell; Armstrong, Nicola J.; Eiriksdottir, Gudny; Assareh, Arezoo A.; Kochan, Nicole A.; Widen, Elisabeth; Palotie, Aarno; Hsieh, Yi-Chen; Eriksson, Johan G.; Vogler, Christian; van Swieten, John C.; Shulman, Joshua M.; Beiser, Alexa; Rotter, Jerome; Schmidt, Carsten O.; Hoffmann, Wolfgang; Nöthen, Markus M.; Ferrucci, Luigi; Attia, John; Uitterlinden, Andre G.; Amouyel, Philippe; Dartigues, Jean-François; Amieva, Hélène; Räikkönen, Katri; Garcia, Melissa; Wolf, Philip A.; Hofman, Albert; Longstreth, W.T.; Psaty, Bruce M.; Boerwinkle, Eric; DeJager, Philip L.; Sachdev, Perminder S.; Schmidt, Reinhold; Breteler, Monique M.B.; Teumer, Alexander; Lopez, Oscar L.; Cichon, Sven; Chasman, Daniel I.; Grodstein, Francine; Müller-Myhsok, Bertram; Tzourio, Christophe; Papassotiropoulos, Andreas; Bennett, David A.; Ikram, Arfan M.; Deary, Ian J.; van Duijn, Cornelia M.; Launer, Lenore; Fitzpatrick, Annette L.; Seshadri, Sudha; Mosley, Thomas H.

    2015-01-01

    BACKGROUND Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting. METHODS We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia-and stroke-free individuals of European descent, aged ≥45 years. Replication of suggestive associations (p < 5 × 10−6) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults. RESULTS rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 × 10−10) and replication cohorts (p = 5.65 × 10−8). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 × 10−8, and rs6813517 [SPOCK3], p = 2.58 × 10−8) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism. CONCLUSIONS This largest study to date exploring the genetics of memory function in ~ 40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways. PMID:25648963

  2. Does Strategy Training Reduce Age-Related Deficits in Working Memory?

    PubMed Central

    Bailey, Heather R.; Dunlosky, John; Hertzog, Christopher

    2014-01-01

    Background Older adults typically perform worse on measures of working memory (WM) than do young adults; however, age-related differences in WM performance might be reduced if older adults use effective encoding strategies (Bailey, Dunlosky, & Hertzog, 2009). Objective The purpose of the current experiment was to evaluate WM performance after training individuals to use effective encoding strategies. Methods Participants in the training group (older adults: n = 39; young adults: n = 41) were taught about various verbal encoding strategies and their differential effectiveness and were trained to use interactive imagery and sentence generation on a list-learning task. Participants in the control group (older: n=37; young: n=38) completed an equally engaging filler task. All participants completed a pre-training and post-training reading span task, which included self-reported strategy use, as well as two transfer tasks that differed in the affordance to use the trained strategies – a paired-associate recall task and the self-ordered pointing task. Results Both young and older adults were able to use the target strategies on the WM task and showed gains in WM performance after training. The age-related WM deficit was not greatly affected, however, and the training gains did not transfer to the other cognitive tasks. In fact, participants attempted to adapt the trained strategies for a paired-associate recall task, but the increased strategy use did not benefit their performance. Conclusions Strategy training can boost WM performance, and its benefits appear to arise from strategy-specific effects and not from domain-general gains in cognitive ability. PMID:24577079

  3. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.

  4. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals. PMID:24318482

  5. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.

  6. Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning

    PubMed Central

    Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.

    2013-01-01

    Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106

  7. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    PubMed

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage.

  8. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage

    PubMed Central

    Voets, Natalie L.; Menke, Ricarda A. L.; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E.

    2015-01-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. PMID:26009613

  9. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    PubMed

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. PMID:26009613

  10. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease

    PubMed Central

    Kang, Jing

    2016-01-01

    A small molecule named ISRIB has recently been described to enhance memory in rodents. In this study we aimed to test whether ISRIB would reverse learning and memory deficits in the J20 mouse model of human amyloid precursor protein (hAPP) overexpression, a model that simulates many aspects of Alzheimer’s disease in which memory deficits are a hallmark feature. We did not observe a significant rescue effect with ISRIB treatment on spatial learning and memory as assessed in the Morris water maze in J20 mice. We also did not observe a significant enhancement of spatial learning or memory in nontransgenic mice with ISRIB treatment, although a trend emerged for memory enhancement in one cohort of mice. Future preclinical studies with ISRIB would benefit from additional robust markers of target engagement in the brain. PMID:27781164

  11. Involvement of dopamine D1 receptors of the hippocampal dentate gyrus in spatial learning and memory deficits in a rat model of vascular dementia.

    PubMed

    Wan, P; Wang, S; Zhang, Y; Lv, J; Jin, Q H

    2014-09-01

    We investigated the involvement of dopamine (DA) and its D1 receptors of the hippocampal dentate gyrus (DG) in spatial learning and memory deficits in a rat model of vascular dementia (VD) established by permanent bilateral carotid occlusion. Spatial learning and memory abilities of rats were measured by Morris water maze, and extracellular concentrations of DA in the DG were determined by in vivo microdialysis. The DA concentrations in the DG decreased in the VD rats compared with sham-operated group. Microinjection of SFK38393 (D1 receptor agonist) into the DG attenuates spatial learning and memory deficits in the VD rats. PMID:25272945

  12. Possible involvement of hippocampal immediate-early genes in contextual fear memory deficit induced by cranial irradiation.

    PubMed

    Son, Yeonghoon; Kang, Sohi; Kim, Jinwook; Lee, Sueun; Kim, Jong-Choon; Kim, Sung-Ho; Kim, Joong-Sun; Jo, Sung-Kee; Jung, Uhee; Youn, BuHyun; Shin, Taekyun; Yang, Miyoung; Moon, Changjong

    2016-09-01

    Cranial irradiation can trigger adverse effects on brain functions, including cognitive ability. However, the cellular and molecular mechanisms underlying radiation-induced cognitive impairments remain still unknown. Immediate-early genes (IEGs) are implicated in neuronal plasticity and the related functions (i.e., memory formation) in the hippocampus. The present study quantitatively assessed changes in the mRNA and protein levels of the learning-induced IEGs, including Arc, c-fos, and zif268, in the mouse hippocampus after cranial irradiation using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry, respectively. Mice (male, 8-week-old C57BL/6) received whole-brain irradiation with 0 or 10Gy of gamma-ray and, 2weeks later, contextual fear conditioning (CFC) was used to induce IEGs. In the CFC task, mice evaluated 2weeks after irradiation exhibited significant memory deficits compared with sham (0Gy)-irradiated controls. The levels of mRNA encoding IEGs were significantly upregulated in the hippocampus 10 and 30min after CFC training. The mRNA levels in the irradiated hippocampi were significantly lower than those in the sham-irradiated controls. The IEG protein levels were significantly increased in all hippocampal regions, including the hippocampal dentate gyrus, cornu ammonis (CA)1, and CA3, after CFC training. The CFC-induced upregulation of Arc and c-fos in 10Gy-irradiated hippocampi was significantly lower than that in sham-irradiated controls, although there were no significant differences in the protein levels of the learning-induced zif268 between sham-irradiated and 10Gy-irradiated hippocampi. Thus, cranial irradiation with 10Gy of gamma-ray impairs the induction of hippocampal IEGs (particularly Arc and c-fos) via behavioral contextual fear memory, and this disturbance may be associated with the memory deficits evident in mice after cranial irradiation, possibly through the dysregulation of neuronal

  13. Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Joo, Hyun-Joong; Lee, Seok-Yong; Jang, Choon-Gon

    2013-11-01

    Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.

  14. Dietary Reversal Ameliorates Short- and Long-Term Memory Deficits Induced by High-fat Diet Early in Life

    PubMed Central

    Sims-Robinson, Catrina; Bakeman, Anna; Bruno, Elizabeth; Jackson, Samuel; Glasser, Rebecca; Murphy, Geoffrey G.; Feldman, Eva L.

    2016-01-01

    A high-fat diet (HFD), one of the major factors contributing to metabolic syndrome, which is associated with an increased risk of neurodegenerative diseases, leads to insulin resistance and cognitive impairment. It is not known whether these alterations are improved with dietary intervention. To investigate the long-term impact of a HFD on hippocampal insulin signaling and memory, C57BL6 mice were placed into one of three groups based on the diet: a standard diet (control), a HFD, or a HFD for 16 weeks and then the standard diet for 8 weeks (HF16). HFD-induced impairments in glucose tolerance and hippocampal insulin signaling occurred concurrently with deficits in both short- and long-term memory. Furthermore, these conditions were improved with dietary intervention; however, the HFD-induced decrease in insulin receptor expression in the hippocampus was not altered with dietary intervention. Our results demonstrate that memory deficits due to the consumption of a HFD at an early age are reversible. PMID:27676071

  15. Citalopram attenuates tau hyperphosphorylation and spatial memory deficit induced by social isolation rearing in middle-aged rats.

    PubMed

    Ren, Qing-Guo; Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Qi-Da; Zhang, Zhi-Jun

    2015-05-01

    Social isolation (SI) is considered as a chronic stress. Here, middle-aged rats (8 months) were group or isolation reared for 6 weeks. Following the initial two-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Changes in recognition memory, depression and anxiety-like behavior, and phosphorylated tau were investigated. We found that SI did not lead to obvious depression/anxiety-like behavior in middle-aged rats. Memory deficits and increased tau hyperphosphorylation at Tau-1, Ser396 episodes could be almost reversed by citalopram. The level of Ser9-phosphorylated GSK-3β (inactive form) was significantly decreased in the SI group which also could be almost reversed by citalopram, suggesting that the citalopram could prevent GSK-3β from SI-induced overactivation. The melatonin level was decreased in SI group compared with group housed (GH) group, and citalopram could partly restore the level of melatonin. We also found that citalopram could increase MT1 and MT2 in mRNA level. Our results demonstrate that citalopram increases the level of melatonin which negatively regulates GSK-3β and attenuates tau hyperphosphorylation and spatial memory deficit induced by SI in middle-aged rats. Suggesting that SI might constitute a risk factor for Alzheimer's disease (AD), and citalopram may represent a therapeutic strategy for the treatment of AD. PMID:25476250

  16. Spatial reference memory deficits precede motor dysfunction in an experimental autoimmune encephalomyelitis model: the role of kallikrein-kinin system.

    PubMed

    Dutra, Rafael C; Moreira, Eduardo L G; Alberti, Thaís B; Marcon, Rodrigo; Prediger, Rui D; Calixto, João B

    2013-10-01

    Multiple sclerosis (MS) is a progressive T cell-mediated autoimmune demyelinating inflammatory disease of the central nervous system (CNS). Although it is recognized that cognitive deficits represent a manifestation of the disease, the underlying pathogenic mechanisms remain unknown. Here we provide evidence of spatial reference memory impairments during the pre-motor phase of experimental autoimmune encephalomyelitis (EAE) in mice. Specifically, these cognitive deficits were accompanied by down-regulation of choline acetyltransferase (ChAT) mRNA expression on day 5 and 11 post-immunization, and up-regulation of inflammatory cytokines in the hippocampus and prefrontal cortex. Moreover, a marked increase in B1R mRNA expression occurred selectively in the hippocampus, whereas protein level was up-regulated in both brain areas. Genetic deletion of kinin B1R attenuated cognitive deficits and cholinergic dysfunction, and blocked mRNA expression of both IL-17 and IFN-γ in the prefrontal cortex, lymph node and spleen of mice subjected to EAE. The discovery of kinin receptors, mainly B1R, as a target for controlling neuroinflammatory response, as well as the cognitive deficits induced by EAE may foster the therapeutic exploitation of the kallikrein-kinin system (KKS), in particular for the treatment of autoimmune disorders, such as MS, mainly during pre-symptomatic phase. PMID:23777652

  17. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. PMID:27233828

  18. Evidence of Compensatory Processing in Adults with Developmental Language Impairment: Testing the Predictions of the Procedural Deficit Hypothesis

    PubMed Central

    Poll, Gerard H.; Miller, Carol A.; van Hell, Janet G.

    2015-01-01

    Background The Procedural Deficit Hypothesis (PDH) proposes that individuals with primary developmental language impairment (DLI) have a deficient procedural memory, compromising their syntactic abilities. Individuals with DLI may compensate for procedural memory deficits by engaging declarative memory for syntactic tasks. Arguments are part of the lexicon whereas adjuncts rely on syntactic processing. As a result, individuals with DLI may have unusual difficulty processing adjuncts. Alternatively, processing for adjuncts may be typical for individuals with DLI but show frequency effects, indicating compensatory use of declarative memory. Aims Our goal was to test the predictions of the PDH by comparing argument and adjunct processing times for adults with and without DLI, and to seek evidence of compensatory use of declarative memory for adjunct processing. We further evaluated group performance on measures of visual procedural and declarative memory. Methods & Procedures Forty-four adults, 21 with DLI, completed a self-paced listening task, a procedural memory task, and a declarative memory task. The self-paced listening task tracked the word-by-word processing time for sentences that included prepositional phrases acting as arguments or adjuncts. We used regression analysis to determine effects of group membership and argument or adjunct status on processing times. Correlation analyses evaluated relationships between argument and adjunct frequency on processing times by group. Results & Outcomes We found no effect of group membership on the processing time for arguments and adjuncts in the self-paced listening task. Argument phrases were processed more easily by both groups. There were frequency effects for adjunct processing for the group with DLI, but not the group with typical language. We did not find the expected frequency effects for argument processing. The group with DLI also performed more poorly in both the procedural and declarative memory tasks

  19. Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits.

    PubMed

    Sokolowski, Katie; Obiorah, Maryann; Robinson, Kelsey; McCandlish, Elizabeth; Buckley, Brian; DiCicco-Bloom, Emanuel

    2013-12-01

    The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1-3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well-characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non-proliferative CA1-3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal-dependent memory deficits during adolescence.

  20. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period.

    PubMed

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  1. Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats.

    PubMed

    Christie, Brian R; Swann, Sarah E; Fox, Christopher J; Froc, David; Lieblich, Stephanie E; Redila, Van; Webber, Alina

    2005-03-01

    Prenatal ethanol exposure can lead to long-lasting impairments in the ability to process spatial information in rats, as well as produce long-lasting deficits in the ability of animals to exhibit long-term potentiation, a biological model of learning and memory processing. Conversely, we have recently shown that both spatial memory and long-term potentiation can be enhanced in animals that are given access to a running wheel in their home cage. In the present study, Sprague-Dawley rat dams were given one of three diets throughout gestation: (i) a liquid diet containing ethanol (35.5% ethanol-derived calories); (ii) a liquid diet, isocaloric to the ethanol diet, but with maltose-dextrin substituting for the ethanol derived calories and (iii) an ad libitum diet of standard rat chow. At weaning (28 days) animals were housed individually in either a standard rat cage, or a cage that contained a running wheel. Adult offspring were tested on a two trial version of the Morris water maze beginning at postnatal day 60, for five consecutive days. Following this, the capacity of the perforant path to dentate gyrus pathway to sustain long-term potentiation was examined in these animals using theta-patterned conditioning stimuli. Our results demonstrate that prenatal ethanol exposure can produce pronounced deficits in both spatial memory and long-term potentiation, but that allowing animal's access to voluntary exercise can attenuate these deficits to the point that those exposed to ethanol prenatally can no longer be differentiated from control animals. These findings indicate that voluntary exercise may have therapeutic benefits for individuals that have undergone prenatal ethanol exposure.

  2. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period

    PubMed Central

    Furukawa, Yusuke; Tanemura, Kentaro; Igarashi, Katsuhide; Ideta-Otsuka, Maky; Aisaki, Ken-Ichi; Kitajima, Satoshi; Kitagawa, Masanobu; Kanno, Jun

    2016-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R) mediated signaling (GABA-R signal) during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ) or the non-benzodiazepine drug zolpidem (ZP). We detected learning and memory deficits in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs), which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible learning and memory deficits in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause learning and memory deficits. PMID:27489535

  3. [Prospective memory - concepts, methods of assessment, neuroanatomical bases and its deficits in mental disorders].

    PubMed

    Wiłkość, Monika; Izdebski, Paweł; Zajac-Lamparska, Ludmiła

    2013-01-01

    In the last two decades of the last century there has been a shift in the studies on memory. In psychology of memory the criticism of the laboratory approach resulted in development of the ecological approach. One of the effects of this change was to initiate researches on memory that includes plans for the future, which has resulted in the distinction of the concept of prospective memory. Prospective memory is used in many aspects of everyday life. It deals with remembering intentions and plans, it is connected with remembering about specific task or activity in the future. There are three types of PM: event-based prospective memory, time-based prospective memory and activity-based prospective memory. Current research in this field have already established its own paradigm and tools measuring PM and there is still increasing scientific interest in this issue. Prospective memory assessment may be carried out in various ways. Among them, the most frequently used are: a) questionnaires, b) psychological tests, c) experimental procedures. Within the latter, the additional distinction can be introduced for: the experiments conducted under natural conditions and the laboratory procedures. In Polish literature, there are only a few articles on PM. The aim of this work is to review studies on assessment methods of PM. Its neuroanatomical bases and its functioning in different mental disorders are analyzed. The work is aimed to focus clinicians attention on prospective memory as an area which is important for complex diagnosis of cognitive processes.

  4. Effects of 20-hydroxyecdysone on improving memory deficits in streptozotocin-induced type 1 diabetes mellitus in rat.

    PubMed

    Xia, Xichao; Zhang, Qingyuan; Liu, Rongzhi; Wang, Zhongxiao; Tang, Nianya; Liu, Fei; Huang, Guosheng; Jiang, Xiao; Gui, Gaixia; Wang, Lijuan; Sun, Xiuli

    2014-10-01

    We investigate the effects of 20-hydroxyecdysone (20E) on improving memory deficits in the current study by using an animal model of type 1 diabetes mellitus in rats. Animals in control group went on a normal diet. Rats that developed diabetes were divided into 4 groups, including STZ-induced diabetic group which was treated with saline and three 20E groups received different 20E concentrations for 12 weeks. Spatial memory performance was measured in rats by the Morris water maze. The level of nuclear factor-кB (NF-кB) in the brain was determined by real-time quantitative PCR. The mRNA levels and enzyme activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were analyzed by real-time quantitative PCR and spectrophotometry. The concentrations of brain-derived neurotrophic factor (BDNF) in the brain were detected by ELISA. Compared with the control group, rats in the STZ-induced diabetic group that developed type 1 diabetes exhibited significant memory loss. In addition to the hippocampus CA1 area that displayed severe damage, significantly higher expression levels of NF-кB were observed in these rats. Furthermore, the expression levels of SOD, catalase, GSH-Px GR and BDNF were significantly decreased in rats with diabetes. By contrast, the treatment with 20E, especially at higher concentrations, reversed the above-mentioned conditions caused by diabetes. The results suggest that the 20E has a protective role in counteracting memory deficits in rats with diabetes of rat, possibly through enhancing the antioxidative ability in the brain.

  5. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  6. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues.

  7. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression.

    PubMed

    Heyward, Frankie D; Walton, R Grace; Carle, Matthew S; Coleman, Mark A; Garvey, W Timothy; Sweatt, J David

    2012-07-01

    Mounting evidence has established that diet-induced obesity (DIO) is associated with deficits in hippocampus-dependent memory. The bulk of research studies dealing with this topic have utilized rats fed a high-fat diet as an experimental model. To date, there has been a paucity of research studies that have established whether the memory deficits exhibited in DIO rats can be recapitulated in mice. Moreover, the majority of experiments that have evaluated memory performance in rodent models of DIO have utilized memory tests that are essentially aversive in nature (i.e., Morris water maze). The current study sought to fill an empirical void by determining if mice maintained on a high-fat diet exhibit deficits in two non-aversive memory paradigms: novel object recognition (NOR) and object location memory (OLM). Here we report that mice fed a high-fat diet over 23 weeks exhibit intact NOR, albeit a marked impairment in hippocampus-dependent OLM. We also determined the existence of corresponding aberrations in gene expression within the hippocampus of DIO mice. DIO mice exhibited significant reductions in both SIRT1 and PP1 mRNA within the hippocampus. Our data suggest that mice maintained on a high-fat diet present with impaired hippocampus-dependent spatial memory and a corresponding alteration in the expression of genes that have been implicated in memory consolidation.

  8. The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze.

    PubMed

    Hosseini, Mahmoud; Hadjzadeh, Mosa Al-Reza; Derakhshan, Mohammad; Havakhah, Shahrzad; Rassouli, Fatemeh Behnam; Rakhshandeh, Hassan; Saffarzadeh, Fatema

    2010-03-01

    Functional consequences of hypothyroidism include impaired learning and memory and inability to produce long-term potentiation (LTP) in hippocampus. Olibanum has been used for variety of therapeutic purposes. In traditional medicine, oilbanum is used to enhance learning and memory. In the present study the effect of olibanum on memory deficit in hypothyroid rats was investigated. Male wistar rats were divided into four groups and treated for 180 days. Group 1 received tap drinking water while in group 2, 0.03% methimazol was added to drinking water. Group 3 and 4 were treated with 0.03% methimazole as well as 100 and 500 mg/kg olibanum respectively. The animals were tested in Morris water maze. The swimming speed was significantly lower and the distance and time latency were higher in group 2 compared with group 1. In groups 3 and 4 the swimming speed was significantly higher while, the length of the swim path and time latency were significantly lower in comparison with group 2. It is concluded that methimazole-induced hypothyroidism impairs learning and memory in adult rats which could be prevented by using olibanum.

  9. Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory.

    PubMed

    Thornton, P L; Ingram, R L; Sonntag, W E

    2000-02-01

    The age-related decline in growth hormone is one of the most robust endocrine markers of biological aging and has been hypothesized to contribute to the physiological deficits observed in aged animals. However, there have been few studies of the impact of this hormonal decline on brain aging. In this study, the effect of long-term subcutaneous administration of [D-Ala2]-growth hormone-releasing hormone (GHRH) on one measure of brain function, memory, was investigated. Animals were injected daily with 2.3 microg of [D-Ala2]-GHRH or saline from 9 to 30 months of age, and the spatial learning and reference memory of animals were assessed by using the Morris water maze and compared with those of 6-month-old animals. Results indicated that spatial memory decreased with age and that chronic [D-Ala2]-GHRH prevented this age-related decrement (24% improvement in the annulus-40 time and 23% improvement in the number of platform crossings compared with saline treated, age-matched controls; p < .05 each). No changes were noted in sensorimotor performance. [D-Ala2]-GHRH attenuated the age-related decline in plasma concentrations of insulinlike growth factor-1 (IGF-1) (p <.05). These data suggest that growth hormone and IGF-1 have important effects on brain function, that the decline in growth hormone and IGF-1 with age contributes to impairments in reference memory, and that these changes can be reversed by the chronic administration of GHRH.

  10. Variation in Parasympathetic Dysregulation Moderates Short-term Memory Problems in Childhood Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Ward, Anthony R; Alarcón, Gabriela; Nigg, Joel T; Musser, Erica D

    2015-11-01

    Although attention deficit/hyperactivity disorder (ADHD) is associated with impairment in working memory and short-term memory, up to half of individual children with ADHD perform within a normative range. Heterogeneity in other ADHD-related mechanisms, which may compensate for or combine with cognitive weaknesses, is a likely explanation. One candidate is the robustness of parasympathetic regulation (as indexed by respiratory sinus arrhythmia; RSA). Theory and data suggest that a common neural network is likely tied to both heart-rate regulation and certain cognitive functions (including aspects of working and short-term memory). Cardiac-derived indices of parasympathetic reactivity were collected during short-term memory (STM) storage and rehearsal tasks from 243 children (116 ADHD, 127 controls). ADHD was associated with lower STM performance, replicating previous work. In addition, RSA reactivity moderated the association between STM and ADHD - both as a category and a dimension - independent of comorbidity. Specifically, conditional effects revealed that high levels of withdrawal interacted with weakened STM but high levels of augmentation moderated a positive association predicting ADHD. Thus, variations in parasympathetic reactivity may help explain neuropsychological heterogeneity in ADHD.

  11. Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer's disease.

    PubMed

    Feld, Mariana; Krawczyk, María C; Sol Fustiñana, M; Blake, Mariano G; Baratti, Carlos M; Romano, Arturo; Boccia, Mariano M

    2014-01-01

    Alzheimer's disease (AD) can be considered as a disease of memory in its initial clinical stages. Amyloid-β (Aβ) peptide accumulation is central to the disease initiation leading later to intracellular neurofibrillary tangles (NFTs) of cytoskeletal tau protein formation. It is under discussion whether different Aβ levels of aggregation, concentration, brain area, and/or time of exposure might be critical to the disease progression, as well as which intracellular pathways it activates. The aim of the present work was to study memory-related early molecular and behavioral alterations in a mouse model of AD, in which a subtle deregulation of the physiologic function of Aβ can be inferred. For this purpose we used triple-transgenic (3xTg) mice, which develop Aβ and tau pathology resembling the disease progression in humans. Memory impairment in novel object recognition task was evident by 5 months of age in 3xTg mice. Hippocampus and prefrontal cortex extra-nuclear protein extracts developed differential patterns of Aβ aggregation. ERK1/MAPK showed higher levels of cytosolic activity at 3 months and higher levels of nuclear activity at 6 months in the prefrontal cortex. No significant differences were found in JNK and NF-κB activity and in calcineurin protein levels. Finally, intra-PFC administration of a MEK inhibitor in 6-month-old 3xTg mice was able to reverse memory impairment, suggesting that ERK pathway alterations might at least partially explain memory deficits observed in this model, likely as a consequence of memory trace disruption.

  12. Effect of the histamine H3-antagonist clobenpropit on spatial memory deficits induced by MK-801 as evaluated by radial maze in Sprague-Dawley rats.

    PubMed

    Huang, Yu-Wen; Hu, Wei-Wei; Chen, Zhong; Zhang, Li-San; Shen, Hai-Qing; Timmerman, Henk; Leurs, Rob; Yanai, Kazuhiko

    2004-05-01

    This study was performed to investigate whether or not the histamine H3-antagonist clobenpropit can ameliorate spatial memory deficits induced by MK-801 (0.3 microg per site) as evaluated by an eight-arm radial maze task of rats. A bilateral intrahippocampal (i.h.) injection of clobenpropit (5, 10 microg per site, dose-dependent) markedly improved the working and reference memory deficits induced by MK-801. Its ameliorating effect was potentiated by histidine, but completely antagonized by immepip (2.5 microg per site), a selective H3-agonist. alpha-Fluoromethylhistidine (FMH, 25 microg per site), a selective histidine decarboxylase inhibitor prevented the ameliorating effect of clobenpropit on the working memory deficits induced by MK-801. In addition, the H(1-antagonist pyrilamine, but not the H2-antagonist cimetidine, also inhibited the procognitive effects of clobenpropit. Both FMH and pyrilamine did not significantly modulate the effect of clobenpropit on reference memory. Therefore, the results of this study suggest that the procognitive effects of clobenpropit in MK-801-induced working memory deficits is mediated by increasing endogenous histamine release. In addition, the ameliorating effect of clobenpropit on reference memory might be due to the increased release of neurotransmitters other than histamine.

  13. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    PubMed

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome.

  14. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit.

    PubMed

    Pahwa, Priyanka; Goel, Rajesh Kumar

    2016-04-01

    Asparagus racemosus (A. racemosus) roots are extensively used in traditional medicine for the management of epilepsy. The aim of the present study was to investigate the ameliorative effect of A. racemosus root extract (ARE) against pentylenetetrazol-induced kindling and associated depression and memory deficit. Kindling was successfully induced by repeated administration of a subconvulsant dose of PTZ (35 mg/kg; i.p.) at an interval of 48 ± 2 h in 43 days (21 injections). Pretreatment with valproate (300 mg/kg; i.p.), a major antiepileptic drug as well as ARE significantly suppressed the progression of kindling. Moreover, ARE also ameliorated the kindling-associated depression and memory deficit as indicated by decreased immobility time and increased step-down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complemented with analogous neurochemical changes. In conclusion, the results of the present study showed that ARE treatment has an ameliorative effect against PTZ-induced kindling and associated behavioral comorbidities. PMID:26970996

  15. Auditory and verbal working memory deficits in a child with congenital aniridia due to a PAX6 mutation.

    PubMed

    Bamiou, Doris-Eva; Campbell, Nicole G; Musiek, Frank E; Taylor, Rachael; Chong, W K; Moore, Anthony; van Heyningen, Veronica; Free, Samantha; Sisodiya, Sanjay; Luxon, Linda M

    2007-04-01

    PAX6 encodes a transcriptional regulator that is essential for brain morphogenesis. Heterozygous PAX6 mutation is associated with aniridia and abnormalities of the interhemispheric pathway in humans. We present the case of a 12 year old boy with a known mutation of the PAX6 gene. There were parental concerns regarding his hearing, but repeated pure-tone audiograms were normal. He had a battery of standard central auditory tests, which gave abnormal results in tests which required auditory interhemispheric transfer (dichotic digits and pattern tests). A speech and language assessment, which yielded age-appropriate scores for speech, receptive and expressive language, revealed impaired verbal working memory. These test results were interpreted as indicating impaired auditory sensory and higher order interhemispheric transfer, consistent with reported findings in adults with mutations in PAX6, and correlated with his parent-reported hearing difficulties. This is the first report of central auditory and verbal working memory deficits in a child with a PAX6 mutation. Further research is needed to assess how these deficits impact on academic performance particularly in childhood. PMID:17454233

  16. Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice.

    PubMed

    Wang, Lingxi; Du, Yehong; Wang, Kejian; Xu, Ge; Luo, Shifang; He, Guiqiong

    2016-09-01

    Alzheimer's disease (AD) is the most common type of dementia frequently responsible for cognitive decline in the elderly. The etiology and molecular mechanism of AD pathogenesis remain inconclusive. Aging and vascular factors are important independent causes and contributors to sporadic AD. Clinical imaging studies showed that cerebral blood flow decreases before cognitive impairment in patients with AD. To investigate the effect of chronic cerebral hypoperfusion (CCH) on cognitive impairment and morphological features, we developed a new manner of CCH mouse model by narrowing bilateral common carotid arteries. Mice started to manifest spatial memory deficits 1month after the surgery and exhibited behavioral changes in a time-dependent manner. Mice also presented memory deficits accompanied with morphological changes at the neuronal and synaptic levels. CCH damaged the normal neuronal morphology and significantly reduced the expression level of PSD95. CCH activated astrocytes, increased the co-expression of GFAP and AQP4, and destroyed the blood-brain barrier (BBB). Furthermore, CCH facilitated intracellular and extracellular Aβ deposition by up-regulating γ-secretase and β-secretase levels. Our results showed good reproducibility of post-CCH pathological processes, which are characterized by neuronal apoptosis, axonal abnormalities, glial activation, BBB damage, amyloid deposition, and cognitive dysfunction; these processes may be used to decipher the complex interplay and pathological process between CCH and AD. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction and AD. PMID:27421879

  17. The application of rules in morphology, syntax and number processing: a case of selective deficit of procedural or executive mechanisms?

    PubMed Central

    Macoir, Joël; Fossard, Marion; Nespoulous, Jean-Luc; Demonet, Jean-François; Bachoud-Lévi, Anne-Catherine

    2010-01-01

    Declarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient’s performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules. PMID:20446168

  18. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    ERIC Educational Resources Information Center

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  19. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  20. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  1. Self-Predictions of Prospective Memory in HIV-Associated Neurocognitive Disorders: Evidence of a Metamemory Deficit

    PubMed Central

    Casaletto, Kaitlin Blackstone; Doyle, Katie L.; Weber, Erica; Woods, Steven Paul; Heaton, Robert K.; Grant, Igor; Atkinson, J. Hampton; Ellis, Ronald J.; Letendre, Scott; Marcotte, Thomas D.; Marquie-Beck, Jennifer; Sherman, Melanie; Ellis, Ronald J.; Letendre, Scott; McCutchan, J. Allen; Best, Brookie; Schrier, Rachel; Rosario, Debra; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; D, Psy; Marcotte, Thomas D.; Cherner, Mariana; Moore, David J.; Dawson, Matthew; Fennema-Notestine, Christine; Buchsbaum, Monte S.; Hesselink, John; Archibald, Sarah L.; Brown, Gregory; Buxton, Richard; Dale, Anders; Liu, Thomas; Masliah, Eliezer; Achim, Cristian; Smith, David M.; Richman, Douglas; McCutchan, J. Allen; Cherner, Mariana; Achim, Cristian; Lipton, Stuart; Atkinson, J. Hampton; Marquie-Beck, Jennifer; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Deutsch, Reena; Umlauf, Anya

    2014-01-01

    HIV-associated neurocognitive disorders (HAND) are associated with deficits in prospective memory (PM; “remembering to remember”), conferring risk of daily functioning declines. However, self-perceptions of PM functioning are not reliably associated with PM performance in HIV, suggesting a possible deficit in awareness of PM abilities (meta-PM). Our study examined meta-PM in HAND and its correlates using self-predictions of laboratory-based PM performance. Performance-based PM abilities, self-reported prediction of PM performance, and PM complaints in everyday life were assessed in 49 individuals with HAND, 93 HIV+ without HAND (HIV+ noHAND), and 121 seronegative adults (HIV−). After controlling for group-level differences, HAND was associated with a greater number of PM symptoms in everyday life and worse PM performance when compared with both HIV+ noHAND and HIV− samples. Although HAND individuals reported somewhat lower predictions regarding their laboratory PM performance relative to the other study groups, they nevertheless exhibited significantly greater inaccurate overconfidence in time-based PM abilities. Within the HAND group, overconfidence in time-based meta-PM was associated with executive dysfunction and antiretroviral (ARV) nonadherence. HAND individuals evidenced a moderate deficit in awareness of PM functioning characterized by overconfidence in time-based PM abilities. Overconfidence in PM may result in absence of compensatory strategy use, and lead to increased errors in daily functioning (e.g., ARV nonadherence). PMID:25404005

  2. The Role of Text Memory in Inferencing and in Comprehension Deficits

    PubMed Central

    Hua, Anh N.; Keenan, Janice M.

    2014-01-01

    Comprehension tests often compare accuracy on inferential versus literal questions and find inferential harder than literal, and poor comprehenders performing worse than controls. Difficulties in integration are assumed to be the reason. This research explores another reason – differences in memory for the passage information underlying the questions. Thirty-nine poor comprehenders and 39 controls were given multiple-paragraph passages, which they retold before answering questions. Retellings permitted assessing question accuracy as a function of memory for the text underlying each question. Inferential accuracy was poorer than literal, and the expected group effect obtained. However, when text memory was perfect, group differences disappeared, indicating that poor comprehenders can generate inferences as well as controls, if they have the relevant information in memory. These findings show that text memory is crucial in distinguishing poor comprehension. PMID:25328376

  3. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder?

    PubMed

    Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B

    2012-07-01

    Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD. PMID:22752960

  4. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans.

    PubMed

    Ye, Huayue; Ye, Boping; Wang, Dayong

    2008-07-01

    Vitamin E (alpha-tocopherol), a lipid-soluble anti-oxidant, prevents the uncontrolled propagation of lipid peroxidation by free radicals. Nevertheless, there is weak or no evidence of a protective effect of previous vitamin E intake on cognitive function in humans. In the present study, we explored the thermosensation model to investigate the possible effects of vitamin E administration on memory behaviors in Caenorhabditis elegans. Administration of 100 and 200microg/mL of vitamin E had no significant effects on the memory for different time intervals, whereas relatively high concentration (400microg/mL) of vitamin E exposure shortened the extinction period of the association paradigm (food at 20 degrees C). Following the UV-irradiation, post-treatment with 200microg/mL of vitamin E not only retrieved the UV-irradiation-induced memory deficits, but also enhanced the memory functions in UV-irradiating animals. Post-treatment with trace vitamin E could also ameliorate the memory deficits in metal (Al or Pb) exposed worms. In addition, pre-treatment with 200microg/mL of vitamin E could effectively prevent the occurrence of memory deficits induced by metal exposure and UV-irradiation. Therefore, the close association may exist between trace dietary vitamin E intake and memory behaviors, and a specific response mechanism may be activated after the administration of vitamin E in stress-exposed animals. Moreover, treatment with 200microg/mL of vitamin E could restore the memory deficits formed in the ncs-1 mutant worms, suggesting that exogenous treatment with trace vitamin E can largely mimic the function of NCS-1 in regulating the memory for thermosensation.

  5. Working Memory Deficits in Neuronal Nitric Oxide Synthase Knockout Mice: Potential Impairments in Prefrontal Cortex Mediated Cognitive Function

    PubMed Central

    Zoubovsky, Sandra P.; Pogorelov, Vladimir M.; Taniguchi, Yu; Kim, Sun-Hong; Yoon, Peter; Nwulia, Evaristus; Sawa, Akira; Pletnikov, Mikhail V.; Kamiya, Atsushi

    2011-01-01

    Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning. PMID:21539806

  6. Working memory deficits in neuronal nitric oxide synthase knockout mice: potential impairments in prefrontal cortex mediated cognitive function.

    PubMed

    Zoubovsky, Sandra P; Pogorelov, Vladimir M; Taniguchi, Yu; Kim, Sun-Hong; Yoon, Peter; Nwulia, Evaristus; Sawa, Akira; Pletnikov, Mikhail V; Kamiya, Atsushi

    2011-05-20

    Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning. PMID:21539806

  7. Silencing PP2A Inhibitor by Lenti-shRNA Interference Ameliorates Neuropathologies and Memory Deficits in tg2576 Mice

    PubMed Central

    Liu, Gong-Ping; Wei, Wei; Zhou, Xin; Shi, Hai-Rong; Liu, Xing-Hua; Chai, Gao-Shang; Yao, Xiu-Qing; Zhang, Jia-Yu; Peng, Cai-Xia; Hu, Juan; Li, Xia-Chun; Wang, Qun; Wang, Jian-Zhi

    2013-01-01

    Deficits of protein phosphatase-2A (PP2A) play a crucial role in tau hyperphosphorylation, amyloid overproduction, and synaptic suppression of Alzheimer's disease (AD), in which PP2A is inactivated by the endogenously increased inhibitory protein, namely inhibitor-2 of PP2A (I2PP2A). Therefore, in vivo silencing I2PP2A may rescue PP2A and mitigate AD neurodegeneration. By infusion of lentivirus-shRNA targeting I2PP2A (LV-siI2PP2A) into hippocampus and frontal cortex of 11-month-old tg2576 mice, we demonstrated that expression of LV-siI2PP2A decreased remarkably the elevated I2PP2A in both mRNA and protein levels. Simultaneously, the PP2A activity was restored with the mechanisms involving reduction of the inhibitory binding of I2PP2A to PP2A catalytic subunit (PP2AC), repression of the inhibitory Leu309-demethylation and elevation of PP2AC. Silencing I2PP2A induced a long-lasting attenuation of amyloidogenesis in tg2576 mice with inhibition of amyloid precursor protein hyperphosphorylation and β-secretase activity, whereas simultaneous inhibition of PP2A abolished the antiamyloidogenic effects of I2PP2A silencing. Finally, silencing I2PP2A could improve learning and memory of tg2576 mice with preservation of several memory-associated components. Our data reveal that targeting I2PP2A can efficiently rescue Aβ toxicities and improve the memory deficits in tg2576 mice, suggesting that I2PP2A could be a promising target for potential AD therapies. PMID:23922015

  8. The Associative Memory Deficit in Aging Is Related to Reduced Selectivity of Brain Activity during Encoding.

    PubMed

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C; Grady, Cheryl L

    2016-09-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity or dedifferentiation has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used fMRI to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole-brain patterns of activation that predicted item versus associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared with young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043

  9. Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice.

    PubMed

    Belnik, A P; Ostrovskaya, R U; Poletaeva, I I

    2007-04-01

    The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer's disease. PMID:18214292

  10. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis.

    PubMed

    Bhatia, Nitish; Jaggi, Amteshwar Singh; Singh, Nirmal; Anand, Preet; Dhawan, Ravi

    2011-07-01

    The present study was designed to investigate the role of curcumin in chronic stress and chronic unpredictable stress-induced memory deficits and alteration of functional homeostasis in mice. Chronic stress was induced by immobilizing the animal for 2 h daily for 10 days, whereas chronic unpredictable stress was induced by employing a battery of stressors of variable magnitude and time for 10 days. Curcumin was administered to drug-treated mice prior to induction of stress. Body weight, adrenal gland weight, ulcer index and biochemical levels of glucose, creatine kinase, cholesterol, corticosterone, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were evaluated to assess stress-induced functional changes. Memory deficits were evaluated using the elevated plus maze (EPM) model. Chronic stress and chronic unpredictable stress significantly increased the levels of corticosterone, glucose and creatine kinase and decreased cholesterol levels. Moreover, chronic stress and chronic unpredictable stress resulted in severe memory deficits along with adrenal hypertrophy, weight loss and gastric ulceration. Chronic stress and chronic unpredictable stress also increased oxidative stress assessed in terms of increase in TBARS and decrease in GSH levels. Pretreatment with curcumin (25 and 50 mg/kg p.o.) attenuated chronic stress and chronic unpredictable stress-associated memory deficits, biochemical alterations, pathological outcomes and oxidative stress. It may be concluded that curcumin-mediated antioxidant actions and decrease in corticosterone secretion are responsible for its adaptogenic and memory restorative actions in chronic and chronic unpredictable stress.

  11. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  12. Is there a recognition memory deficit in Parkinson's disease? Evidence from estimates of recollection and familiarity.

    PubMed

    Weiermann, Brigitte; Stephan, Marianne A; Kaelin-Lang, Alain; Meier, Beat

    2010-03-01

    There is conflicting evidence whether Parkinson's disease (PD) is associated with impaired recognition memory and which of its underlying processes, namely recollection and familiarity, is more affected by the disease. The present study explored the contribution of recollection and familiarity to verbal recognition memory performance in 14 nondemented PD patients and a healthy control group with two different methods: (i) the word-frequency mirror effect, and (ii) Remember/Know judgments. Overall, recognition memory of patients was intact. The word-frequency mirror effect was observed both in patients and controls: Hit rates were higher and false alarm rates were lower for low-frequency compared to high-frequency words. However, Remember/Know judgments indicated normal recollection, but impaired familiarity. Our findings suggest that mild to moderate PD patients are selectively impaired at familiarity whereas recollection and overall recognition memory are intact.

  13. Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis.

    PubMed

    Hsiao, Ya-Hsin; Hung, Hui-Chi; Chen, Shun-Hua; Gean, Po-Wu

    2014-12-01

    It has been recognized that the risk of cognitive decline during aging can be reduced if one maintains strong social connections, yet the neural events underlying this beneficial effect have not been rigorously studied. Here, we show that amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice demonstrate improvement in memory after they are cohoused with wild-type mice. The improvement was associated with increased protein and mRNA levels of BDNF in the hippocampus. Concomitantly, the number of BrdU(+)/NeuN(+) cells in the hippocampal dentate gyrus was significantly elevated after cohousing. Methylazoxymethanol acetate, a cell proliferation blocker, markedly reduced BrdU(+) and BrdU/NeuN(+) cells and abolished the effect of social interaction. Selective ablation of mitotic neurons using diphtheria toxin (DT) and a retrovirus vector encoding DT receptor abolished the beneficial effect of cohousing. Knockdown of BDNF by shRNA transfection blocked, whereas overexpression of BDNF mimicked the memory-improving effect. A tropomyosin-related kinase B agonist, 7,8-dihydroxyflavone, occluded the effect of social interaction. These results demonstrate that increased BDNF expression and neurogenesis in the hippocampus after cohousing underlie the reversal of memory deficit in APP/PS1 mice.

  14. Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits

    PubMed Central

    Santin, L.J.; Bilbao, A.; Pedraza, C.; Matas-Rico, E.; López-Barroso, D.; Castilla-Ortega, E.; Sánchez-López, J.; Riquelme, R.; Varela-Nieto, I.; de la Villa, P.; Suardíaz, M.; Chun, J.; De Fonseca, F. Rodriguez; Estivill-Torrús, G.

    2016-01-01

    Lysophosphatidic acid (LPA) has emerged as a new regulatory molecule in the brain. Recently, some studies have demonstrated a role for this molecule and its LPA1 receptor in the regulation of plasticity and neurogenesis in the adult brain. However, no systematic studies have been conducted to investigate whether the LPA1 receptor is involved in behavior. Here we studied the phenotype of maLPA1–null mice, which bear a targeted deletion at the lpa1 locus, in a battery of tests examining neurologic performance, habituation in exploratory behavior in response to low and mild anxiety environments and spatial memory. MaLPA1-null mutants showed deficits in both olfaction and somesthesis, but not in retinal or auditory functions. Sensorimotor coordination was impaired only in the equilibrium and grasping reflexes. The mice also showed impairments in neuromuscular strength and analgesic response. No additional differences were observed in the rest of the tests used to study sensoriomotor orientation, limb reflexes, and coordinated limb use. At behavioral level, maLPA1-null mice showed an impaired exploration in the open field and increased anxiety-like response when exposed to the elevated plus maze. Furthermore, the mice exhibit impaired spatial memory retention and reduced use of spatial strategies in the Morris water maze. We propose that the LPA1 receptor may play a major role in both spatial memory and response to anxiety-like conditions. PMID:19689455

  15. Event- and time-triggered remembering: the impact of attention deficit hyperactivity disorder on prospective memory performance in children.

    PubMed

    Talbot, Karley-Dale S; Kerns, Kimberly A

    2014-11-01

    The current study examined prospective memory (PM, both time-based and event-based) and time estimation (TR, a time reproduction task) in children with and without attention deficit hyperactivity disorder (ADHD). This study also investigated the influence of task performance and TR on time-based PM in children with ADHD relative to controls. A sample of 69 children, aged 8 to 13 years, completed the CyberCruiser-II time-based PM task, a TR task, and the Super Little Fisherman event-based PM task. PM performance was compared with children's TR abilities, parental reports of daily prospective memory disturbances (Prospective and Retrospective Memory Questionnaire for Children, PRMQC), and ADHD symptomatology (Conner's rating scales). Children with ADHD scored more poorly on event-based PM, time-based PM, and TR; interestingly, TR did not appear related to performance on time-based PM. In addition, it was found that PRMQC scores and ADHD symptom severity were related to performance on the time-based PM task but not to performance on the event-based PM task. These results provide some limited support for theories that propose a distinction between event-based PM and time-based PM.

  16. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  17. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  18. "Gadd45b" Knockout Mice Exhibit Selective Deficits in Hippocampus-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.

    2012-01-01

    Growth arrest and DNA damage-inducible [beta] ("Gadd45b") has been shown to be involved in DNA demethylation and may be important for cognitive processes. "Gadd45b" is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified "Gadd45b"…

  19. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. PMID:25837935

  20. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia.

  1. Age-related spatial working memory deficits in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Hough, Gerald; Bingman, Verner P

    2014-12-01

    The hippocampus is particularly susceptible to age-related degeneration that, like hippocampal lesions, is thought to lead to age-related decline in spatial memory and navigation. Lesions to the avian hippocampal formation (HF) also result in impaired spatial memory and navigation, but the relationship between aging and HF-dependent spatial cognition is unknown. To investigate possible age-related decline in avian spatial cognition, the current study investigated spatial working memory performance in older homing pigeons (10+ years of age). Pigeons completed a behavioral procedure nearly identical to the delayed spatial, win-shift procedure in a modified radial arm maze that has been previously used to study spatial working memory in rats and pigeons. The results revealed that the older pigeons required a greater number of choices to task completion and were less accurate with their first 4 choices as compared to younger pigeons (1-2 years of age). In addition, older pigeons were more likely to adopt a stereotyped sampling strategy, which explained in part their impaired performance. To the best of our knowledge, this study is the first to demonstrate an age-related impairment of HF-dependent, spatial memory in birds. Implications and future directions of the findings are discussed.

  2. Wnt-5a prevents Aβ-induced deficits in long-term potentiation and spatial memory in rats.

    PubMed

    Zhang, Gui-Li; Zhang, Jun; Li, Shao-Feng; Lei, Liu; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun; Qi, Jin-Shun

    2015-10-01

    Although the neurotoxicity of amyloid β (Aβ) protein in Alzheimer's disease (AD) has been reported widely, the exact molecular mechanism underlying the Aβ-induced synaptic dysfunction and memory impairment remains largely unclear. Growing evidence indicates that wingless-type (Wnt) signaling plays an important role in neuronal development, synapse formation and synaptic plasticity. In the present study, we investigated the neuroprotective action of Wnt-5a against the synaptic damage and memory deficit induced by Aβ25-35 by using in vivo electrophysiological recording and Morris water maze (MWM) test. We found that intracerebroventricular (i.c.v.) injection of Aβ25-35 alone did not affect the baseline field excitatory postsynaptic potentials (fEPSPs) and the paired-pulse facilitation (PPF) in the hippocampal CA1 region of rats, but significantly suppressed high frequency stimulation (HFS) induced long-term potentiation (LTP); pretreatment with Wnt-5a prevented the Aβ25-35-induced suppression of hippocampal LTP in a dose-dependent manner; soluble Frizzled-related protein (sFRP), a specific Wnt antagonist, effectively attenuated the protective effects of Wnt-5a. In MWM test, Aβ25-35 alone significantly disrupted spatial learning and memory ability of rats, while pretreatment with Wnt-5a effectively prevented the impairments induced by Aβ25-35. These results in the present study demonstrated for the first time the neuroprotective effects of Wnt-5a against Aβ-induced in vivo synaptic plasticity impairment and memory disorder, suggesting that Wnt signaling pathway is one of the important targets of Aβ neurotoxicity and Wnt-5a might be used as one of the putative candidates for the therapeutic intervention of AD.

  3. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine.

    PubMed

    Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván

    2009-02-01

    Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.

  4. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.

    PubMed

    Clark, Jason K; Furgerson, Matthew; Crystal, Jonathon D; Fechheimer, Marcus; Furukawa, Ruth; Wagner, John J

    2015-11-01

    Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease.

  5. [Sleep disturbances and spatial memory deficits in post-traumatic stress disorder: the case of L'Aquila (Central Italy)].

    PubMed

    Ferrara, Michele; Mazza, Monica; Curcio, Giuseppe; Iaria, Giuseppe; De Gennaro, Luigi; Tempesta, Daniela

    2016-01-01

    Altered sleep is a common and central symptom of post-traumatic stress disorder (PTSD). In fact, sleep disturbances are included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) diagnostic criteria for PTSD. However, it has been hypothesized that sleep disturbances are crucially involved in the aetiology of PTSD, rather than being solely a symptom arising secondarily from this disorder. Therefore, knowing the long-term effects of a trauma can be essential to establish the need of specific interventions for the prevention and treatment of mental disorders that may persist years after a traumatic experience. In one study we showed, for the first time, that even after a period of two years people exposed to a catastrophic disaster such as the L'Aquila earthquake continue to suffer from a reduced sleep quality. Moreover, we observed that sleep quality scores decreased as a function of the proximity to the epicentre, suggesting that the psychological effects of an earthquake may be pervasive and long-lasting. It has been widely shown that disruption of sleep by acute stress may lead to deterioration in memory processing. In fact, in a recent study we observed alterations in spatial memory in PTSD subjects. Our findings indicated that PTSD is accompanied by an impressive deficit in forming a cognitive map of the environment, as well as in sleep-dependent memory consolidation. The fact that this deterioration was correlated to the subjective sleep disturbances in our PTSD group demonstrates the existence of an intimate relationship between sleep, memory consolidation, and stress. PMID:27291208

  6. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats.

    PubMed

    Tanehkar, Fatemeh; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Sameni, Hamid Reza; Haghighi, Saeed; Miladi-Gorji, Hossien; Motamedi, Fereshteh; Akhavan, Maziar Mohammad; Bavarsad, Kowsar

    2013-01-01

    Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement.

  7. Memory deficit caused by compressed air equivalent to 36 meters of seawater.

    PubMed

    Philp, R B; Fields, G N; Roberts, W A

    1989-06-01

    Twenty-four students from a diving school undertook a hyperbaric chamber dive to a pressure equal to 36 m of seawater. Tests of cognitive function and manual dexterity, performed in the chamber during the 35-min bottom time and before, or after, the dive included immediate and delayed free recall of words presented as 7 lists of 15 each, recognition of previously presented words, number identification, and a forceps pickup of ball bearings. Delayed free recall and immediate free recall (primacy region) were significantly impaired, whereas manual dexterity and recognition memory were not. These are in keeping with previously reported findings but indicate that significant impairment of memory may occur in experienced divers at operational depths for air diving. Lack of effect on recognition memory suggests that cueing strategies might be useful for debriefing divers.

  8. Involvement of dopaminergic and cholinergic systems in social isolation-induced deficits in social affiliation and conditional fear memory in mice.

    PubMed

    Okada, R; Fujiwara, H; Mizuki, D; Araki, R; Yabe, T; Matsumoto, K

    2015-07-23

    Post-weaning social isolation rearing (SI) in rodents elicits various behavioral abnormalities including attention deficit hyperactivity disorder-like behaviors. In order to obtain a better understanding of SI-induced behavioral abnormalities, we herein investigated the effects of SI on social affiliation and conditioned fear memory as well as the neuronal mechanism(s) underlying these effects. Four-week-old male mice were group-housed (GH) or socially isolated for 2-4 weeks before the experiments. The social affiliation test and fear memory conditioning were conducted at the age of 6 and 7 weeks, respectively. SI mice were systemically administered saline or test drugs 30 min before the social affiliation test and fear memory conditioning. Contextual and auditory fear memories were elucidated 1 and 4 days after fear conditioning. Social affiliation and contextual and auditory fear memories were weaker in SI mice than in GH mice. Methylphenidate (MPH), an inhibitor for dopamine transporters, ameliorated the SI-induced social affiliation deficit and the effect was attenuated by SCH23390, a D1 receptor antagonist, but not by sulpiride, a D2 receptor antagonist. On the other hand, tacrine, an acetylcholinesterase inhibitor, had no effect on this deficit. In contrast, tacrine improved SI-induced deficits in fear memories in a manner that was reversed by the muscarinic receptor antagonist scopolamine, while MPH had no effect on memory deficits. Neurochemical studies revealed that SI down-regulated the expression levels of the phosphorylated forms of neuro-signaling proteins, calmodulin-dependent kinase II (p-CaMKII), and cyclic AMP-responsive element binding protein (p-CREB), as well as early growth response protein-1 (Egr-1) in the hippocampus. The administration of MPH or tacrine before fear conditioning had no effect on the levels of the phosphorylated forms of the neuro-signaling proteins elucidated following completion of the auditory fear memory test; however

  9. GABA(A) receptors in the central amygdala are involved in memory retention deficits induced by cannabinoids in rats.

    PubMed

    Hasanein, Parisa; Sharifi, Maryam

    2015-11-01

    The central nucleus of the amygdala (CeA) as the main output of amygdala plays an important role in memory processes. In this study we first evaluated the effects of intra-CeA administrations of different doses of a cannabinoid CB1 agonist, WIN55, 212-2, GABA(A) receptor agonist and antagonist, muscimol and bicuculline, alone on memory retention using passive avoidance learning (PAL) test in rats. Then we examined the effects of GABA(A) receptor agents on the responses induced by intra-CeA microinjection of different doses of WIN55, 212-2. We found that administration of WIN55, 212-2 (0.05, 0.1, 0.2 and 0.4μg/rat) immediately after training impaired memory retrieval in a dose-dependent fashion. Although pre-test intra-CeA administration of muscimol (125, 250 and 500ng/rat) alone had no effect on the step-through latency, its co-administration (125ng/rat) with different doses of WIN55, 212-2 potentiated the amnesic effects of any doses of WIN55, 212-2. The results also showed that pre-test intra-CeA administration of bicuculline (200, 400 and 800ng/rat) alone had no significant effect, but at dose of 200ng/rat disrupted post-training WIN55, 212-2-induced amnesia in the retention test. Furthermore, the additional effect of muscimol (125ng/rat) on memory impairment induced by WIN55, 212-2 (0.1μg/rat) was prevented by intra-CeA co-injection of bicuculline (200ng/rat). We indicated that stimulating or blocking GAGA(A) receptors in the CeA by muscimol and bicuculline interfere with WIN55, 212-2-induced deficits in memory retention in a PAL task and therefore suggests an interaction between cannabinergic and GABAergic systems of the CeA in memory process.

  10. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  11. Effect of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine as evaluated by step-through avoidance response in rats.

    PubMed

    Yu, Chaoyang; Shen, Yao; Xu, Lisha; Zhu, Yuanyuan; Zhuge, Zhenbin; Huang, Yuwen; Henk, Timmerman; Rob, Leurs; Wei, Erqing; Chen, Zhong

    2006-04-15

    In the present study, the effects of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine were investigated as evaluated by step-through avoidance response in adult male rats. Bilateral ventral hippocampal injection of scopolamine (i.h., 2, 5 microg/site) significantly produced depressant effects on the active avoidance response in a dose-dependent manner. Histamine H(3)-antagonist clobenpropit (5, 10 microg/site) significantly ameliorated the fear memory deficits induced by scopolamine in a dose-dependent manner. Its procognitive effect was completely antagonized by immepip (10 microg/site), a selective histamine H(3)-agonist. Both histamine H(1)-antagonist pyrilamine and H(2)-antagonist cimetidine, also inhibited the procognitive effects of clobenpropit. Additionally, the procognitive effects of clobenpropit on the fear memory deficits induced by scopolamine were significantly potentiated by intraperitoneal (i.p.) injection of histidine, a precursor of histamine, but markedly reversed by i.h. injection of alpha-fluoromethylhistidine (FMH, 10 microg/site), a selective and potent histidine decarboxylase inhibitor. It is concluded that the increased endogenous histamine release in the ventral hippocampus ameliorates the scopolamine-induced fear memory deficits, and its action is mainly mediated by histamine presynaptic H(3)-receptors and postsynaptic H(1)- and H(2)-receptors.

  12. Working memory arrest in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder: results from a 2-year longitudinal study.

    PubMed

    Andersen, Per N; Skogli, Erik W; Hovik, Kjell T; Geurts, Hilde; Egeland, Jens; Øie, Merete

    2015-05-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with attention-deficit/hyperactivity disorder and 45 typically developing children (age 9-16 years) were included at baseline and followed up approximately 25 months later. The children were given a letter/number sequencing task to assess verbal working memory. The performance of children with high-functioning autism on verbal working memory did not improve after 2 years, while improvement was observed in children with attention-deficit/hyperactivity disorder and typically developing children. The results indicate a different developmental trajectory for verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. More research is needed to construct a developmental framework more suitable for children with autism spectrum disorder.

  13. Astrocyte-derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice

    PubMed Central

    Florian, Cédrick; Vecsey, Christopher G.; Halassa, Michael M.; Haydon, Philip G.; Abel, Ted

    2011-01-01

    Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remain unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of SNARE-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) could prevent the negative effects of 6 hours of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss. PMID:21562257

  14. Perfusion Deficits and Functional Connectivity Alterations in Memory-Related Regions of Patients with Post-Traumatic Stress Disorder.

    PubMed

    Liu, Yang; Li, Baojuan; Feng, Na; Pu, Huangsheng; Zhang, Xi; Lu, Hongbing; Yin, Hong

    2016-01-01

    To explore the potential alterations in cerebral blood flow (CBF) and functional connectivity of recent onset post-traumatic stress disorder (PTSD) induced by a single prolonged trauma exposure, we recruited 20 survivors experiencing the same coal mining flood disaster as the PTSD (n = 10) and non-PTSD (n = 10) group, respectively. The pulsed arterial spin labeling (ASL) images were acquired with a 3.0T MRI scanner and the partial volume (PV) effect in the images was corrected for better CBF estimation. Alterations in CBF were analyzed using both uncorrected and PV-corrected CBF maps. By using altered CBF regions as regions-of-interest, seed-based functional connectivity analysis was then performed. While only one CBF deficit in right corpus callosum of PTSD patients was detected using uncorrected CBF, three more regions (bilateral frontal lobes and right superior frontal gyrus) were identified using PV-corrected CBF. Furthermore, the regional CBF of right superior frontal gyrus exhibited significantly negative correlation with the symptom severity (r = -0.759, p = 0.018). The resting-state functional connectivity analysis revealed increased connectivity between left frontal lobe and right parietal lobe. The results indicated the symptom-specific perfusion deficits and an aberrant connectivity in memory-related regions of PTSD patients when using PV-corrected ASL data. It also suggested that PV-corrected CBF exhibits more subtle changes that may be beneficial to perfusion and connectivity analysis. PMID:27213610

  15. Perfusion Deficits and Functional Connectivity Alterations in Memory-Related Regions of Patients with Post-Traumatic Stress Disorder

    PubMed Central

    Feng, Na; Pu, Huangsheng; Zhang, Xi; Lu, Hongbing; Yin, Hong

    2016-01-01

    To explore the potential alterations in cerebral blood flow (CBF) and functional connectivity of recent onset post-traumatic stress disorder (PTSD) induced by a single prolonged trauma exposure, we recruited 20 survivors experiencing the same coal mining flood disaster as the PTSD (n = 10) and non-PTSD (n = 10) group, respectively. The pulsed arterial spin labeling (ASL) images were acquired with a 3.0T MRI scanner and the partial volume (PV) effect in the images was corrected for better CBF estimation. Alterations in CBF were analyzed using both uncorrected and PV-corrected CBF maps. By using altered CBF regions as regions-of-interest, seed-based functional connectivity analysis was then performed. While only one CBF deficit in right corpus callosum of PTSD patients was detected using uncorrected CBF, three more regions (bilateral frontal lobes and right superior frontal gyrus) were identified using PV-corrected CBF. Furthermore, the regional CBF of right superior frontal gyrus exhibited significantly negative correlation with the symptom severity (r = −0.759, p = 0.018). The resting-state functional connectivity analysis revealed increased connectivity between left frontal lobe and right parietal lobe. The results indicated the symptom-specific perfusion deficits and an aberrant connectivity in memory-related regions of PTSD patients when using PV-corrected ASL data. It also suggested that PV-corrected CBF exhibits more subtle changes that may be beneficial to perfusion and connectivity analysis. PMID:27213610

  16. Visual recognition memory in squirrel monkeys: effects of serotonin antagonists on baseline and hypoxia-induced performance deficits.

    PubMed

    DeNoble, V J; Schrack, L M; Reigel, A L; DeNoble, K F

    1991-08-01

    Cognitive deficits resulting from neuropathological brain changes such as Alzheimer's Disease or normal aging are most likely due to alterations in multiple neurotransmitter systems. While the majority of preclinical studies have focused on the effects of acetylcholine (ACh), it has been shown that activation of the serotonergic (5-HT) pathways in the central nervous system interferes with passive avoidance retention in rats. In contrast, decreased 5-HT activity has been shown to improve learning and memory in rats using similar procedures. In the present experiment, 5-HT antagonists were evaluated for their effects on performance in a delayed match to sample task (DMTS) in two groups of squirrel monkeys: one in which the baseline level of performance was low (less than 65% correct, N = 5; group 1) and another in which DMTS performance was high (greater than 80% correct, N = 3; group 2) but impaired by exposure to hypoxia. Initial parametric tests exposing group 2 to various levels of oxygen deprivation were conducted to determine optimal conditions for performance deficits. Each monkey in both normoxia (group 1) and hypoxia (group 2) served as his own control and received an individualized range of doses for each test compound. For both groups, ketanserin and mianserin, the 5-HT2-selective antagonists, produced dose-dependent increases in DMTS performance at 0.3-1.5 mg/kg PO and 0.05-1.5 mg/kg PO, respectively. Pirenperone, another 5-HT2-selective antagonist, was active in improving performance in group 1 at 0.001 to 0.2 mg/kg PO but was not effective against hypoxia-induced performance deficits.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1763118

  17. Transgenic Mice Expressing an Inhibitory Truncated Form of p300 Exhibit Long-Term Memory Deficits

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Wood, Marcelo A.; McDonough, Conor B.; Abel, Ted

    2007-01-01

    The formation of many forms of long-term memory requires several molecular mechanisms including regulation of gene expression. The mechanisms directing transcription require not only activation of individual transcription factors but also recruitment of transcriptional coactivators. CBP and p300 are transcriptional coactivators that interact with…

  18. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    USGS Publications Warehouse

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  19. Verbal Memory Deficits in Relation to Organization Strategy in High- and Low-Functioning Autistic Children

    ERIC Educational Resources Information Center

    Cheung, Mei-chun; Chan, Agnes S.; Sze, Sophia L.; Leung, Winnie W.; To, Cho Yee

    2010-01-01

    The present study examined the verbal memory profile and its relation to organizational strategies in high-functioning (Hi-AUT) and low-functioning (Lo-AUT) children with autism. Twenty-two Hi-AUT and 16 Lo-AUT, and 22 age-, gender- and handedness-matched normal children (NC) were required to remember a list of semantically related words for…

  20. Working Memory Deficits in Retinoid X receptor [gamma]-Deficient Mice

    ERIC Educational Resources Information Center

    Wietrzych, Marta; Meziane, Hamid; Sutter, Anne; Ghyselinck, Norbert; Chapman, Paul F.; Chambon, Pierre; Krezel, Wojciech

    2005-01-01

    Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RAR[subscript [beta

  1. Original nootropic drug noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade.

    PubMed

    Radionova, K S; Belnik, A P; Ostrovskaya, R U

    2008-07-01

    Antiamnesic activity of Noopept was studied on the original three-way model of conditioned passive avoidance response, which allows studying spatial component of memory. Cholinoceptor antagonists of both types (scopolamine and mecamylamine) decreased entry latency and reduced the probability for selection of the safe compartment. Noopept abolished the antiamnesic effect of cholinoceptor antagonists and improved spatial preference. PMID:19145351

  2. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  3. Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms

    ERIC Educational Resources Information Center

    Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.

    2009-01-01

    Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…

  4. Impaired Pitch Perception and Memory in Congenital Amusia: The Deficit Starts in the Auditory Cortex

    ERIC Educational Resources Information Center

    Albouy, Philippe; Mattout, Jeremie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaetan; Aguera, Pierre-Emmanuel; Daligault, Sebastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-01-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a…

  5. The Role of Text Memory in Inferencing and in Comprehension Deficits

    ERIC Educational Resources Information Center

    Hua, Anh N.; Keenan, Janice M.

    2014-01-01

    Comprehension tests often compare accuracy on inferential versus literal questions and find inferential harder than literal, and poor comprehenders performing worse than controls. Difficulties in integration are assumed to be the reason. This research explores another reason--differences in memory for the passage information underlying the…

  6. Object working memory deficits predicted by early brain injury and development in the preterm infant.

    PubMed

    Woodward, Lianne J; Edgin, Jamie O; Thompson, Deanne; Inder, Terrie E

    2005-11-01

    Children born preterm and of very low birth weight are at increased risk of learning difficulties and educational under-achievement. However, little is known about the specific neuropsychological problems facing these children or their neurological basis. Using prospective longitudinal data from a regional cohort of 92 preterm and 103 full-term children, this study examined relations between term MRI measures of cerebral injury and structural brain development and children's subsequent performance on an object working memory task at the age of 2 years. Results revealed clear between-group differences, with preterm children having greater difficulty encoding new information in working memory than term control children. Within the preterm group, task performance at the age of 2 years was related to both qualitative MRI measures of white matter (WM) injury and quantitative measures of total and regional brain volumes assessed at term equivalent. Bilateral reductions in total tissue volumes (%region) of the following cerebral regions were specifically related to subsequent working memory performance: dorsolateral prefrontal cortex, sensorimotor, parietooccipital and premotor. Associations between total cerebral tissue volumes at term (adjusted and unadjusted for intracranial volume) persisted even after the effects of WM injury were taken into account. This suggests that early disturbance in cerebral development may have an independent adverse impact on later working memory function in the preterm infant. These findings add to our understanding of the neuropathological pathways associated with later executive dysfunction in the very preterm infant.

  7. Working Memory Deficits in ADHD: The Contribution of Age, Learning/Language Difficulties, and Task Parameters

    ERIC Educational Resources Information Center

    Sowerby, Paula; Seal, Simon; Tripp, Gail

    2011-01-01

    Objective: To further define the nature of working memory (WM) impairments in children with combined-type ADHD. Method: A total of 40 Children with ADHD and an age and gender-matched control group (n = 40) completed two measures of visuo-spatial WM and two measures of verbal WM. The effects of age and learning/language difficulties on performance…

  8. Case studies on remediating memory deficits in brain-damaged individuals.

    PubMed

    Glasgow, R E; Zeiss, R A; Barrera, M; Lewinsohn, P M

    1977-10-01

    Two case reports illustrate the application of mnemonic techniques for the remediation of memory problems common to brain-damaged patients. A clinical paradigm for such work that includes general and specific assessment; laboratory evaluation of intervention strategies, and finally in-vitro application is described.

  9. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination.

  10. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia.

    PubMed

    Neha; Kumar, Amit; Jaggi, Amteshwar S; Sodhi, Rupinder K; Singh, Nirmal

    2014-08-01

    A huge body evidences suggest that obesity is the single great risk factor for the development of dementia. Recently, silymarin, a flavonoid, clinically in use as a hepatoprotectant, has been reported to prevent amyloid beta-induced memory impairment by reducing oxidative stress and inflammation in mice brain. However, its potential in high-fat-diet (HFD)-induced dementia has not yet been investigated. Therefore, the present study is designed to explore the role of silymarin in HFD-induced experimental dementia in mice. Morris water maze test was employed to assess learning and memory. Various biochemical estimations including brain acetylcholinerstarse activity (AchE), thiobarbituric acid-reactive species (TBARS) level, reduced glutathione level (GSH), nirate/nitrite, and myeloperoxidase (MPO) activity were measured. Serum cholesterol level was also determined. HFD significantly impaired the cognitive abilities, along with increasing brain AchE, TBARS, MPO, nitrate/nitrite, and serum cholesterol levels. Marked reduction of brain GSH levels was observed. On the contrary, silymarin significantly reversed HFD-induced cognitive deficits and the biochemical changes. The present study indicates strong potential of silymarin in HFD-induced experimental dementia.

  11. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat di