Sample records for declarative memory tasks

  1. Sleep in Children Enhances Preferentially Emotional Declarative But Not Procedural Memories

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Goder, Robert; Chirobeja, Stefania; Bressman, Inka; Ferstl, Roman; Baving, Lioba

    2009-01-01

    Although the consolidation of several memory systems is enhanced by sleep in adults, recent studies suggest that sleep supports declarative memory but not procedural memory in children. In the current study, the influence of sleep on emotional declarative memory (recognition task) and procedural memory (mirror tracing task) in 20 healthy children…

  2. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    ERIC Educational Resources Information Center

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  3. Non-Declarative Sequence Learning does not Show Savings in Relearning

    PubMed Central

    Keisler, Aysha; Willingham, Daniel T.

    2007-01-01

    Researchers have utilized the savings in relearning paradigm in a variety of settings since Ebbinghaus developed the tool over a century ago. In spite of its widespread use, we do not yet understand what type(s) of memory are measurable by savings. Specifically, can savings measure both declarative and non-declarative memories? The lack of conscious recollection of the encoded material in some studies indicates that non-declarative memories may show savings effects, but as all studies to date have used declarative tasks, we cannot be certain. Here, we administer a non-declarative task and then measure savings in relearning the material declaratively. Our results show that while material outside of awareness may show savings effects, non-declarative sequence memory does not. These data highlight the important distinction between memory without awareness and non-declarative memory. PMID:17343944

  4. Non-declarative sequence learning does not show savings in relearning.

    PubMed

    Keisler, Aysha; Willingham, Daniel T

    2007-04-01

    Researchers have utilized the savings in relearning paradigm in a variety of settings since Ebbinghaus developed the tool over a century ago. In spite of its widespread use, we do not yet understand what type(s) of memory are measurable by savings. Specifically, can savings measure both declarative and non-declarative memories? The lack of conscious recollection of the encoded material in some studies indicates that non-declarative memories may show savings effects, but as all studies to date have used declarative tasks, we cannot be certain. Here, we administer a non-declarative task and then measure savings in relearning the material declaratively. Our results show that while material outside of awareness may show savings effects, non-declarative sequence memory does not. These data highlight the important distinction between memory without awareness and non-declarative memory.

  5. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  6. Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.

    PubMed

    Perry, W; Light, G A; Davis, H; Braff, D L

    2000-12-15

    Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.

  7. Interference effects between memory systems in the acquisition of a skill.

    PubMed

    Gagné, Marie-Hélène; Cohen, Henri

    2016-10-01

    There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.

  8. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  9. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    PubMed

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  10. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    PubMed Central

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  11. Modulation of competing memory systems by distraction.

    PubMed

    Foerde, Karin; Knowlton, Barbara J; Poldrack, Russell A

    2006-08-01

    Different forms of learning and memory depend on functionally and anatomically separable neural circuits [Squire, L. R. (1992) Psychol. Rev. 99, 195-231]. Declarative memory relies on a medial temporal lobe system, whereas habit learning relies on the striatum [Cohen, N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, MA)]. How these systems are engaged to optimize learning and behavior is not clear. Here, we present results from functional neuroimaging showing that the presence of a demanding secondary task during learning modulates the degree to which subjects solve a problem using either declarative memory or habit learning. Dual-task conditions did not reduce accuracy but reduced the amount of declarative learning about the task. Medial temporal lobe activity was correlated with task performance and declarative knowledge after learning under single-task conditions, whereas performance was correlated with striatal activity after dual-task learning conditions. These results demonstrate a fundamental difference in these memory systems in their sensitivity to concurrent distraction. The results are consistent with the notion that declarative and habit learning compete to mediate task performance, and they suggest that the presence of distraction can bias this competition. These results have implications for learning in multitask situations, suggesting that, even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be applied less flexibly in new situations.

  12. Information-integration category learning and the human uncertainty response.

    PubMed

    Paul, Erick J; Boomer, Joseph; Smith, J David; Ashby, F Gregory

    2011-04-01

    The human response to uncertainty has been well studied in tasks requiring attention and declarative memory systems. However, uncertainty monitoring and control have not been studied in multi-dimensional, information-integration categorization tasks that rely on non-declarative procedural memory. Three experiments are described that investigated the human uncertainty response in such tasks. Experiment 1 showed that following standard categorization training, uncertainty responding was similar in information-integration tasks and rule-based tasks requiring declarative memory. In Experiment 2, however, uncertainty responding in untrained information-integration tasks impaired the ability of many participants to master those tasks. Finally, Experiment 3 showed that the deficit observed in Experiment 2 was not because of the uncertainty response option per se, but rather because the uncertainty response provided participants a mechanism via which to eliminate stimuli that were inconsistent with a simple declarative response strategy. These results are considered in the light of recent models of category learning and metacognition.

  13. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

    PubMed

    Lippelt, D P; van der Kint, S; van Herk, K; Naber, M

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

  14. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults

    PubMed Central

    Lippelt, D. P.; van der Kint, S.; van Herk, K.; Naber, M.

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0–2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants. PMID:27341028

  15. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    PubMed

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  16. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    PubMed

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  17. Event-related potential correlates of declarative and non-declarative sequence knowledge.

    PubMed

    Ferdinand, Nicola K; Rünger, Dennis; Frensch, Peter A; Mecklinger, Axel

    2010-07-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified as verbalizers, partial verbalizers, or nonverbalizers according to their ability to verbally report the systematic response sequence. Thereafter, ERPs were recorded in a recognition memory task time-locked to sequence triplets that were either part of the previously learned sequence or not. Although all three groups executed old sequence triplets faster than new triplets in the recognition memory task, qualitatively distinct ERP patterns were found for participants with and without reportable knowledge. Verbalizers and, to a lesser extent, partial verbalizers showed an ERP correlate of recollection for parts of the incidentally learned sequence. In contrast, nonverbalizers showed a different ERP effect with a reverse polarity that might reflect priming. This indicates that an ensemble of qualitatively different processes is at work when declarative and non-declarative sequence knowledge is retrieved. By this, our findings favor a multiple-systems view postulating that explicit and implicit learning are supported by different and functionally independent systems. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans

    PubMed Central

    Cedernaes, Jonathan; Rångtell, Frida H.; Axelsson, Emil K.; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L.; Schiöth, Helgi B.; Benedict, Christian

    2015-01-01

    Study Objective: This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Design: Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Setting: Sleep laboratory. Participants: 15 healthy young men. Results: The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. Conclusions: The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. Citation: Cedernaes J, Rångtell FH, Axelsson EK, Yeganeh A, Vogel H, Broman JE, Dickson SL, Schiöth HB, Benedict C. Short sleep makes declarative memories vulnerable to stress in humans. SLEEP 2015;38(12):1861–1868. PMID:26158890

  19. Cognitive effects of methylphenidate and levodopa in healthy volunteers.

    PubMed

    Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J

    2014-02-01

    Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.

  20. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems

    PubMed Central

    Fernández, Rodrigo S.; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E.

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence. PMID:28066212

  1. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.

  2. Is All Motivation Good for Learning? Dissociable Influences of Approach and Avoidance Motivation in Declarative Memory

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…

  3. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans.

    PubMed

    Cedernaes, Jonathan; Rångtell, Frida H; Axelsson, Emil K; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2015-12-01

    This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Sleep laboratory. 15 healthy young men. The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. © 2015 Associated Professional Sleep Societies, LLC.

  4. Hypothalamic-pituitary-adrenal axis reactivity to psychological stress and memory in middle-aged women: high responders exhibit enhanced declarative memory performance.

    PubMed

    Domes, G; Heinrichs, M; Reichwald, U; Hautzinger, M

    2002-10-01

    According to recent studies, elevated cortisol levels are associated with impaired declarative memory performance. This specific effect of cortisol has been shown in several studies using pharmacological doses of cortisol. The present study was designed to determine the effects of endogenously stimulated cortisol secretion on memory performance in healthy middle-aged women. For psychological stress challenging, we employed the Trier Social Stress Test (TSST). Subjects were assigned to either the TSST or a non-stressful control condition. Declarative and non-declarative memory performance was measured by a combined priming-free-recall-task. No significant group differences were found for memory performance. Post hoc analyses of variance indicated that regardless of experimental condition the subjects with remarkably high cortisol increase in response to the experimental procedure (high responders) showed increased memory performance in the declarative task compared to subjects with low cortisol response (low responders). The results suggest that stress-induced cortisol failed to impair memory performance. The results are discussed with respect to gender-specific effects and modulatory effects of the sympathetic nervous system and psychological variables. Copyright 2002 Elsevier Science Ltd.

  5. Declarative memory.

    PubMed

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.

  6. Stress enhances reconsolidation of declarative memory.

    PubMed

    Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel

    2014-08-01

    Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. Copyright © 2014. Published by Elsevier Ltd.

  7. Susceptibility to declarative memory interference is pronounced in primary insomnia.

    PubMed

    Griessenberger, Hermann; Heib, Dominik P J; Lechinger, Julia; Luketina, Nikolina; Petzka, Marit; Moeckel, Tina; Hoedlmoser, Kerstin; Schabus, Manuel

    2013-01-01

    Sleep has been shown to stabilize memory traces and to protect against competing interference in both the procedural and declarative memory domain. Here, we focused on an interference learning paradigm by testing patients with primary insomnia (N = 27) and healthy control subjects (N = 21). In two separate experimental nights with full polysomnography it was revealed that after morning interference procedural memory performance (using a finger tapping task) was not impaired in insomnia patients while declarative memory (word pair association) was decreased following interference. More specifically, we demonstrate robust associations of central sleep spindles (in N3) with motor memory susceptibility to interference as well as (cortically more widespread) fast spindle associations with declarative memory susceptibility. In general the results suggest that insufficient sleep quality does not necessarily show up in worse overnight consolidation in insomnia but may only become evident (in the declarative memory domain) when interference is imposed.

  8. Hippocampal declarative memory supports gesture production: Evidence from amnesia

    PubMed Central

    Hilliard, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2016-01-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action – supported by motor areas of the brain – is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. PMID:27810497

  9. Contributions of the Medial Temporal Lobe to Declarative Memory Retrieval: Manipulating the Amount of Contextual Retrieval

    ERIC Educational Resources Information Center

    Tendolkar, Indira; Arnold, Jennifer; Petersson, Karl Magnus; Weis, Susanne; Brockhaus-Dumke, Anke; van Eijndhoven, Philip; Buitelaar, Jan; Fernandez, Guillen

    2008-01-01

    We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures…

  10. Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls.

    PubMed

    Prehn-Kristensen, Alexander; Munz, Manuel; Göder, Robert; Wilhelm, Ines; Korr, Katharina; Vahl, Wiebke; Wiesner, Christian D; Baving, Lioba

    2014-01-01

    Slow oscillations (<1 Hz) during slow wave sleep (SWS) promote the consolidation of declarative memory. Children with attention-deficit/hyperactivity disorder (ADHD) have been shown to display deficits in sleep-dependent consolidation of declarative memory supposedly due to dysfunctional slow brain rhythms during SWS. Using transcranial oscillating direct current stimulation (toDCS) at 0.75 Hz, we investigated whether an externally triggered increase in slow oscillations during early SWS elevates memory performance in children with ADHD. 12 children with ADHD underwent a toDCS and a sham condition in a double-blind crossover study design conducted in a sleep laboratory. Memory was tested using a 2D object-location task. In addition, 12 healthy children performed the same memory task in their home environment. Stimulation enhanced slow oscillation power in children with ADHD and boosted memory performance to the same level as in healthy children. These data indicate that increasing slow oscillation power during sleep by toDCS can alleviate declarative memory deficits in children with ADHD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Does the presence of priming hinder subsequent recognition or recall performance?

    PubMed

    Stark, Shauna M; Gordon, Barry; Stark, Craig E L

    2008-02-01

    Declarative and non-declarative memories are thought be supported by two distinct memory systems that are often posited not to interact. However, Wagner, Maril, and Schacter (2000a) reported that at the time priming was assessed, greater behavioural and neural priming was associated with lower levels of subsequent recognition memory, demonstrating an interaction between declarative and non-declarative memory. We examined this finding using a similar paradigm, in which participants made the same or different semantic word judgements following a short or long lag and subsequent memory test. We found a similar overall pattern of results, with greater behavioural priming associated with a decrease in recognition and recall performance. However, neither various within-participant nor various between-participant analyses revealed significant correlations between priming and subsequent memory performance. These data suggest that both lag and task have effects on priming and declarative memory performance, but that they are largely independent and occur in parallel.

  12. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study

    PubMed Central

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation. PMID:29755315

  14. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study.

    PubMed

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.

  15. Working, declarative and procedural memory in specific language impairment

    PubMed Central

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923

  16. Procedural and declarative memory performance, and the memory consolidation function of sleep, in recent and abstinent Ecstasy/MDMA users

    PubMed Central

    Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.

    2013-01-01

    This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932

  17. Enhancing effects of acute psychosocial stress on priming of non-declarative memory in healthy young adults.

    PubMed

    Hidalgo, Vanesa; Villada, Carolina; Almela, Mercedes; Espín, Laura; Gómez-Amor, Jesús; Salvador, Alicia

    2012-05-01

    Social stress affects cognitive processes in general, and memory performance in particular. However, the direction of these effects has not been clearly established, as it depends on several factors. Our aim was to determine the impact of the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) reactivity to psychosocial stress on short-term non-declarative memory and declarative memory performance. Fifty-two young participants (18 men, 34 women) were subjected to the Trier Social Stress Task (TSST) and a control condition in a crossover design. Implicit memory was assessed by a priming test, and explicit memory was assessed by the Rey Auditory Verbal Learning Test (RAVLT). The TSST provoked greater salivary cortisol and salivary alpha-amylase (sAA) responses than the control task. Men had a higher cortisol response to stress than women, but no sex differences were found for sAA release. Stress was associated with an enhancement of priming but did not affect declarative memory. Additionally, the enhancement on the priming test was higher in those whose sAA levels increased more in response to stress (r(48) = 0.339, p = 0.018). Our results confirm an effect of acute stress on priming, and that this effect is related to SNS activity. In addition, they suggest a different relationship between stress biomarkers and the different memory systems.

  18. CHARACTER OF THE CHANGES IN FEAR MOTIVATED DECLARATIVE MEMORY IN THE HIGH IMMOBILIZATION "DEPRESSIVE" RATS.

    PubMed

    Nachkebia, N; Shavgulidze, M; Babilodze, M; Chkhartishvili, E; Rogava, N

    2016-10-01

    Present study investigated possible differences in the learning and memory of declarative memory task in rats selected according to the differences in immobilization response that is in high immobilization "depressive" and low immobilization "non-depressive" rats. Understanding the character of learning and memory disturbances in basal conditions of animal models of depression is still very topical for more intimate definition of the pathophysiology of major depressive disorder and appropriate searching the ways of its correction. Experiments were carried out on the adult white wild rats (with the weight 200-250 g, n=20). Selection of rats according to the level of immobilization was made by means of forced swim test. Learning and memory disturbances were studied using passive avoidance test that is fear motivated one trial declarative memory task. It was shown by us that 100% of low immobilization "non-depressive" rats remember painful stimulation and therefore they are not enter in the dark compartment during whole period of observation during testing session. Behavior of high immobilization "depressive" rats is not similar in passive avoidance camera; 50% of "depressive" rats, with long escape latency during training session (92±10 sec), remember painful stimulation during testing session and therefore they are not enter in the dark compartment during whole observation period. The remaining 50%, that are not differ significantly from the low immobility "non-depressive" rats by the latency of escape (5±1 sec) during training session, are not able to remember painful stimulation during testing session and therefore they enter in the dark compartment with shortest escape latency (6±1 sec). In conclusion, high immobility "depressive" rats perform passive avoidance declarative memory task at the chance level that is a direct indicator for the serious disturbances of declarative memory mechanisms in "depressive" rats selected in forced swim test according to the level of immobility.

  19. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory.

    PubMed

    Mednick, Sara C; Cai, Denise J; Kanady, Jennifer; Drummond, Sean P A

    2008-11-03

    Caffeine, the world's most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60-90min) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7h retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task (FTT) and texture discrimination task (TDT)) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7h and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised.

  20. Rats Depend on Habit Memory for Discrimination Learning and Retention

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.

    2007-01-01

    We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for…

  1. A compensatory role for declarative memory in neurodevelopmental disorders.

    PubMed

    Ullman, Michael T; Pullman, Mariel Y

    2015-04-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A compensatory role for declarative memory in neurodevelopmental disorders

    PubMed Central

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  3. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.

    PubMed

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.

  4. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems

    PubMed Central

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning. PMID:27445958

  5. Comparing the benefits of Caffeine, Naps and Placebo on Verbal, Motor and Perceptual Memory

    PubMed Central

    Mednick, Sara C.; Cai, Denise J.; Kanady, Jennifer; Drummond, Sean P.A.

    2008-01-01

    Caffeine, the world’s most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60–90 minutes) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7hr retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task and texture discrimination task) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7hr and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised. PMID:18554731

  6. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.

  7. Multiple memory systems as substrates for multiple decision systems

    PubMed Central

    Doll, Bradley B.; Shohamy, Daphna; Daw, Nathaniel D.

    2014-01-01

    It has recently become widely appreciated that value-based decision making is supported by multiple computational strategies. In particular, animal and human behavior in learning tasks appears to include habitual responses described by prominent model-free reinforcement learning (RL) theories, but also more deliberative or goal-directed actions that can be characterized by a different class of theories, model-based RL. The latter theories evaluate actions by using a representation of the contingencies of the task (as with a learned map of a spatial maze), called an “internal model.” Given the evidence of behavioral and neural dissociations between these approaches, they are often characterized as dissociable learning systems, though they likely interact and share common mechanisms. In many respects, this division parallels a longstanding dissociation in cognitive neuroscience between multiple memory systems, describing, at the broadest level, separate systems for declarative and procedural learning. Procedural learning has notable parallels with model-free RL: both involve learning of habits and both are known to depend on parts of the striatum. Declarative memory, by contrast, supports memory for single events or episodes and depends on the hippocampus. The hippocampus is thought to support declarative memory by encoding temporal and spatial relations among stimuli and thus is often referred to as a relational memory system. Such relational encoding is likely to play an important role in learning an internal model, the representation that is central to model-based RL. Thus, insofar as the memory systems represent more general-purpose cognitive mechanisms that might subserve performance on many sorts of tasks including decision making, these parallels raise the question whether the multiple decision systems are served by multiple memory systems, such that one dissociation is grounded in the other. Here we investigated the relationship between model-based RL and relational memory by comparing individual differences across behavioral tasks designed to measure either capacity. Human subjects performed two tasks, a learning and generalization task (acquired equivalence) which involves relational encoding and depends on the hippocampus; and a sequential RL task that could be solved by either a model-based or model-free strategy. We assessed the correlation between subjects’ use of flexible, relational memory, as measured by generalization in the acquired equivalence task, and their differential reliance on either RL strategy in the decision task. We observed a significant positive relationship between generalization and model-based, but not model-free, choice strategies. These results are consistent with the hypothesis that model-based RL, like acquired equivalence, relies on a more general-purpose relational memory system. PMID:24846190

  8. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    PubMed

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reconsolidation of Declarative Memory in Humans

    ERIC Educational Resources Information Center

    Forcato, Cecilia; Burgos, Valeria L.; Argibay, Pablo F.; Molina, Victor A.; Pedreira, Maria E.; Maldonado, Hector

    2007-01-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not…

  10. Disrupted rapid eye movement sleep predicts poor declarative memory performance in post-traumatic stress disorder.

    PubMed

    Lipinska, Malgorzata; Timol, Ridwana; Kaminer, Debra; Thomas, Kevin G F

    2014-06-01

    Successful memory consolidation during sleep depends on healthy slow-wave and rapid eye movement sleep, and on successful transition across sleep stages. In post-traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post-traumatic stress disorder. We recruited three matched groups of participants: post-traumatic stress disorder (n = 16); trauma-exposed non-post-traumatic stress disorder (n = 15); and healthy control (n = 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep-adapted electroencephalography. Post-traumatic stress disorder-diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post-traumatic stress disorder-diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post-traumatic stress disorder-diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post-traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post-traumatic stress disorder. © 2014 European Sleep Research Society.

  11. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  12. Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers.

    PubMed

    Linssen, A M W; Vuurman, E F P M; Sambeth, A; Riedel, W J

    2012-06-01

    Methylphenidate inhibits the reuptake of dopamine and noradrenaline and is used to treat children with attention deficit hyperactivity disorder (ADHD). Besides reducing behavioral symptoms, it improves their cognitive function. There are also observations of methylphenidate-induced cognition enhancement in healthy adults, although studies in this area are relatively sparse. We assessed the possible memory-enhancing properties of methylphenidate. In the current study, the possible enhancing effects of three doses of methylphenidate on declarative and working memory, attention, response inhibition and planning were investigated in healthy volunteers. In a double blind placebo-controlled crossover study, 19 healthy young male volunteers were tested after a single dose of placebo or 10, 20 or 40 mg of methylphenidate. Cognitive performance testing included a word learning test as a measure of declarative memory, a spatial working memory test, a set-shifting test, a stop signal test and a computerized version of the Tower of London planning test. Declarative memory consolidation was significantly improved relative to placebo after 20 and 40 mg of methylphenidate. Methylphenidate also improved set shifting and stopped signal task performance but did not affect spatial working memory or planning. To the best of our knowledge, this is the first study reporting enhanced declarative memory consolidation after methylphenidate in a dose-related fashion over a dose range that is presumed to reflect a wide range of dopamine reuptake inhibition.

  13. Memory Before and After Sleep in Patients with Moderate Obstructive Sleep Apnea

    PubMed Central

    Kloepfer, Corinna; Riemann, Dieter; Nofzinger, Eric A.; Feige, Bernd; Unterrainer, Josef; O'Hara, Ruth; Sorichter, Stephan; Nissen, Christoph

    2009-01-01

    Objective: The aim of this study was to investigate the effects of obstructive sleep apnea (OSA) on procedural and declarative memory encoding in the evening prior to sleep, on memory consolidation during subsequent sleep, and on retrieval in the morning after sleep. Methods: Memory performance (procedural mirror-tracing task, declarative visual and verbal memory task) and general neuropsychological performance were assessed before and after one night of polysomnographic monitoring in 15 patients with moderate OSA and 20 age-, sex-, and IQ-matched healthy subjects. Results: Encoding levels prior to sleep were similar across groups for all tasks. Conventional analyses of averaged mirror tracing performance suggested a significantly reduced overnight improvement in OSA patients. Single trial analyses, however, revealed that this effect was due to significantly flattened learning curves in the evening and morning session in OSA patients. OSA patients showed a significantly lower verbal retention rate and a non-significantly reduced visual retention rate after sleep compared to healthy subjects. Polysomnography revealed a significantly reduced REM density, increased frequency of micro-arousals, elevated apnea-hypopnea index, and subjectively disturbed sleep quality in OSA patients compared to healthy subjects. Conclusions: The results suggest that moderate OSA is associated with a significant impairment of procedural and verbal declarative memory. Future work is needed to further determine the contribution of structural or functional alterations in brain circuits relevant for memory, and to test whether OSA treatment improves or normalizes the observed deficits in learning. Citation: Kloepfer C; Riemann D; Nofzinger EA; Feige B; Unterrainer J; O'Hara R; Sorichter S; Nissen C. Memory before and after sleep in patients with moderate obstructive sleep apnea. J Clin Sleep Med 2009;5(6):540-548. PMID:20465021

  14. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.

    PubMed

    Yin, Cong; Wei, Kunlin

    2014-08-01

    Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.

  15. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    PubMed

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-05-07

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Familiarity and recollection in Williams syndrome.

    PubMed

    Costanzo, Floriana; Vicari, Stefano; Carlesimo, Giovanni A

    2013-01-01

    Interest is being shown in a componential analysis of performance on declarative memory tasks that distinguishes two different kinds of access to stored memories, recollection and familiarity. From a developmental perspective, it has been hypothesized that recollection emerges later and shows more developmental changes than familiarity. Nevertheless, the contribution of recollection and familiarity to the recognition performance of individuals with intellectual disabilities (ID) has been rarely examined. The present study was aimed at investigating the qualitative profile of declarative long-term memory in a group of individuals with Williams syndrome (WS). We compared 13 individuals with WS and 13 mental-age-matched typically developing children in two different experimental paradigms to assess the contribution of familiarity and recollection to recognition performance. We adopted a modified version of the process dissociation procedure and a task dissociation procedure, both of which are suited to individuals with ID. Results of both experimental paradigms demonstrated reduced recollection and spared familiarity in the declarative memory performances of individuals with WS. These results provide direct evidence of a dissociation between recollection and familiarity in a neurodevelopmental disorder and are discussed in relation to alternative approaches for explaining abnormal cognition in individuals with ID. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Declarative virtual water maze learning and emotional fear conditioning in primary insomnia.

    PubMed

    Kuhn, Marion; Hertenstein, Elisabeth; Feige, Bernd; Landmann, Nina; Spiegelhalder, Kai; Baglioni, Chiara; Hemmerling, Johanna; Durand, Diana; Frase, Lukas; Klöppel, Stefan; Riemann, Dieter; Nissen, Christoph

    2018-05-02

    Healthy sleep restores the brain's ability to adapt to novel input through memory formation based on activity-dependent refinements of the strength of neural transmission across synapses (synaptic plasticity). In line with this framework, patients with primary insomnia often report subjective memory impairment. However, investigations of memory performance did not produce conclusive results. The aim of this study was to further investigate memory performance in patients with primary insomnia in comparison to healthy controls, using two well-characterized learning tasks, a declarative virtual water maze task and emotional fear conditioning. Twenty patients with primary insomnia according to DSM-IV criteria (17 females, three males, 43.5 ± 13.0 years) and 20 good sleeper controls (17 females, three males, 41.7 ± 12.8 years) were investigated in a parallel-group study. All participants completed a hippocampus-dependent virtual Morris water maze task and amygdala-dependent classical fear conditioning. Patients with insomnia showed significantly delayed memory acquisition in the virtual water maze task, but no significant difference in fear acquisition compared with controls. These findings are consistent with the notion that memory processes that emerge from synaptic refinements in a hippocampal-neocortical network are particularly sensitive to chronic disruptions of sleep, while those in a basic emotional amygdala-dependent network may be more resilient. © 2018 European Sleep Research Society.

  18. Does the cholinesterase inhibitor, donepezil, benefit both declarative and non-declarative processes in mild to moderate Alzheimer's disease?

    PubMed

    Winstein, Carolee J; Bentzen, Kirk R; Boyd, Lara; Schneider, Lon S

    2007-07-01

    Previous research suggests separate neural networks for implicit (non-declarative) and explicit (declarative) memory processes. A core cognitive impairment in mild to moderate Alzheimer's disease (AD) is a pronounced declarative memory and learning deficit with relative preservation of non-declarative memory. Cholinesterase inhibitors has been purported to enhance cognitive function, and previous clinical trials consistently showed that donepezil, a reversible inhibitor of acetylcholinesterase (AChE), led to statistically significant improvements in cognition and patient function. This prospective pilot study is a randomized, double blind, placebo-controlled clinical trial investigating 10 patients with AD. Our purpose was to examine the relationship between declarative and non-declarative capability with particular emphasis on implicit sequence learning. Patients were assessed at baseline and again at 4-weeks. After participants' baseline data were obtained, each was double-blindly randomized to one of two groups: donepezil or placebo. At baseline participants were tested with two outcome measures (Serial Reaction Time Task, Alzheimer's Disease Assessment Scale-Cognitive Subscale). Participants were given either 5 mg donepezil or an identically appearing placebo to be taken nightly for 4 weeks (28 tablets), and then retested. The donepezil group demonstrated a greater likelihood of increases in both non-declarative and declarative processes. The placebo group was mixed without clearly definable trends or patterns. When the data were examined for coincidental changes in the two outcome measures together they are suggestive of a benefit from donepezil treatment for non-declarative and declarative processes.

  19. Memory for Recently Accessed Visual Attributes

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Shupe, Joshua M.; Swallow, Khena M.; Tan, Deborah H.

    2016-01-01

    Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's…

  20. Knowledge Growth and Maintenance across the Lifespan: The Role of Print Exposure.

    ERIC Educational Resources Information Center

    Stanowich, Keith E.; And Others

    1995-01-01

    Examined the effects of print exposure on growth of declarative knowledge and vocabulary in 133 college students and 49 elderly adults. Compared groups on two general knowledge tasks, vocabulary, working memory, syllogistic reasoning, and print exposure. Found that exposure to print was a significant predictor of declarative and vocabulary…

  1. Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension

    PubMed Central

    Klooster, Nathaniel B.; Cook, Susan W.; Uc, Ergun Y.; Duff, Melissa C.

    2015-01-01

    Hand gesture, a ubiquitous feature of human interaction, facilitates communication. Gesture also facilitates new learning, benefiting speakers and listeners alike. Thus, gestures must impact cognition beyond simply supporting the expression of already-formed ideas. However, the cognitive and neural mechanisms supporting the effects of gesture on learning and memory are largely unknown. We hypothesized that gesture's ability to drive new learning is supported by procedural memory and that procedural memory deficits will disrupt gesture production and comprehension. We tested this proposal in patients with intact declarative memory, but impaired procedural memory as a consequence of Parkinson's disease (PD), and healthy comparison participants with intact declarative and procedural memory. In separate experiments, we manipulated the gestures participants saw and produced in a Tower of Hanoi (TOH) paradigm. In the first experiment, participants solved the task either on a physical board, requiring high arching movements to manipulate the discs from peg to peg, or on a computer, requiring only flat, sideways movements of the mouse. When explaining the task, healthy participants with intact procedural memory displayed evidence of their previous experience in their gestures, producing higher, more arching hand gestures after solving on a physical board, and smaller, flatter gestures after solving on a computer. In the second experiment, healthy participants who saw high arching hand gestures in an explanation prior to solving the task subsequently moved the mouse with significantly higher curvature than those who saw smaller, flatter gestures prior to solving the task. These patterns were absent in both gesture production and comprehension experiments in patients with procedural memory impairment. These findings suggest that the procedural memory system supports the ability of gesture to drive new learning. PMID:25628556

  2. Prototype learning and dissociable categorization systems in Alzheimer's disease.

    PubMed

    Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P

    2013-08-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease

    PubMed Central

    Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.

    2015-01-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172

  4. Contrasting single and multi-component working-memory systems in dual tasking.

    PubMed

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A brief period of eyes-closed rest enhances motor skill consolidation.

    PubMed

    Humiston, Graelyn B; Wamsley, Erin J

    2018-06-05

    Post-training sleep benefits both declarative and procedural memory consolidation. However, recent research suggests that eyes-closed waking rest may provide a similar benefit. Brokaw et al. (2016), for example, recently demonstrated that verbal declarative memory improved more following a 15 min period of waking rest, in comparison to 15 min of active wake. Here, we used the same procedures to test whether procedural memory similarly benefits from waking rest. Participants were trained on the Motor Sequence Task (MST), followed by a 15 min retention interval during which they either rested with their eyes closed or completed a distractor task. Rest significantly enhanced MST performance, mirroring the effect observed in Brokaw et al. (2016) and demonstrating that waking rest benefits the early stages of procedural memory. An additional group of participants tested 4 h later displayed no effect of rest. Overall, these results suggest that the early MST performance "boost" described in prior studies may depend on post-learning state. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The neural basis of novelty and appropriateness in processing of creative chunk decomposition.

    PubMed

    Huang, Furong; Fan, Jin; Luo, Jing

    2015-06-01

    Novelty and appropriateness have been recognized as the fundamental features of creative thinking. However, the brain mechanisms underlying these features remain largely unknown. In this study, we used event-related functional magnetic resonance imaging (fMRI) to dissociate these mechanisms in a revised creative chunk decomposition task in which participants were required to perform different types of chunk decomposition that systematically varied in novelty and appropriateness. We found that novelty processing involved functional areas for procedural memory (caudate), mental rewarding (substantia nigra, SN), and visual-spatial processing, whereas appropriateness processing was mediated by areas for declarative memory (hippocampus), emotional arousal (amygdala), and orthography recognition. These results indicate that non-declarative and declarative memory systems may jointly contribute to the two fundamental features of creative thinking. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. No persisting effect of partial sleep curtailment on cognitive performance and declarative memory recall in adolescents.

    PubMed

    Kopasz, Marta; Loessl, Barbara; Valerius, Gabriele; Koenig, Eva; Matthaeas, Nora; Hornyak, Magdolna; Kloepfer, Corinna; Nissen, Christoph; Riemann, Dieter; Voderholzer, Ulrich

    2010-03-01

    Growing evidence indicates that sleep facilitates learning and memory processing. Sleep curtailment is increasingly common in adolescents. The aim of this study was to examine the effects of short-term sleep curtailment on declarative memory consolidation in adolescents. A randomized, cross-over study design was chosen. Twenty-two healthy subjects, aged 14-16 years, spent three consecutive nights in the sleep laboratory with a bedtime of 9 h during the first night (adaptation), 4 h during the second (partial sleep curtailment) and 9 h during the third night (recovery). The control condition consisted of three consecutive nights with bedtimes of 9 h. Both experimental conditions were separated by at least 3 weeks. The acquisition phase for the declarative tests was between 16:00 and 18:00 hours before the second night. Memory performance was examined in the morning after the recovery night. Executive function, attention and concentration were also assessed to control for any possible effects of tiredness. During the 4-h night, we observed a curtailment of 50% of non-rapid eye movement (non-REM), 5% of slow wave sleep (SWS) and 70% of REM sleep compared with the control night. Partial sleep curtailment of one night did not influence declarative memory retrieval significantly. Recall in the paired-associate word list task was correlated positively with percentage of non-REM sleep in the recovery night. Declarative memory consolidation does not appear to be influenced by short-term sleep curtailment in adolescents. This may be explained by the high ability of adolescents to compensate for acute sleep loss. The correlation between non-REM sleep and declarative memory performance supports earlier findings.

  8. Sex Differences in Music: A Female Advantage at Recognizing Familiar Melodies.

    PubMed

    Miles, Scott A; Miranda, Robbin A; Ullman, Michael T

    2016-01-01

    Although sex differences have been observed in various cognitive domains, there has been little work examining sex differences in the cognition of music. We tested the prediction that women would be better than men at recognizing familiar melodies, since memories of specific melodies are likely to be learned (at least in part) by declarative memory, which shows female advantages. Participants were 24 men and 24 women, with half musicians and half non-musicians in each group. The two groups were matched on age, education, and various measures of musical training. Participants were presented with well-known and novel melodies, and were asked to indicate their recognition of familiar melodies as rapidly as possible. The women were significantly faster than the men in responding, with a large effect size. The female advantage held across musicians and non-musicians, and across melodies with and without commonly associated lyrics, as evidenced by an absence of interactions between sex and these factors. Additionally, the results did not seem to be explained by sex differences in response biases, or in basic motor processes as tested in a control task. Though caution is warranted given that this is the first study to examine sex differences in familiar melody recognition, the results are consistent with the hypothesis motivating our prediction, namely that declarative memory underlies knowledge about music (particularly about familiar melodies), and that the female advantage at declarative memory may thus lead to female advantages in music cognition (particularly at familiar melody recognition). Additionally, the findings argue against the view that female advantages at tasks involving verbal (or verbalizable) material are due solely to a sex difference specific to the verbal domain. Further, the results may help explain previously reported cognitive commonalities between music and language: since declarative memory also underlies language, such commonalities may be partly due to a common dependence on this memory system. More generally, because declarative memory is well studied at many levels, evidence that music cognition depends on this system may lead to a powerful research program generating a wide range of novel predictions for the neurocognition of music, potentially advancing the field.

  9. The relaxation response: reducing stress and improving cognition in healthy aging adults.

    PubMed

    Galvin, Jennifer A; Benson, Herbert; Deckro, Gloria R; Fricchione, Gregory L; Dusek, Jeffery A

    2006-08-01

    Aging adults are vulnerable to the effects of a negative emotional state. The relaxation response (RR) is a mind-body intervention that counteracts the harmful effects of stress. Previous studies with relaxation techniques have shown the non-pharmacological benefit of reducing stress and improving the memory of healthy older adults. Our pilot study evaluated whether a RR training program would decrease anxiety levels, improve attention, declarative memory performance and/or decrease salivary cortisol levels in healthy older adults. Fifteen adults participated and were randomly assigned to a RR training or control groups. Mean age was 71.3 years and mean education level was 17.9 years. Reaction time on a simple attention/psychomotor task was significantly improved (p<0.0025) with RR training, whereas there was no significant improvement on complex tasks of attention, verbal, or visual declarative memory tests. Self-reported state anxiety levels showed a marginally significant reduction (p<0.066). All subjects' salivary cortisol levels were within low-normal range and did not significantly change. Our 5-week program in highly educated, mobile, healthy, aging adults significantly improved performance on a simple attention task.

  10. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    PubMed

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction can impede the building and stabilization of episodic memories but leaves long-term semantic and single-items mnemonic traces intact.

  11. Early handling effect on female rat spatial and non-spatial learning and memory.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Normal-range verbal-declarative memory in schizophrenia.

    PubMed

    Heinrichs, R Walter; Parlar, Melissa; Pinnock, Farena

    2017-10-01

    Cognitive impairment is prevalent and related to functional outcome in schizophrenia, but a significant minority of the patient population overlaps with healthy controls on many performance measures, including declarative-verbal-memory tasks. In this study, we assessed the validity, clinical, and functional implications of normal-range (NR), verbal-declarative memory in schizophrenia. Performance normality was defined using normative data for 8 basic California Verbal Learning Test (CVLT-II; Delis, Kramer, Kaplan, & Ober, 2000) recall and recognition trials. Schizophrenia patients (n = 155) and healthy control participants (n = 74) were assessed for performance normality, defined as scores within 1 SD of the normative mean on all 8 trials, and assigned to normal- and below-NR memory groups. NR schizophrenia patients (n = 26) and control participants (n = 51) did not differ in general verbal ability, on a reading-based estimate of premorbid ability, across all 8 CVLT-II-score comparisons or in terms of intrusion and false-positive errors and auditory working memory. NR memory patients did not differ from memory-impaired patients (n = 129) in symptom severity, and both patient groups were significantly and similarly disabled in terms of functional status in the community. These results confirm a subpopulation of schizophrenia patients with normal, verbal-declarative-memory performance and no evidence of decline from higher premorbid ability levels. However, NR patients did not experience less severe psychopathology, nor did they show advantage in community adjustment relative to impaired patients. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Sleep-related memory consolidation in primary insomnia.

    PubMed

    Nissen, Christoph; Kloepfer, Corinna; Feige, Bernd; Piosczyk, Hannah; Spiegelhalder, Kai; Voderholzer, Ulrich; Riemann, Dieter

    2011-03-01

    It has been suggested that healthy sleep facilitates the consolidation of newly acquired memories and underlying brain plasticity. The authors tested the hypothesis that patients with primary insomnia (PI) would show deficits in sleep-related memory consolidation compared to good sleeper controls (GSC). The study used a four-group parallel design (n=86) to investigate the effects of 12 h of night-time, including polysomnographically monitored sleep ('sleep condition' in PI and GSC), versus 12 h of daytime wakefulness ('wake condition' in PI and GSC) on procedural (mirror tracing task) and declarative memory consolidation (visual and verbal learning task). Demographic characteristics and memory encoding did not differ between the groups at baseline. Polysomnography revealed a significantly disturbed sleep profile in PI compared to GSC in the sleep condition. Night-time periods including sleep in GSC were associated with (i) a significantly enhanced procedural and declarative verbal memory consolidation compared to equal periods of daytime wakefulness in GSC and (ii) a significantly enhanced procedural memory consolidation compared to equal periods of daytime wakefulness and night-time sleep in PI. Across retention intervals of daytime wakefulness, no differences between the experimental groups were observed. This pattern of results suggests that healthy sleep fosters the consolidation of new memories, and that this process is impaired for procedural memories in patients with PI. Future work is needed to investigate the impact of treatment on improving sleep and memory. © 2010 European Sleep Research Society.

  14. After Being Challenged by a Video Game Problem, Sleep Increases the Chance to Solve It

    PubMed Central

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events. PMID:24416219

  15. After being challenged by a video game problem, sleep increases the chance to solve it.

    PubMed

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  16. Effects of Acute Sleep Deprivation on Motor and Reversal Learning in Mice

    PubMed Central

    Varga, Andrew W.; Kang, Mihwa; Ramesh, Priyanka V.; Klann, Eric

    2014-01-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5 hours of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5 hours of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5 hours of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. PMID:25046627

  17. Effects of acute sleep deprivation on motor and reversal learning in mice.

    PubMed

    Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric

    2014-10-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  20. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  1. Developmental Dissociation Between the Maturation of Procedural Memory and Declarative Memory

    PubMed Central

    Finn, Amy S.; Kalra, Priya B.; Goetz, Calvin; Leonard, Julia A.; Sheridan, Margaret A.; Gabrieli, John D. E.

    2015-01-01

    Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit versus implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory, working memory capacity, and four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than the adults, but exhibited learning equivalent to adults on all four measures of procedural memory. Declarative and procedural memory are, therefore, developmentally dissociable, with procedural memory being adult-like by age 10 and declarative memory continuing to mature into young adulthood. PMID:26560675

  2. Slow oscillation amplitudes and up-state lengths relate to memory improvement.

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Zeitlhofer, Josef; Gruber, Georg; Klimesch, Wolfgang; Schabus, Manuel

    2013-01-01

    There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.

  3. Imbalance of incidental encoding across tasks: an explanation for non-memory-related hippocampal activations?

    PubMed

    Reas, Emilie T; Brewer, James B

    2013-11-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. The Simple Act of Choosing Influences Declarative Memory

    PubMed Central

    Murty, Vishnu P.; DuBrow, Sarah

    2015-01-01

    Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. PMID:25904779

  5. The simple act of choosing influences declarative memory.

    PubMed

    Murty, Vishnu P; DuBrow, Sarah; Davachi, Lila

    2015-04-22

    Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. Copyright © 2015 the authors 0270-6474/15/356255-10$15.00/0.

  6. Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.

    PubMed

    Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk

    2017-04-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p's<0.065), and neither group showed significant sleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may improve their cognitive functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Episodic memory retrieval in adolescents with and without developmental language disorder (DLD).

    PubMed

    Lee, Joanna C

    2018-03-01

    Two reasons may explain the discrepant findings regarding declarative memory in developmental language disorder (DLD) in the literature. First, standardized tests are one of the primary tools used to assess declarative memory in previous studies. It is possible they are not sensitive enough to subtle memory impairment. Second, the system underlying declarative memory is complex, and thus results may vary depending on the types of encoding and retrieval processes measured (e.g., item specific or relational) and/or task demands (e.g., recall or recognition during memory retrieval). To adopt an experimental paradigm to examine episodic memory functioning in adolescents with and without DLD, with the focus on memory recognition of item-specific and relational information. Two groups of adolescents, one with DLD (n = 23; mean age = 16.73 years) and the other without (n = 23; mean age = 16.75 years), participated in the study. The Relational and Item-Specific Encoding (RISE) paradigm was used to assess the effect of different encoding processes on episodic memory retrieval in DLD. The advantage of using the RISE task is that both item-specific and relational encoding/retrieval can be examined within the same learning paradigm. Adolescents with DLD and those with typical language development showed comparable engagement during the encoding phase. The DLD group showed significantly poorer item recognition than the comparison group. Associative recognition was not significantly different between the two groups; however, there was a non-significant trend for to be poorer in the DLD group than in the comparison group, suggesting a possible impairment in associative recognition in individuals with DLD, but to a lesser magnitude. These results indicate that adolescents with DLD have difficulty with episodic memory retrieval when stimuli are encoded and retrieved without support from contextual information. Associative recognition is relatively less affected than item recognition in adolescents with DLD. © 2017 Royal College of Speech and Language Therapists.

  8. Nicotine facilitates memory consolidation in perceptual learning.

    PubMed

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation.

    PubMed

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-05-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.

  10. A Common Capacity Limitation for Response and Item Selection in Working Memory

    ERIC Educational Resources Information Center

    Janczyk, Markus

    2017-01-01

    Successful completion of any cognitive task requires selecting a particular action and the object the action is applied to. Oberauer (2009) suggested a working memory (WM) model comprising a declarative and a procedural part with analogous structures. One important assumption of this model is that both parts work independently of each other, and…

  11. Developmental dissociation between the maturation of procedural memory and declarative memory.

    PubMed

    Finn, Amy S; Kalra, Priya B; Goetz, Calvin; Leonard, Julia A; Sheridan, Margaret A; Gabrieli, John D E

    2016-02-01

    Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit vs. implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory and working memory capacity and on four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than adults, but children exhibited learning equivalent to adults on all four measures of procedural memory. Therefore, declarative memory and procedural memory are developmentally dissociable, with procedural memory being adult-like by age 10years and declarative memory continuing to mature into young adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sleep-dependent memory consolidation in patients with sleep disorders.

    PubMed

    Cipolli, Carlo; Mazzetti, Michela; Plazzi, Giuseppe

    2013-04-01

    Sleep can improve the off-line memory consolidation of new items of declarative and non-declarative information in healthy subjects, whereas acute sleep loss, as well as sleep restriction and fragmentation, impair consolidation. This suggests that, by modifying the amount and/or architecture of sleep, chronic sleep disorders may also lead to a lower gain in off-line consolidation, which in turn may be responsible for the varying levels of impaired performance at memory tasks usually observed in sleep-disordered patients. The experimental studies conducted to date have shown specific impairments of sleep-dependent consolidation overall for verbal and visual declarative information in patients with primary insomnia, for verbal declarative information in patients with obstructive sleep apnoeas, and for visual procedural skills in patients with narcolepsy-cataplexy. These findings corroborate the hypothesis that impaired consolidation is a consequence of the chronically altered organization of sleep. Moreover, they raise several novel questions as to: a) the reversibility of consolidation impairment in the case of effective treatment, b) the possible negative influence of altered prior sleep also on the encoding of new information, and c) the relationships between altered sleep and memory impairment in patients with other (medical, psychiatric or neurological) diseases associated with quantitative and/or qualitative changes of sleep architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Symbiosis of executive and selective attention in working memory

    PubMed Central

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723

  14. Symbiosis of executive and selective attention in working memory.

    PubMed

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  15. A randomized, placebo-controlled proof-of-concept, crossover trial of phenytoin for hydrocortisone-induced declarative memory changes

    PubMed Central

    Brown, E. Sherwood; Lu, Hanzhang; Denniston, Daren; Uh, Jinsoo; Thomas, Binu P.; Carmody, Thomas J.; Auchus, Richard J.; Diaz-Arrastia, Ramon; Tamminga, Carol

    2013-01-01

    Background Corticosteroid excess is associated with declarative memory impairment and hippocampal atrophy. These findings are clinically important because approximately 1% of the population receives prescription corticosteroids at any time, and major depressive disorder is associated with elevated cortisol levels and hippocampal atrophy. In animals, hippocampal changes with corticosteroids are blocked by phenytoin. The objective of the current study was to extend these preclinical findings to humans. We examined whether phenytoin attenuated the effects of hydrocortisone on declarative memory. Functional magnetic resonance imaging (fMRI) assessed task-related hippocampal activation. Methods A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in 17 healthy adult volunteers. Participants received hydrocortisone (2.5 days), phenytoin (3.5 days), both medications together, or placebo, with 21-day washouts between conditions. Differences between treatments were estimated using a mixed-effects repeated measures analysis. Results Fifteen participants had data from at least two treatment conditions and were used in the analysis. Basal cortisol levels negatively correlated with fMRI BOLD activation in the para-hippocampus with a similar trend observed in the hippocampus. Decrease in declarative memory with hydrocortisone was blocked with concomitant phenytoin administration. Relative to the placebo condition, a significant decrease in hippocampal BOLD activation was observed with hydrocortisone and phenytoin alone, and the two medications in combination. Declarative memory did not show significant correlations with hippocampal activation. Limitations The modest sample size, which limited our statistical power, was a limitation. Conclusions Findings from this pilot study suggest phenytoin attenuated effects of corticosteroids memory in humans, but potentiated the reduction in hippocampal activation. PMID:23453674

  16. Memory for recently accessed visual attributes.

    PubMed

    Jiang, Yuhong V; Shupe, Joshua M; Swallow, Khena M; Tan, Deborah H

    2016-08-01

    Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's identity is lost completely once it becomes task irrelevant. If so, then the identity of a target on one trial should not influence performance on the next trial. In 3 experiments, we replicated the finding that a target's identity is poorly recognized in a surprise memory test. However, we also observed location and identity repetition priming across consecutive trials. These data suggest that, although explicit recognition on a surprise memory test may be impaired, some information about a particular target's identity can be retained after it is no longer needed for a task. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  18. Relaxing decision criteria does not improve recognition memory in amnesic patients.

    PubMed

    Reber, P J; Squire, L R

    1999-05-01

    An important question about the organization of memory is whether information available in non-declarative memory can contribute to performance on tasks of declarative memory. Dorfman, Kihlstrom, Cork, and Misiaszek (1995) described a circumstance in which the phenomenon of priming might benefit recognition memory performance. They reported that patients receiving electroconvulsive therapy improved their recognition performance when they were encouraged to relax their criteria for endorsing test items as familiar. It was suggested that priming improved recognition by making information available about the familiarity of test items. In three experiments, we sought unsuccessfully to reproduce this phenomenon in amnesic patients. In Experiment 3, we reproduced the methods and procedure used by Dorfman et al. but still found no evidence for improved recognition memory following the manipulation of decision criteria. Although negative findings have their own limitations, our findings suggest that the phenomenon reported by Dorfman et al. does not generalize well. Our results agree with several recent findings that suggest that priming is independent of recognition memory and does not contribute to recognition memory scores.

  19. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    PubMed

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  20. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning.

    PubMed

    Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M

    2015-08-15

    Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing and enhancing cognitive functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Preserved learning of novel information in amnesia: evidence for multiple memory systems.

    PubMed

    Gordon, B

    1988-06-01

    Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.

  2. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    PubMed

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Human aging reduces the neurobehavioral influence of motivation on episodic memory.

    PubMed

    Geddes, Maiya R; Mattfeld, Aaron T; Angeles, Carlo de Los; Keshavan, Anisha; Gabrieli, John D E

    2018-05-01

    The neural circuitry mediating the influence of motivation on long-term declarative or episodic memory formation is delineated in young adults, but its status is unknown in healthy aging. We examined the effect of reward and punishment anticipation on intentional declarative memory formation for words using an event-related functional magnetic resonance imaging (fMRI) monetary incentive encoding task in twenty-one younger and nineteen older adults. At 24-hour memory retrieval testing, younger adults were significantly more likely to remember words associated with motivational cues than neutral cues. Motivational enhancement of memory in younger adults occurred only for recollection ("remember" responses) and not for familiarity ("familiar" responses). Older adults had overall diminished memory and did not show memory gains in association with motivational cues. Memory encoding associated with monetary rewards or punishments activated motivational (substantia nigra/ventral tegmental area) and memory-related (hippocampus) brain regions in younger, but not older, adults during the target word periods. In contrast, older and younger adults showed similar activation of these brain regions during the anticipatory motivational cue interval. In a separate monetary incentive delay task that did not require learning, we found evidence for relatively preserved striatal reward anticipation in older adults. This supports a potential dissociation between incidental and intentional motivational processes in healthy aging. The finding that motivation to obtain rewards and avoid punishments had reduced behavioral and neural influence on intentional episodic memory formation in older compared to younger adults is relevant to life-span theories of cognitive aging including the dopaminergic vulnerability hypothesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment.

    PubMed

    Schaefer, Sydney Y; Duff, Kevin

    2017-06-01

    Practice effects on neuropsychological tests, which are improvements in test scores due to repeated exposure to testing materials, are robust in healthy elders, but muted in older adults with cognitive disorders. Conversely, few studies have investigated practice effects on motor tasks involving procedural memory, particularly across test-retest periods exceeding 24 hours. The current study examined one-week practice effects on a novel upper extremity motor task in 54 older adults with amnestic mild cognitive impairment. Results indicate that these individuals with primary memory deficits did improve on this motor task within a brief training session as well as across one week. These practice effects were unrelated to demographic characteristics or global cognition. One-week practice effects were, however, negatively related to delayed memory function, with larger practice effects being associated with poorer delayed memory and potentially better visuospatial ability. The presence of longer term practice effects on a procedural motor task not only has implications for how longitudinal assessments with similar measures involving implicit memory might be interpreted, but may also inform future rehabilitative strategies for patients with more severe declarative memory deficits.

  5. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    PubMed

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.

  7. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253

  8. Slow Sleep Spindle Activity, Declarative Memory, and General Cognitive Abilities in Children

    PubMed Central

    Hoedlmoser, Kerstin; Heib, Dominik P.J.; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel

    2014-01-01

    Study Objectives: Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Design: Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Measurements and Results: Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Conclusions: Slow sleep spindles (11-13 Hz) in children age 8–11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. Citation: Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. SLEEP 2014;37(9):1501-1512. PMID:25142558

  9. [Nondeclarative memory--neuropsychological findings and neuroanatomic principles].

    PubMed

    Daum, I; Ackermann, H

    1997-03-01

    The contents of long-term memory will influence behaviour, even if the acquired knowledge or the original learning episode are not remembered. These phenomena have been termed "non-declarative" or "implicit" memory, and they are contrasted with "declarative" or "explicit" memory which is characterised by conscious search and retrieval procedures. Non-declarative memory encompasses non-associative learning, simple conditioning, priming effects as well as motor, perceptual and cognitive skill acquisition. The dissociation of both forms of memory is documented by studies in health subjects which indicated that experimental manipulations or drugs may differentially affect declarative and non-declarative memory processes. Damage to the medial temporal or the medial thalamic regions is known to result in declarative memory deficits whereas non-declarative memory is largely unaffected by such lesions. Animal research and clinical findings indicate that several components of non-declarative memory such as motor and cognitive skill acquisition or certain types of classical conditioning are dependent upon the integrity of the basal ganglia or the cerebellum. These issues are therefore of increasing importance for the understanding of extrapyramidal and cerebellar diseases. This paper presents recent neuropsychological findings and neuroanatomical data relating to the issue of non-declarative memory.

  10. Methods for Assessment of Memory Reactivation.

    PubMed

    Liu, Shizhao; Grosmark, Andres D; Chen, Zhe

    2018-04-13

    It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.

  11. Overthinking skilled motor performance: or why those who teach can't do.

    PubMed

    Flegal, Kristin E; Anderson, Michael C

    2008-10-01

    Skilled athletes often maintain that overthinking disrupts performance of their motor skills. Here, we examined whether these experiences have a basis in verbal overshadowing, a phenomenon in which describing memories for ineffable perceptual experiences disrupts later retention. After learning a unique golf-putting task, golfers of low and intermediate skill either described their actions in detail or performed an irrelevant verbal task. They then performed the putting task again. Strikingly, describing their putting experience significantly impaired higher skill golfers' ability to reachieve the putting criterion, compared with higher skill golfers who performed the irrelevant verbal activity. Verbalization had no such effect, however, for lower skill golfers. These findings establish that the effects of overthinking extend beyond dual-task interference and may sometimes reflect impacts on long-term memory. We propose that these effects are mediated by competition between procedural and declarative memory, as suggested by recent work in cognitive neuroscience.

  12. One declarative memory system or two? The relationship between episodic and semantic memory in children with temporal lobe epilepsy.

    PubMed

    Smith, Mary Lou; Lah, Suncica

    2011-09-01

    This study explored verbal semantic and episodic memory in children with unilateral temporal lobe epilepsy to determine whether they had impairments in both or only 1 aspect of memory, and to examine relations between performance in the 2 domains. Sixty-six children and adolescents (37 with seizures of left temporal lobe onset, 29 with right-sided onset) were given 4 tasks assessing different aspects of semantic memory (picture naming, fluency, knowledge of facts, knowledge of word meanings) and 2 episodic memory tasks (story recall, word list recall). High rates of impairments were observed across tasks, and no differences were found related to the laterality of the seizures. Individual patient analyses showed that there was a double dissociation between the 2 aspects of memory in that some children were impaired on episodic but not semantic memory, whereas others showed intact episodic but impaired semantic memory. This double dissociation suggests that these 2 memory systems may develop independently in the context of temporal lobe pathology, perhaps related to differential effects of dysfunction in the lateral and mesial temporal lobe structures. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  13. Revising psychoanalytic interpretations of the past. An examination of declarative and non-declarative memory processes.

    PubMed

    Davis, J T

    2001-06-01

    The author reviews a contemporary cognitive psychology perspective on memory that views memory as being composed of multiple separate systems. Most researchers draw a fundamental distinction between declarative/explicit and non-declarative/implicit forms of memory. Declarative memory is responsible for the conscious recollection of facts and events--what is typically meant by the everyday and the common psychoanalytic use of the word 'memory'. Non-declarative forms of memory, in contrast, are specialised processes that influence experience and behaviour without representing the past in terms of any consciously accessible content. They operate outside of an individual's awareness, but are not repressed or otherwise dynamically unconscious. Using this theoretical framework, the question of how childhood relationship experiences are carried forward from the past to influence the present is examined. It is argued that incorporating a conceptualisation of non-declarative memory processing into psychoanalytic theory is essential. Non-declarative memory processes are capable of forming complex and sophisticated representations of the interpersonal world. These non-declarative memory processes exert a major impact on interpersonal experience and behaviour that needs to be analysed on its own terms and not mistakenly viewed as a form of resistance.

  14. Selective impairment of subcategories of long-term memory in mice with hippocampal lesions accessed by the olfactory tubing maze.

    PubMed

    Chaillan, F A; Marchetti, E; Soumireu-Mourat, B; Roman, F S

    2005-03-30

    A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.

  15. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging and their further decline with MCI may account for concomitant declines in SDC. Notably these same sleep features further markedly decline, in concert with declining cognitive function, with the progression to AD. Therefore, progressive changes in sleep quality, architecture, and neural regulation may constitute a contributing factor to cognitive decline that is seen both with healthy aging and, to a much greater extent, with neurodegenerative disease.

  16. Examining procedural working memory processing in obsessive-compulsive disorder.

    PubMed

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    PubMed

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  18. Visuospatial declarative learning despite profound verbal declarative amnesia in Korsakoff's syndrome.

    PubMed

    Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan

    2017-03-20

    Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.

  19. Declarative memory performance is associated with the number of sleep spindles in elderly women.

    PubMed

    Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert

    2012-09-01

    Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.

  20. Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals

    PubMed Central

    Azar, Ashley; Giovannetti, Tania; Pirrone, Vanessa; Nonnemacher, Michael R.; Passic, Shendra; Kercher, Katherine; Williams, Jean W.; Wigdahl, Brian; Dampier, William; Libon, David J.; Sell, Christian

    2016-01-01

    Evolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings. In this study, we undertook a detailed neuropsychological analysis of a cohort of long-term HIV-1-infected individuals in conjunction with sequencing of their mitochondrial genomes. Stepwise regression analysis showed that the best model for predicting both working memory and declarative memory were age and years since diagnosis. In contrast, years since diagnosis and sub-haplogroup were significantly predictive of psychomotor speed. Consistent with this, patients with haplogroup L3e obtained better scores on psychomotor speed and dexterity tasks when compared to the remainder of the cohort, suggesting that this haplogroup provides a protective advantage when faced with the combined stress of HIV-1 infection and long-term antiretroviral therapies. Differential performance on declarative memory tasks was noted for individuals with other sub-L haplogroups, but these differences were not as robust as the association between L3e and psychomotor speed and dexterity tasks. This work provides evidence that mitochondrial haplogroup is related to neuropsychological test performance among patients in chronic disease settings such as HIV-1 infection. PMID:27711166

  1. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory.

    PubMed

    Squire, L R

    1992-01-01

    Abstract The topic of multiple forms of memory is considered from a biological point of view. Fact-and-event (declarative, explicit) memory is contrasted with a collection of non conscious (non-declarative, implicit) memory abilities including skills and habits, priming, and simple conditioning. Recent evidence is reviewed indicating that declarative and non declarative forms of memory have different operating characteristics and depend on separate brain systems. A brain-systems framework for understanding memory phenomena is developed in light of lesion studies involving rats, monkeys, and humans, as well as recent studies with normal humans using the divided visual field technique, event-related potentials, and positron emission tomography (PET).

  2. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    PubMed

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  3. Investigating the Contribution of Procedural and Declarative Memory to the Acquisition of Past Tense Morphology: Evidence from Finnish

    ERIC Educational Resources Information Center

    Kidd, Evan; Kirjavainen, Minna

    2011-01-01

    The present paper reports on a study that investigated the role of procedural and declarative memory in the acquisition of Finnish past tense morphology. Two competing models were tested. Ullman's (2004) declarative/procedural model predicts that procedural memory supports the acquisition of regular morphology, whereas declarative memory supports…

  4. Recollection of episodic memory within the medial temporal lobe: behavioural dissociations from other types of memory.

    PubMed

    Easton, Alexander; Eacott, Madeline J

    2010-12-31

    In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. The interaction of rhinal cortex and hippocampus in human declarative memory formation.

    PubMed

    Fell, Jürgen; Klaver, Peter; Elger, Christian E; Fernández, Guillén

    2002-01-01

    Human declarative memory formation crucially depends on processes within the medial temporal lobe (MTL). These processes can be monitored in real-time by recordings from depth electrodes implanted in the MTL of patients with epilepsy who undergo presurgical evaluation. In our studies, patients performed a word memorization task during depth EEG recording. Afterwards, the difference between event-related potentials (ERPs) corresponding to subsequently remembered versus forgotten words was analyzed. These kind of studies revealed that successful memory encoding is characterized by an early process generated by the rhinal cortex within 300 ms following stimulus onset. This rhinal process precedes a hippocampal process, which starts about 200 ms later. Further investigation revealed that the rhinal process seems to be a correlate of semantic preprocessing which supports memory formation, whereas the hippocampal process appears to be a correlate of an exclusively mnemonic operation. These studies yielded only indirect evidence for an interaction of rhinal cortex and hippocampus. Direct evidence for a memory related cooperation between both structures, however, has been found in a study analyzing so called gamma activity, EEG oscillations of around 40 Hz. This investigation showed that successful as opposed to unsuccessful memory formation is accompanied by an initial enhancement of rhinal-hippocampal phase synchronization, which is followed by a later desynchronization. Present knowledge about the function of phase synchronized gamma activity suggests that this phase coupling and decoupling initiates and later terminates communication between the two MTL structures. Phase synchronized rhinal-hippocampal gamma activity may, moreover, accomplish Hebbian synaptic modifications and thus provide an initial step of declarative memory formation on the synaptic level.

  6. Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…

  7. Effects of dividing attention on memory for declarative and procedural aspects of tool use.

    PubMed

    Roy, Shumita; Park, Norman W

    2016-07-01

    Tool-related knowledge and skills are supported by a complex set of memory processes that are not well understood. Some aspects of tools are mediated by either declarative or procedural memory, while other aspects may rely on an interaction of both systems. Although motor skill learning is believed to be primarily supported by procedural memory, there is debate in the current literature regarding the role of declarative memory. Growing evidence suggests that declarative memory may be involved during early stages of motor skill learning, although findings have been mixed. In the current experiment, healthy, younger adults were trained to use a set of novel complex tools and were tested on their memory for various aspects of the tools. Declarative memory encoding was interrupted by dividing attention during training. Findings showed that dividing attention during training was detrimental for subsequent memory for tool attributes as well as accurate demonstration of tool use and tool grasping. However, dividing attention did not interfere with motor skill learning, suggesting that declarative memory is not essential for skill learning associated with tools.

  8. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    PubMed

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Altered Intrinsic Hippocmapus Declarative Memory Network and Its Association with Impulsivity in Abstinent Heroin Dependent Subjects

    PubMed Central

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-01-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered towards drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index ‘impulsivity’. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative rewardguided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index ‘impulsivity’ measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. PMID:25008351

  10. Long-term memory: A review and meta-analysis of studies of declarative and procedural memory in specific language impairment

    PubMed Central

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2014-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI), in particular declarative memory and aspects of procedural memory. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed individuals with SLI are poorer than age matched controls in the learning and retrieval of verbal information from the declarative memory. However, there is evidence to suggest that the problems with declarative learning and memory for verbal information in SLI might be due to difficulties with verbal working memory and language. The learning and retrieval of non-verbal information from declarative memory appears relatively intact. In relation to procedural learning and memory, evidence indicates poor implicit learning of verbal information. Findings pertaining to nonverbal information have been mixed. This review of the literature indicates there are now substantial grounds for suspecting that multiple memory systems may be implicated in the impairment. PMID:24748707

  11. [Selective alteration of the declarative memory systems in patients treated with a high number of electroconvulsive therapy sessions].

    PubMed

    Rami-González, L; Boget-Llucià, T; Bernardo, M; Marcos, T; Cañizares-Alejos, S; Penadés, R; Portella, M J; Castelví, M; Raspall, T; Salamero, M

    The reversible electrochemical effects of electroconvulsive therapy (ECT) on specific areas of the brain enable the neuroanatomical bases of some cognitive functions to be studied. In research carried out on memory systems, a selective alteration of the declarative ones has been observed after treatment with ECT. Little work has been done to explore the differential alteration of the memory subsystems in patients with a high number of ECT sessions. AIM. To study the declarative and non declarative memory system in psychiatric patients submitted to maintenance ECT treatment, with a high number of previous ECT sessions. 20 patients submitted to treatment with ECT (10 diagnosed as having depression and 10 with schizophrenia) and 20 controls, who were paired by age, sex and psychopathological diagnosis. For the evaluation of the declarative memory system, the Wechsler Memory Scale (WMS) logical memory test was used. The Hanoi Tower procedural test was employed to evaluate the non declarative system. Patients treated with ECT performed worse in the WMS logical memory test, but this was only significant in patients diagnosed as suffering from depression. No significant differences were observed in the Hanoi Tower test. A selective alteration of the declarative systems was observed in patients who had been treated with a high number of ECT sessions, while the non declarative memory systems remain unaffected.

  12. Deficits in hippocampus-mediated Pavlovian conditioning in endogenous hypercortisolism.

    PubMed

    Grillon, Christian; Smith, Kathryn; Haynos, Ann; Nieman, Lynnette K

    2004-12-01

    Elevated endogenous levels of corticosteroids cause neural dysfunction and loss, especially within the hippocampus, as well as cognitive impairment in hippocampus-mediated tasks. Because Cushing's syndrome patients suffer from hypercortisolism, they represent a unique opportunity to study the impact of elevated glucocorticoids on cognitive functions. The aim of this study was to examine the performance of Cushing's syndrome patients on trace eyeblink conditioning, a cross-species, hippocampal-mediated test of learning and memory. Eleven Cushing's syndrome patients and 11 healthy control subjects participated in an eyeblink trace conditioning test (1000-msec trace) and a task of declarative memory for words. Salivary cortisol was collected in both the patients and the control subjects, and urinary free cortisol was collected in the patients only. The patients exhibited fewer conditional responses and remembered fewer words, compared with the control subjects. Cortisol levels correlated with immediate and delayed declarative memory only. Conditional response correlated with delayed recall after controlling for the magnitude of unconditional response. The integrity of the hippocampus seems to be compromised in Cushing's syndrome patients. Trace eyeblink conditioning might be useful both as a clinical tool to examine changes in hippocampus function in Cushing's disease patients and as a translational tool of research on the impact of chronic exposure of glucocorticoids.

  13. Striatal contributions to declarative memory retrieval

    PubMed Central

    Scimeca, Jason M.; Badre, David

    2012-01-01

    Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322

  14. Implications of the Declarative/Procedural Model for Improving Second Language Learning: The Role of Memory Enhancement Techniques

    ERIC Educational Resources Information Center

    Ullman, Michael T.; Lovelett, Jarrett T.

    2018-01-01

    The declarative/procedural (DP) model posits that the learning, storage, and use of language critically depend on two learning and memory systems in the brain: declarative memory and procedural memory. Thus, on the basis of independent research on the memory systems, the model can generate specific and often novel predictions for language. Till…

  15. Are stimulus-response rules represented phonologically for task-set preparation and maintenance?

    PubMed

    van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen

    2013-09-01

    Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting participants to switch between 2 sets of arbitrary S-R rules and manipulating the articulatory duration (Experiment 1) or phonological similarity (Experiments 2 and 3) of the names of the stimulus terms. The task cue specified which of 2 objects (Experiment 1) or consonants (Experiment 2) in a display to identify with a key press. In Experiment 3, participants switched between identifying an object/consonant and its color/visual texture. After practice, neither the duration nor the similarity of the stimulus terms had detectable effects on overall performance, task-switch cost, or its reduction with preparation. Only in the initial single-task training blocks was phonological similarity a significant handicap. Hence, beyond a very transient role, there is no evidence that (declarative) phonological working memory makes a functional contribution to representing S-R rules for task-set control, arguably because once learned, they are represented in nonlinguistic procedural working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Altered intrinsic hippocmapus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects.

    PubMed

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-10-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered toward drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index 'impulsivity'. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative reward-guided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index 'impulsivity' measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Attenuating social affective learning effects with Memory Suppression manipulations.

    PubMed

    Molet, Mikael; Kosinski, Thierry; Craddock, Paul; Miguez, Gonzalo; Mash, Lisa E; Miller, Ralph R

    2016-02-01

    People can form opinions of other individuals based on information about their good or bad behavior. The present study investigated whether this affective learning might depend on memory links formed between initially neutral people and valenced information. First, participants viewed neutral faces paired with sentences describing prosocial or antisocial behaviors. Second, memory suppression manipulations with the potential to aid in the forgetting of valenced information were administered. Using the Think/No think paradigm, the effectiveness of four different suppression instructions was compared: Unguided Suppression, Guided Suppression, Distraction, and Thought Substitution. Overall, all the tasks appreciably reduced affective learning based on prosocial information, but only the Guided Suppression and Thought Substitution tasks reduced affective learning based on antisocial information. These results suggest that weakening the putative memory link between initially neutral people and valenced information can decrease the effect of learned associations on the evaluation of other people. We interpreted this as indicative that social affective learning may rely on declarative memories. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impairing existing declarative memory in humans by disrupting reconsolidation

    PubMed Central

    Chan, Jason C. K.; LaPaglia, Jessica A.

    2013-01-01

    During the past decade, a large body of research has shown that memory traces can become labile upon retrieval and must be restabilized. Critically, interrupting this reconsolidation process can abolish a previously stable memory. Although a large number of studies have demonstrated this reconsolidation associated amnesia in nonhuman animals, the evidence for its occurrence in humans is far less compelling, especially with regard to declarative memory. In fact, reactivating a declarative memory often makes it more robust and less susceptible to subsequent disruptions. Here we show that existing declarative memories can be selectively impaired by using a noninvasive retrieval–relearning technique. In six experiments, we show that this reconsolidation-associated amnesia can be achieved 48 h after formation of the original memory, but only if relearning occurred soon after retrieval. Furthermore, the amnesic effect persists for at least 24 h, cannot be attributed solely to source confusion and is attainable only when relearning targets specific existing memories for impairment. These results demonstrate that human declarative memory can be selectively rewritten during reconsolidation. PMID:23690586

  19. Declarative memory and skill-related knowledge: Evidence from a case study of amnesia and implications for theories of memory.

    PubMed

    Gregory, Emma; McCloskey, Michael; Ovans, Zoe; Landau, Barbara

    2016-01-01

    Theoretical and empirical studies of memory have long been framed by a distinction between declarative and non-declarative memory. We question the sharpness of the distinction by reporting evidence from amnesic L.S.J., who despite retrograde memory losses in declarative knowledge domains, shows sparing of declarative knowledge related to premorbid skill (e.g., playing an instrument). We previously showed that L.S.J. had severe losses of retrograde declarative knowledge across areas of premorbid expertise (e.g., artists of famous works) and everyday knowledge (e.g., company names for logos). Here we present evidence that L.S.J. has sparing of what we call skill-related declarative knowledge, in four domains in which she had premorbid skill (art, music, aviation, driving). L.S.J.'s pattern of loss and sparing raises questions about the strict separation between classically-defined memory types and aligns with a recent proposal by Stanley and Krakauer [2013. Motor skill depends on knowledge of facts. Frontiers in Human Neuroscience, 7,1-11].

  20. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    PubMed

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  1. Divergent Task Performance in Older Adults: Declarative Memory or Creative Potential?

    ERIC Educational Resources Information Center

    Leon, Susan A.; Altmann, Lori J. P.; Abrams, Lise; Gonzalez Rothi, Leslie J.; Heilman, Kenneth M.

    2014-01-01

    Divergent thinking is a process or method used to generate creative ideas by exploring many possible solutions or responses, and is a critical element of creativity. Lesion and imaging studies have shown that the frontal lobes are important in mediating divergent thinking, and frontal lobe function is highly dependent on white matter connections…

  2. Declarative memory impairments following a military combat course: parallel neuropsychological and biochemical investigations.

    PubMed

    Piérard, Christophe; Béracochéa, Daniel; Pérès, Michel; Jouanin, Jean-Claude; Liscia, Pierrette; Satabin, Pascale; Martin, Serge; Testylier, Guy; Guézennec, Charles Yannick; Beaumont, Maurice

    2004-01-01

    The aim of this study was to investigate the impact on several forms of memory and metabolism of a 5-day combat course including heavy and continuous physical activities and sleep deprivation. Mnemonic performance and biochemical parameters of 21 male soldiers were examined before and at the end of the course. Our results showed that short-term memory (memory span, visual memory, audiovisual association) and long-term memory were significantly impaired, whereas short-term spatial memory and planning tasks were spared. Parallel biochemical analysis showed an adaptation of energy metabolism. The observed decrease in glycaemia may be partly responsible for the long-term memory impairment, whereas the decreases in plasma cholinesterases and choline may be involved in the short-term memory deterioration. However, there are also many other reasons for the observed memory changes, one of them being chronic sleep deprivation. Copyright 2004 S. Karger AG, Basel

  3. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference.

    PubMed

    Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L

    2006-07-11

    Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.

  4. The Role of Working Memory Gating in Task Switching: A Procedural Version of the Reference-Back Paradigm

    PubMed Central

    Kessler, Yoav

    2017-01-01

    Models of working memory (WM) suggest that the contents of WM are separated from perceptual input by a gate, that enables shielding information against interference when closed, and allows for rapid updating when open. Recent work in the declarative WM domain provided evidence for this notion, demonstrating the behavioral cost of opening and closing the gate. The goal of the present work was to examine gating in procedural WM, namely in a task-switching experiment. In each trial, participants were presented with a digit and a task cue, indicating whether the required task was a parity or a magnitude decision. Critically, a colored frame around the stimulus indicated whether the task cue was relevant (attend trials), or whether it had to be ignored, and the previous task set should be applied regardless of the present cue (ignore trials). Switching between tasks, and between ignore and attend trials, was manipulated. The results of two experiments demonstrated that the cost of gate opening was eliminated in task switching trials, implying that both processes operate in parallel. PMID:29312095

  5. Differential effects of non-REM and REM sleep on memory consolidation?

    PubMed

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  6. Attempting to model dissociations of memory.

    PubMed

    Reber, Paul J.

    2002-05-01

    Kinder and Shanks report simulations aimed at describing a single-system model of the dissociation between declarative and non-declarative memory. This model attempts to capture both Artificial Grammar Learning (AGL) and recognition memory with a single underlying representation. However, the model fails to reflect an essential feature of recognition memory - that it occurs after a single exposure - and the simulations may instead describe a potentially interesting property of over-training non-declarative memory.

  7. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  8. Temporal binding function of dorsal CA1 is critical for declarative memory formation

    PubMed Central

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-01-01

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment. PMID:28874586

  9. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    PubMed

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  10. Child first language and adult second language are both tied to general-purpose learning systems.

    PubMed

    Hamrick, Phillip; Lum, Jarrad A G; Ullman, Michael T

    2018-02-13

    Do the mechanisms underlying language in fact serve general-purpose functions that preexist this uniquely human capacity? To address this contentious and empirically challenging issue, we systematically tested the predictions of a well-studied neurocognitive theory of language motivated by evolutionary principles. Multiple metaanalyses were performed to examine predicted links between language and two general-purpose learning systems, declarative and procedural memory. The results tied lexical abilities to learning only in declarative memory, while grammar was linked to learning in both systems in both child first language and adult second language, in specific ways. In second language learners, grammar was associated with only declarative memory at lower language experience, but with only procedural memory at higher experience. The findings yielded large effect sizes and held consistently across languages, language families, linguistic structures, and tasks, underscoring their reliability and validity. The results, which met the predicted pattern, provide comprehensive evidence that language is tied to general-purpose systems both in children acquiring their native language and adults learning an additional language. Crucially, if language learning relies on these systems, then our extensive knowledge of the systems from animal and human studies may also apply to this domain, leading to predictions that might be unwarranted in the more circumscribed study of language. Thus, by demonstrating a role for these systems in language, the findings simultaneously lay a foundation for potentially important advances in the study of this critical domain.

  11. Taste aversion memory reconsolidation is independent of its retrieval.

    PubMed

    Rodriguez-Ortiz, Carlos J; Balderas, Israela; Garcia-DeLaTorre, Paola; Bermudez-Rattoni, Federico

    2012-10-01

    Reconsolidation refers to the destabilization/re-stabilization memory process upon its activation. However, the conditions needed to undergo reconsolidation, as well as its functional significance is quite unclear and a matter of intense investigation. Even so, memory retrieval is held as requisite to initiate reconsolidation. Therefore, in the present work we examined whether transient pharmacological disruption of memory retrieval impedes reconsolidation of stored memory in the widely used associative conditioning task, taste aversion. We found that AMPA receptors inhibition in the amygdala impaired retrieval of taste aversion memory. Furthermore, AMPA receptors blockade impeded retrieval regardless of memory strength. However, inhibition of retrieval did not affect anisomycin-mediated disruption of reconsolidation. These results indicate that retrieval is a dispensable condition to undergo reconsolidation and provide evidence of molecular dissociation between retrieval and activation of memory in the non-declarative memory model taste aversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. YAdumper: extracting and translating large information volumes from relational databases to structured flat files.

    PubMed

    Fernández, José M; Valencia, Alfonso

    2004-10-12

    Downloading the information stored in relational databases into XML and other flat formats is a common task in bioinformatics. This periodical dumping of information requires considerable CPU time, disk and memory resources. YAdumper has been developed as a purpose-specific tool to deal with the integral structured information download of relational databases. YAdumper is a Java application that organizes database extraction following an XML template based on an external Document Type Declaration. Compared with other non-native alternatives, YAdumper substantially reduces memory requirements and considerably improves writing performance.

  13. Exploring the effect of sleep and reduced interference on different forms of declarative memory.

    PubMed

    Schönauer, Monika; Pawlizki, Annedore; Köck, Corinna; Gais, Steffen

    2014-12-01

    Many studies have found that sleep benefits declarative memory consolidation. However, fundamental questions on the specifics of this effect remain topics of discussion. It is not clear which forms of memory are affected by sleep and whether this beneficial effect is partly mediated by passive protection against interference. Moreover, a putative correlation between the structure of sleep and its memory-enhancing effects is still being discussed. In three experiments, we tested whether sleep differentially affects various forms of declarative memory. We varied verbal content (verbal/nonverbal), item type (single/associate), and recall mode (recall/recognition, cued/free recall) to examine the effect of sleep on specific memory subtypes. We compared within-subject differences in memory consolidation between intervals including sleep, active wakefulness, or quiet meditation, which reduced external as well as internal interference and rehearsal. Forty healthy adults aged 18-30 y, and 17 healthy adults aged 24-55 y with extensive meditation experience participated in the experiments. All types of memory were enhanced by sleep if the sample size provided sufficient statistical power. Smaller sample sizes showed an effect of sleep if a combined measure of different declarative memory scales was used. In a condition with reduced external and internal interference, performance was equal to one with high interference. Here, memory consolidation was significantly lower than in a sleep condition. We found no correlation between sleep structure and memory consolidation. Sleep does not preferentially consolidate a specific kind of declarative memory, but consistently promotes overall declarative memory formation. This effect is not mediated by reduced interference. © 2014 Associated Professional Sleep Societies, LLC.

  14. Long-Term Treatment with Paroxetine Increases Verbal Declarative Memory and Hippocampal Volume in Posttraumatic Stress Disorder

    PubMed Central

    Vermetten, Eric; Vythilingam, Meena; Southwick, Steven M.; Charney, Dennis S.; Bremner, J. Douglas

    2011-01-01

    Background Animal studies have shown that stress is associated with damage to the hippocampus, inhibition of neurogenesis, and deficits in hippocampal-based memory dysfunction. Studies in patients with posttraumatic stress disorder (PTSD) found deficits in hippocampal-based declarative verbal memory and smaller hippocampal volume, as measured with magnetic resonance imaging (MRI). Recent preclinical evidence has shown that selective serotonin reuptake inhibitors promote neurogenesis and reverse the effects of stress on hippocampal atrophy. This study assessed the effects of long-term treatment with paroxetine on hippocampal volume and declarative memory performance in PTSD. Methods Declarative memory was assessed with the Wechsler Memory Scale–Revised and Selective Reminding Test before and after 9–12 months of treatment with paroxetine in PTSD. Hippocampal volume was measured with MRI. Of the 28 patients who started the protocol, 23 completed the full course of treatment and neuropsychological testing. Twenty patients were able to complete MRI imaging. Results Patients with PTSD showed a significant improvement in PTSD symptoms with treatment. Treatment resulted in significant improvements in verbal declarative memory and a 4.6% increase in mean hippocampal volume. Conclusions These findings suggest that long-term treatment with paroxetine is associated with improvement of verbal declarative memory deficits and an increase in hippocampal volume in PTSD. PMID:14512209

  15. Exploring the Effect of Sleep and Reduced Interference on Different Forms of Declarative Memory

    PubMed Central

    Schönauer, Monika; Pawlizki, Annedore; Köck, Corinna; Gais, Steffen

    2014-01-01

    Study Objectives: Many studies have found that sleep benefits declarative memory consolidation. However, fundamental questions on the specifics of this effect remain topics of discussion. It is not clear which forms of memory are affected by sleep and whether this beneficial effect is partly mediated by passive protection against interference. Moreover, a putative correlation between the structure of sleep and its memory-enhancing effects is still being discussed. Design: In three experiments, we tested whether sleep differentially affects various forms of declarative memory. We varied verbal content (verbal/nonverbal), item type (single/associate), and recall mode (recall/recognition, cued/free recall) to examine the effect of sleep on specific memory subtypes. We compared within-subject differences in memory consolidation between intervals including sleep, active wakefulness, or quiet meditation, which reduced external as well as internal interference and rehearsal. Participants: Forty healthy adults aged 18–30 y, and 17 healthy adults aged 24–55 y with extensive meditation experience participated in the experiments. Results: All types of memory were enhanced by sleep if the sample size provided sufficient statistical power. Smaller sample sizes showed an effect of sleep if a combined measure of different declarative memory scales was used. In a condition with reduced external and internal interference, performance was equal to one with high interference. Here, memory consolidation was significantly lower than in a sleep condition. We found no correlation between sleep structure and memory consolidation. Conclusions: Sleep does not preferentially consolidate a specific kind of declarative memory, but consistently promotes overall declarative memory formation. This effect is not mediated by reduced interference. Citation: Schönauer M, Pawlizki A, Köck C, Gais S. Exploring the effect of sleep and reduced interference on different forms of declarative memory. SLEEP 2014;37(12):1995-2007. PMID:25325490

  16. "Looking-at-nothing" during sequential sensorimotor actions: Long-term memory-based eye scanning of remembered target locations.

    PubMed

    Foerster, Rebecca M

    2018-03-01

    Before acting humans saccade to a target object to extract relevant visual information. Even when acting on remembered objects, locations previously occupied by relevant objects are fixated during imagery and memory tasks - a phenomenon called "looking-at-nothing". While looking-at-nothing was robustly found in tasks encouraging declarative memory built-up, results are mixed in the case of procedural sensorimotor tasks. Eye-guidance to manual targets in complete darkness was observed in a task practiced for days beforehand, while investigations using only a single session did not find fixations to remembered action targets. Here, it is asked whether looking-at-nothing can be found in a single sensorimotor session and thus independent from sleep consolidation, and how it progresses when visual information is repeatedly unavailable. Eye movements were investigated in a computerized version of the trail making test. Participants clicked on numbered circles in ascending sequence. Fifty trials were performed with the same spatial arrangement of 9 visual targets to enable long-term memory consolidation. During 50 consecutive trials, participants had to click the remembered target sequence on an empty screen. Participants scanned the visual targets and also the empty target locations sequentially with their eyes, however, the latter less precise than the former. Over the course of the memory trials, manual and oculomotor sequential target scanning became more similar to the visual trials. Results argue for robust looking-at-nothing during procedural sensorimotor tasks provided that long-term memory information is sufficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A neurocomputational theory of how explicit learning bootstraps early procedural learning.

    PubMed

    Paul, Erick J; Ashby, F Gregory

    2013-01-01

    It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.

  18. Analogous Mechanisms of Selection and Updating in Declarative and Procedural Working Memory: Experiments and a Computational Model

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam

    2013-01-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…

  19. Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: evidence from golf putting.

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W

    2012-01-01

    Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.

  20. Voxelwise Correlational Analyses of White Matter Integrity in Multiple Cognitive Domains in Schizophrenia

    PubMed Central

    Lim, Kelvin O.; Ardekani, Babak A.; Nierenberg, Jay; Butler, Pamela D.; Javitt, Daniel C.; Hoptman, Matthew J.

    2007-01-01

    Patients with schizophrenia show deficits in several neurocognitive domains. However, the relationship between white matter integrity and performance in these domains is poorly understood. The authors conducted neurocognitive testing and diffusion tensor imaging in 25 patients with schizophrenia. Performance was examined for tests of verbal declarative memory, attention, and executive function. Relationships between fractional anisotropy and cognitive performance were examined by using voxelwise correlational analyses. In each case, better performance on these tasks was associated with higher levels of fractional anisotropy in task-relevant regions. PMID:17074956

  1. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    PubMed

    Elzinga, B M; Bremner, J D

    2002-06-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed.

  2. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    PubMed Central

    Elzinga, B.M.; Bremner, J.D.

    2017-01-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed. PMID:12113915

  3. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice.

    PubMed

    Mingaud, Frédérique; Mormede, Cécile; Etchamendy, Nicole; Mons, Nicole; Niedergang, Betty; Wietrzych, Marta; Pallet, Véronique; Jaffard, Robert; Krezel, Wojciech; Higueret, Paul; Marighetto, Aline

    2008-01-02

    An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological perspectives questioning the historical consensus on STWM and LTDM system partition.

  4. Semantic memory in object use.

    PubMed

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  5. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder.

    PubMed

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-12-01

    Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Case-control study. Home-based study with sleep and wake conditions. Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. © 2015 Associated Professional Sleep Societies, LLC.

  6. Procedural and Declarative Memory in Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Gelgic, Celin; Conti-Ramsden, Gina

    2010-01-01

    Background: Much evidence has accumulated to indicate memory deficits in children with specific language impairment. However, most research has focused on working memory impairments in these children. Less is known about the functioning of other memory systems in this population. Aims: This study examined procedural and declarative memory in young…

  7. Conscious and Unconscious Memory Systems

    PubMed Central

    Squire, Larry R.; Dede, Adam J.O.

    2015-01-01

    The idea that memory is not a single mental faculty has a long and interesting history but became a topic of experimental and biologic inquiry only in the mid-20th century. It is now clear that there are different kinds of memory, which are supported by different brain systems. One major distinction can be drawn between working memory and long-term memory. Long-term memory can be separated into declarative (explicit) memory and a collection of nondeclarative (implicit) forms of memory that include habits, skills, priming, and simple forms of conditioning. These memory systems depend variously on the hippocampus and related structures in the parahippocampal gyrus, as well as on the amygdala, the striatum, cerebellum, and the neocortex. This work recounts the discovery of declarative and nondeclarative memory and then describes the nature of declarative memory, working memory, nondeclarative memory, and the relationship between memory systems. PMID:25731765

  8. No childhood advantage in the acquisition of skill in using an artificial language rule.

    PubMed

    Ferman, Sara; Karni, Avi

    2010-10-27

    A leading notion is that language skill acquisition declines between childhood and adulthood. While several lines of evidence indicate that declarative ("what", explicit) memory undergoes maturation, it is commonly assumed that procedural ("how-to", implicit) memory, in children, is well established. The language superiority of children has been ascribed to the childhood reliance on implicit learning. Here we show that when 8-year-olds, 12-year-olds and young adults were provided with an equivalent multi-session training experience in producing and judging an artificial morphological rule (AMR), adults were superior to children of both age groups and the 8-year-olds were the poorest learners in all task parameters including in those that were clearly implicit. The AMR consisted of phonological transformations of verbs expressing a semantic distinction: whether the preceding noun was animate or inanimate. No explicit instruction of the AMR was provided. The 8-year-olds, unlike most adults and 12-year-olds, failed to explicitly uncover the semantic aspect of the AMR and subsequently to generalize it accurately to novel items. However, all participants learned to apply the AMR to repeated items and to generalize its phonological patterns to novel items, attaining accurate and fluent production, and exhibiting key characteristics of procedural memory. Nevertheless, adults showed a clear advantage in learning implicit task aspects, and in their long-term retention. Thus, our findings support the notion of age-dependent maturation in the establishment of declarative but also of procedural memory in a complex language task. In line with recent reports of no childhood advantage in non-linguistic skill learning, we propose that under some learning conditions adults can effectively express their language skill acquisition potential. Altogether, the maturational effects in the acquisition of an implicit AMR do not support a simple notion of a language skill learning advantage in children.

  9. Shaping memory consolidation via targeted memory reactivation during sleep.

    PubMed

    Cellini, Nicola; Capuozzo, Alessandra

    2018-05-15

    Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep. © 2018 New York Academy of Sciences.

  10. Memory reactivation and consolidation during sleep

    PubMed Central

    Paller, Ken A.; Voss, Joel L.

    2004-01-01

    Do our memories remain static during sleep, or do they change? We argue here that memory change is not only a natural result of sleep cognition, but further, that such change constitutes a fundamental characteristic of declarative memories. In general, declarative memories change due to retrieval events at various times after initial learning and due to the formation and elaboration of associations with other memories, including memories formed after the initial learning episode. We propose that declarative memories change both during waking and during sleep, and that such change contributes to enhancing binding of the distinct representational components of some memories, and thus to a gradual process of cross-cortical consolidation. As a result of this special form of consolidation, declarative memories can become more cohesive and also more thoroughly integrated with other stored information. Further benefits of this memory reprocessing can include developing complex networks of interrelated memories, aligning memories with long-term strategies and goals, and generating insights based on novel combinations of memory fragments. A variety of research findings are consistent with the hypothesis that cross-cortical consolidation can progress during sleep, although further support is needed, and we suggest some potentially fruitful research directions. Determining how processing during sleep can facilitate memory storage will be an exciting focus of research in the coming years. PMID:15576883

  11. "The Memory of Beauty" Survives Alzheimer's Disease (but Cannot Help Memory).

    PubMed

    Silveri, Maria Caterina; Ferrante, Ilaria; Brita, Anna Clelia; Rossi, Paola; Liperoti, Rosa; Mammarella, Federica; Bernabei, Roberto; Marini Chiarelli, Maria Vittoria; De Luca, Martina

    2015-01-01

    The aesthetic experience, in particular the experience of beauty in the visual arts, should have neural correlates in the human brain. Neuroesthetics is principally implemented by functional studies in normal subjects, but the neuropsychology of the aesthetic experience, that is, the impact of brain damage on the appreciation of works of art, is a neglected field. Here, 16 mild to moderate Alzheimer's disease patients and 15 caregivers expressed their preference on 16 works of art (eight representational and eight abstract) during programmed visits to an art gallery. A week later, all subjects expressed a preference rate on reproductions of the same works presented in the gallery. Both patients and caregivers were consistent in assigning preference ratings, and in patients consistency was independent of the ability to recognize the works on which the preference rate had been given in an explicit memory task. Caregivers performed at ceiling in the memory task. Both patients and caregivers assigned higher preference ratings for representational than for abstract works and preference consistency was comparable in representational and abstract works. Furthermore, in the memory task, patients did not recognize better artworks they had assigned higher preference ratings to, suggesting that emotional stimuli (as presumably visual works of art are) cannot enhance declarative memory in this pathology. Our data, which were gathered in an ecological context and with real-world stimuli, confirm previous findings on the stability of aesthetic preference in patients with Alzheimer's disease and on the independence of aesthetic preference from cognitive abilities such as memory.

  12. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory.

    PubMed

    Viskontas, Indre V

    2008-12-01

    To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.

  13. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment.

    PubMed

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A G; Ullman, Michael T

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI.

  14. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  15. Sleep Restores Daytime Deficits in Procedural Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Molzow, Ina; Munz, Manuel; Wilhelm, Ines; Muller, Kathrin; Freytag, Damaris; Wiesner, Christian D.; Baving, Lioba

    2011-01-01

    Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD)…

  16. Declarative and Procedural Memory in Danish Speaking Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Bleses, Dorthe

    2012-01-01

    It has been proposed that the language problems in specific language impairment (SLI) arise from basal ganglia abnormalities that lead to impairments with procedural and working memory but not declarative memory. In SLI, this profile of memory functioning has been hypothesized to underlie grammatical impairment but leave lexical knowledge…

  17. Episodic Memory Retrieval in Adolescents with and without Developmental Language Disorder (DLD)

    ERIC Educational Resources Information Center

    Lee, Joanna C.

    2018-01-01

    Background: Two reasons may explain the discrepant findings regarding declarative memory in developmental language disorder (DLD) in the literature. First, standardized tests are one of the primary tools used to assess declarative memory in previous studies. It is possible they are not sensitive enough to subtle memory impairment. Second, the…

  18. The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment.

    PubMed

    Conti-Ramsden, Gina; Ullman, Michael T; Lum, Jarrad A G

    2015-01-01

    What memory systems underlie grammar in children, and do these differ between typically developing (TD) children and children with specific language impairment (SLI)? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females) and 46 TD children (30 males, 16 females), both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group × procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman's Declarative/Procedural model of language and procedural deficit hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children with SLI.

  19. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations.

    PubMed

    Antonenko, Daria; Diekelmann, Susanne; Olsen, Cathrin; Born, Jan; Mölle, Matthias

    2013-04-01

    As well as consolidating memory, sleep has been proposed to serve a second important function for memory, i.e. to free capacities for the learning of new information during succeeding wakefulness. The slow wave activity (SWA) that is a hallmark of slow wave sleep could be involved in both functions. Here, we aimed to demonstrate a causative role for SWA in enhancing the capacity for encoding of information during subsequent wakefulness, using transcranial slow oscillation stimulation (tSOS) oscillating at 0.75 Hz to induce SWA in healthy humans during an afternoon nap. Encoding following the nap was tested for hippocampus-dependent declarative materials (pictures, word pairs, and word lists) and procedural skills (finger sequence tapping). As compared with a sham stimulation control condition, tSOS during the nap enhanced SWA and significantly improved subsequent encoding on all three declarative tasks (picture recognition, cued recall of word pairs, and free recall of word lists), whereas procedural finger sequence tapping skill was not affected. Our results indicate that sleep SWA enhances the capacity for encoding of declarative materials, possibly by down-scaling hippocampal synaptic networks that were potentiated towards saturation during the preceding period of wakefulness. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Contributions of Memory Circuits to Language: The Declarative/Procedural Model

    ERIC Educational Resources Information Center

    Ullman, Michael T.

    2004-01-01

    The structure of the brain and the nature of evolution suggest that, despite its uniqueness, language likely depends on brain systems that also subserve other functions. The declarative/procedural (DP) model claims that the mental lexicon of memorized word-specific knowledge depends on the largely temporal-lobe substrates of declarative memory,…

  1. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception

    PubMed Central

    Trude, Alison M.; Duff, Melissa C.; Brown-Schmidt, Sarah

    2014-01-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. PMID:24657480

  2. Declarative memory deficits and schizophrenia: problems and prospects.

    PubMed

    Stone, William S; Hsi, Xiaolu

    2011-11-01

    Cognitive deficits are among the most important factors leading to poor functional outcomes in schizophrenia, with deficits in declarative memory among the largest and most robust of these. Thus far, attempts to enhance cognition in schizophrenia have shown only modest success, which underlies increasing efforts to develop effective treatment strategies. This review is divided into three main parts. The first section delineates the nature and extent of the deficits in both patients with schizophrenia and in their adult, non-psychotic relatives. The second part focuses on structural and functional abnormalities in the hippocampus, both in people with schizophrenia and in animal studies that model relevant features of the illness. The third section views problems in declarative memory and hippocampal function from the perspective of elevated rates of common medical disorders in schizophrenia, with a focus on insulin insensitivity/diabetes. The likelihood that poor glucose regulation/availability contribute to declarative memory deficits and hippocampal abnormalities is considered, along with the possibility that schizophrenia and poor glucose regulation share common etiologic elements, and with clinical implications of this perspective for enhancing declarative memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation.

    PubMed

    King, Bradley R; Hoedlmoser, Kerstin; Hirschauer, Franziska; Dolfen, Nina; Albouy, Genevieve

    2017-09-01

    For the past two decades, it has generally been accepted that sleep benefits motor memory consolidation processes. This notion, however, has been challenged by recent studies and thus the sleep and motor memory story is equivocal. Currently, and in contrast to the declarative memory domain, a comprehensive overview and synthesis of the effects of post-learning sleep on the behavioral and neural correlates of motor memory consolidation is not available. We therefore provide an extensive review of the literature in order to highlight that sleep-dependent motor memory consolidation depends upon multiple boundary conditions, including particular features of the motor task, the recruitment of relevant neural substrates (and the hippocampus in particular), as well as the specific architecture of the intervening sleep period (specifically, sleep spindle and slow wave activity). For our field to continue to advance, future research must consider the multifaceted nature of sleep-related motor memory consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Test of a potential link between analytic and nonanalytic category learning and automatic, effortful processing.

    PubMed

    Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J

    2001-08-01

    The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.

  5. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment

    PubMed Central

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A. G.; Ullman, Michael T.

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI. PMID:28046095

  6. The organization and neural substrates of human memory.

    PubMed

    Squire, L R

    The neurology of memory has been illuminated by parallel studies of patients with circumscribed memory impairment and animal models of human amnesia. Human amnesia can occur as an isolated cognitive deficit that impairs the ability to learn new facts and episodes. In addition, memory can be affected for material learned many years prior to the onset of amnesia. The finding that some memory abilities are intact in amnesia (e.g., skill learning, word priming, and adaptation-level effects) has suggested that memory can be divided into two or more separate processes. Declarative memory affords the ability to store information explicitly and to retrieve it later as a conscious recollection. This form of memory depends on the integrity of the structures damaged in amnesia. Other, non-declarative kinds of memory afford the ability to change as the result of experience, but the information is available only through performance. Recent studies of a favorable human case provided strong evidence that the hippocampus is a critical component of the declarative memory system. Extensive convergent and divergent projections link the hippocampus to many areas of neocortex where processing and storage of new information is likely to occur. It is perhaps by way of these connections that the hippocampus operates upon and participates in declarative representations.

  7. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder

    PubMed Central

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-01-01

    Study Objectives: Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Design: Case-control study. Setting: Home-based study with sleep and wake conditions. Participants: Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Measurements and Results: Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. Conclusion: This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. Citation: Maski K, Holbrook H, Manoach D, Hanson E, Kapur K, Stickgold R. Sleep dependent memory consolidation in children with autism spectrum disorder. SLEEP 2015;38(12):1955–1963. PMID:26194566

  8. Medial Temporal Lobe Memory in Childhood: Developmental Transitions

    ERIC Educational Resources Information Center

    Townsend, Elise L.; Richmond, Jenny L.; Vogel-Farley, Vanessa K.; Thomas, Kathleen

    2010-01-01

    The medial temporal lobes (MTL) support declarative memory and mature structurally and functionally during the postnatal years in humans. Although recent work has addressed the development of declarative memory in early childhood, less is known about continued development beyond this period of time. The purpose of this investigation was to explore…

  9. Selective sex differences in declarative memory.

    PubMed

    Maitland, Scott B; Herlitz, Agneta; Nyberg, Lars; Bäckman, Lars; Nilsson, Lars-Göran

    2004-10-01

    Sex invariance of a six-factor, higher order model of declarative memory (two second-order factors: episodic and semantic memory; and four first-order factors: recall, recognition, fluency, and knowledge) was established for 1,796 participants (35-85 years). Metric invariance of first- and second-order factor loadings across sex was demonstrated. At the second-order level, a female advantage was observed for both episodic and semantic memory. At the first-order level, sex differences in episodic memory were apparent for both recall and recognition, whereas the differences in semantic memory were driven by a female superiority in fluency. Additional tests of sex differences in three age groups (35-50, 55-65, and 70-85 years of age) indicated that the female superiority in declarative memory diminished with advancing age. The factor-specific sex differences are discussed in relation to sex differences in hippocampal function.

  10. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    PubMed

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  11. The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research.

    PubMed

    Reber, Paul J

    2013-08-01

    Memory systems research has typically described the different types of long-term memory in the brain as either declarative versus non-declarative or implicit versus explicit. These descriptions reflect the difference between declarative, conscious, and explicit memory that is dependent on the medial temporal lobe (MTL) memory system, and all other expressions of learning and memory. The other type of memory is generally defined by an absence: either the lack of dependence on the MTL memory system (nondeclarative) or the lack of conscious awareness of the information acquired (implicit). However, definition by absence is inherently underspecified and leaves open questions of how this type of memory operates, its neural basis, and how it differs from explicit, declarative memory. Drawing on a variety of studies of implicit learning that have attempted to identify the neural correlates of implicit learning using functional neuroimaging and neuropsychology, a theory of implicit memory is presented that describes it as a form of general plasticity within processing networks that adaptively improve function via experience. Under this model, implicit memory will not appear as a single, coherent, alternative memory system but will instead be manifested as a principle of improvement from experience based on widespread mechanisms of cortical plasticity. The implications of this characterization for understanding the role of implicit learning in complex cognitive processes and the effects of interactions between types of memory will be discussed for examples within and outside the psychology laboratory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Neurobiology of learning and memory and anti-dementia drug].

    PubMed

    Ishikawa, K

    1995-08-01

    Discoveries of long-term potentiation and immediate early gene in the central nervous system have enabled new developments in experiments on learning and memory. These experiments are conducted in many kinds of animals with different procedures, physiology, chemistry and pharmacology. However, there is still some confusion when these various procedures are discussed. Memory is defined as information storage of an animal's previous experiences. The memory induces changes in behavioral performance. This means that memory must be observed in whole animals, and one question that can occur is how does long-term potentiation, for example, correlate with memory. Furthermore, memory has been divided into two major classifications, declarative and non-declarative, from the comparison of amnesias observed in humans and animals. The declarative memory can be observed in human subjects, but not in animals. This article presents a neuronal circuit concerning memory formation and some results obtained from benzodiazepines, and it discusses some problems encountered executing when experiments on learning and memory. In addition, the discussion speculates over the possibility for an "anti-dementia drug".

  13. Procedural learning: A developmental study of motor sequence learning and probabilistic classification learning in school-aged children.

    PubMed

    Mayor-Dubois, Claire; Zesiger, Pascal; Van der Linden, Martial; Roulet-Perez, Eliane

    2016-01-01

    In this study, we investigated motor and cognitive procedural learning in typically developing children aged 8-12 years with a serial reaction time (SRT) task and a probabilistic classification learning (PCL) task. The aims were to replicate and extend the results of previous SRT studies, to investigate PCL in school-aged children, to explore the contribution of declarative knowledge to SRT and PCL performance, to explore the strategies used by children in the PCL task via a mathematical model, and to see whether performances obtained in motor and cognitive tasks correlated. The results showed similar learning effects in the three age groups in the SRT and in the first half of the PCL tasks. Participants did not develop explicit knowledge in the SRT task whereas declarative knowledge of the cue-outcome associations correlated with the performances in the second half of the PCL task, suggesting a participation of explicit knowledge after some time of exposure in PCL. An increasing proportion of the optimal strategy use with increasing age was observed in the PCL task. Finally, no correlation appeared between cognitive and motor performance. In conclusion, we extended the hypothesis of age invariance from motor to cognitive procedural learning, which had not been done previously. The ability to adopt more efficient learning strategies with age may rely on the maturation of the fronto-striatal loops. The lack of correlation between performance in the SRT task and the first part of the PCL task suggests dissociable developmental trajectories within the procedural memory system.

  14. Normal Aging and the Dissociable Prototype Learning Systems

    PubMed Central

    Glass, Brian D.; Chotibut, Tanya; Pacheco, Jennifer; Schnyer, David M.; Maddox, W. Todd

    2011-01-01

    Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are shown members of category A during training, and during test are asked to decide whether novel items are in category A or are not in category A. Research suggests that AN learning is mediated by a perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category A and B during training, and during test are asked to decide whether novel items are in category A or category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory system. The current study examined the effects of normal aging on AN and AB prototype learning. We observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Computational modeling supports one possible interpretation based on narrower selective attentional focus in older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in older participants suggested that executive functioning and attentional control were associated with better performance in both tasks. However, nonverbal memory was associated with better AN performance, while visual attention was associated with worse AB performance. The results support an interactive memory systems approach and suggest that age-related declines in one memory system can lead to deficits in some tasks, but to enhanced performance in others. PMID:21875215

  15. Binge drinking and declarative memory in university students.

    PubMed

    Parada, María; Corral, Montserrat; Caamaño-Isorna, Francisco; Mota, Nayara; Crego, Alberto; Holguín, Socorro Rodríguez; Cadaveira, Fernando

    2011-08-01

    Binge drinking (BD), which is characterized by sporadic consumption of large quantities of alcohol in short periods, is prevalent among university students. Animal studies have shown that BD is associated with damage to the hippocampus, a region of the brain that plays a key role in learning and memory. The temporal cortex undergoes structural and functional changes during adolescence. The aim of the present study was to examine the association between BD and declarative memory in male and female university students. The participants were 122 students (between 18 and 20 years of age): 62 BD (30 women) and 60 non-BD (29 women). The neuropsychological assessment included the Rey Auditory Verbal Learning Test (RAVLT) and Weschler Memory Scale-3rd ed. (WMS-III) Logical Memory subtest, to evaluate verbal declarative memory, and the WMS-III Family Pictures subtest, to measure visual declarative memory. The BD students remembered fewer words in the interference list and displayed greater proactive interference in the RAVLT; they performed worse in the Logical Memory subtest, both on immediate and delayed recall. There were no differences between the groups in performance of the Family Pictures subtest. No significant interactions were observed between BD and sex. Binge drinking is associated with poorer verbal declarative memory, regardless of sex. The findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol. Longitudinal studies will help determine the nature of this relationship, the neurodevelopmental trajectories for each sex, and the repercussions on academic performance. Copyright © 2011 by the Research Society on Alcoholism.

  16. Cranial nerve clock. Part II: functional MR imaging of brain activation during a declarative memory task.

    PubMed

    Weiss, K L; Welsh, R C; Eldevik, P; Bieliauskas, L A; Steinberg, B A

    2001-12-01

    The authors performed this study to assess brain activation during encoding and successful recall with a declarative memory paradigm that has previously been demonstrated to be effective for teaching students about the cranial nerves. Twenty-four students underwent functional magnetic resonance (MR) imaging during encoding and recall of the name, number, and function of the 12 cranial nerves. The students viewed mnemonic graphic and text slides related to individual nerves, as well as their respective control slides. For the recall paradigm, students were prompted with the numbers 1-12 (test condition) intermixed with the number 14 (control condition). Subjects were tested about their knowledge of cranial nerves outside the MR unit before and after functional MR imaging. Students learned about the cranial nerves while undergoing functional MR imaging (mean post- vs preparadigm score, 8.1 +/- 3.4 [of a possible 12] vs 0.75 +/- 0.94, bilateral prefrontal cortex, left greater than right; P < 2.0 x 10(-12)) and maintained this knowledge at I week. The encoding and recall paradigms elicited distributed networks of brain activation. Encoding revealed statistically significant activation in the bilateral prefrontal cortex, left greater than right [corrected]; bilateral occipital and parietal associative cortices, parahippocampus region, fusiform gyri, and cerebellum. Successful recall activated the left much more than the right prefrontal, parietal associative, and anterior cingulate cortices; bilateral precuneus and cerebellum; and right more than the left posterior cingulate. A predictable pattern of brain activation at functional MR imaging accompanies the encoding and successful recall of the cranial nerves with this declarative memory paradigm.

  17. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    PubMed

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  18. Declarative Memory Consolidation: Mechanisms Acting during Human Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Born, Jan

    2004-01-01

    Of late, an increasing number of studies have shown a strong relationship between sleep and memory. Here we summarize a series of our own studies in humans supporting a beneficial influence of slow-wave sleep (SWS) on declarative memory formation, and try to identify some mechanisms that might underlie this influence. Specifically, these…

  19. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    PubMed

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Use of nondeclarative and automatic memory processes in motor learning: how to mitigate the effects of aging].

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Didierjean, André; Joubert, Sven; Dieudonné, Bénédicte; Verny, Marc

    2011-12-01

    Does normal aging inexorably lead to diminished motor learning abilities? This article provides an overview of the literature on the question, with particular emphasis on the functional dissociation between two sets of memory processes: declarative, effortful processes, and non-declarative, automatic processes. There is abundant evidence suggesting that aging does impair learning when past memories of former actions are required (episodic memory) and recollected through controlled processing (working memory). However, other studies have shown that aging does not impair learning when motor actions are performed non verbally and automatically (tapping procedural memory). These findings led us to hypothesize that one can minimize the impact of aging on the ability to learn new motor actions by favouring procedural learning. Recent data validating this hypothesis are presented. Our findings underline the importance of developing new motor learning strategies, which "bypass" declarative, effortful memory processes.

  1. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia.

    PubMed

    Zierhut, Kathrin; Bogerts, Bernhard; Schott, Björn; Fenker, Daniela; Walter, Martin; Albrecht, Dominik; Steiner, Johann; Schütze, Hartmut; Northoff, Georg; Düzel, Emrah; Schiltz, Kolja

    2010-09-30

    Declarative memory disturbances, known to substantially contribute to cognitive impairment in schizophrenia, have previously been attributed to prefrontal as well as hippocampal dysfunction. To characterize the role of prefrontal and mesolimbic/hippocampal dysfunction during memory encoding in schizophrenia. Neuronal activation in schizophrenia patients and controls was assessed using functional magnetic resonance imaging (fMRI) during encoding of words in a deep (semantic judgement) and shallow (case judgment) task. A free recall (no delay) and a recognition task (24h delay) were performed. Free recall, but not recognition performance was reduced in patients. Reduced performance was correlated with positive symptoms which in turn were related to increased left hippocampal activity during successful encoding. Furthermore, schizophrenia patients displayed a hippocampal hyperactivity during deep encoding irrespective of encoding success along with a reduced anterior cingulate cortex (ACC) and dorsomedial prefrontal cortex (DMPFC) activity in successful encoding but an intact left inferior frontal cortex (LIFC) activity. This study provides the first evidence directly linking positive symptoms and memory deficits to dysfunctional hippocampal hyperactivity. It thereby underscores the pivotal pathophysiological role of a hyperdopaminergic mesolimbic state in schizophrenia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Achieving enlightenment: what do we know about the implicit learning system and its interaction with explicit knowledge?

    PubMed

    Vidoni, Eric D; Boyd, Lara A

    2007-09-01

    Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.

  3. Word list and story recall elicit different patterns of memory deficit in patients with Alzheimer's disease, frontotemporal dementia, subcortical ischemic vascular disease, and Lewy body dementia.

    PubMed

    Perri, Roberta; Fadda, Lucia; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2013-01-01

    Different roles have been attributed to mesio-temporal areas and frontal lobes in declarative memory functioning, and qualitative differences have been observed in the amnesic symptoms due to pathological damage of these two portions of the central nervous system. The aim of the present study was to look for memory profiles related to pathological involvement in the temporal and frontal structures in patients with different dementia syndromes on word-list and prose memory tasks. 20 patients with Alzheimer's disease (AD), 20 with frontal variant of FTD (fvFTD), 20 with subcortical ischemic vascular dementia (SIVD), and 20 with Lewy body dementia (LBD) and 34 healthy subjects (NCs) were submitted to word-list and prose memory tasks. All groups performed similarly on both the immediate and delayed recall of the word-list. Conversely, AD patients performed worse than all the other dementia groups on the immediate prose recall. On delayed prose recall, AD patients performed worse than fvFTD and SIVD patients but similar to LBD patients. Differential scores between word-list and prose tests were minimal in the AD group and very pronounced in fvFTD and SIVD groups. The combined use of the prose and word-list tasks evidenced a "mesio-temporal" memory profile in AD patients as opposed to a "frontal" one in fvFTD and SIVD patients and a mixed profile in the LBD patients. In particular, a differential score between the two tests can be useful in differentiating AD patients from patients with other forms of dementia.

  4. 29 CFR 18.804 - Hearsay exceptions; declarant unavailable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Testifies to a lack of memory of the subject matter of the declarant's statement; or (4) Is unable to be... unavailable as a witness if exemption, refusal, claim of lack of memory, inability, or absence is due to the...

  5. Altered declarative memory in introverted middle-aged adults carrying the BDNF val66met allele.

    PubMed

    De Beaumont, Louis; Fiocco, Alexandra J; Quesnel, Geneviève; Lupien, Sonia; Poirier, Judes

    2013-09-15

    The val66met polymorphism of the brain-derived neurotrophic factor gene (BDNFMet) is associated with impaired learning/memory function, affective dysregulation and maladaptive personality traits. Here, we examine the potential relationship between the BDNFMet allele, introversion and declarative memory in middle-age adults. A total of 132 middle-aged healthy adults took part in this study that included taking a blood sample for genetic profiling, a short battery of neuropsychological tests and the NEO-Five Factor Inventory (NEO-FFI), widely used to assess the Big Five personality. Controlling for age, level of education and sex, a multiple analysis of covariance (MANCOVA) computing the effect of BDNF polymorphism on extraversion and declarative memory revealed a significant association (D1,128=4.79; p=0.03; ηp(2)=0.053). Using the Sobel Goodman Mediation Test, it was found that 25.61% of the relationship between genotype and declarative memory performance was mediated by introversion. Subsequent correlational analyses yielded a strong and significant correlation (β=0.53; p<0.001) between introversion and declarative memory specific to BDNFMet individuals. this study highlights the pertinence of further investigating gene×personality×environment interactions to account for the significant variability that is observed in cognitive function in late life. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The relationships between memory systems and sleep stages.

    PubMed

    Rauchs, Géraldine; Desgranges, Béatrice; Foret, Jean; Eustache, Francis

    2005-06-01

    Sleep function remains elusive despite our rapidly increasing comprehension of the processes generating and maintaining the different sleep stages. Several lines of evidence support the hypothesis that sleep is involved in the off-line reprocessing of recently-acquired memories. In this review, we summarize the main results obtained in the field of sleep and memory consolidation in both animals and humans, and try to connect sleep stages with the different memory systems. To this end, we have collated data obtained using several methodological approaches, including electrophysiological recordings of neuronal ensembles, post-training modifications of sleep architecture, sleep deprivation and functional neuroimaging studies. Broadly speaking, all the various studies emphasize the fact that the four long-term memory systems (procedural memory, perceptual representation system, semantic and episodic memory, according to Tulving's SPI model; Tulving, 1995) benefit either from non-rapid eye movement (NREM) (not just SWS) or rapid eye movement (REM) sleep, or from both sleep stages. Tulving's classification of memory systems appears more pertinent than the declarative/non-declarative dichotomy when it comes to understanding the role of sleep in memory. Indeed, this model allows us to resolve several contradictions, notably the fact that episodic and semantic memory (the two memory systems encompassed in declarative memory) appear to rely on different sleep stages. Likewise, this model provides an explanation for why the acquisition of various types of skills (perceptual-motor, sensory-perceptual and cognitive skills) and priming effects, subserved by different brain structures but all designated by the generic term of implicit or non-declarative memory, may not benefit from the same sleep stages.

  7. The cortisol awakening response and memory performance in older men and women.

    PubMed

    Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia

    2012-12-01

    The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Early postnatal effects of noopept and piracetam on declarative and procedural memory of adult male and female rats.

    PubMed

    Trofimov, S S; Voronina, T A; Guzevatykh, L S

    2005-06-01

    We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity.

  9. A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory.

    PubMed

    Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin

    2016-10-01

    Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.

  10. Divergent Task Performance in Older Adults: Declarative Memory or Creative Potential?

    PubMed Central

    Leon, Susan A; Altmann, Lori JP; Abrams, Lise; Rothi, Leslie J Gonzalez; Heilman, Kenneth M

    2016-01-01

    Divergent thinking is the ability to produce a range of responses or solutions and is an element of creative processing. Divergent thinking requires disengagement, the ability to associate between words or ideas, and the production of responses. Lesion and imaging studies have shown frontal-lobe involvement for these activities, and frontal lobe function is highly dependent on white matter pathways. Normal aging often results in deficits in functions controlled by the frontal lobes as well as decrements in white matter connectivity. The objectives of this study were to compare non time-constrained tasks of verbal divergent processing in young adults (YAs) and older adults (OAs) and correlate performance with tasks of working memory, language ability, and disengagement/inhibition. Participants were 30 YAs and 30 OAs. Contrary to the a priori hypothesis, OAs produced significantly more unique responses than YAs, although total fluency was not significantly different. Correlational analyses examining the groups together and separately revealed a number of differences suggesting that the groups were utilizing different underlying cognitive abilities to complete these tasks. The authors propose that the primary factor resulting in higher uniqueness scores for the OAs was a greater wealth of experience as well as longer exposure to language use. PMID:28446859

  11. The role of sleep in human declarative memory consolidation.

    PubMed

    Alger, Sara E; Chambers, Alexis M; Cunningham, Tony; Payne, Jessica D

    2015-01-01

    Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory. Finally, we discuss the literature regarding the impact of sleep on emotion regulation.

  12. The application of rules in morphology, syntax and number processing: a case of selective deficit of procedural or executive mechanisms?

    PubMed

    Macoir, Joël; Fossard, Marion; Nespoulous, Jean-Luc; Demonet, Jean-François; Bachoud-Lévi, Anne-Catherine

    2010-08-01

    Declarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient's performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules.

  13. Gender differences in creative thinking: behavioral and fMRI findings.

    PubMed

    Abraham, Anna; Thybusch, Kristin; Pieritz, Karoline; Hermann, Christiane

    2014-03-01

    Gender differences in creativity have been widely studied in behavioral investigations, but this topic has rarely been the focus of neuroscientific research. The current paper presents follow-up analyses of a previous fMRI study (Abraham et al., Neuropsychologia 50(8):1906-1917, 2012b), in which behavioral and brain function during creative conceptual expansion as well as general divergent thinking were explored. Here, we focus on gender differences within the same sample. Conceptual expansion was assessed with the alternate uses task relative to the object location task, whereas divergent thinking was assessed in terms of responses across both the alternate uses and object location tasks relative to n-back working memory tasks. While men and women were indistinguishable in terms of behavioral performance across all tasks, the pattern of brain activity while engaged in the tasks in question was indicative of strategy differences between the genders. Brain areas related to semantic cognition, rule learning and decision making were preferentially engaged in men during conceptual expansion, whereas women displayed higher activity in regions related to speech processing and social perception. During divergent thinking, declarative memory related regions were strongly activated in men, while regions involved in theory of mind and self-referential processing were more engaged in women. The implications of gender differences in adopted strategies or cognitive style when faced with generative tasks are discussed.

  14. The Role of Familiarity, Priming and Perception in Similarity Judgments

    DTIC Science & Technology

    2013-08-01

    Goldstone, & Markman, 1995), and memory (Roediger, 1990). As with many aspects of human cognition, however, the mechanisms that determine similarity are...activation, which disperses activation be- tween different, associated concepts in declarative memory (Anderson, 1983; Harrison & Trafton, 2010). In...over time the model builds up declarative memories that may contribute to spreading activation in later trials. This explains the two main effects

  15. Tonic Inhibitory Control of Dentate Gyrus Granule Cells by α5-Containing GABAA Receptors Reduces Memory Interference.

    PubMed

    Engin, Elif; Zarnowska, Ewa D; Benke, Dietmar; Tsvetkov, Evgeny; Sigal, Maksim; Keist, Ruth; Bolshakov, Vadim Y; Pearce, Robert A; Rudolph, Uwe

    2015-10-07

    Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding mechanisms of successful interference management or processes that can lead to interference-related memory problems has high theoretical and translational importance. This study provides empirical evidence that tonic inhibition in the dentate gyrus (DG), which maintains sparseness of neuronal activation in the DG, is essential for management of interference. The specificity of findings to tonic, but not faster, more transient types of neuronal inhibition and to the DG, but not the neighboring brain areas, is presented through control experiments. Thus, the findings link interference management to a specific mechanism, proposed previously by computational models. Copyright © 2015 the authors 0270-6474/15/3513699-15$15.00/0.

  16. Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review.

    PubMed

    Mendelsohn, Daniel; Riedel, Wim J; Sambeth, Anke

    2009-06-01

    The serotonergic system is implicated in the regulation of mood and cognition. Acute tryptophan depletion (ATD) is an experimental procedure for lowering central serotonin levels. Here, the effects of ATD on psychomotor processing, declarative memory, working memory, executive functions and attention are discussed. The most robust finding is that ATD impairs the consolidation of episodic memory for verbal information. Semantic memory appears to be unaffected by ATD although a limited variety of tasks examined effects in this domain. Similarly, evidence suggests ATD does not influence verbal, spatial and affective working memory. Most studies investigating effects on executive functions have produced non-specific or negative findings. In terms of attention, ATD either does not affect or may improve focused attention and ATD likely does not impact sustained and divided attention or attentional set-shifting. Although ATD is known to affect mood in certain vulnerable populations, the effects of ATD on cognition in non-vulnerable participants are independent of mood changes. Suggestions for future directions and implications for psychiatric illnesses are discussed.

  17. How should we measure nutrition-induced improvements in memory?

    PubMed

    Benton, David; Kallus, K Wolfgang; Schmitt, Jeroen A J

    2005-12-01

    There is a basic distinction between declarative memories, which can be stated verbally, and non-declarative memory, such as how to ride a bicycle, which cannot be expressed in words. With age it is the performance of declarative memory, particularly episodic memory that requires recall of events placed in time, that declines. As memory is not a unitary phenomenon, it should be ideally monitored using a range of tests that reflect theoretical conceptions of the topic. If circumstances demand the use of a single test then a measure of episodic memory is suggested. When it proves only possible to use a rating scale it should be ensured that memory is distinguished from other aspects of cognition and that different types of memory are not confused. The tests used, and the form in which they are used, need to be chosen to be of appropriate difficulty for the sample studied. A major conclusion is that the selection of the measure of memory used in the study of a dietary intervention should never be routine. It is inevitable that the form of the test used will need to be chosen carefully for the population being studied.

  18. Oscillating square wave Transcranial Direct Current Stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study

    PubMed Central

    Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.

    2015-01-01

    Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621

  19. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.

    PubMed

    Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S

    2015-01-01

    A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed sequences)]. In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Memory in autistic spectrum disorder.

    PubMed

    Boucher, Jill; Mayes, Andrew; Bigham, Sally

    2012-05-01

    Behavioral evidence concerning memory in forms of high-functioning autism (HFA) and in moderately low-functioning autism (M-LFA) is reviewed and compared. Findings on M-LFA are sparse. However, it is provisionally concluded that memory profiles in HFA and M-LFA (relative to ability-matched controls) are similar but that declarative memory impairments are more extensive in M-LFA than in HFA. Specifically, both groups have diminished memory for emotion- or person-related stimuli. Regarding memory for nonsocial stimuli, both groups probably have mental-age-appropriate nondeclarative memory, and within declarative memory, both groups have mental-age-appropriate immediate free recall of within-span or supraspan lists of unrelated items, as well as cued recall and paired associate learning. By contrast, recognition is largely unimpaired in HFA but moderately impaired in M-LFA, and free recall of meaningful or structured stimuli is moderately impaired in HFA but more severely impaired in M-LFA. Theoretical explanations of data on declarative memory in HFA identify problems in the integrative processing, or the consolidation and storage, of complex stimuli or a specific problem of recollection. Proposed neural substrates include the following: disconnectivity of primary sensory and association areas; dysfunctions of medial prefrontal cortex, hippocampus, or posterior parietal lobe; or combinations of these associated with neural disconnectivity. Hypothetically, perirhinal dysfunction might explain the more extensive declarative memory impairments in M-LFA. Foreseeable consequences of uneven memory abilities in HFA and M-LFA are outlined, including possible effects on language and learning in M-LFA. Finally, priorities for future research are identified, highlighting the urgent need for research on memory in lower functioning individuals. 2012 APA, all rights reserved

  1. Declarative verbal memory impairments in middle-aged women who are caregivers of offspring with autism spectrum disorders: The role of negative affect and testosterone.

    PubMed

    Romero-Martínez, A; González-Bono, E; Salvador, A; Moya-Albiol, L

    2016-01-01

    Caring for offspring diagnosed with a chronic psychological disorder such as autism spectrum disorder (ASD) is used in research as a model of chronic stress. This chronic stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory. Moreover, such cognitive decline may be mediated by testosterone (T) levels and negative affect, understood as depressive mood together with high anxiety and anger. This study aimed to compare declarative memory function in middle-aged women who were caregivers for individuals with ASD (n = 24; mean age = 45) and female controls (n = 22; mean age = 45), using a standardised memory test (Rey's Auditory Verbal Learning Test). It also sought to examine the role of care recipient characteristics, negative mood and T levels in memory impairments. ASD caregivers were highly sensitive to proactive interference and verbal forgetting. In addition, they had higher negative affect and T levels, both of which have been associated with poorer verbal memory performance. Moreover, the number of years of caregiving affected memory performance and negative affect, especially, in terms of anger feelings. On the other hand, T levels in caregivers had a curvilinear relationship with verbal memory performance; that is, increases in T were associated with improvements in verbal memory performance up to a certain point, but subsequently, memory performance decreased with increasing T. Chronic stress may produce disturbances in mood and hormonal levels, which in turn might increase the likelihood of developing declarative memory impairments although caregivers do not show a generalised decline in memory. These findings should be taken into account for understanding the impact of cognitive impairments on the ability to provide optimal caregiving.

  2. The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music.

    PubMed

    Bottiroli, Sara; Rosi, Alessia; Russo, Riccardo; Vecchi, Tomaso; Cavallini, Elena

    2014-01-01

    Background music refers to any music played while the listener is performing another activity. Most studies on this effect have been conducted on young adults, while little attention has been paid to the presence of this effect in older adults. Hence, this study aimed to address this imbalance by assessing the impact of different types of background music on cognitive tasks tapping declarative memory and processing speed in older adults. Overall, background music tended to improve performance over no music and white noise, but not always in the same manner. The theoretical and practical implications of the empirical findings are discussed.

  3. The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music

    PubMed Central

    Bottiroli, Sara; Rosi, Alessia; Russo, Riccardo; Vecchi, Tomaso; Cavallini, Elena

    2014-01-01

    Background music refers to any music played while the listener is performing another activity. Most studies on this effect have been conducted on young adults, while little attention has been paid to the presence of this effect in older adults. Hence, this study aimed to address this imbalance by assessing the impact of different types of background music on cognitive tasks tapping declarative memory and processing speed in older adults. Overall, background music tended to improve performance over no music and white noise, but not always in the same manner. The theoretical and practical implications of the empirical findings are discussed. PMID:25360112

  4. Memory for relations in the short term and the long term after medial temporal lobe damage.

    PubMed

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Dual learning processes in interactive skill acquisition.

    PubMed

    Fu, Wai-Tat; Anderson, John R

    2008-06-01

    Acquisition of interactive skills involves the use of internal and external cues. Experiment 1 showed that when actions were interdependent, learning was effective with and without external cues in the single-task condition but was effective only with the presence of external cues in the dual-task condition. In the dual-task condition, actions closer to the feedback were learned faster than actions farther away but this difference was reversed in the single-task condition. Experiment 2 tested how knowledge acquired in single and dual-task conditions would transfer to a new reward structure. Results confirmed the two forms of learning mediated by the secondary task: A declarative memory encoding process that simultaneously assigned credits to actions and a reinforcement-learning process that slowly propagated credits backward from the feedback. The results showed that both forms of learning were engaged during training, but only at the response selection stage, one form of knowledge may dominate over the other depending on the availability of attentional resources. (c) 2008 APA, all rights reserved

  6. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    PubMed

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  7. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231

  8. Methylphenidate significantly improves declarative memory functioning of adults with ADHD.

    PubMed

    Verster, Joris C; Bekker, Evelijne M; Kooij, J J Sandra; Buitelaar, Jan K; Verbaten, Marinus N; Volkerts, Edmund R; Olivier, Berend

    2010-10-01

    Declarative memory deficits are common in untreated adults with attention-deficit hyperactivity disorder (ADHD), but limited evidence exists to support improvement after treatment with methylphenidate. The objective of this study was to examine the effects of methylphenidate on memory functioning of adults with ADHD. Eighteen adults with ADHD who were clinical responders to methylphenidate participated in this randomized crossover trial. After 3 days of no treatment, patients received in random order either their usual methylphenidate dose (mean: 14.7 mg; range: 10-30 mg) or placebo, separated by a 6-7-day washout period. Patients performed an immediate word recall test 1 h after treatment administration. Three hours after intake, patients performed the second part of the memory test (delayed word recall and a recognition test). Delayed recognition and immediate recall was similar on treatment and on placebo. Delayed word recall was significantly better in the methylphenidate than in the placebo condition (F (1, 17) = 7.0, p <  0.017). A significant correlation was found between prestudy CES-D depression scores and difference scores on delayed recall (r = 0.602, p <  0.008). Methylphenidate improves declarative memory functioning in patients with ADHD. New studies should further examine whether subclinical depressive symptoms mediate the effect of methylphenidate on declarative memory.

  9. Sleep restores loss of generalized but not rote learning of synthetic speech.

    PubMed

    Fenn, Kimberly M; Margoliash, Daniel; Nusbaum, Howard C

    2013-09-01

    Sleep-dependent consolidation has been demonstrated for declarative and procedural memory but few theories of consolidation distinguish between rote and generalized learning, suggesting similar consolidation should occur for both. However, studies using rote and generalized learning have suggested different patterns of consolidation may occur, although different tasks have been used across studies. Here we directly compared consolidation of rote and generalized learning using a single speech identification task. Training on a large set of novel stimuli resulted in substantial generalized learning, and sleep restored performance that had degraded after 12 waking hours. Training on a small set of repeated stimuli primarily resulted in rote learning and performance also degraded after 12 waking hours but was not restored by sleep. Moreover performance was significantly worse 24-h after rote training. Our results suggest a functional dissociation between the mechanisms of consolidation for rote and generalized learning which has broad implications for memory models. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Intact implicit statistical learning in borderline personality disorder.

    PubMed

    Unoka, Zsolt; Vizin, Gabriella; Bjelik, Anna; Radics, Dóra; Nemeth, Dezso; Janacsek, Karolina

    2017-09-01

    Wide-spread neuropsychological deficits have been identified in borderline personality disorder (BPD). Previous research found impairments in decision making, declarative memory, working memory and executive functions; however, no studies have focused on implicit learning in BPD yet. The aim of our study was to investigate implicit statistical learning by comparing learning performance of 19 BPD patients and 19 healthy, age-, education- and gender-matched controls on a probabilistic sequence learning task. Moreover, we also tested whether participants retain the acquired knowledge after a delay period. To this end, participants were retested on a shorter version of the same task 24h after the learning phase. We found intact implicit statistical learning as well as retention of the acquired knowledge in this personality disorder. BPD patients seem to be able to extract and represent regularities implicitly, which is in line with the notion that implicit learning is less susceptible to illness compared to the more explicit processes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Delayed benefit of naps on motor learning in preschool children.

    PubMed

    Desrochers, Phillip C; Kurdziel, Laura B F; Spencer, Rebecca M C

    2016-03-01

    Sleep benefits memory consolidation across a variety of domains in young adults. However, while declarative memories benefit from sleep in young children, such improvements are not consistently seen for procedural skill learning. Here we examined whether performance improvements on a procedural task, although not immediately observed, are evident after a longer delay when augmented by overnight sleep (24 h after learning). We trained 47 children, aged 33-71 months, on a serial reaction time task and, using a within-subject design, evaluated performance at three time points: immediately after learning, after a daytime nap (nap condition) or equivalent wake opportunity (wake condition), and 24 h after learning. Consistent with previous studies, performance improvements following the nap did not differ from performance improvements following an equivalent interval spent awake. However, significant benefits of the nap were found when performance was assessed 24 h after learning. This research demonstrates that motor skill learning is benefited by sleep, but that this benefit is only evident after an extended period of time.

  12. The Role of Episodic Memory in Learning from University Lectures.

    ERIC Educational Resources Information Center

    Lapadat, Judith C.; Martin, Jack

    1994-01-01

    Results from a study involving 34 undergraduates supported the prediction from Paivo's dual coding theory (1986) that imaginal elaborations during lectures assist students' recall of both episodic and declarative information. The prediction that episodic memories would mediate retention of declarative information from the lecture was not…

  13. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  14. The Effect of Two Benzodiazepine Receptor Agonist Hypnotics on Sleep-Dependent Memory Consolidation

    PubMed Central

    Hall-Porter, Janine M.; Schweitzer, Paula K.; Eisenstein, Rhody D.; Ahmed, Hasan Ali H.; Walsh, James K.

    2014-01-01

    Introduction: Numerous studies have demonstrated that sleep promotes memory consolidation, but there is little research on the effect of hypnotics on sleep-dependent memory consolidation. We compared bedtime administration of zolpidem-ER 12.5 mg (6- to 8-h duration of action), middle-of-the-night administration of zaleplon 10 mg (3- to 4-h duration of action), and placebo to examine the effect of different durations of hypnotic drug exposure on memory consolidation during sleep. Methods: Twenty-two participants with no sleep complaints underwent 3 conditions in a counterbalanced crossover study: (1) zolpidem-ER 12.5 mg (bedtime dosing), (2) zaleplon 10 mg (middle-of-the-night dosing), and (3) placebo. Memory testing was conducted before and after an 8-h sleep period, using a word pair association task (WPT; declarative memory) and a finger-tapping task (FTT; procedural memory). Results: ANOVA revealed a significant condition effect for the WPT (p = 0.025) and a trend for the FTT (p = 0.067), which was significant when sex was added to the model (p = 0.014). Improvement in memory performance following sleep was lower with bedtime dosing of zolpidem-ER compared to placebo and middle-of-the-night dosing of zaleplon. There were no differences between placebo and zaleplon. Conclusions: The results suggest that in some circumstances hypnotics may have the potential to reduce the degree of sleep-dependent memory consolidation and that drug-free sleep early in the night may ameliorate this effect. Citation: Hall-Porter JM; Schweitzer PK; Eisenstein RD; Ahmed HAH; Walsh JK. The effect of two benzodiazepine receptor agonist hypnotics on sleep-dependent memory consolidation. J Clin Sleep Med 2014;10(1):27-34. PMID:24426817

  15. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes.

    PubMed

    Yau, Po Lai; Javier, David; Tsui, Wai; Sweat, Victoria; Bruehl, Hannah; Borod, Joan C; Convit, Antonio

    2009-12-30

    Declarative memory impairment is frequently reported among adults with type 2 diabetes mellitus (T2DM), who also demonstrate hippocampal volume reduction. Our goals were to ascertain whether emotional memory, which is mediated by neural circuits overlapping those of declarative memory, is also affected. In addition we wanted to characterize cerebral white matter (WM) involvement in T2DM. We studied 24 middle-aged and elderly patients with T2DM who were free of obvious vascular pathology or a psychiatric disorder, and 17 age- and education-matched healthy individuals with no evidence of insulin resistance. We examined emotional and neutral memory and performed a whole-brain voxelwise WM assessment utilizing diffusion tensor imaging (DTI). We found clear evidence of impairment in declarative memory among diabetic subjects and in addition found some preliminary support to suggest a possible blunting of the memory facilitation by emotional material among female but not male diabetics. This report is also the first DTI assessment among individuals with T2DM, which after accounting for overt WM damage, revealed diffuse but predominantly frontal and temporal WM microstructural abnormalities, with extensive involvement of the temporal stem. Hierarchical regression analyses demonstrated that immediate, but not delayed, emotional memory performance was explained by temporal stem FA, independent of age, poor metabolic regulation, and systolic blood pressure. Given that the temporal lobe memory networks appear to be particularly vulnerable to the deleterious effects of T2DM, this may help explain the observed memory impairments among diabetics. Future efforts should better clarify, with a larger sample, whether emotional memory is affected in adults with T2DM and whether there are clear gender effects.

  16. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.

    PubMed

    Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong

    2018-06-01

    Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Ventral striatum and the evaluation of memory retrieval strategies.

    PubMed

    Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M; Scimeca, Jason M

    2014-09-01

    Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant's subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.

  18. Tennessee Williams: the uses of declarative memory in The Glass Menagerie.

    PubMed

    Jacobs, Daniel

    2002-01-01

    Tennessee Williams called his first great work, The Glass Menagerie, his "memory play." The situation in which Williams found himself when he began writing the play is explored, as are the ways in which he used the declarative memory of his protagonist, Tom Wingfield, to express and deal with his own painful conflicts. Williams's use of stage directions, lighting, and music to evoke memory and render it three-dimensional is described. Through a close study of The Glass Menagerie, the many uses of memory for the purposes of wish fulfillment, conflict resolution, and resilience are examined.

  19. Decrease in gamma-band activity tracks sequence learning

    PubMed Central

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  20. Hierarchical control of procedural and declarative category-learning systems

    PubMed Central

    Turner, Benjamin O.; Crossley, Matthew J.; Ashby, F. Gregory

    2017-01-01

    Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role in passing control between procedural and declarative memory systems. PMID:28213114

  1. Impaired event memory and recollection in a case of developmental amnesia.

    PubMed

    Rosenbaum, R S; Carson, N; Abraham, N; Bowles, B; Kwan, D; Köhler, S; Svoboda, E; Levine, B; Richards, B

    2011-10-01

    A current debate in the literature is whether all declarative memories and associated memory processes rely on the same neural substrate. Here, we show that H.C., a developmental amnesic person with selective bilateral hippocampal volume loss, has a mild deficit in personal episodic memory, and a more pronounced deficit in public event memory; semantic memory for personal and general knowledge was unimpaired. This was accompanied by a subtle difference in impairment between recollection and familiarity on lab-based tests of recognition memory. Strikingly, H.C.'s recognition did not benefit from a levels-of-processing manipulation. Thus, not all types of declarative memory and related processes can exist independently of the hippocampus even if it is damaged early in life.

  2. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  3. Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    PubMed Central

    Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101

  4. Interaction of memory systems during acquisition of tool knowledge and skills in Parkinson's disease.

    PubMed

    Roy, Shumita; Park, Norman W; Roy, Eric A; Almeida, Quincy J

    2015-01-01

    Previous research suggests that different aspects of tool knowledge are mediated by different memory systems. It is believed that tool attributes (e.g., function, color) are represented as declarative memory while skill learning is supported by procedural memory. It has been proposed that other aspects (e.g., skilled tool use) may rely on an interaction of both declarative and procedural memory. However, the specific form of procedural memory underlying skilled tool use and the nature of interaction between declarative and procedural memory systems remain unclear. In the current study, individuals with Parkinson's disease (PD) and healthy controls were trained over 2 sessions, 3 weeks apart, to use a set of novel complex tools. They were also tested on their ability to recall tool attributes as well as their ability to demonstrate grasp and use of the tools to command. Results showed that, compared to controls, participants with PD showed intact motor skill acquisition and tool use to command within sessions, but failed to retain performance across sessions. In contrast, people with PD showed equivalent recall of tool attributes and tool grasping relative to controls, both within and across sessions. Current findings demonstrate that the frontal-striatal network, compromised in PD, mediates long-term retention of motor skills. Intact initial skill learning raises the possibility of compensation from declarative memory for frontal-striatal dysfunction. Lastly, skilled tool use appears to rely on both memory systems which may reflect a cooperative interaction between the two systems. Current findings regarding memory representations of tool knowledge and skill learning may have important implications for delivery of rehabilitation programs for individuals with PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    PubMed

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Do statistical segmentation abilities predict lexical-phonological and lexical-semantic abilities in children with and without SLI?

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included 40 children (ages 8;5–12;3), 20 children with SLI and 20 with typical development. Children completed Saffran’s statistical word segmentation task, a lexical-phonological access task (gating task), and a word definition task. Poor statistical learners were also poor at managing lexical-phonological competition during the gating task. However, statistical learning was not a significant predictor of semantic richness in word definitions. The ability to track statistical sequential regularities may be important for learning the inherently sequential structure of lexical-phonology, but not as important for learning lexical-semantic knowledge. Consistent with the procedural/declarative memory distinction, the brain networks associated with the two types of lexical learning are likely to have different learning properties. PMID:23425593

  7. Sleeping brain, learning brain. The role of sleep for memory systems.

    PubMed

    Peigneux, P; Laureys, S; Delbeuck, X; Maquet, P

    2001-12-21

    The hypothesis that sleep participates in the consolidation of recent memory traces has been investigated using four main paradigms: (1) effects of post-training sleep deprivation on memory consolidation, (2) effects of learning on post-training sleep, (3) effects of within sleep stimulation on the sleep pattern and on overnight memories, and (4) re-expression of behavior-specific neural patterns during post-training sleep. These studies convincingly support the idea that sleep is deeply involved in memory functions in humans and animals. However, the available data still remain too scarce to confirm or reject unequivocally the recently upheld hypothesis that consolidations of non-declarative and declarative memories are respectively dependent upon REM and NREM sleep processes.

  8. An Action Research Inquiry into the Relationship Among Aerobic Activities, Memory, and Stress with Students Identified as Gifted

    NASA Astrophysics Data System (ADS)

    Ford, Denise Marie

    Students identified as gifted come from varying socio-economic strata and nationalities with a range of talents and temperaments comprising a diverse community. They may experience stress for a variety of reasons. Although a certain amount of stress can enhance the learning process, too much stress can impede learning, especially memory. Strategies have been offered for relieving stress, yet the benefits of physical activities as stress reducers for the gifted have frequently been overlooked. The purpose of this study was to investigate the relationship among aerobic activity, stress, and memory ability in students in an elementary school gifted program. An exceptional aspect of this research was that the students were an integral part of their own study. As co-researchers they had a vested interest in what they were doing, enhancing the significance of the experience and heightening learning. This action research project conducted in a mid-western school district with fourth and fifth grade students examined the impact of aerobic movement on physical indicators of stress and memory. The study lasted twelve weeks with data collected on physical indicators of stress, memory test scores, parent observations, interviews with students, a parent focus group session, observational data, student comments, and investigator/teacher journal. By infusing regular exercise into curricula, stress levels in students identified as gifted were examined. Students' scores on declarative memory tasks conducted with and without an accompanying aerobic activity were documented. Students learned of the delicate relationship between stress and memory as they studied the physiology of the brain. Twenty-four hour retention rates of declarative memory items were higher when a 20-minute aerobic activity intervention preceded the memory activity. Perceived stress levels were lowered for 14 of the 16 co-researchers. Students indicated a positive attitude toward physical activity and its benefits for greater memory retention and reduction in stress. Student-driven action research can be a powerful educational tool. Movement activities are a positive factor in student learning and should be incorporated into the school routine. Students developed an increased awareness of the short term benefits of exercise which could catalyze aerobic activity as a regular part of the school day.

  9. Bigger is better! Hippocampal volume and declarative memory performance in healthy young men.

    PubMed

    Pohlack, Sebastian T; Meyer, Patric; Cacciaglia, Raffaele; Liebscher, Claudia; Ridder, Stephanie; Flor, Herta

    2014-01-01

    The importance of the hippocampus for declarative memory processes is firmly established. Nevertheless, the issue of a correlation between declarative memory performance and hippocampal volume in healthy subjects still remains controversial. The aim of the present study was to investigate this relationship in more detail. For this purpose, 50 healthy young male participants performed the California Verbal Learning Test. Hippocampal volume was assessed by manual segmentation of high-resolution 3D magnetic resonance images. We found a significant positive correlation between putatively hippocampus-dependent memory measures like short-delay retention, long-delay retention and discriminability and percent hippocampal volume. No significant correlation with measures related to executive processes was found. In addition, percent amygdala volume was not related to any of these measures. Our data advance previous findings reported in studies of brain-damaged individuals in a large and homogeneous young healthy sample and are important for theories on the neural basis of episodic memory.

  10. Personal semantics: at the crossroads of semantic and episodic memory.

    PubMed

    Renoult, Louis; Davidson, Patrick S R; Palombo, Daniela J; Moscovitch, Morris; Levine, Brian

    2012-11-01

    Declarative memory is usually described as consisting of two systems: semantic and episodic memory. Between these two poles, however, may lie a third entity: personal semantics (PS). PS concerns knowledge of one's past. Although typically assumed to be an aspect of semantic memory, it is essentially absent from existing models of knowledge. Furthermore, like episodic memory (EM), PS is idiosyncratically personal (i.e., not culturally-shared). We show that, depending on how it is operationalized, the neural correlates of PS can look more similar to semantic memory, more similar to EM, or dissimilar to both. We consider three different perspectives to better integrate PS into existing models of declarative memory and suggest experimental strategies for disentangling PS from semantic and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Discrete memory impairments in largely pure chronic users of MDMA.

    PubMed

    Wunderli, Michael D; Vonmoos, Matthias; Fürst, Marina; Schädelin, Katrin; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2017-10-01

    Chronic use of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has repeatedly been associated with deficits in working memory, declarative memory, and executive functions. However, previous findings regarding working memory and executive function are inconclusive yet, as in most studies concomitant stimulant use, which is known to affect these functions, was not adequately controlled for. Therefore, we compared the cognitive performance of 26 stimulant-free and largely pure (primary) MDMA users, 25 stimulant-using polydrug MDMA users, and 56 MDMA/stimulant-naïve controls by applying a comprehensive neuropsychological test battery. Neuropsychological tests were grouped into four cognitive domains. Recent drug use was objectively quantified by 6-month hair analyses on 17 substances and metabolites. Considerably lower mean hair concentrations of stimulants (amphetamine, methamphetamine, methylphenidate, cocaine), opioids (morphine, methadone, codeine), and hallucinogens (ketamine, 2C-B) were detected in primary compared to polydrug users, while both user groups did not differ in their MDMA hair concentration. Cohen's d effect sizes for both comparisons, i.e., primary MDMA users vs. controls and polydrug MDMA users vs. controls, were highest for declarative memory (d primary =.90, d polydrug =1.21), followed by working memory (d primary =.52, d polydrug =.96), executive functions (d primary =.46, d polydrug =.86), and attention (d primary =.23, d polydrug =.70). Thus, primary MDMA users showed strong and relatively discrete declarative memory impairments, whereas MDMA polydrug users displayed broad and unspecific cognitive impairments. Consequently, even largely pure chronic MDMA use is associated with decreased performance in declarative memory, while additional deficits in working memory and executive functions displayed by polydrug MDMA users are likely driven by stimulant co-use. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  12. Knowledge acquisition is governed by striatal prediction errors.

    PubMed

    Pine, Alex; Sadeh, Noa; Ben-Yakov, Aya; Dudai, Yadin; Mendelsohn, Avi

    2018-04-26

    Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs-most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.

  13. Fast, but not slow, familiarity is preserved in patients with amnestic mild cognitive impairment.

    PubMed

    Besson, Gabriel; Ceccaldi, Mathieu; Tramoni, Eve; Felician, Olivier; Didic, Mira; Barbeau, Emmanuel J

    2015-04-01

    Recognition memory--affected early in the course of Alzheimer Disease (AD)--is supposed to rely on two processes: recollection (i.e., retrieval of details from the encoding episode) and familiarity (i.e., acontextual sense of prior exposure). Recollection has repeatedly been shown to be impaired in patients with amnestic Mild Cognitive Impairment (aMCI)--known to be at high risk for AD. However, studies that evaluated familiarity in these patients have reported conflicting results. Here, we assessed familiarity in single-domain aMCI patients (n = 19) and healthy matched controls (n = 22). All participants underwent a classic yes/no recognition memory paradigm with confidence judgements, allowing an estimation of familiarity and recollection similar to the approach used in previous studies. In addition, they underwent a novel speeded recognition memory task, the Speed and Accuracy Boosting procedure, based on the idea that familiarity is fast and hence that fast answers rely on familiarity. On the classic yes/no task, aMCI patients were found to have impaired performance, reaction times, recollection and familiarity. However, performance and reaction times of aMCI patients did not differ from that of controls in the speeded task. This is noteworthy since this task was comparatively difficult for control subjects. This dissociation within familiarity suggests that a very basic component of declarative memory, probably at the interface between implicit and explicit memory, may be preserved, or possibly released, in patients with aMCI. It is suggested that early subprocesses (e.g., fluency based familiarity) could be preserved in aMCI patients, while delayed ones (e.g., conceptual fluency, post-retrieval monitoring, confidence assessment, or even access to awareness) may be impaired. These findings may provide support for recent suggestions that familiarity may result from the combination of a set of subprocesses, each with its specific temporal signature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The role of working memory and declarative memory in trace conditioning

    PubMed Central

    Connor, David A.; Gould, Thomas J.

    2017-01-01

    Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory. PMID:27422017

  15. [Classification of memory systems: a revision].

    PubMed

    Agrest, M

    2001-12-01

    The present paper exposes the arguments against considering memory as a monolytic entity and how is it to be divided into several systems in order to understand its operation. Historically this division was acknowledge by different authors but in the last few decades it received the confirmation from the scientific research. The most accepted taxonomy establishes the existence of two major memory systems: declarative and non declarative memory. The article also presents the arguments for and against this kind of division, as well as an alternative classification in five major systems: procedural, perceptual representation, semantic, primary and episodic.

  16. Flynn effects on sub-factors of episodic and semantic memory: parallel gains over time and the same set of determining factors.

    PubMed

    Rönnlund, Michael; Nilsson, Lars-Göran

    2009-09-01

    The study examined the extent to which time-related gains in cognitive performance, so-called Flynn effects, generalize across sub-factors of episodic memory (recall and recognition) and semantic memory (knowledge and fluency). We conducted time-sequential analyses of data drawn from the Betula prospective cohort study, involving four age-matched samples (35-80 years; N=2996) tested on the same battery of memory tasks on either of four occasions (1989, 1995, 1999, and 2004). The results demonstrate substantial time-related improvements on recall and recognition as well as on fluency and knowledge, with a trend of larger gains on semantic as compared with episodic memory [Rönnlund, M., & Nilsson, L. -G. (2008). The magnitude, generality, and determinants of Flynn effects on forms of declarative memory: Time-sequential analyses of data from a Swedish cohort study. Intelligence], but highly similar gains across the sub-factors. Finally, the association with markers of environmental change was similar, with evidence that historical increases in quantity of schooling was a main driving force behind the gains, both on the episodic and semantic sub-factors. The results obtained are discussed in terms of brain regions involved.

  17. Similarity in form and function of the hippocampus in rodents, monkeys, and humans.

    PubMed

    Clark, Robert E; Squire, Larry R

    2013-06-18

    We begin by describing an historical scientific debate in which the fundamental idea that species are related by evolutionary descent was challenged. The challenge was based on supposed neuroanatomical differences between humans and other primates with respect to a structure known then as the hippocampus minor. The debate took place in the early 1860 s, just after the publication of Darwin's famous book. We then recount the difficult road that was traveled to develop an animal model of human memory impairment, a matter that also turned on questions about similarities and differences between humans and other primates. We then describe how the insight that there are multiple memory systems helped to secure the animal model and how the animal model was ultimately used to identify the neuroanatomy of long-term declarative memory (sometimes termed explicit memory). Finally, we describe a challenge to the animal model and to cross-species comparisons by considering the case of the concurrent discrimination task, drawing on findings from humans and monkeys. We suggest that analysis of such cases, based on the understanding that there are multiple memory systems with different properties, has served to emphasize the similarities in memory function across mammalian species.

  18. The human hippocampal formation mediates short-term memory of colour-location associations.

    PubMed

    Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J

    2008-01-31

    The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.

  19. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  20. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application.

    PubMed

    Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica

    2016-10-01

    This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A model for memory systems based on processing modes rather than consciousness.

    PubMed

    Henke, Katharina

    2010-07-01

    Prominent models of human long-term memory distinguish between memory systems on the basis of whether learning and retrieval occur consciously or unconsciously. Episodic memory formation requires the rapid encoding of associations between different aspects of an event which, according to these models, depends on the hippocampus and on consciousness. However, recent evidence indicates that the hippocampus mediates rapid associative learning with and without consciousness in humans and animals, for long-term and short-term retention. Consciousness seems to be a poor criterion for differentiating between declarative (or explicit) and non declarative (or implicit) types of memory. A new model is therefore required in which memory systems are distinguished based on the processing operations involved rather than by consciousness.

  2. The nucleus accumbens and learning and memory.

    PubMed

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  3. A Role for Central Nervous Growth Hormone-Releasing Hormone Signaling in the Consolidation of Declarative Memories

    PubMed Central

    Michel, Christian; Perras, Boris; Born, Jan

    2011-01-01

    Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH) on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg) that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05). The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05). Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation. PMID:21850272

  4. Early declarative memory predicts productive language: A longitudinal study of deferred imitation and communication at 9 and 16months.

    PubMed

    Sundqvist, Annette; Nordqvist, Emelie; Koch, Felix-Sebastian; Heimann, Mikael

    2016-11-01

    Deferred imitation (DI) may be regarded as an early declarative-like memory ability shaping the infant's ability to learn about novelties and regularities of the surrounding world. In the current longitudinal study, infants were assessed at 9 and 16months. DI was assessed using five novel objects. Each infant's communicative development was measured by parental questionnaires. The results indicate stability in DI performance and early communicative development between 9 and 16months. The early achievers at 9months were still advanced at 16months. Results also identified a predictive relationship between the infant's gestural development at 9months and the infant's productive and receptive language at 16months. Moreover, the results show that declarative memory, measured with DI, and gestural communication at 9months independently predict productive language at 16months. These findings suggest a connection between the ability to form non-linguistic and linguistic mental representations. These results indicate that the child's DI ability when predominantly preverbal might be regarded as an early domain-general declarative memory ability underlying early productive language development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Memory processing in great apes: the effect of time and sleep

    PubMed Central

    Martin-Ordas, Gema; Call, Josep

    2011-01-01

    Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference. PMID:21632621

  6. Memory processing in great apes: the effect of time and sleep.

    PubMed

    Martin-Ordas, Gema; Call, Josep

    2011-12-23

    Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference.

  7. A neurocognitive perspective on language: the declarative/procedural model.

    PubMed

    Ullman, M T

    2001-10-01

    What are the psychological, computational and neural underpinnings of language? Are these neurocognitive correlates dedicated to language? Do different parts of language depend on distinct neurocognitive systems? Here I address these and other issues that are crucial for our understanding of two fundamental language capacities: the memorization of words in the mental lexicon, and the rule-governed combination of words by the mental grammar. According to the declarative/procedural model, the mental lexicon depends on declarative memory and is rooted in the temporal lobe, whereas the mental grammar involves procedural memory and is rooted in the frontal cortex and basal ganglia. I argue that the declarative/procedural model provides a new framework for the study of lexicon and grammar.

  8. Dissociating response systems: erasing fear from memory.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2010-07-01

    In addition to the extensive evidence in animals, we previously showed that disrupting reconsolidation by noradrenergic blockade produced amnesia for the original fear response in humans. Interestingly, the declarative memory for the fear association remained intact. These results asked for a solid replication. Moreover, given the constructive nature of memories, the intact recollection of the fear association could eventually 'rebuild' the fear memory, resulting in the spontaneous recovery of the fear response. Yet, perseverance of the amnesic effects would have substantial clinical implications, as even the most effective treatments for psychiatric disorders display high percentages of relapse. Using a differential fear conditioning procedure in humans, we replicated our previous findings by showing that administering propranolol (40mg) prior to memory reactivation eliminated the startle fear response 24h later. But most importantly, this effect persisted at one month follow-up. Notably, the propranolol manipulation not only left the declarative memory for the acquired contingency untouched, but also skin conductance discrimination. In addition, a close association between declarative knowledge and skin conductance responses was found. These findings are in line with the supposed double dissociation of fear conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. They support the view that skin conductance conditioning primarily reflects contingency learning, whereas the startle response is a rather specific measure of fear. Furthermore, the results indicate the absence of a causal link between the actual knowledge of a fear association and its fear response, even though they often operate in parallel. Interventions targeting the amygdalar fear memory may be essential in specifically and persistently dampening the emotional impact of fear. From a clinical and ethical perspective, disrupting reconsolidation points to promising interventions persistently erasing fear responses from trauma memory without affecting the actual recollection.

  9. Effect of obesity on cognition in adults with and without a mood disorder: study design and methods

    PubMed Central

    Restivo, Maria R; McKinnon, Margaret C; Frey, Benicio N; Hall, Geoffrey B; Taylor, Valerie H

    2016-01-01

    Introduction Obesity is a common medical illness that is increasingly recognised as conferring risk of decline in cognitive performance, independent of other comorbid medical conditions. Individuals with mood disorders (bipolar disorder (BD) or major depressive disorder (MDD)) display an increased prevalence of both obesity and risk factors for cardiovascular diseases. Moreover, BD and MDD are associated with impairment in cognitive functioning across multiple domains. The independent contribution of obesity to cognitive decline in this population has not been explored. This study examines the impact of obesity on cognition by comparing neuropsychological performance in obese individuals, with or without a mood disorder before and after undergoing bariatric surgery. Methods and analysis This study compares measures of declarative memory, executive functioning and attention in obese individuals (body mass index >35 kg/m2) with BD or MDD, and 2 control populations (obese individuals without a psychiatric illness and healthy non-obese controls) prior to and following bariatric surgery. Participants (ages 18–60) receive a psychiatric diagnosis via the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; SCID). Mood ratings, physical measurements, nutritional and health questionnaires are also administered. A standardised battery of neuropsychological tests aimed at establishing performance in areas of declarative memory, executive functioning and attention are administered. Warrington's Recognition Memory Task (RMT) and an N-Back Task are performed in a 3 T functional MRI to investigate patterns of neural activation during cognitive performance. Additionally, anatomical MRI data are obtained to investigate potential changes in neural structures. Baseline data will be analysed for between-group differences and later compared with postsurgical data to investigate cognitive change. Ethics and dissemination This study has been approved by the Hamilton Integrated Research Ethics Board (09–3254). Results will be available in peer-reviewed scientific publications and scientific meetings presentations, and released in lay form to media. PMID:26928024

  10. Non-declarative memory in the rehabilitation of amnesia.

    PubMed

    Cavaco, S; Malec, J F; Bergquist, T

    2005-09-01

    The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.

  11. Effects of Acute Cortisol Administration on Perceptual Priming of Trauma-Related Material

    PubMed Central

    Streb, Markus; Pfaltz, Monique; Michael, Tanja

    2014-01-01

    Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support the idea that administration of cortisol might be an effective treatment strategy in reducing intrusive reexperiencing. PMID:25192334

  12. Disentangling the roles of arousal and amygdala activation in emotional declarative memory

    PubMed Central

    Fernández, Guillén; Hermans, Erno J.

    2016-01-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS− trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. PMID:27217115

  13. The hippocampus and memory for orderly stimulus relations

    PubMed Central

    Dusek, Jeffery A.; Eichenbaum, Howard

    1997-01-01

    Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans. PMID:9192700

  14. Mechanisms for widespread hippocampal involvement in cognition

    PubMed Central

    Shohamy, Daphna; Turk-Browne, Nicholas B.

    2014-01-01

    The quintessential memory system in the human brain — the hippocampus and surrounding medial temporal lobe (MTL) — is often treated as a module for the formation of conscious, or declarative memories. However, growing evidence suggests that the hippocampus plays a broader role in memory and cognition and that theories organizing memory into strictly dedicated systems may need to be updated. We first consider the historical evidence for the specialized role of the hippocampus in declarative memory. Then, we describe the serendipitous encounter that motivated this special section, based on parallel research from our labs that suggested a more pervasive contribution of the hippocampus to cognition beyond declarative memory. Finally, we develop a theoretical framework that describes two general mechanisms for how the hippocampus interacts with other brain systems and cognitive processes: the Memory Modulation Hypothesis, in which mnemonic representations in the hippocampus modulate the operation of other systems, and the Adaptive Function Hypothesis, in which specialized computations in the hippocampus are recruited as a component of both mnemonic and non-mnemonic functions. This framework is consistent with an emerging view that the most fertile ground for discovery in cognitive psychology and neuroscience lies at the interface between parts of the mind and brain that have traditionally been studied in isolation. PMID:24246058

  15. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    PubMed

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Ventral Striatum and the Evaluation of Memory Retrieval Strategies

    PubMed Central

    Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M.; Scimeca, Jason M.

    2015-01-01

    Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant’s subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies. PMID:24564466

  17. Musical memory in a patient with severe anterograde amnesia

    PubMed Central

    Cavaco, Sara; Feinstein, Justin S.; van Twillert, Henk; Tranel, Daniel

    2014-01-01

    The ability to play a musical instrument represents a unique procedural skill that can be remarkably resilient to disruptions in declarative memory. For example, musicians with severe anterograde amnesia have demonstrated preserved ability to play musical instruments. However, the question of whether amnesic musicians can learn how to play new musical material despite severe memory impairment has not been thoroughly investigated. We capitalized on a rare opportunity to address this question. Patient SZ, an amateur musician (tenor saxophone), has extensive bilateral damage to his medial temporal lobes following herpes simplex encephalitis, resulting in a severe anterograde amnesia. We tested SZ’s capacity to learn new unfamiliar songs by sight-reading following three months of biweekly practices. Performances were recorded and then evaluated by a professional saxophonist. SZ demonstrated significant improvement in his ability to read and play new music, despite his inability to recognize any of the songs at a declarative level. The results suggest that it is possible to learn certain aspects of new music without the assistance of declarative memory. PMID:23036073

  18. The Magnitude, Generality, and Determinants of Flynn Effects on Forms of Declarative Memory and Visuospatial Ability: Time-Sequential Analyses of Data from a Swedish Cohort Study

    ERIC Educational Resources Information Center

    Ronnlund, Michael; Nilsson, Lars-Goran

    2008-01-01

    To estimate Flynn effects (FEs) on forms of declarative memory (episodic, semantic) and visuospatial ability (Block Design) time-sequential analyses of data for Swedish adult samples (35-80 years) assessed on either of four occasions (1989, 1994, 1999, 2004; n = 2995) were conducted. The results demonstrated cognitive gains across occasions,…

  19. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders.

    PubMed

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-03-04

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey's Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline.

  20. Declarative memory: sleep protects new memories from interference.

    PubMed

    Norman, Kenneth A

    2006-08-08

    Interference is one of the most fundamental phenomena in memory research: acquiring new memories causes forgetting of other, related memories. A new study shows that sleep, interposed between learning episodes, can mitigate the extent to which new (post-sleep) learning interferes with recall of previously acquired knowledge.

  1. Factor Structure and Heritability of Endophenotypes in Schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS-1)

    PubMed Central

    Seidman, Larry J.; Hellemann, Gerhard; Nuechterlein, Keith H.; Greenwood, Tiffany A.; Braff, David L.; Cadenhead, Kristin S.; Calkins, Monica E.; Freedman, Robert; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Light, Gregory A.; Olincy, Ann; Radant, Allen D.; Siever, Larry J.; Silverman, Jeremy M.; Sprock, Joyce; Stone, William S.; Sugar, Catherine; Swerdlow, Neal R.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Green, Michael F.

    2018-01-01

    Background Although many endophenotypes for schizophrenia have been studied individually, few studies have examined the extent to which common neurocognitive and neurophysiological measures reflect shared versus unique endophenotypic factors. It may be possible to distill individual endophenotypes into composite measures that reflect dissociable, genetically informative elements. Methods The first phase of the Consortium on the Genetics of Schizophrenia (COGS-1) is a multisite family study that collected neurocognitive and neurophysiological data between 2003–2008. For these analyses, participants included schizophrenia probands (n=83), their nonpsychotic siblings (n=151), and community comparison subjects (n=209) with complete data on a battery of 12 neurocognitive tests (assessing domains of working memory, declarative memory, vigilance, spatial ability, abstract reasoning, facial emotion processing, and motor speed) and 3 neurophysiological tasks reflecting inhibitory processing (P50 gating, prepulse inhibition and antisaccade tasks). Factor analyses were conducted on the measures for each subject group and across the entire sample. Heritability analyses of factors were performed using SOLAR. Results Analyses yielded 5 distinct factors: 1) Episodic Memory, 2) Working Memory, 3) Perceptual Vigilance, 4) Visual Abstraction, and 5) Inhibitory Processing. Neurophysiological measures had low associations with these factors. The factor structure of endophenotypes was largely comparable across probands, siblings and controls. Significant heritability estimates for the factors ranged from 22% (Episodic Memory) to 39% (Visual Abstraction). Conclusions Neurocognitive measures reflect a meaningful amount of shared variance whereas the neurophysiological measures reflect largely unique contributions as endophenotypes for schizophrenia. Composite endophenotype measures may inform our neurobiological and genetic understanding of schizophrenia. PMID:25682549

  2. Factor structure and heritability of endophenotypes in schizophrenia: findings from the Consortium on the Genetics of Schizophrenia (COGS-1).

    PubMed

    Seidman, Larry J; Hellemann, Gerhard; Nuechterlein, Keith H; Greenwood, Tiffany A; Braff, David L; Cadenhead, Kristin S; Calkins, Monica E; Freedman, Robert; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Light, Gregory A; Olincy, Ann; Radant, Allen D; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Stone, William S; Sugar, Catherine; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Green, Michael F

    2015-04-01

    Although many endophenotypes for schizophrenia have been studied individually, few studies have examined the extent to which common neurocognitive and neurophysiological measures reflect shared versus unique endophenotypic factors. It may be possible to distill individual endophenotypes into composite measures that reflect dissociable, genetically informative elements. The first phase of the Consortium on the Genetics of Schizophrenia (COGS-1) is a multisite family study that collected neurocognitive and neurophysiological data between 2003 and 2008. For these analyses, participants included schizophrenia probands (n=83), their nonpsychotic siblings (n=151), and community comparison subjects (n=209) with complete data on a battery of 12 neurocognitive tests (assessing domains of working memory, declarative memory, vigilance, spatial ability, abstract reasoning, facial emotion processing, and motor speed) and 3 neurophysiological tasks reflecting inhibitory processing (P50 gating, prepulse inhibition and antisaccade tasks). Factor analyses were conducted on the measures for each subject group and across the entire sample. Heritability analyses of factors were performed using SOLAR. Analyses yielded 5 distinct factors: 1) Episodic Memory, 2) Working Memory, 3) Perceptual Vigilance, 4) Visual Abstraction, and 5) Inhibitory Processing. Neurophysiological measures had low associations with these factors. The factor structure of endophenotypes was largely comparable across probands, siblings and controls. Significant heritability estimates for the factors ranged from 22% (Episodic Memory) to 39% (Visual Abstraction). Neurocognitive measures reflect a meaningful amount of shared variance whereas the neurophysiological measures reflect largely unique contributions as endophenotypes for schizophrenia. Composite endophenotype measures may inform our neurobiological and genetic understanding of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-07-01

    Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Sleep laboratory. Twenty healthy male subjects (age: 23.3 ± 2.1 y). Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. © 2015 Associated Professional Sleep Societies, LLC.

  4. [Anterograde declarative memory and its models].

    PubMed

    Barbeau, E-J; Puel, M; Pariente, J

    2010-01-01

    Patient H.M.'s recent death provides the opportunity to highlight the importance of his contribution to a better understanding of the anterograde amnesic syndrome. The thorough study of this patient over five decades largely contributed to shape the unitary model of declarative memory. This model holds that declarative memory is a single system that cannot be fractionated into subcomponents. As a system, it depends mainly on medial temporal lobes structures. The objective of this review is to present the main characteristics of different modular models that have been proposed as alternatives to the unitary model. It is also an opportunity to present different patients, who, although less famous than H.M., helped make signification contribution to the field of memory. The characteristics of the five main modular models are presented, including the most recent one (the perceptual-mnemonic model). The differences as well as how these models converge are highlighted. Different possibilities that could help reconcile unitary and modular approaches are considered. Although modular models differ significantly in many aspects, all converge to the notion that memory for single items and semantic memory could be dissociated from memory for complex material and context-rich episodes. In addition, these models converge concerning the involvement of critical brain structures for these stages: Item and semantic memory, as well as familiarity, are thought to largely depend on anterior subhippocampal areas, while relational, context-rich memory and recollective experiences are thought to largely depend on the hippocampal formation. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Sleep and Cognition

    PubMed Central

    Deak, Maryann C.; Stickgold, Robert

    2018-01-01

    Sleep is a complex physiologic state, the importance of which has long been recognized. Lack of sleep is detrimental to humans and animals. Over the past decade, an important link between sleep and cognitive processing has been established. Sleep plays an important role in consolidation of different types of memory and contributes to insightful, inferential thinking. While the mechanism by which memories are processed in sleep remains unknown, several experimental models have been proposed. This article explores the link between sleep and cognition by reviewing (1) the effects of sleep deprivation on cognition, (2) the influence of sleep on consolidation of declarative and non-declarative memory, and 3) some proposed models of how sleep facilitates memory consolidation in sleep. PMID:26271496

  6. Noradrenergic Mechanisms of Arousal’s Bidirectional Effects on Episodic Memory

    PubMed Central

    Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara

    2016-01-01

    Arousal’s selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal’s bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball−1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball−1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball−1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. PMID:27815214

  7. Noradrenergic mechanisms of arousal's bidirectional effects on episodic memory.

    PubMed

    Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara

    2017-01-01

    Arousal's selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal's bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball-1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball-1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball-1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

    PubMed Central

    Murty, Vishnu P.; Adcock, R. Alison

    2014-01-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005

  9. Sleep-related declarative memory consolidation and verbal replay during sleep talking in patients with REM sleep behavior disorder.

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level.

  10. Sleep-Related Declarative Memory Consolidation and Verbal Replay during Sleep Talking in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    Objective To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Methods Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Results Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Conclusion Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level. PMID:24349492

  11. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    PubMed

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Patients with hippocampal amnesia successfully integrate gesture and speech.

    PubMed

    Hilverman, Caitlin; Clough, Sharice; Duff, Melissa C; Cook, Susan Wagner

    2018-06-19

    During conversation, people integrate information from co-speech hand gestures with information in spoken language. For example, after hearing the sentence, "A piece of the log flew up and hit Carl in the face" while viewing a gesture directed at the nose, people tend to later report that the log hit Carl in the nose (information only in gesture) rather than in the face (information in speech). The cognitive and neural mechanisms that support the integration of gesture with speech are unclear. One possibility is that the hippocampus - known for its role in relational memory and information integration - is necessary for integrating gesture and speech. To test this possibility, we examined how patients with hippocampal amnesia and healthy and brain-damaged comparison participants express information from gesture in a narrative retelling task. Participants watched videos of an experimenter telling narratives that included hand gestures that contained supplementary information. Participants were asked to retell the narratives and their spoken retellings were assessed for the presence of information from gesture. For features that had been accompanied by supplementary gesture, patients with amnesia retold fewer of these features overall and fewer retellings that matched the speech from the narrative. Yet their retellings included features that contained information that had been present uniquely in gesture in amounts that were not reliably different from comparison groups. Thus, a functioning hippocampus is not necessary for gesture-speech integration over short timescales. Providing unique information in gesture may enhance communication for individuals with declarative memory impairment, possibly via non-declarative memory mechanisms. Copyright © 2018. Published by Elsevier Ltd.

  13. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal–thalamus–hippocampus network

    PubMed Central

    Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G.; Tendolkar, Indira

    2018-01-01

    Abstract The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long‐term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ‐aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face–name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory‐related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory‐related functional connectivity in a medial prefrontal–thalamus–hippocampus network. PMID:29488277

  14. Memory for past public events depends on retrieval frequency but not memory age in Alzheimer's disease.

    PubMed

    Müller, Stephan; Mychajliw, Christian; Hautzinger, Martin; Fallgatter, Andreas J; Saur, Ralf; Leyhe, Thomas

    2014-01-01

    Alzheimer's disease (AD) is characterized by retrograde memory deficits primarily caused by dysfunction of the hippocampal complex. Unresolved questions exist concerning the time course of hippocampal involvement in conscious recollection of declarative knowledge, as reports of temporal gradients of retrograde amnesia have been inconclusive. The aim of this study was to examine whether the extent and severity of retrograde amnesia is mediated by retrieval frequency or, in contrast, whether it depends on the age of the memory according to the assumptions of the main current theories of memory formation. We compared recall of past public events in patients with AD and healthy control (HC) individuals using the Historic Events Test (HET). The HET assesses knowledge about famous public events of the past 60 years divided into four time segments and consists of subjective memory rating, dating accuracy, and contextual memory tasks. Although memory for public events was impaired in AD patients, there was a strong effect of retrieval frequency across all time segments and both groups. As AD and HC groups derived similar benefits from greater retrieval frequency, cortical structures other than the hippocampal complex may mediate memory retrieval. These findings suggest that more frequently retrieved events and facts become more independent of the hippocampal complex and thus better protected against early damage of AD. This could explain why cognitive activity may delay the onset of memory decline in persons who develop AD.

  15. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  16. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  17. Sleep facilitates consolidation of emotional declarative memory.

    PubMed

    Hu, Peter; Stylos-Allan, Melinda; Walker, Matthew P

    2006-10-01

    Both sleep and emotion are known to modulate processes of memory consolidation, yet their interaction is poorly understood. We examined the influence of sleep on consolidation of emotionally arousing and neutral declarative memory. Subjects completed an initial study session involving arousing and neutral pictures, either in the evening or in the morning. Twelve hours later, after sleeping or staying awake, subjects performed a recognition test requiring them to discriminate between these original pictures and novel pictures by responding "remember,"know" (familiar), or "new." Selective sleep effects were observed for consolidation of emotional memory: Recognition accuracy for know judgments of arousing stimuli improved by 42% after sleep relative to wake, and recognition bias for remember judgments of these stimuli increased by 58% after sleep relative to wake (resulting in more conservative responding). These findings hold important implications for understanding of human memory processing, suggesting that the facilitation of memory for emotionally salient information may preferentially develop during sleep.

  18. The Role and Dynamic of Strengthening in the Reconsolidation Process in a Human Declarative Memory: What Decides the Fate of Recent and Older Memories?

    PubMed Central

    Pedreira, María E.

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening. PMID:23658614

  19. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories?

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening.

  20. Sleep-Dependent Consolidation of Rewarded Behavior Is Diminished in Children with Attention Deficit Hyperactivity Disorder and a Comorbid Disorder of Social Behavior

    PubMed Central

    Wiesner, Christian D.; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba

    2017-01-01

    Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8–12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward. PMID:28228742

  1. Are Prescription Stimulants “Smart Pills”?

    PubMed Central

    Smith, M. Elizabeth; Farah, Martha J.

    2013-01-01

    Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research. PMID:21859174

  2. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network.

    PubMed

    Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira

    2018-06-01

    The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats.

    PubMed

    Peng, Ji-Yun; Li, Bao-Ming

    2009-05-28

    It has been reported that consolidation of motor skill, a type of non-declarative memories, requires protein synthesis, as hippocampus-dependent declarative memory does. However, little is known about the importance of protein synthesis in maintenance and especially post-retrieval reconsolidation of acrobatic motor skill. Here, we show that protein synthesis is essential not only for the consolidation but also for the maintenance and reconsolidation of a rotarod-running skill. Intra-ventricle infusion of the protein synthesis inhibitor anisomycin 0 h but not 2 h post-training caused a severe deficit in the acquisition of the rotarod-running skill. Protein synthesis inhibition (PSI) also caused a deficit in the maintenance of the rotarod-running skill, as well-trained rats demonstrated a deficit in the rotarod-running performance upon treatment with anisomycin. Similarly, PSI impaired the post-retrieval reconsolidation of the rotarod-running skill: well-trained rats treated with anisomycin 0 h but not 0.5, 2 and 4 h after the task performance exhibited amnesia for the running skill later on. Interestingly, rats treated with anisomycin 6 and 12 h post-retrieval exhibited amnesia for the running skill. Thus, protein synthesis is essential not only for the consolidation but also for the maintenance and post-retrieval reconsolidation of rotarod-running acrobatic motor skill.

  4. Impaired memory consolidation in children with obstructive sleep disordered breathing

    PubMed Central

    Katz, Eliot S.; Kapur, Kush; Stickgold, Robert

    2017-01-01

    Memory consolidation is stabilized and even enhanced by sleep (and particularly by 12–15 Hz sleep spindles in NREM stage 2 sleep) in healthy children but it is unclear what happens to these processes when sleep is disturbed by obstructive sleep disordered breathing. This cross-sectional study investigates differences in declarative memory consolidation among children with primary snoring (PS) and obstructive sleep apnea (OSA) compared to controls. We further investigate whether memory consolidation group differences are associated with NREM stage 2 (N2) sigma (12–15 Hz) or NREM slow oscillation (0.5–1 Hz) spectral power bands. In this study, we trained and tested participants on a spatial declarative memory task with cued recall. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with in-lab polysomnography. 36 participants ages 5–9 years completed the protocol: 14 with OSA as defined by respiratory disturbance index (RDI) > 1/hour, 12 with primary snoring (PS) and 10 controls. OSA participants had poorer overall memory consolidation than controls across Wake and Sleep conditions [OSA: mean = -18.7% (5.8), controls: mean = 1.9% (7.2), t = -2.20, P = 0.04]. In contrast, PS participants and controls had comparable memory consolidation across conditions (t = 0.41; P = 0.38). We did not detect a main effect for condition (Sleep, Wake) or group x condition interaction on memory consolidation. OSA participants had lower N2 sigma power than PS (P = 0.03) and controls (P = 0.004) and N2 sigma power inversely correlated with percentage of time snoring on the study night (r = -0.33, P<0.05). Across all participants, N2 sigma power modestly correlated with memory consolidation in both Sleep (r = 0.37, P = 0.03) and Wake conditions (r = 0.44, P = 0.009). Further observed variable path analysis showed that N2 sigma power mediated the relationship between group and mean memory consolidation across Sleep and Wake states [Bindirect = 6.76(3.5), z = 2.03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing. PMID:29095855

  5. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    PubMed

    Maski, Kiran; Steinhart, Erin; Holbrook, Hannah; Katz, Eliot S; Kapur, Kush; Stickgold, Robert

    2017-01-01

    Memory consolidation is stabilized and even enhanced by sleep (and particularly by 12-15 Hz sleep spindles in NREM stage 2 sleep) in healthy children but it is unclear what happens to these processes when sleep is disturbed by obstructive sleep disordered breathing. This cross-sectional study investigates differences in declarative memory consolidation among children with primary snoring (PS) and obstructive sleep apnea (OSA) compared to controls. We further investigate whether memory consolidation group differences are associated with NREM stage 2 (N2) sigma (12-15 Hz) or NREM slow oscillation (0.5-1 Hz) spectral power bands. In this study, we trained and tested participants on a spatial declarative memory task with cued recall. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with in-lab polysomnography. 36 participants ages 5-9 years completed the protocol: 14 with OSA as defined by respiratory disturbance index (RDI) > 1/hour, 12 with primary snoring (PS) and 10 controls. OSA participants had poorer overall memory consolidation than controls across Wake and Sleep conditions [OSA: mean = -18.7% (5.8), controls: mean = 1.9% (7.2), t = -2.20, P = 0.04]. In contrast, PS participants and controls had comparable memory consolidation across conditions (t = 0.41; P = 0.38). We did not detect a main effect for condition (Sleep, Wake) or group x condition interaction on memory consolidation. OSA participants had lower N2 sigma power than PS (P = 0.03) and controls (P = 0.004) and N2 sigma power inversely correlated with percentage of time snoring on the study night (r = -0.33, P<0.05). Across all participants, N2 sigma power modestly correlated with memory consolidation in both Sleep (r = 0.37, P = 0.03) and Wake conditions (r = 0.44, P = 0.009). Further observed variable path analysis showed that N2 sigma power mediated the relationship between group and mean memory consolidation across Sleep and Wake states [Bindirect = 6.76(3.5), z = 2.03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing.

  6. Striatal volume predicts level of video game skill acquisition.

    PubMed

    Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Prakash, Ruchika S; Voss, Michelle W; Graybiel, Ann M; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2010-11-01

    Video game skills transfer to other tasks, but individual differences in performance and in learning and transfer rates make it difficult to identify the source of transfer benefits. We asked whether variability in initial acquisition and of improvement in performance on a demanding video game, the Space Fortress game, could be predicted by variations in the pretraining volume of either of 2 key brain regions implicated in learning and memory: the striatum, implicated in procedural learning and cognitive flexibility, and the hippocampus, implicated in declarative memory. We found that hippocampal volumes did not predict learning improvement but that striatal volumes did. Moreover, for the striatum, the volumes of the dorsal striatum predicted improvement in performance but the volumes of the ventral striatum did not. Both ventral and dorsal striatal volumes predicted early acquisition rates. Furthermore, this early-stage correlation between striatal volumes and learning held regardless of the cognitive flexibility demands of the game versions, whereas the predictive power of the dorsal striatal volumes held selectively for performance improvements in a game version emphasizing cognitive flexibility. These findings suggest a neuroanatomical basis for the superiority of training strategies that promote cognitive flexibility and transfer to untrained tasks.

  7. Sleep after Learning Aids Memory Recall

    ERIC Educational Resources Information Center

    Born, Jan; Gais, Steffen; Lucas, Brian

    2006-01-01

    In recent years, the effect of sleep on memory consolidation has received considerable attention. In humans, these studies concentrated mainly on procedural types of memory, which are considered to be hippocampus-independent. Here, we show that sleep also has a persisting effect on hippocampus-dependent declarative memory. In two experiments, we…

  8. Ventral Fronto-Temporal Pathway Supporting Cognitive Control of Episodic Memory Retrieval

    PubMed Central

    Barredo, Jennifer; Öztekin, Ilke; Badre, David

    2015-01-01

    Achieving our goals often requires guiding access to relevant information from memory. Such goal-directed retrieval requires interactions between systems supporting cognitive control, including ventrolateral prefrontal cortex (VLPFC), and those supporting declarative memory, such as the medial temporal lobes (MTL). However, the pathways by which VLPFC interacts with MTL during retrieval are underspecified. Prior neuroanatomical evidence suggests that a polysynaptic ventral fronto-temporal pathway may support VLPFC–MTL interactions. To test this hypothesis, human participants were scanned using fMRI during performance of a source-monitoring task. The strength of source information was varied via repetition during encoding. Single encoding events should produce a weaker memory trace, thus recovering source information about these items should demand greater cognitive control. Results demonstrated that cortical targets along the ventral path—anterior VLPFC, temporal pole, anterior parahippocampus, and hippocampus—exhibited increases in univariate BOLD response correlated with increases in controlled retrieval demand, independent of factors related to response selection. Further, a functional connectivity analysis indicated that these regions functionally couple and are distinguishable from a dorsal pathway related to response selection demands. These data support a ventral retrieval pathway linking PFC and MTL. PMID:24177990

  9. Positive modulation of a neutral declarative memory by a threatening social event.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Campos, Jorge; Allegri, Ricardo F; Molina, Victor A; Forcato, Cecilia; Pedreira, María E

    2015-12-01

    Memories can be altered by negative or arousing experiences due to the activation of the stress-responsive sympatho-adrenal-medullary axis (SYM). Here, we used a neutral declarative memory that was acquired during multi-trial training to determine the effect of a threatening event on memory without emotional valence. To this end, participants received a new threatening social protocol before learning pairs of meaningless syllables and were tested either 15 min, 2 days or 8 days after acquisition. We first demonstrated that this threatening social situation activates not only the SYM axis (Experiment 1) and the hypothalamus-pituitary-adrenal axis (HPA; Experiment 2), but also, it improves the acquisition or early consolidation of the syllable pairs (Experiment 3). This improvement is not a transient effect; it can be observed after the memory is consolidated. Furthermore, this modulation increases the persistence of memory (Experiment 4). Thus, it is possible to affect memories with specific events that contain unrelated content and a different valence. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Insights on consciousness from taste memory research.

    PubMed

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  11. The dynamic nature of the reconsolidation process and its boundary conditions: Evidence based on human tests.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Forcato, Cecilia; Pedreira, María E

    2016-04-01

    The reconsolidation process is the mechanism by which the strength and/or content of consolidated memories are updated. This process is triggered by the presentation of a reminder (training cues). It is not always possible to trigger the reconsolidation process. For example, memory age and strength are boundary conditions for the reconsolidation process. Here, we investigated the dynamic changes in these conditions. We propose that the boundary conditions of the reconsolidation process are not fixed and vary as a consequence of the interaction between memory features and reminder characteristics. To modify memory properties, participants received a threatening social protocol that improves memory acquisition or a control condition (fake, without social interaction) prior to learning pairs of meaningless syllables. To determine whether a strong young or old declarative memory undergoes the reconsolidation process, we used an interference task (a second list of pairs of meaningless syllables) to disrupt memory re-stabilization. To assess whether the older memory could be strengthened, we repeated the triggering of reconsolidation. Strong young or old memories modulated by a threatening experience could be interfered during reconsolidation and updated (strengthened) by reconsolidation. Rather than being fixed, boundary conditions vary according to the memory features (strong memory), which indicates the dynamic nature of the reconsolidation process. Our findings demonstrate that it is possible to modify these limits by recruiting the reconsolidation process and making it functionally operative again. This novel scenario opens the possibility to new therapeutically approaches that take into account the reconsolidation process. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Manipulating memory efficacy affects the behavioral and neural profiles of deterministic learning and decision-making.

    PubMed

    Tremel, Joshua J; Ortiz, Daniella M; Fiez, Julie A

    2018-06-01

    When making a decision, we have to identify, collect, and evaluate relevant bits of information to ensure an optimal outcome. How we approach a given choice can be influenced by prior experience. Contextual factors and structural elements of these past decisions can cause a shift in how information is encoded and can in turn influence later decision-making. In this two-experiment study, we sought to manipulate declarative memory efficacy and decision-making in a concurrent discrimination learning task by altering the amount of information to be learned. Subjects learned correct responses to pairs of items across several repetitions of a 50- or 100-pair set and were tested for memory retention. In one experiment, this memory test interrupted learning after an initial encoding experience in order to test for early encoding differences and associate those differences with changes in decision-making. In a second experiment, we used fMRI to probe neural differences between the two list-length groups related to decision-making across learning and assessed subsequent memory retention. We found that a striatum-based system was associated with decision-making patterns when learning a longer list of items, while a medial cortical network was associated with patterns when learning a shorter list. Additionally, the hippocampus was exclusively active for the shorter list group. Altogether, these behavioral, computational, and imaging results provide evidence that multiple types of mnemonic representations contribute to experienced-based decision-making. Moreover, contextual and structural factors of the task and of prior decisions can influence what types of evidence are drawn upon during decision-making. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function

    PubMed Central

    Ong, Ju Lynn; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L

    2018-01-01

    Abstract Study Objectives Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Methods Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Results Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Conclusions Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation. PMID:29425369

  14. Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function.

    PubMed

    Ong, Ju Lynn; Patanaik, Amiya; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L

    2018-05-01

    Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation.

  15. The declarative/procedural model of lexicon and grammar.

    PubMed

    Ullman, M T

    2001-01-01

    Our use of language depends upon two capacities: a mental lexicon of memorized words and a mental grammar of rules that underlie the sequential and hierarchical composition of lexical forms into predictably structured larger words, phrases, and sentences. The declarative/procedural model posits that the lexicon/grammar distinction in language is tied to the distinction between two well-studied brain memory systems. On this view, the memorization and use of at least simple words (those with noncompositional, that is, arbitrary form-meaning pairings) depends upon an associative memory of distributed representations that is subserved by temporal-lobe circuits previously implicated in the learning and use of fact and event knowledge. This "declarative memory" system appears to be specialized for learning arbitrarily related information (i.e., for associative binding). In contrast, the acquisition and use of grammatical rules that underlie symbol manipulation is subserved by frontal/basal-ganglia circuits previously implicated in the implicit (nonconscious) learning and expression of motor and cognitive "skills" and "habits" (e.g., from simple motor acts to skilled game playing). This "procedural" system may be specialized for computing sequences. This novel view of lexicon and grammar offers an alternative to the two main competing theoretical frameworks. It shares the perspective of traditional dual-mechanism theories in positing that the mental lexicon and a symbol-manipulating mental grammar are subserved by distinct computational components that may be linked to distinct brain structures. However, it diverges from these theories where they assume components dedicated to each of the two language capacities (that is, domain-specific) and in their common assumption that lexical memory is a rote list of items. Conversely, while it shares with single-mechanism theories the perspective that the two capacities are subserved by domain-independent computational mechanisms, it diverges from them where they link both capacities to a single associative memory system with broad anatomic distribution. The declarative/procedural model, but neither traditional dual- nor single-mechanism models, predicts double dissociations between lexicon and grammar, with associations among associative memory properties, memorized words and facts, and temporal-lobe structures, and among symbol-manipulation properties, grammatical rule products, motor skills, and frontal/basal-ganglia structures. In order to contrast lexicon and grammar while holding other factors constant, we have focused our investigations of the declarative/procedural model on morphologically complex word forms. Morphological transformations that are (largely) unproductive (e.g., in go-went, solemn-solemnity) are hypothesized to depend upon declarative memory. These have been contrasted with morphological transformations that are fully productive (e.g., in walk-walked, happy-happiness), whose computation is posited to be solely dependent upon grammatical rules subserved by the procedural system. Here evidence is presented from studies that use a range of psycholinguistic and neurolinguistic approaches with children and adults. It is argued that converging evidence from these studies supports the declarative/procedural model of lexicon and grammar.

  16. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    PubMed Central

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  17. C957T polymorphism of the dopamine D2 receptor gene is associated with motor learning and heart rate.

    PubMed

    Huertas, E; Bühler, K-M; Echeverry-Alzate, V; Giménez, T; López-Moreno, J A

    2012-08-01

    Genetic variants that are related to the dopaminergic system have been frequently found to be associated with various neurological and mental disorders. Here, we studied the relationships between some of these genetic variants and some cognitive and psychophysiological processes that are implicated in such disorders. Two single nucleotide polymorphisms were chosen: one in the dopamine D2 receptor gene (rs6277-C957T) and one in the catechol-O-methyltransferase gene (rs4680-Val158Met), which is involved in the metabolic degradation of dopamine. The performance of participants on two long-term memory tasks was assessed: free recall (declarative memory) and mirror drawing (procedural motor learning). Heart rate (HR) was also monitored during the initial trials of the mirror-drawing task, which is considered to be a laboratory middle-stress generator (moderate stress), and during a rest period (low stress). Data were collected from 213 healthy Caucasian university students. The C957T C homozygous participants showed more rapid learning than the T allele carriers in the procedural motor learning task and smaller differences in HR between the moderate- and the low-stress conditions. These results provide useful information regarding phenotypic variance in both healthy individuals and patients. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  18. Postretrieval new learning does not reliably induce human memory updating via reconsolidation.

    PubMed

    Hardwicke, Tom E; Taqi, Mahdi; Shanks, David R

    2016-05-10

    Reconsolidation theory proposes that retrieval can destabilize an existing memory trace, opening a time-dependent window during which that trace is amenable to modification. Support for the theory is largely drawn from nonhuman animal studies that use invasive pharmacological or electroconvulsive interventions to disrupt a putative postretrieval restabilization ("reconsolidation") process. In human reconsolidation studies, however, it is often claimed that postretrieval new learning can be used as a means of "updating" or "rewriting" existing memory traces. This proposal warrants close scrutiny because the ability to modify information stored in the memory system has profound theoretical, clinical, and ethical implications. The present study aimed to replicate and extend a prominent 3-day motor-sequence learning study [Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Nature 425(6958):616-620] that is widely cited as a convincing demonstration of human reconsolidation. However, in four direct replication attempts (n = 64), we did not observe the critical impairment effect that has previously been taken to indicate disruption of an existing motor memory trace. In three additional conceptual replications (n = 48), we explored the broader validity of reconsolidation-updating theory by using a declarative recall task and sequences similar to phone numbers or computer passwords. Rather than inducing vulnerability to interference, memory retrieval appeared to aid the preservation of existing sequence knowledge relative to a no-retrieval control group. These findings suggest that memory retrieval followed by new learning does not reliably induce human memory updating via reconsolidation.

  19. Developmental and sex-related differences in preschoolers' affective decision making.

    PubMed

    Heilman, Renata M; Miu, Andrei C; Benga, Oana

    2009-01-01

    This study investigated developmental and sex-related differences in affective decision making, using a two-deck version of Children's Gambling Task administered to 3- and 4-year-old children. The main findings were that 4-year-old children displayed better decision-making performance than 3-year-olds. This effect was independent of developmental changes in inductive reasoning, language, and working memory. There were also sex differences in decision-making performance, which were apparent only in 3-year-old children and favored girls. Moreover, age predicted awareness of task and the correlation between the latter and decision-making performance was significant, but only in 4-year-old children. This study thus indicates that there is a remarkable developmental leap in affective decision making, whose effects are apparent around the age of 4, which according to our results, also marks the age when the correlation of declarative knowledge and decision-making performance becomes significant.

  20. Sex-Related Differences in the Effects of Sleep Habits on Verbal and Visuospatial Working Memory

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos M.; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2016-01-01

    Poor sleep quality negatively affects memory performance, and working memory in particular. We investigated sleep habits related to sleep quality including sleep duration, daytime nap duration, nap frequency, and dream content recall frequency (DCRF). Declarative working memory can be subdivided into verbal working memory (VWM) and visuospatial working memory (VSWM). We hypothesized that sleep habits would have different effects on VWM and VSWM. To our knowledge, our study is the first to investigate differences between VWM and VSWM related to daytime nap duration, nap frequency, and DCRF. Furthermore, we tested the hypothesis that the effects of duration and frequency of daytime naps and DCRF on VWM and VSWM differed according to sex. We assessed 779 healthy right-handed individuals (434 males and 345 females; mean age: 20.7 ± 1.8 years) using a digit span forward and backward VWM task, a forward and backward VSWM task, and sleep habits scales. A correlation analysis was used to test the relationships between VWM capacity (VWMC) and VSWM capacity (VSWMC) scores and sleep duration, nap duration, nap frequency, and DCRF. Furthermore, multiple regression analyses were conducted to identify factors associated with VWMC and VSWMC scores and to identify sex-related differences. We found significant positive correlations between VSWMC and nap duration and DCRF, and between VWMC and sleep duration in all subjects. Furthermore, we found that working memory capacity (WMC) was positively correlated with nap duration in males and with sleep duration in females, and DCRF was positively correlated with VSWMC in females. Our finding of sex-related differences in the effects of sleep habits on WMC has not been reported previously. The associations between WMC and sleep habits differed according to sex because of differences in the underlying neural correlates of VWM and VSWM, and effectiveness of the sleep habits in males and females. PMID:27516751

  1. Sex-Related Differences in the Effects of Sleep Habits on Verbal and Visuospatial Working Memory.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos M; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2016-01-01

    Poor sleep quality negatively affects memory performance, and working memory in particular. We investigated sleep habits related to sleep quality including sleep duration, daytime nap duration, nap frequency, and dream content recall frequency (DCRF). Declarative working memory can be subdivided into verbal working memory (VWM) and visuospatial working memory (VSWM). We hypothesized that sleep habits would have different effects on VWM and VSWM. To our knowledge, our study is the first to investigate differences between VWM and VSWM related to daytime nap duration, nap frequency, and DCRF. Furthermore, we tested the hypothesis that the effects of duration and frequency of daytime naps and DCRF on VWM and VSWM differed according to sex. We assessed 779 healthy right-handed individuals (434 males and 345 females; mean age: 20.7 ± 1.8 years) using a digit span forward and backward VWM task, a forward and backward VSWM task, and sleep habits scales. A correlation analysis was used to test the relationships between VWM capacity (VWMC) and VSWM capacity (VSWMC) scores and sleep duration, nap duration, nap frequency, and DCRF. Furthermore, multiple regression analyses were conducted to identify factors associated with VWMC and VSWMC scores and to identify sex-related differences. We found significant positive correlations between VSWMC and nap duration and DCRF, and between VWMC and sleep duration in all subjects. Furthermore, we found that working memory capacity (WMC) was positively correlated with nap duration in males and with sleep duration in females, and DCRF was positively correlated with VSWMC in females. Our finding of sex-related differences in the effects of sleep habits on WMC has not been reported previously. The associations between WMC and sleep habits differed according to sex because of differences in the underlying neural correlates of VWM and VSWM, and effectiveness of the sleep habits in males and females.

  2. Meeting an "impossible challenge" in semantic dementia: outstanding performance in numerical Sudoku and quantitative number knowledge.

    PubMed

    Papagno, Costanza; Semenza, Carlo; Girelli, Luisa

    2013-11-01

    This study describes a follow-up investigation of numerical abilities and visuospatial memory in a patient suffering from semantic dementia whose progressive decline of semantic memory variably affected different types of knowledge. Crucially, we investigated in detail her outstanding performance with Sudoku that has been only anecdotally reported in the previous literature. We tested spatial cognition and memory, body representation, number processing, calculation, and Sudoku tasks, and we compared the patient's performance with that of matched controls. In agreement with the neuroanatomical data, showing substantial sparing of the parietal lobes in the face of severe atrophy of the temporal (and frontal) regions, we report full preservation of skills known to be supported by intact parietal-basal ganglia networks, and impaired knowledge related to long-term stored declarative information mediated by temporal regions. Performance in tasks sensitive to parietal dysfunction (such as right-left orientation, finger gnosis, writing, and visuospatial memory) was normal; within the numerical domain, preserved quantity-based number knowledge dissociated from increasing difficulties with nonquantitative number knowledge (such as knowledge of encyclopedic and personal number facts) and arithmetic facts knowledge. This case confirms the relation between numbers and space, and, although indirectly, their anatomical correlates, underlining which abilities are preserved in the case of severe semantic loss. In addition, although Sudoku is not inherently numerical, the patient was able to solve even the most difficult pattern, provided that it required digits and not letters, showing that digits have, in any case, a specific status. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  4. Opposite Effects of Cortisol on Consolidation of Temporal Sequence Memory during Waking and Sleep

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2011-01-01

    Memory functions involve three stages: encoding, consolidation, and retrieval. Modulating effects of glucocorticoids (GCs) have been consistently observed for declarative memory with GCs enhancing encoding and impairing retrieval, but surprisingly, little is known on how GCs affect memory consolidation. Studies in rats suggest a beneficial effect…

  5. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    PubMed

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration

    PubMed Central

    Nere, Andrew; Hashmi, Atif; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma. PMID:24137153

  7. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    PubMed

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains

    PubMed Central

    Schwarb, Hillary; Lucas, Heather D.; Dulas, Michael R.; Cohen, Neal J.

    2017-01-01

    The hippocampus has long been known to be a critical component of the memory system involved in the formation and use of long-term declarative memory. However, recent findings have revealed that the reach of hippocampal contributions extends to a variety of domains and tasks that require the flexible use of cognitive and social behavior, including domains traditionally linked to prefrontal cortex (PFC), such as decision-making. In addition, the prefrontal cortex (PFC) has gained traction as a necessary part of the memory system. These findings challenge the conventional characterizations of hippocampus and PFC as being circumscribed to traditional cognitive domains. Here, we emphasize that the ability to parsimoniously account for the breadth of hippocampal and PFC contributions to behavior, in terms of memory function and beyond, requires theoretical advances in our understanding of their characteristic processing features and mental representations. Notably, several literatures exist that touch upon this issue, but have remained disjointed because of methodological differences that necessarily limit the scope of inquiry, as well as the somewhat artificial boundaries that have been historically imposed between domains of cognition. In particular, this article focuses on the contribution of relational memory theory as an example of a framework that describes both the representations and processes supported by the hippocampus, and further elucidates the role of the hippocampal–PFC network to a variety of behaviors. PMID:28704928

  9. Empathy in Hippocampal Amnesia

    PubMed Central

    Beadle, J. N.; Tranel, D.; Cohen, N. J.; Duff, M. C.

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy. PMID:23526601

  10. Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice.

    PubMed

    Al Abed, Alice Shaam; Sellami, Azza; Brayda-Bruno, Laurent; Lamothe, Valérie; Noguès, Xavier; Potier, Mylène; Bennetau-Pelissero, Catherine; Marighetto, Aline

    2016-07-01

    Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as "where I parked" requires abilities to organize/update memories to prevent proactive interference from similar memories of previous "parking events". Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1μM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    PubMed

    Herzog, Nina; Friedrich, Alexia; Fujita, Naoko; Gais, Steffen; Jauch-Chara, Kamila; Oltmanns, Kerstin M; Benedict, Christian

    2012-01-01

    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body.

  12. Effects of Daytime Food Intake on Memory Consolidation during Sleep or Sleep Deprivation

    PubMed Central

    Herzog, Nina; Friedrich, Alexia; Fujita, Naoko; Gais, Steffen; Jauch-Chara, Kamila; Oltmanns, Kerstin M.; Benedict, Christian

    2012-01-01

    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep’s capacity to boost the consolidation of declarative and procedural memories, nor sleep’s quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body. PMID:22768272

  13. Learning To Remember: Building Memory Cues into a Geology Lesson.

    ERIC Educational Resources Information Center

    King-Friedrichs, Jeanne; Browne, Daniel

    2001-01-01

    Presents five guidelines for helping students retrieve declarative memories in the context of geology activities. Based on research findings on brain function from the fields of neuroscience and psychology, the activities provide opportunities for students to practice using cues to enhance memory. (DLH)

  14. Memory consolidation from seconds to weeks: a three-stage neural network model with autonomous reinstatement dynamics

    PubMed Central

    Fiebig, Florian; Lansner, Anders

    2014-01-01

    Declarative long-term memories are not created in an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories in different brain regions—called systems consolidation—can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia (RA) following hippocampal lesions points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process. We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-state framework that includes the prefrontal cortex (PFC). It bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months. We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia (AA) after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories—similar to the effects of benzodiazepines on memory. PMID:25071536

  15. Influence of reward motivation on human declarative memory.

    PubMed

    Miendlarzewska, Ewa A; Bavelier, Daphne; Schwartz, Sophie

    2016-02-01

    Motivational relevance can prioritize information for memory encoding and consolidation based on reward value. In this review, we pinpoint the possible psychological and neural mechanisms by which reward promotes learning, from guiding attention to enhancing memory consolidation. We then discuss how reward value can spill-over from one conditioned stimulus to a non-conditioned stimulus. Such generalization can occur across perceptually similar items or through more complex relations, such as associative or logical inferences. Existing evidence suggests that the neurotransmitter dopamine boosts the formation of declarative memory for rewarded information and may also control the generalization of reward values. In particular, temporally-correlated activity in the hippocampus and in regions of the dopaminergic circuit may mediate value-based decisions and facilitate cross-item integration. Given the importance of generalization in learning, our review points to the need to study not only how reward affects later memory but how learned reward values may generalize to related representations and ultimately alter memory structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hand gestures support word learning in patients with hippocampal amnesia.

    PubMed

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2018-06-01

    Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.

  17. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    PubMed Central

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  18. [Posttraumatic stress disorder in patients with neurogenic amnesia for the traumatic event].

    PubMed

    Podoll, K; Kunert, H J; Sass, H

    2000-10-01

    The development of symptoms of posttraumatic stress disorder (PTSD) in patients with neurogenic amnesia for the traumatic event is recorded in 2 own patients and in 19 cases from the clinical literature. With a single exception, all patients were accident victims with closed head injuries. Only about three quarters of the patients completely fulfilled DSM-III-R criteria of PTSD. Nineteen patients displayed involuntary conscious memories of aspects of the traumatic event (presenting as recurrent intrusive thoughts, images or dreams) co-existent with a complete or partial lack of voluntary conscious memories of the trauma, suggesting that different memory systems and distinct brain mechanisms subserve these phenomena. The said clinical observations are discussed against the background of current neuropsychological models of multiple memory systems. The recorded cases demonstrate that declarative episodic memory is not necessary for symptoms of PTSD to emerge, whereas preserved functions of non-declarative memory systems represent a sufficient condition for the development of PTSD symptoms.

  19. The explicit and implicit dance in psychoanalytic change.

    PubMed

    Fosshage, James L

    2004-02-01

    How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.

  20. Sleep and cognition.

    PubMed

    Deak, Maryann C; Stickgold, Robert

    2010-07-01

    Sleep is a complex physiologic state, the importance of which has long been recognized. Lack of sleep is detrimental to humans and animals. Over the past decade, an important link between sleep and cognitive processing has been established. Sleep plays an important role in consolidation of different types of memory and contributes to insightful, inferential thinking. While the mechanism by which memories are processed in sleep remains unknown, several experimental models have been proposed. This article explores the link between sleep and cognition by reviewing (1) the effects of sleep deprivation on cognition, (2) the influence of sleep on consolidation of declarative and non-declarative memory, and (3) some proposed models of how sleep facilitates memory consolidation in sleep. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part II: maternal FADS2 rs174575 genotype and DNA methylation predict toddler cognitive performance.

    PubMed

    Cheatham, Carol L; Lupu, Daniel S; Niculescu, Mihai D

    2015-11-01

    Maternal transfer of fatty acids is important to fetal brain development. The prenatal environment may differentially affect the substrates supporting declarative memory abilities, as the level of fatty acids transferred across the placenta may be affected by the maternal fatty acid desaturase 2 (FADS2) rs174575 single nucleotide polymorphism. In this study, we hypothesized that toddler and maternal rs174575 genotype and FADS2 promoter methylation would be related to the toddlers' declarative memory performance. Seventy-one 16-month-old toddlers participated in an imitation paradigm designed to test immediate and long-term declarative memory abilities. FADS2 rs174575 genotype was determined and FADS2 promoter methylation was quantified from blood by bisulfite pyrosequencing for the toddlers and their natural mothers. Toddlers of GG mothers at the FADS2 rs174575 single nucleotide polymorphism did not perform as well on memory assessments as toddlers of CC or CG mothers when controlling for plasma α-linolenic acid and child genotype. Toddler methylation status was related to immediate memory performance, whereas maternal methylation status was related to delayed memory performance. Thus, prenatal experience and maternal FADS2 status have a pervasive, long-lasting influence on the brain development of the offspring, but as the postnatal environment becomes more primary, the offsprings' own biology begins to have an effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum.

    PubMed

    Cruz-Morales, Sara Eugenia; García-Saldívar, Norma Laura; González-López, María Reyes; Castillo-Roberto, Georgina; Monroy, Juana; Domínguez, Roberto

    2008-12-16

    Serotonin (5-HT) is involved in behaviors such as sleep, eating, memory, in mental disorders like anxiety and depression and plays an important role in the modulation of stress. On the other hand, exposure to stress influence learning as well as declarative and non-declarative memory. These effects are dependent on the type of stressor, their magnitude, and the type of memory. The striatum has been associated with non-declarative procedural memory, while the information about stress effects on procedural memory and their relation with striatal serotonin is scarce. The objective of this study was to evaluate the effects of stress on the modifications of the striatal serotonergic system. In Experiment 1, the effects of either 60 min of restraint (R) or exposure to the elevated T-maze (ETM) was assessed. Exposure to ETM decreased 5-HT concentration and to R increased 5-HT activity ([metabolite]/[neurotransmitter]). In Experiment 2, we evaluated the effects of restraint on ETM trained immediately, 24 or 48 h after restraint. No effects were detected in acquisition or escape latencies, while retention latencies were lower in all groups compared with the non-restrained group, although significant effects were detected immediately and 24h after restraint. The memory impairment seems to be associated with changes in striatal serotonergic system, given that 5-HT concentration increased, while serotonergic activity decreased. The differences in the activity of 5-HT detected in each experiment could be explained by the effects of different stressors on the serotonergic neurons ability to synthesize the neurotransmitter. Thus, we suggest that exposure to stress impairs procedural memory and that striatal serotonin modulates this effect.

  3. Information Warfare: Evaluation of Operator Information Processing Models

    DTIC Science & Technology

    1997-10-01

    that people can describe or report, including both episodic and semantic information. Declarative memory contains a network of knowledge represented...second dimension corresponds roughly to the distinction between episodic and semantic memory that is commonly made in cognitive psychology. Episodic ...3 is long-term memory for the discourse, a subset of episodic memory . Partition 4 is long-term semantic memory , or the knowledge-base. According to

  4. Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2012-01-01

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward. PMID:22745496

  5. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    PubMed

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  6. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Memory in Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Boucher, Jill; Mayes, Andrew; Bigham, Sally

    2012-01-01

    Behavioral evidence concerning memory in forms of high-functioning autism (HFA) and in moderately low-functioning autism (M-LFA) is reviewed and compared. Findings on M-LFA are sparse. However, it is provisionally concluded that memory profiles in HFA and M-LFA (relative to ability-matched controls) are similar but that declarative memory…

  8. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  9. A Memory-Based Model of Hick's Law

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We propose and evaluate a memory-based model of Hick's law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus-response alternatives). According to the model, Hick's law reflects a combination of associative interference during retrieval from declarative memory and occasional savings…

  10. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation

    PubMed Central

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-01-01

    Study Objectives: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Design: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Setting: Sleep laboratory. Participants: Twenty healthy male subjects (age: 23.3 ± 2.1 y) Measurements and Results: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Conclusion: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. Citation: Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. SLEEP 2015;38(7):1093–1103. PMID:25845686

  11. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy.

    PubMed

    Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar

    2014-07-01

    To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Law and Science

    ERIC Educational Resources Information Center

    Huff, Toby E.

    2012-01-01

    In terms of political liberation and constitutional democracy, Americans cannot help but think back to 1776 and the Declaration of Independence. For the English, the mind reaches back to the English Declaration of Rights of 1689, and for those with somewhat longer historical memories, to Magna Carta of 1215. But the true origin of political…

  13. Declarative and Procedural Memory as Individual Differences in Second Language Acquisition

    ERIC Educational Resources Information Center

    Morgan-Short, Kara; Faretta-Stutenberg, Mandy; Brill-Schuetz, Katherine A.; Carpenter, Helen; Wong, Patrick C. M.

    2014-01-01

    This study examined how individual differences in cognitive abilities account for variance in the attainment level of adult second language (L2) syntactic development. Participants completed assessments of declarative and procedural learning abilities. They subsequently learned an artificial L2 under implicit training conditions and received…

  14. Interactions of Memory and Perception in Amnesia: The Figure–Ground Perspective

    PubMed Central

    Ngo, Joan K. W.; Hung, Lily H. T.; Peterson, Mary A.

    2012-01-01

    The medial temporal lobes (MTLs) have been thought to function exclusively in service of declarative memory. Recent research shows that damage to the perirhinal cortex (PRC) of the MTL impairs the discrimination of objects sharing many similar parts/features, leading to the hypothesis that the PRC contributes to the perception when the feature configurations, rather than the individual features, are required to solve the task. It remains uncertain, however, whether the previous research demands a slight extension of PRC function to include working memory or a more dramatic extension to include perception. We present 2 experiments assessing the implicit effects of familiar configuration on figure assignment, an early and fundamental perceptual outcome. Unlike controls, PRC-damaged individuals failed to perceive the regions portraying familiar configurations, as figure more often, than the regions comprising the same parts rearranged into novel configurations. They were also impaired in identifying the familiar objects. In a third experiment, PRC-damaged individuals performed poorly when asked to choose a familiar object from pairs of familiar and novel objects comprising the same parts. Our results demonstrate that the PRC is involved in both implicit and explicit perceptual discriminations of novel and familiar configurations. These results reveal that complex object representations in the PRC subserve both perception and memory. PMID:22172579

  15. Interactions of memory and perception in amnesia: the figure-ground perspective.

    PubMed

    Barense, Morgan D; Ngo, Joan K W; Hung, Lily H T; Peterson, Mary A

    2012-11-01

    The medial temporal lobes (MTLs) have been thought to function exclusively in service of declarative memory. Recent research shows that damage to the perirhinal cortex (PRC) of the MTL impairs the discrimination of objects sharing many similar parts/features, leading to the hypothesis that the PRC contributes to the perception when the feature configurations, rather than the individual features, are required to solve the task. It remains uncertain, however, whether the previous research demands a slight extension of PRC function to include working memory or a more dramatic extension to include perception. We present 2 experiments assessing the implicit effects of familiar configuration on figure assignment, an early and fundamental perceptual outcome. Unlike controls, PRC-damaged individuals failed to perceive the regions portraying familiar configurations, as figure more often, than the regions comprising the same parts rearranged into novel configurations. They were also impaired in identifying the familiar objects. In a third experiment, PRC-damaged individuals performed poorly when asked to choose a familiar object from pairs of familiar and novel objects comprising the same parts. Our results demonstrate that the PRC is involved in both implicit and explicit perceptual discriminations of novel and familiar configurations. These results reveal that complex object representations in the PRC subserve both perception and memory.

  16. Sleep-dependent memory consolidation in the epilepsy monitoring unit: A pilot study.

    PubMed

    Sarkis, Rani A; Alam, Javad; Pavlova, Milena K; Dworetzky, Barbara A; Pennell, Page B; Stickgold, Robert; Bubrick, Ellen J

    2016-08-01

    We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5×6 grid. Patients were tested 12h after training, once after 12h of wakefulness and once after 12h that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Eleven patients were analyzed age 21-56years. The percentage memory retention over 12h of wakefulness was 62.7% and over 12h which included sleep 83.6% (p=0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p<0.05). Three patients had seizures during the day, and 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Sleep-dependent Memory Consolidation in the Epilepsy Monitoring Unit: a Pilot Study

    PubMed Central

    Sarkis, Rani A.; Alam, Javad; Pavlova, Milena K.; Dworetzky, Barbara A.; Pennell, Page B.; Stickgold, Robert; Bubrick, Ellen J.

    2018-01-01

    Objective We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. Methods We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5 × 6 grid. Patients were tested 12 hours after training, once after 12 hours of wakefulness and once after 12 hours that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Results Eleven patients were analyzed age 21–56 years. The percentage memory retention over 12 hours of wakefulness was 62.7% % and over 12 hours which included sleep 83.6 % (p = 0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p <0.05). Three patients had seizures during the day, and another 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. Conclusions There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Significance Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. PMID:27417054

  18. Cartesian critters can't remember.

    PubMed

    Curry, Devin Sanchez

    2018-06-01

    Descartes held the following view of declarative memory: to remember is to reconstruct an idea that you intellectually recognize as a reconstruction. Descartes countenanced two overarching varieties of declarative memory. To have an intellectual memory is to intellectually reconstruct a universal idea that you recognize as a reconstruction, and to have a sensory memory is to neurophysiologically reconstruct a particular idea that you recognize as a reconstruction. Sensory remembering is thus a capacity of neither ghosts nor machines, but only of human beings qua mind-body unions. This interpretation unifies Descartes's various remarks (and conspicuous silences) about remembering, from the 1628 Rules for the Direction of the Mind through the suppressed-in-1633 Treatise of Man to the 1649 Passions of the Soul. It also rebuts a prevailing thesis in the current secondary literature-that Cartesian critters can remember-while incorporating the textual evidence for that thesis-Descartes's detailed descriptions of the corporeal mechanisms that construct sensory memories. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep

    PubMed Central

    Lecci, Sandro; Fernandez, Laura M. J.; Weber, Frederik D.; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita

    2017-01-01

    Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non–rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders. PMID:28246641

  20. Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory.

    PubMed

    Wagner, Ullrich; Degirmenci, Metin; Drosopoulos, Spyridon; Perras, Boris; Born, Jan

    2005-12-01

    Previous research indicates that hippocampus-dependent declarative memory benefits from early nocturnal sleep, when slow-wave sleep (SWS) prevails and cortisol release is minimal, whereas amygdala-dependent emotional memory is enhanced through late sleep, when rapid eye movement (REM) sleep predominates. The role of the strong cortisol rise accompanying late sleep for emotional memory consolidation has not yet been investigated. Effects of the cortisol synthesis inhibitor metyrapone on sleep-associated consolidation of memory for neutral and emotional texts were investigated in a randomized, double-blind, placebo-controlled study in 14 healthy men. Learning took place immediately before treatment, which was followed by 8 hours of sleep. Retrieval was tested at 11 am the next morning. Metyrapone suppressed cortisol during sleep and blocked particularly the late-night rise in cortisol. It reduced SWS and concomitantly impaired the consolidation of neutral texts. Emotional texts were spared from this impairing influence, however. Metyrapone even amplified emotional enhancement in text recall indicating amygdala-dependent memory. Cortisol blockade during sleep impairs hippocampus-dependent declarative memory formation but enhances amygdala-dependent emotional memory formation. The natural cortisol rise during late sleep may thus protect from overshooting emotional memory formation, a mechanism possibly pertinent to the development of posttraumatic stress disorder.

  1. Do as I … Did! Long-term memory of imitative actions in dogs (Canis familiaris).

    PubMed

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-03-01

    This study demonstrates long-term declarative memory of imitative actions in a non-human animal species. We tested 12 pet dogs for their ability to imitate human actions after retention intervals ranging from 1 to 24 h. For comparison, another 12 dogs were tested for the same actions without delay between demonstration and recall. Our test consisted of a modified version of the Do as I Do paradigm, combined with the two-action procedure to control for non-imitative processes. Imitative performance of dogs remained consistently high independent of increasing retention intervals, supporting the idea that dogs are able to retain mental representations of human actions for an extended period of time. The ability to imitate after such delays supports the use of long-term declarative memory.

  2. Place Cells, Grid Cells, and Memory

    PubMed Central

    Moser, May-Britt; Rowland, David C.; Moser, Edvard I.

    2015-01-01

    The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382

  3. Endogenous Cortisol Exposure and Declarative Verbal Memory: A Longitudinal Study of Healthy Older Adults.

    PubMed

    Segerstrom, Suzanne C; Geiger, Paul J; Boggero, Ian A; Schmitt, Fredrick A; Sephton, Sandra E

    2016-01-01

    Exposure to endogenous cortisol is associated with hippocampal degeneration and may contribute to problems with declarative memory, but effects of persistent versus phasic cortisol elevations have not been established. The present longitudinal investigation examined persistent individual differences and phasic changes in cortisol as they related to verbal memory, executive functions, and subjective cognitive function. Older adults (n = 132, aged 60-93 years) were followed up for up to 5 years. They were assessed annually for verbal memory and every 6 months for executive functions, subjective cognitive function, and cortisol area under the curve (averaged over 3 days). In multilevel models, persistently but not phasically higher cortisol was associated with worse verbal memory in both learning (t(181) = 2.99, p = .003) and recall (t(280) = 3.10, p = .002). This effect withstood adjustment for stress, depression, metabolic health, and age. There was evidence for attenuated primacy in learning with higher persistent cortisol. Phasic increases in cortisol were not associated with changes in memory, and cortisol was not related to executive functions or subjective cognitive function. Higher secretion of cortisol may, over time, contribute to memory dysfunction in older adults.

  4. Episodic Memories and Their Relevance for Psychoactive Drug Use and Addiction

    PubMed Central

    Müller, Christian P.

    2013-01-01

    The majority of adult people in western societies regularly consume psychoactive drugs. While this consumption is integrated in everyday life activities and controlled in most consumers, it may escalate and result in drug addiction. Non-addicted drug use requires the systematic establishment of highly organized behaviors, such as drug-seeking and -taking. While a significant role for classical and instrumental learning processes is well established in drug use and abuse, declarative drug memories have largely been neglected in research. Episodic memories are an important part of the declarative memories. Here a role of episodic drug memories in the establishment of non-addicted drug use and its transition to addiction is suggested. In relation to psychoactive drug consumption, episodic drug memories are formed when a person prepares for consumption, when the drug is consumed and, most important, when acute effects, withdrawal, craving, and relapse are experienced. Episodic drug memories are one-trial memories with emotional components that can be much stronger than “normal” episodic memories. Their establishment coincides with drug-induced neuronal activation and plasticity. These memories may be highly extinction resistant and influence psychoactive drug consumption, in particular during initial establishment and at the transition to “drug instrumentalization.” In that, understanding how addictive drugs interact with episodic memory circuits in the brain may provide crucial information for how drug use and addiction are established. PMID:23734106

  5. Episodic memories and their relevance for psychoactive drug use and addiction.

    PubMed

    Müller, Christian P

    2013-01-01

    The majority of adult people in western societies regularly consume psychoactive drugs. While this consumption is integrated in everyday life activities and controlled in most consumers, it may escalate and result in drug addiction. Non-addicted drug use requires the systematic establishment of highly organized behaviors, such as drug-seeking and -taking. While a significant role for classical and instrumental learning processes is well established in drug use and abuse, declarative drug memories have largely been neglected in research. Episodic memories are an important part of the declarative memories. Here a role of episodic drug memories in the establishment of non-addicted drug use and its transition to addiction is suggested. In relation to psychoactive drug consumption, episodic drug memories are formed when a person prepares for consumption, when the drug is consumed and, most important, when acute effects, withdrawal, craving, and relapse are experienced. Episodic drug memories are one-trial memories with emotional components that can be much stronger than "normal" episodic memories. Their establishment coincides with drug-induced neuronal activation and plasticity. These memories may be highly extinction resistant and influence psychoactive drug consumption, in particular during initial establishment and at the transition to "drug instrumentalization." In that, understanding how addictive drugs interact with episodic memory circuits in the brain may provide crucial information for how drug use and addiction are established.

  6. BDNF val66met Polymorphism Affects Aging of Multiple Types of Memory

    PubMed Central

    Kennedy, Kristen M.; Reese, Elizabeth D.; Horn, Marci M.; Sizemore, April N.; Unni, Asha K.; Meerbrey, Michael E.; Kalich, Allan G.; Rodrigue, Karen M.

    2014-01-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age x BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p < .07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory – in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). PMID:25264352

  7. The Explicit/Implicit Knowledge Distinction and Working Memory: Implications for Second-Language Reading Comprehension

    ERIC Educational Resources Information Center

    Ercetin, Gulcan; Alptekin, Cem

    2013-01-01

    Following an extensive overview of the subject, this study explores the relationships between second-language (L2) explicit/implicit knowledge sources, embedded in the declarative/procedural memory systems, and L2 working memory (WM) capacity. It further examines the relationships between L2 reading comprehension and L2 WM capacity as well as…

  8. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  9. Elicited Imitation Performance at 20 Months Predicts Memory Abilities in School-Aged Children

    ERIC Educational Resources Information Center

    Riggins, Tracy; Cheatham, Carol L.; Stark, Emily; Bauer, Patricia J.

    2013-01-01

    During the first decade of life, there are marked improvements in mnemonic abilities. An important question from both a theoretical and applied perspective is the extent of continuity in the nature of memory during this period. The present longitudinal investigation examined declarative memory during the transition from toddlerhood to school age…

  10. Neurons in the human hippocampus and amygdala respond to both low- and high-level image properties

    PubMed Central

    Cabrales, Elaine; Wilson, Michael S.; Baker, Christopher P.; Thorp, Christopher K.; Smith, Kris A.; Treiman, David M.

    2011-01-01

    A large number of studies have demonstrated that structures within the medial temporal lobe, such as the hippocampus, are intimately involved in declarative memory for objects and people. Although these items are abstractions of the visual scene, specific visual details can change the speed and accuracy of their recall. By recording from 415 neurons in the hippocampus and amygdala of human epilepsy patients as they viewed images drawn from 10 image categories, we showed that the firing rates of 8% of these neurons encode image illuminance and contrast, low-level properties not directly pertinent to task performance, whereas in 7% of the neurons, firing rates encode the category of the item depicted in the image, a high-level property pertinent to the task. This simultaneous representation of high- and low-level image properties within the same brain areas may serve to bind separate aspects of visual objects into a coherent percept and allow episodic details of objects to influence mnemonic performance. PMID:21471400

  11. Symbolic Model of Perception in Dynamic 3D Environments

    DTIC Science & Technology

    2006-11-01

    can retrieve memories , work on goals, recognize visual or aural percepts, and perform actions. ACT-R has been selected for the current...types of memory . Procedural memory is the store of condition- action productions that are selected and executed by the core production system...a declarative memory chunk that is made available to the core production system through the vision module . 4 The vision module has been

  12. The role of the basal ganglia in learning and memory: Insight from Parkinson's disease

    PubMed Central

    2013-01-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. PMID:21945835

  13. Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease.

    PubMed

    Corrêa, M S; Vedovelli, K; Giacobbo, B L; de Souza, C E B; Ferrari, P; de Lima Argimon, I I; Walz, J C; Kapczinski, F; Bromberg, E

    2015-02-12

    The progressive loss of memory and autonomy of Alzheimer's Disease (AD) patients, together with their characteristic behavioral and psychological symptoms, subjects their family caregivers to chronic stress. Several studies indicate that these caregivers are predisposed to cognitive impairments, but the physiological correlates of these alterations remain to be elucidated. Analyze the effects of chronic stress of family caregivers of AD patients on cognition, cortisol/DHEA ratios and BDNF levels and investigate the relation between these variables. Seventeen family caregivers (64.83 ± 3.64 years) of patients with AD and eighteen non-caregivers (58.29 ± 3.16 years) completed stress, depression and anxiety inventories. Exclusion criteria were current neurological disorders, major unstable medical illnesses, use of medications that could interfere with cognitive or HPA axis function and dementia. Attention, working memory and executive function were assessed with Digit Span and Trail Making tests, and declarative memory was analyzed with the Logical Memory test. Saliva was collected at 8 AM and 10 PM and its cortisol and DHEA levels determined by radioimmunoassay. Serum BDNF levels were measured by sandwich-ELISA. Results were analyzed with independent samples t test, covariance analysis and linear regressions. The statistical significance was set at p<0.05 and all p values were adjusted with Holm's Method. Caregivers showed more stress, depression and anxiety symptoms than non-caregivers, as well as significantly worse performances on attention, working memory and executive function tests. Caregivers also had higher cortisol/DHEA ratios and lower BDNF levels than non-caregivers. Cortisol/DHEA ratios, especially at 10 PM, were negatively related with all cognitive tasks in which caregivers showed impaired performance. On the other hand, the only cognitive task that related with the BDNF level was digit span. This study showed that caregivers' cognitive impairment is related with alterations on cortisol/DHEA ratios, and that chronic stress experienced by these subjects has the potential to alter their BDNF levels. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Are prescription stimulants "smart pills"? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals.

    PubMed

    Smith, M Elizabeth; Farah, Martha J

    2011-09-01

    Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  15. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families.

    PubMed

    Glahn, David C; Almasy, Laura; Barguil, Marcela; Hare, Elizabeth; Peralta, Juan Manuel; Kent, Jack W; Dassori, Albana; Contreras, Javier; Pacheco, Adriana; Lanzagorta, Nuria; Nicolini, Humberto; Raventós, Henriette; Escamilla, Michael A

    2010-02-01

    Although genetic influences on bipolar disorder are well established, localization of genes that predispose to the illness has proven difficult. Given that genes predisposing to bipolar disorder may be transmitted without expression of the categorical clinical phenotype, a strategy for identifying risk genes is to identify and map quantitative intermediate phenotypes or endophenotypes. To adjudicate neurocognitive endophenotypes for bipolar disorder. All participants underwent diagnostic interviews and comprehensive neurocognitive evaluations. Neurocognitive measures found to be heritable were entered into analyses designed to determine which test results are impaired in affected individuals, are sensitive to the genetic liability for the illness, and are genetically correlated with affection status. Central valley of Costa Rica; Mexico City, Mexico; and San Antonio, Texas. Seven hundred nine Latino individuals participated in the study. Of these, 660 were members of extended pedigrees with at least 2 siblings diagnosed as having bipolar disorder (n = 230). The remaining subjects were community control subjects drawn from each site who did not have a personal or family history of bipolar disorder or schizophrenia. Neurocognitive test performance. Two of the 22 neurocognitive variables were not significantly heritable and were excluded from subsequent analyses. Patients with bipolar disorder were impaired on 6 cognitive measures compared with nonrelated healthy controls. Nonbipolar first-degree relatives were impaired on 5 of these, and the following 3 tests were genetically correlated with affection status: Digit Symbol Coding Task, Object Delayed Response Task, and immediate facial memory. This large-scale extended pedigree study of cognitive functioning in bipolar disorder identifies measures of processing speed, working memory, and declarative (facial) memory as candidate endophenotypes for bipolar disorder.

  16. Imaging Evidence for Disturbances in Multiple Learning and Memory Systems in Persons with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goh, Suzanne; Peterson, Bradley S.

    2012-01-01

    Aim: The aim of this article is to review neuroimaging studies of autism spectrum disorders (ASD) that examine declarative, socio-emotional, and procedural learning and memory systems. Method: We conducted a search of PubMed from 1996 to 2010 using the terms "autism,""learning,""memory," and "neuroimaging." We limited our review to studies…

  17. A Cross-Syndrome Study of the Differential Effects of Sleep on Declarative Memory Consolidation in Children with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Ashworth, Anna; Hill, Catherine M.; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2017-01-01

    Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first…

  18. New Methods for Understanding Systems Consolidation

    ERIC Educational Resources Information Center

    Tayler, Kaycie K.; Wiltgen, Brian J.

    2013-01-01

    According to the standard model of systems consolidation (SMC), neocortical circuits are reactivated during the retrieval of declarative memories. This process initially requires the hippocampus. However, with the passage of time, neocortical circuits become strengthened and can eventually retrieve memory without input from the hippocampus.…

  19. Relational Associative Learning Induces Cross-Modal Plasticity in Early Visual Cortex

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2015-01-01

    Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices. PMID:24275832

  20. Attention, Imagery and Memory: A Neuromagnetic Investigation

    DTIC Science & Technology

    1991-10-14

    The full complexity of memory processes suggested by the distinctions between short-term and long-term memory , episodic , semantic and declarative...the ;canning of short-term memory . This fol- lows from the fact that bilateral damage to medial temporal cortex results in anterograde amnesia , which...Neural Science AD-A243 859 r󈧅 FINAL TECHNICAL REPORTC Attention, Imagery and Memory 1 March 1988 -30 September 1991 , Q6’i iQ’ UA Dr.~~~~C A..Fel

  1. BDNF val66met polymorphism affects aging of multiple types of memory.

    PubMed

    Kennedy, Kristen M; Reese, Elizabeth D; Horn, Marci M; Sizemore, April N; Unni, Asha K; Meerbrey, Michael E; Kalich, Allan G; Rodrigue, Karen M

    2015-07-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age×BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p<.07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory - in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). This article is part of a Special Issue entitled Memory & Aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The nature of declarative and nondeclarative knowledge for implicit and explicit learning.

    PubMed

    Kirkhart, M W

    2001-10-01

    Using traditional implicit and explicit artificial-grammar learning tasks, the author investigated the similarities and differences between the acquisition of declarative knowledge under implicit and explicit learning conditions and the functions of the declarative knowledge during testing. Results suggested that declarative knowledge was not predictive of or required for implicit learning but was related to consistency in implicit learning performance. In contrast, declarative knowledge was predictive of and required for explicit learning and was related to consistency in performance. For explicit learning, the declarative knowledge functioned as a guide for other behavior. In contrast, for implicit learning, the declarative knowledge did not serve as a guide for behavior but was instead a post hoc description of the most commonly seen stimuli.

  3. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    PubMed

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  4. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories.

    PubMed

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-08-10

    It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and BDNF polymorphism was more salient for hippocampus-dependent tasks than for other cognitive tasks. Our results support the hypothesis that reduced activity-dependent secretion of BDNF impairs the benefits of sleep on synaptic plasticity and next-day memory. Our work advances the field by revealing new evidence of a clear genetic heterogeneity in how sleep consolidation contributes to the ability to learn. Copyright © 2016 the authors 0270-6474/16/368391-09$15.00/0.

  5. A cross-syndrome study of the differential effects of sleep on declarative memory consolidation in children with neurodevelopmental disorders.

    PubMed

    Ashworth, Anna; Hill, Catherine M; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2017-03-01

    Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first study to provide a cross-syndrome comparison of sleep-dependent learning in school-aged children. Children with DS (n = 20) and WS (n = 22) and TD children (n = 33) were trained on the novel Animal Names task where they were taught pseudo-words as the personal names of ten farm and domestic animals, e.g. Basco the cat, with the aid of animal picture flashcards. They were retested following counterbalanced retention intervals of wake and sleep. Overall, TD children remembered significantly more words than both the DS and WS groups. In addition, their performance improved following night-time sleep, whereas performance over the wake retention interval remained stable, indicating an active role of sleep for memory consolidation. Task performance of children with DS did not significantly change following wake or sleep periods. However, children with DS who were initially trained in the morning continued to improve on the task at the following retests, so that performance on the final test was greater for children who had initially trained in the morning than those who trained in the evening. Children with WS improved on the task between training and the first retest, regardless of whether sleep or wake occurred during the retention interval. This suggests time-dependent rather than sleep-dependent learning in children with WS, or tiredness at the end of the first session and better performance once refreshed at the start of the second session, irrespective of the time of day. Contrary to expectations, sleep-dependent learning was not related to baseline level of performance. The findings have significant implications for educational strategies, and suggest that children with DS should be taught more important or difficult information in the morning when they are better able to learn, whilst children with WS should be allowed a time delay between learning phases to allow for time-dependent memory consolidation, and frequent breaks from learning so that they are refreshed and able to perform at their best. © 2015 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  6. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. The role of the basal ganglia in learning and memory: insight from Parkinson's disease.

    PubMed

    Foerde, Karin; Shohamy, Daphna

    2011-11-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan

    2013-01-01

    Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364

  10. Lateralized Spatial and Object Memory Encoding in Entorhinal and Perirhinal Cortices

    ERIC Educational Resources Information Center

    Bellgowan, Patrick S. F.; Buffalo, Elizabeth A.; Bodurka, Jerzy; Martin, Alex

    2009-01-01

    The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor…

  11. Convergent thinking and traumatic brain injury: an investigation of performance on the remote associate test.

    PubMed

    Rigon, Arianna; Reber, Justin; Patel, Nirav N; Duff, Melissa C

    2018-06-08

    While deficits in several cognitive domains following moderate-to-severe traumatic brain injury (TBI) have been well documented, little is known about the impact of TBI on creativity. In the current study, our goal is to determine whether convergent problem solving, which contributes to creative thinking, is impaired following TBI. We administered a test of convergent problem solving, the Remote Associate Task (RAT), as well as a battery of neuropsychological tests, to 29 individuals with TBI and 20 healthy comparisons. A mixed-effect regression analysis revealed that individuals with TBI were significantly less likely to produce a correct response, although on average they attempted to respond to the same number of items. Moreover, we found that the TBI (but not the comparison) group's performance on the RAT was significantly and positively associated with verbal learning and memory, providing further evidence supporting the association between declarative memory and creative convergent thinking. In summary, our findings reveal that convergent thinking can be compromised by moderate-to-severe TBI, furthering our understanding of the higher-level cognitive sequelae of TBI.

  12. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  13. Slow oscillations orchestrating fast oscillations and memory consolidation.

    PubMed

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Central executive involvement in children's spatial memory.

    PubMed

    Ang, Su Yin; Lee, Kerry

    2008-11-01

    Previous research with adults found that spatial short-term and working memory tasks impose similar demands on executive resources. We administered spatial short-term and working memory tasks to 8- and 11-year-olds in three separate experiments. In Experiments 1 and 2 an executive suppression task (random number generation) was found to impair performances on a short-term memory task (Corsi blocks), a working memory task (letter rotation), and a spatial visualisation task (paper folding). In Experiment 3 an articulatory suppression task only impaired performance on the working memory task. These results suggest that short-term and working memory performances are dependent on executive resources. The degree to which the short-term memory task was dependent on executive resources was expected to be related to the amount of experience children have had with such tasks. Yet we found no significant age-related suppression effects. This was attributed to differences in employment of cognitive strategies by the older children.

  15. Dream actors in the theatre of memory: their role in the psychoanalytic process.

    PubMed

    Mancia, Mauro

    2003-08-01

    The author notes that neuropsychological research has discovered the existence of two long-term memory systems, namely declarative or explicit memory, which is conscious and autobiographical, and non-declarative or implicit memory, which is neither conscious nor verbalisable. It is suggested that pre-verbal and pre-symbolic experience in the child's primary relations is stored in implicit memory, where it constitutes an unconscious nucleus of the self which is not repressed and which influences the person's affective, emotional, cognitive and sexual life even as an adult. In the analytic relationship this unconscious part can emerge essentially through certain modes of communication (tone of voice, rhythm and prosody of the voice, and structure and tempo of speech), which could be called the 'musical dimension' of the transference, and through dream representations. Besides work on the transference, the critical component of the therapeutic action of psychoanalysis is stated to consist in work on dreams as pictographic and symbolic representations of implicit pre-symbolic and pre-verbal experiences. A case history is presented in which dream interpretation allowed some of a patient's early unconscious, non-repressed experiences to be emotionally reconstructed and made thinkable even though they were not actually remembered.

  16. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  17. Acute stress impairs recall after interference in older people, but not in young people.

    PubMed

    Hidalgo, Vanesa; Almela, Mercedes; Villada, Carolina; Salvador, Alicia

    2014-03-01

    Stress has been associated with negative changes observed during the aging process. However, very little research has been carried out on the role of age in acute stress effects on memory. We aimed to explore the role of age and sex in the relationship between hypothalamus-pituitary-adrenal axis (HPA-axis) and sympathetic nervous system (SNS) reactivity to psychosocial stress and short-term declarative memory performance. To do so, sixty-seven participants divided into two age groups (each group with a similar number of men and women) were exposed to the Trier Social Stress Test (TSST) and a control condition in a crossover design. Memory performance was assessed by the Rey Auditory Verbal Learning Test (RAVLT). As expected, worse memory performance was associated with age; but more interestingly, the stressor impaired recall after interference only in the older group. In addition, this effect was negatively correlated with the alpha-amylase over cortisol ratio, which has recently been suggested as a good marker of stress system dysregulation. However, we failed to find sex differences in memory performance. These results show that age moderates stress-induced effects on declarative memory, and they point out the importance of studying both of the physiological systems involved in the stress response together. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Personal semantics: Is it distinct from episodic and semantic memory? An electrophysiological study of memory for autobiographical facts and repeated events in honor of Shlomo Bentin.

    PubMed

    Renoult, Louis; Tanguay, Annick; Beaudry, Myriam; Tavakoli, Paniz; Rabipour, Sheida; Campbell, Kenneth; Moscovitch, Morris; Levine, Brian; Davidson, Patrick S R

    2016-03-01

    Declarative memory is thought to consist of two independent systems: episodic and semantic. Episodic memory represents personal and contextually unique events, while semantic memory represents culturally-shared, acontextual factual knowledge. Personal semantics refers to aspects of declarative memory that appear to fall somewhere in between the extremes of episodic and semantic. Examples include autobiographical knowledge and memories of repeated personal events. These two aspects of personal semantics have been studied little and rarely compared to both semantic and episodic memory. We recorded the event-related potentials (ERPs) of 27 healthy participants while they verified the veracity of sentences probing four types of questions: general (i.e., semantic) facts, autobiographical facts, repeated events, and unique (i.e., episodic) events. Behavioral results showed equivalent reaction times in all 4 conditions. True sentences were verified faster than false sentences, except for unique events for which no significant difference was observed. Electrophysiological results showed that the N400 (which is classically associated with retrieval from semantic memory) was maximal for general facts and the LPC (which is classically associated with retrieval from episodic memory) was maximal for unique events. For both ERP components, the two personal semantic conditions (i.e., autobiographical facts and repeated events) systematically differed from semantic memory. In addition, N400 amplitudes also differentiated autobiographical facts from unique events. Autobiographical facts and repeated events did not differ significantly from each other but their corresponding scalp distributions differed from those associated with general facts. Our results suggest that the neural correlates of personal semantics can be distinguished from those of semantic and episodic memory, and may provide clues as to how unique events are transformed to semantic memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative. PMID:21850268

  20. The influence of the hippocampus and declarative memory on word use: Patients with amnesia use less imageable words

    PubMed Central

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2018-01-01

    Hippocampal functioning contributes to our ability to generate multifaceted, imagistic event representations. Patients with hippocampal damage produce event narratives that contain fewer details and fewer imagistic features. We hypothesized that impoverished memory representations would influence language at the word level, yielding words lower in imageability and concreteness. We tested this by examining language produced by patients with bilateral hippocampal damage and severe declarative memory impairment, and brain-damaged and healthy comparison groups. Participants described events from the real past, imagined past, imagined present, and imagined future. We analyzed the imageability and concreteness of words used. Patients with amnesia used words that were less imageable than those of comparison groups across time periods, even when accounting for the amount of episodic detail in narratives. Moreover, all participants used words that were relatively more imageable when discussing real past events than other time periods. Taken together, these findings suggest that the memory that we have for an event affects how we talk about that event, and this extends all the way to the individual words that we use. PMID:28970108

  1. Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information.

    PubMed

    de Lara, Gabriel A; Knechtges, Philipp N; Paulus, Walter; Antal, Andrea

    2017-01-01

    Several studies imply that anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) can modulate the formation of verbal episodic memories. The aim of this study was to test if tDCS through a multi-electrode Laplacian montage over the left DLPFC could differentially modulate declarative memory performance depending on the application phase. Two groups of healthy participants ( n = 2 × 15) received 1 mA anodal or sham stimulation for 20 min during the encoding or during the recall phase on a delayed cued-recall, using a randomized, double-blinded, repeated-measures experimental design. Memory performance was assessed at two time points: 10 min and 24 h after learning. We found no significant difference between anodal and sham stimulation with regard to the memory scores between conditions (stimulation during encoding or recall) or between time points, suggesting that anodal tDCS over the left DLPFC with these stimulation parameters had no effect on the encoding and the consolidation of associative verbal content.

  2. Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information

    PubMed Central

    de Lara, Gabriel A.; Knechtges, Philipp N.; Paulus, Walter; Antal, Andrea

    2017-01-01

    Several studies imply that anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) can modulate the formation of verbal episodic memories. The aim of this study was to test if tDCS through a multi-electrode Laplacian montage over the left DLPFC could differentially modulate declarative memory performance depending on the application phase. Two groups of healthy participants (n = 2 × 15) received 1 mA anodal or sham stimulation for 20 min during the encoding or during the recall phase on a delayed cued-recall, using a randomized, double-blinded, repeated-measures experimental design. Memory performance was assessed at two time points: 10 min and 24 h after learning. We found no significant difference between anodal and sham stimulation with regard to the memory scores between conditions (stimulation during encoding or recall) or between time points, suggesting that anodal tDCS over the left DLPFC with these stimulation parameters had no effect on the encoding and the consolidation of associative verbal content. PMID:28848378

  3. Visuospatial and verbal memory in mental arithmetic.

    PubMed

    Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes

    2017-09-01

    Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.

  4. Common oscillatory mechanisms across multiple memory systems

    NASA Astrophysics Data System (ADS)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  5. Organizational and visual memory deficits in schizophrenia and bipolar psychoses using the Rey-Osterrieth complex figure: effects of duration of illness.

    PubMed

    Seidman, Larry J; Lanca, Margaret; Kremen, William S; Faraone, Stephen V; Tsuang, Ming T

    2003-10-01

    Verbal declarative memory deficits in schizophrenia are well documented whereas visual declarative memory is less studied. Moreover, there are limited data on whether organizational and visual memory deficits are specific to schizophrenic psychoses. We compared visual memory and organizational function in patients with chronic schizophrenia (n=79) and chronic bipolar psychotic disorder (n=14), and in healthy controls (n=84) using the Rey-Osterrieth Complex Figure (ROCF), testing whether organizational impairments (i.e., executive dysfunctions) account for the visual memory deficit. Groups were comparable on age, handedness and expected intellectual ability (based on single word reading). Using analyses of covariance with sex, parental SES and ethnicity as co-variates, patients with schizophrenia were significantly more impaired than controls on copy accuracy, on recall accuracy, and on percent accuracy of recall. Patients with schizophrenia used a more detail-oriented style on copy and recall and had significantly worse recognition memory. After co-varying IQ, copy organization was also significantly different between the groups. Results for accuracy of copy and recall were not significantly attenuated when controlling for copy organization. Duration of illness was associated with visual memory. Bipolar patients performed at an intermediate level between controls and patients with schizophrenia. The data suggest that in schizophrenia, patients have a visual memory disorder characterized by both organizational processing impairments and retention difficulties, and that there is a decline in visual memory functions with duration of illness. Further research is required to determine whether similar mechanisms underlie the neurocognitive deficits in these psychotic disorders.

  6. The role of metacognition in prospective memory: anticipated task demands influence attention allocation strategies.

    PubMed

    Rummel, Jan; Meiser, Thorsten

    2013-09-01

    The present study investigates how individuals distribute their attentional resources between a prospective memory task and an ongoing task. Therefore, metacognitive expectations about the attentional demands of the prospective-memory task were manipulated while the factual demands were held constant. In Experiments 1a and 1b, we found attentional costs from a prospective-memory task with low factual demands to be significantly reduced when information about the low to-be-expected demands were provided, while prospective-memory performance remained largely unaffected. In Experiment 2, attentional monitoring in a more demanding prospective-memory task also varied with information about the to-be-expected demands (high vs. low) and again there were no equivalent changes in prospective-memory performance. These findings suggest that attention-allocation strategies of prospective memory rely on metacognitive expectations about prospective-memory task demands. Furthermore, the results suggest that attentional monitoring is only functional for prospective memory to the extent to which anticipated task demands reflect objective task demands. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Games people play: How video games improve probabilistic learning.

    PubMed

    Schenk, Sabrina; Lech, Robert K; Suchan, Boris

    2017-09-29

    Recent research suggests that video game playing is associated with many cognitive benefits. However, little is known about the neural mechanisms mediating such effects, especially with regard to probabilistic categorization learning, which is a widely unexplored area in gaming research. Therefore, the present study aimed to investigate the neural correlates of probabilistic classification learning in video gamers in comparison to non-gamers. Subjects were scanned in a 3T magnetic resonance imaging (MRI) scanner while performing a modified version of the weather prediction task. Behavioral data yielded evidence for better categorization performance of video gamers, particularly under conditions characterized by stronger uncertainty. Furthermore, a post-experimental questionnaire showed that video gamers had acquired higher declarative knowledge about the card combinations and the related weather outcomes. Functional imaging data revealed for video gamers stronger activation clusters in the hippocampus, the precuneus, the cingulate gyrus and the middle temporal gyrus as well as in occipital visual areas and in areas related to attentional processes. All these areas are connected with each other and represent critical nodes for semantic memory, visual imagery and cognitive control. Apart from this, and in line with previous studies, both groups showed activation in brain areas that are related to attention and executive functions as well as in the basal ganglia and in memory-associated regions of the medial temporal lobe. These results suggest that playing video games might enhance the usage of declarative knowledge as well as hippocampal involvement and enhances overall learning performance during probabilistic learning. In contrast to non-gamers, video gamers showed better categorization performance, independently of the uncertainty of the condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex.

    PubMed

    Stephan, Marianne A; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  9. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB

    PubMed Central

    2012-01-01

    The analysis of the contributions to synaptic plasticity and memory of cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB has recruited the efforts of many laboratories all over the world. These are six key steps in the molecular biological delineation of short-term memory and its conversion to long-term memory for both implicit (procedural) and explicit (declarative) memory. I here first trace the background for the clinical and behavioral studies of implicit memory that made a molecular biology of memory storage possible, and then detail the discovery and early history of these six molecular steps and their roles in explicit memory. PMID:22583753

  10. Effects of acute psychosocial stress on neural activity to emotional and neutral faces in a face recognition memory paradigm.

    PubMed

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2014-12-01

    Previous studies have shown that acute psychosocial stress impairs recognition of declarative memory and that emotional material is especially sensitive to this effect. Animal studies suggest a central role of the amygdala which modulates memory processes in hippocampus, prefrontal cortex and other brain areas. We used functional magnetic resonance imaging (fMRI) to investigate neural correlates of stress-induced modulation of emotional recognition memory in humans. Twenty-seven healthy, right-handed, non-smoker male volunteers performed an emotional face recognition task. During encoding, participants were presented with 50 fearful and 50 neutral faces. One hour later, they underwent either a stress (Trier Social Stress Test) or a control procedure outside the scanner which was followed immediately by the recognition session inside the scanner, where participants had to discriminate between 100 old and 50 new faces. Stress increased salivary cortisol, blood pressure and pulse, and decreased the mood of participants but did not impact recognition memory. BOLD data during recognition revealed a stress condition by emotion interaction in the left inferior frontal gyrus and right hippocampus which was due to a stress-induced increase of neural activity to fearful and a decrease to neutral faces. Functional connectivity analyses revealed a stress-induced increase in coupling between the right amygdala and the right fusiform gyrus, when processing fearful as compared to neutral faces. Our results provide evidence that acute psychosocial stress affects medial temporal and frontal brain areas differentially for neutral and emotional items, with a stress-induced privileged processing of emotional stimuli.

  11. Intranasal insulin improves memory in humans.

    PubMed

    Benedict, Christian; Hallschmid, Manfred; Hatke, Astrid; Schultes, Bernd; Fehm, Horst L; Born, Jan; Kern, Werner

    2004-11-01

    Previous studies have suggested an acutely improving effect of insulin on memory function. To study changes in memory associated with a prolonged increase in brain insulin activity in humans, here we used the intranasal route of insulin administration known to provide direct access of the substance to the cerebrospinal fluid compartment. Based on previous results indicating a prevalence of insulin receptors in limbic and hippocampal regions as well as improvements in memory with systemic insulin administration, we expected that intranasal administration of insulin improves primarily hippocampus dependent declaration memory function. Also, improvements in mood were expected. We investigated the effects of 8 weeks of intranasal administration of insulin (human regular insulin 4 x 40 IU/d) on declarative memory (immediate and delayed recall of word lists), attention (Stroop test), and mood in 38 healthy subjects (24 males) in a double blind, between-subject comparison. Blood glucose and plasma insulin levels did not differ between the placebo and insulin conditions. Delayed recall of words significantly improved after 8 weeks of intranasal insulin administration (words recalled, Placebo 2.92 +/- 1.00, Insulin 6.20 +/- 1.03, p < 0.05). Moreover, subjects after insulin reported signs of enhanced mood, such as reduced anger (p < 0.02) and enhanced self-confidence (p < 0.03). Results indicate a direct action of prolonged intranasal administration of insulin on brain functions, improving memory and mood in the absence of systemic side effects. These findings could be of relevance for the treatment of patients with memory disorders like in Alzheimer's disease.

  12. Intact and impaired conceptual memory processes in amnesia.

    PubMed

    Keane, M M; Gabrieli, J D; Monti, L A; Fleischman, D A; Cantor, J M; Noland, J S

    1997-01-01

    To examine the status of conceptual memory processes in amnesia, a conceptual memory task with implicit or explicit task instructions was given to amnesic and control groups. After studying a list of category exemplars, participants saw category labels and were asked to generate as many exemplars as possible (an implicit memory task) or to generate exemplars that had been in the prior study list (an explicit memory task). After incidental deep or shallow encoding of exemplars, amnesic patients showed normal implicit memory performance (priming), a normal levels-of-processing effect on priming, and impaired explicit memory performance. After intentional encoding of exemplars, amnesic patients showed impaired implicit and explicit memory performance. Results suggest that although amnesic patients can show impairments on implicit and explicit conceptual memory tasks, their deficit does not generalize to all conceptual memory tasks.

  13. Effects of Divided Attention at Retrieval on Conceptual Implicit Memory

    PubMed Central

    Prull, Matthew W.; Lawless, Courtney; Marshall, Helen M.; Sherman, Annabella T. K.

    2016-01-01

    This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes. PMID:26834678

  14. Effects of Divided Attention at Retrieval on Conceptual Implicit Memory.

    PubMed

    Prull, Matthew W; Lawless, Courtney; Marshall, Helen M; Sherman, Annabella T K

    2016-01-01

    This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes.

  15. The Multifold Relationship Between Memory and Decision Making: An Individual-differences Study

    PubMed Central

    Del Missier, Fabio; Mäntylä, Timo; Hansson, Patrik; Bruine de Bruin, Wändi; Parker, Andrew M.; Nilsson, Lars-Göran

    2014-01-01

    Several judgment and decision-making tasks are assumed to involve memory functions, but significant knowledge gaps on the memory processes underlying these tasks remain. In a study on 568 adults between 25 to 80 years, hypotheses were tested on the specific relationships between individual differences in working memory, episodic memory, and semantic memory, respectively, and six main components of decision-making competence. In line with the hypotheses, working memory was positively related with the more cognitively-demanding tasks (Resistance to Framing, Applying Decision Rules, and Under/Overconfidence), whereas episodic memory was positively associated with a more experience-based judgment task (Recognizing Social Norms). Furthermore, semantic memory was positively related with two more knowledge-based decision-making tasks (Consistency in Risk Perception and Resistance to Sunk Costs). Finally, the age-related decline observed in some of the decision-making tasks was (partially or totally) mediated by the age-related decline in working memory or episodic memory. These findings are discussed in relation to the functional roles fulfilled by different memory processes in judgment and decision-making tasks. PMID:23565790

  16. Prospective memory in context: Moving through a familiar space.

    PubMed

    Smith, Rebekah E; Hunt, R Reed; Murray, Amy E

    2017-02-01

    Successful completion of delayed intentions is a common but important aspect of daily behavior. Such behavior requires not only memory for the intended action but also recognition of the opportunity to perform that action, known collectively as prospective memory. The fact that prospective memory tasks occur in the midst of other activities is captured in laboratory tasks by embedding the prospective memory task in an ongoing activity. In many cases the requirement to perform the prospective memory task results in a reduction in ongoing performance relative to when the ongoing task is performed alone. This is referred to as the cost to the ongoing task and reflects the allocation of attentional resources to the prospective memory task. The current study examined the pattern of cost across the ongoing task when the ongoing task provided contextual information that in turn allowed participants to anticipate when target events would occur within the ongoing task. The availability of contextual information reduced ongoing task response times overall, with an increase in response times closer to the target locations (Experiments 1-3). The fourth study, drawing on the Event Segmentation Theory, provided support for the proposal made by the Preparatory Attentional and Memory Processes theory of prospective memory that decisions about the allocation of attention to the prospective memory task are more likely to be made at points of transition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Decreased susceptibility to false memories from misinformation in hormonal contraception users.

    PubMed

    Petersen, Nicole; Patihis, Lawrence; Nielsen, Shawn E

    2015-01-01

    Sex hormones are increasingly implicated in memory formation. Recent literature has documented a relationship between hormones and emotional memory and sex differences, which are likely related to hormones, have long been demonstrated in a variety of mnemonic domains, including false memories. Hormonal contraception (HC), which alters sex hormones, has been associated with a bias towards gist memory and away from detailed memory in women who use it during an emotional memory task. Here, we investigated whether HC was associated with changes in susceptibility to false memories, which may be related to the formation of gist memories. We tested false memory susceptibility using two well-validated false memory paradigms: the Deese-Roediger-McDermott (DRM) task, and a story-based misinformation task. We found that hormonal contraceptive users were less susceptible to false memories compared to non-users in the misinformation task, and no differences were seen between groups on the DRM task. We hypothesise that the differences in false memories from the misinformation task may be related to hormonal contraceptive users' memory bias away from details, towards gist memory.

  18. Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder

    PubMed Central

    Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.

    2015-01-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain–behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain–behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18–87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain–behaviour associations and test whether brain–behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain–behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain–behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure–function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning. PMID:25943422

  19. Sex differences in episodic memory: the impact of verbal and visuospatial ability.

    PubMed

    Herlitz, A; Airaksinen, E; Nordström, E

    1999-10-01

    The impact of verbal and visuospatial ability on sex differences in episodic memory was investigated. One hundred men and 100 women, 2040 years old, participated in a series of verbal and visuospatial tasks. Episodic memory was assessed in tasks that, to a greater or lesser extent, were verbal or visuospatial in nature. Results showed that women excelled in verbal production tasks and that men performed at a superior level on a mental rotation task. In addition, women tended to perform at a higher level than men on most episodic memory tasks. Taken together, the results demonstrated that (a) women perform at a higher level than men on most verbal episodic memory tasks and on some episodic memory tasks with a visuospatial component, and (b) women's higher performance on episodic memory tasks cannot fully be explained by their superior performance on verbal production tasks.

  20. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    PubMed

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Unstable Memories Create a High-Level Representation that Enables Learning Transfer.

    PubMed

    Mosha, Neechi; Robertson, Edwin M

    2016-01-11

    A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The role of memory representation in the vigilance decrement.

    PubMed

    Caggiano, Daniel M; Parasuraman, Raja

    2004-10-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.

  3. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway.

    PubMed

    This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by antimicrobial resistance and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections. As such, it is our intent to raise awareness among healthcare workers and improve antimicrobial prescribing. To facilitate its dissemination, the declaration was translated in different languages.

  4. Working Memory Training Improves Dual-Task Performance on Motor Tasks.

    PubMed

    Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro

    2017-01-01

    The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.

  5. Working Memory Capacity and Resistance to Interference

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Lange, Elke; Engle, Randall W.

    2004-01-01

    Single-task and dual-task versions of verbal and spatial serial order memory tasks were administered to 120 students tested for working memory capacity with four previously validated measures. In the dual-task versions, similarity between the memory material and the material of the secondary processing task was varied. With verbal material, three…

  6. Emotion Causes Targeted Forgetting of Established Memories

    PubMed Central

    Strange, Bryan A.; Kroes, Marijn C. W.; Fan, Judith E.; Dolan, Raymond J.

    2010-01-01

    Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval. PMID:21191439

  7. Emotion causes targeted forgetting of established memories.

    PubMed

    Strange, Bryan A; Kroes, Marijn C W; Fan, Judith E; Dolan, Raymond J

    2010-01-01

    Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval.

  8. A Transactional Approach to Transfer Episodes

    ERIC Educational Resources Information Center

    Jornet, Alfredo; Roth, Wolff-Michael; Krange, Ingeborg

    2016-01-01

    In this article we present an analytical framework for approaching transfer episodes--episodes in which participants declare or can be declared to bring prior experience to bear on the current task organization. We build on Dewey's writings about the continuity of experience, Vygotsky's ideas of unit analysis, as well as more recent developments…

  9. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    PubMed

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  10. Effects of emotionally valenced working memory taxation on negative memories.

    PubMed

    Tsai, Cynthia; McNally, Richard J

    2014-03-01

    Memories enter a labile state during recollection. Thus, memory changes that occur during recollection can affect future instances of its activation. Having subjects perform a secondary task that taxes working memory while they recall a negative emotional memory often reduces its vividness and emotional intensity during subsequent recollections. However, researchers have not manipulated the emotional valence of the secondary task itself. Subjects viewed a video depicting the aftermath of three fatal road traffic accidents, establishing the same negative emotional memory for all subjects. We then tested their memory for the video after randomly assigning them to no secondary task or a delayed match-to-sample secondary task involving photographs of positive, negative, or neutral emotional valence. The positive secondary task reduced memory for details about the video, whereas negative and neutral tasks did not. We did not assess the vividness and emotionality of the subjects' memory of the video. Having subjects recall a stressful experience while performing a positively valent secondary task can decrement details of the memory and perhaps its emotionality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Verbal recall and recognition in twins discordant for schizophrenia

    PubMed Central

    van Erp, Theo G.M.; Therman, Sebastian; Pirkola, Tiia; Tuulio-Henriksson, Annamari; Glahn, David C.; Bachman, Peter; Huttunen, Matti O.; Lönnqvist, Jouko; Hietanen, Marja; Kaprio, Jaakko; Koskenvuo, Markku; Cannon, Tyrone D.

    2008-01-01

    The nature, neural underpinnings, and etiology of deficits in verbal declarative memory in patients with schizophrenia remain unclear. To examine the contributions of genes and environment to verbal recall and recognition performance in this disorder, the California Verbal Learning Test was administered to a large population-based Finnish twin sample, which included schizophrenic and schizoaffective patients, their non-ill monozygotic (MZ) and dizygotic (DZ) co-twins, and healthy control twins. Compared with controls, patients and their co-twins showed relatively greater performance deficits on free recall compared with recognition. Intra-pair differences between patients and their non-ill co-twins in hippocampal volume and memory performance were highly positively correlated. These findings are consistent with the view that genetic influences are associated with reduced verbal recall in schizophrenia, but that non-genetic influences further compromise these abnormalities in patients who manifest the full-blown schizophrenia phenotype, with this additional degree of disease-related declarative memory deficit mediated in part by hippocampal pathology. PMID:18442861

  12. Cognitive correlates of pragmatic language comprehension in adult traumatic brain injury: A systematic review and meta-analyses.

    PubMed

    Rowley, Dane A; Rogish, Miles; Alexander, Timothy; Riggs, Kevin J

    2017-01-01

    Effective pragmatic comprehension of language is critical for successful communication and interaction, but this ability is routinely impaired following Traumatic Brain Injury (TBI) (1,2). Individual studies have investigated the cognitive domains associated with impaired pragmatic comprehension, but there remains little understanding of the relative importance of these domains in contributing to pragmatic comprehension impairment following TBI. This paper presents a systematic meta-analytic review of the observed correlations between pragmatic comprehension and cognitive processes following TBI. Five meta-analyses were computed, which quantified the relationship between pragmatic comprehension and five key cognitive constructs (declarative memory; working memory; attention; executive functions; social cognition). Significant moderate-to-strong correlations were found between all cognitive measures and pragmatic comprehension, where declarative memory was the strongest correlate. Thus, our findings indicate that pragmatic comprehension in TBI is associated with an array of domain general cognitive processes, and as such deficits in these cognitive domains may underlie pragmatic comprehension difficulties following TBI. The clinical implications of these findings are discussed.

  13. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    PubMed

    Gimbel, Sarah I; Brewer, James B

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  14. Elaboration versus Suppression of Cued Memories: Influence of Memory Recall Instruction and Success on Parietal Lobe, Default Network, and Hippocampal Activity

    PubMed Central

    Gimbel, Sarah I.; Brewer, James B.

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength. PMID:24586492

  15. Recollecting, recognizing, and other acts of remembering: an overview of human memory.

    PubMed

    LaVoie, Donna J; Cobia, Derin J

    2007-09-01

    The question of whether memory is important to human existence is simple to answer: life without memory would be devoid of any meaning. The question of what memory is, however, is much more difficult to answer. The main purpose of this article is to provide an overview of memory function, by drawing distinctions between different memory systems, specifically declarative (ie, conscious) versus nondeclarative (ie, nonconscious) memory systems. To distinguish between these larger systems and their various components, we include discussion of deficits in memory that occur as a consequence of brain injury and normative aging processes. Included in these descriptions is discussion of the neuroanatomical correlates of each memory component described to illustrate the importance of particular brain regions to different aspects of memory function.

  16. Working memory costs of task switching.

    PubMed

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie

    2008-05-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.

  17. The role of memory representation in the vigilance decrement

    PubMed Central

    CAGGIANO, DANIEL M.; PARASURAMAN, RAJA

    2005-01-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706

  18. A Potential Spatial Working Memory Training Task to Improve Both Episodic Memory and Fluid Intelligence

    PubMed Central

    Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.

    2012-01-01

    One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740

  19. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    PubMed

    Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H

    2012-01-01

    One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.

  20. The influence of levels of processing on recall from working memory and delayed recall tasks.

    PubMed

    Loaiza, Vanessa M; McCabe, David P; Youngblood, Jessie L; Rose, Nathan S; Myerson, Joel

    2011-09-01

    Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading span task (Experiment 1) and an operation span task (Experiment 2) in order to assess the role of retrieval from secondary memory during complex span tasks. Immediate recall from both span tasks was greater for items studied under deep processing instructions compared with items studied under shallow processing instructions regardless of trial length. Recall was better for deep than for shallow levels of processing on delayed recall tests as well. These data are consistent with the primary-secondary memory framework, which suggests that to-be-remembered items are displaced from primary memory (i.e., the focus of attention) during the processing phases of complex span tasks and therefore must be retrieved from secondary memory. (c) 2011 APA, all rights reserved.

  1. From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span.

    PubMed

    Neath, Ian; VanWormer, Lisa A; Bireta, Tamra J; Surprenant, Aimée M

    2014-09-01

    Three memory tasks-Brown-Peterson, complex span, and continual distractor-all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems.

  2. Seeing the Wood for the Trees: Applying the dual-memory system model to investigate expert teachers' observational skills in natural ecological learning environments

    NASA Astrophysics Data System (ADS)

    Stolpe, Karin; Björklund, Lars

    2012-01-01

    This study aims to investigate two expert ecology teachers' ability to attend to essential details in a complex environment during a field excursion, as well as how they teach this ability to their students. In applying a cognitive dual-memory system model for learning, we also suggest a rationale for their behaviour. The model implies two separate memory systems: the implicit, non-conscious, non-declarative system and the explicit, conscious, declarative system. This model provided the starting point for the research design. However, it was revised from the empirical findings supported by new theoretical insights. The teachers were video and audio recorded during their excursion and interviewed in a stimulated recall setting afterwards. The data were qualitatively analysed using the dual-memory system model. The results show that the teachers used holistic pattern recognition in their own identification of natural objects. However, teachers' main strategy to teach this ability is to give the students explicit rules or specific characteristics. According to the dual-memory system model the holistic pattern recognition is processed in the implicit memory system as a non-conscious match with earlier experienced situations. We suggest that this implicit pattern matching serves as an explanation for teachers' ecological and teaching observational skills. Another function of the implicit memory system is its ability to control automatic behaviour and non-conscious decision-making. The teachers offer the students firsthand sensory experiences which provide a prerequisite for the formation of implicit memories that provides a foundation for expertise.

  3. The Influence of Memory on Perception: It's Not What Things Look Like, It's What You Call Them

    ERIC Educational Resources Information Center

    Mitterer, Holger; Horschig, Jorn M.; Musseler, Jochen; Majid, Asifa

    2009-01-01

    World knowledge influences how we perceive the world. This study shows that this influence is at least partly mediated by declarative memory. Dutch and German participants categorized hues from a yellow-to-orange continuum on stimuli that were prototypically orange or yellow and that were also associated with these color labels. Both groups gave…

  4. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    PubMed Central

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356

  5. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  6. The effects of acute hypoglycaemia on memory acquisition and recall and prospective memory in type 1 diabetes.

    PubMed

    Warren, R E; Zammitt, N N; Deary, I J; Frier, B M

    2007-01-01

    Global memory performance is impaired during acute hypoglycaemia. This study assessed whether moderate hypoglycaemia disrupts learning and recall in isolation, and utilised a novel test of prospective memory which may better reflect the role of memory in daily life than conventional tests. Thirty-six subjects with type 1 diabetes participated, 20 with normal hypoglycaemia awareness (NHA) and 16 with impaired hypoglycaemia awareness (IHA). Each underwent a hypoglycaemic clamp with target blood glucose 2.5 mmol/l. Prior to hypoglycaemia, subjects attempted to memorise instructions for a prospective memory task, and recall was assessed during hypoglycaemia. Subjects then completed the learning and immediate recall stages of three conventional memory tasks (word recall, story recall, visual recall) during hypoglycaemia. Euglycaemia was restored and delayed memory for the conventional tasks was tested. The same procedures were completed in euglycaemic control studies (blood glucose 4.5 mmol/l). Hypoglycaemia impaired performance significantly on the prospective memory task (p = 0.004). Hypoglycaemia also significantly impaired both immediate and delayed recall for the word and story recall tasks (p < 0.01 in each case). There was no significant deterioration of performance on the visual memory task. The effect of hypoglycaemia did not differ significantly between subjects with NHA and IHA. Impaired performance on the prospective memory task during hypoglycaemia demonstrates that recall is disrupted by hypoglycaemia. Impaired performance on the conventional memory tasks demonstrates that learning is also disrupted by hypoglycaemia. Results of the prospective memory task support the relevance of these findings to the everyday lives of people with diabetes.

  7. Declarative Joint Attention as a Foundation of Theory of Mind

    ERIC Educational Resources Information Center

    Sodian, Beate; Kristen-Antonow, Susanne

    2015-01-01

    Theories of social-cognitive development have attributed a foundational role to declarative joint attention. The present longitudinal study of 83 children, who were assessed on a battery of social-cognitive tasks at multiple measurement points from the age of 12 to 50 months, tested a predictive model of theory of mind (false-belief…

  8. Short-term memory and dual task performance

    NASA Technical Reports Server (NTRS)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  9. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    PubMed

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  10. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    PubMed Central

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  11. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.

  12. Post-traumatic stress disorder is associated with limited executive resources in a working memory task

    PubMed Central

    Honzel, Nikki; Justus, Timothy; Swick, Diane

    2015-01-01

    Patients with post-traumatic stress disorder (PTSD) can show declines in working memory. A dual-task design was used to determine if these impairments are linked to executive control limitations. Participants performed a Sternberg memory task with either one or four letters. In the dual-task condition, the maintenance period was filled with an arrow flanker task. PTSD patients were less accurate on the working memory task than controls, especially in the dual-task condition. In the single-task condition, both groups showed similar patterns of brain potentials from 300–500 ms when discriminating old and new probes. However, when taxed with an additional task, the event-related potentials (ERPs) of the PTSD group no longer differentiated old and new probes. In contrast, interference resolution processes in both the single- and dual-task conditions of the flanker were intact. The lack of differentiation in the ERPs reflects impaired working memory performance under more difficult dual-task conditions. Exacerbated difficulty in performing a working memory task with concurrent task demands suggests a specific limitation in executive control resources in PTSD. PMID:24165904

  13. Cognitive rehabilitation of amnesia after virus encephalitis: a case report.

    PubMed

    Miotto, Eliane Correa

    2007-01-01

    A number of memory rehabilitation techniques have targeted people with various degrees of memory impairments. However, few studies have shown the contribution of preserved non-declarative memory capacity and errorless learning in the treatment of amnesic patients. The current case report describes the memory rehabilitation of a 44-year-old man with amnesia following viral encephalitis. The patient's procedural memory capacity had an important role in the use of a motor imagery strategy to remember people's names. It was further demonstrated that the application of a verbal learning technique was helpful in recalling new verbal information. These different memory rehabilitation techniques are discussed in terms of alternative possibilities in the rehabilitation of amnesic patients.

  14. Still searching for the engram.

    PubMed

    Eichenbaum, Howard

    2016-09-01

    For nearly a century, neurobiologists have searched for the engram-the neural representation of a memory. Early studies showed that the engram is widely distributed both within and across brain areas and is supported by interactions among large networks of neurons. Subsequent research has identified engrams that support memory within dedicated functional systems for habit learning and emotional memory, but the engram for declarative memories has been elusive. Nevertheless, recent years have brought progress from molecular biological approaches that identify neurons and networks that are necessary and sufficient to support memory, and from recording approaches and population analyses that characterize the information coded by large neural networks. These new directions offer the promise of revealing the engrams for episodic and semantic memories.

  15. Post-traumatic stress disorder and head injury as a dual diagnosis: "islands" of memory as a mechanism.

    PubMed Central

    King, N S

    1997-01-01

    This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia. PMID:9010405

  16. Post-traumatic stress disorder and head injury as a dual diagnosis: "islands" of memory as a mechanism.

    PubMed

    King, N S

    1997-01-01

    This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia.

  17. Acute Alcohol Effects on Repetition Priming and Word Recognition Memory with Equivalent Memory Cues

    ERIC Educational Resources Information Center

    Ray, Suchismita; Bates, Marsha E.

    2006-01-01

    Acute alcohol intoxication effects on memory were examined using a recollection-based word recognition memory task and a repetition priming task of memory for the same information without explicit reference to the study context. Memory cues were equivalent across tasks; encoding was manipulated by varying the frequency of occurrence (FOC) of words…

  18. Social importance enhances prospective memory: evidence from an event-based task.

    PubMed

    Walter, Stefan; Meier, Beat

    2017-07-01

    Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.

  19. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep function. PMID:22529835

  20. Spatial working memory load affects counting but not subitizing in enumeration.

    PubMed

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  1. Improving older adults' memory performance using prior task success.

    PubMed

    Geraci, Lisa; Miller, Tyler M

    2013-06-01

    Holding negative aging stereotypes can lead older adults to perform poorly on memory tests. We attempted to improve older adults' memory performance by giving them task experience that would counter their negative performance expectations. Before participating in a memory experiment, younger and older adults were given a cognitive task that they could either successfully complete, not successfully complete, or they were given no prior task. For older adults, recall was significantly higher and self-reported anxiety was significantly lower for the prior task success group relative to the other groups. There was no effect of prior task experience on younger adults' memory performance. Results suggest that older adults' memory can be improved with a single successful prior task experience. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Semantic and Visual Memory After Alcohol Abuse.

    ERIC Educational Resources Information Center

    Donat, Dennis C.

    1986-01-01

    Compared the relative performance of 40 patients with a history of alcohol abuse on tasks of short-term semantic and visual memory. Performance on the visual memory tasks was impaired significantly relative to the semantic memory task in a within-subjects analysis of variance. Semantic memory was unimpaired. (Author/ABB)

  3. Correcting Memory Improves Accuracy of Predicted Task Duration

    ERIC Educational Resources Information Center

    Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.

    2008-01-01

    People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…

  4. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    PubMed

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  5. Degrading emotional memories induced by a virtual reality paradigm.

    PubMed

    Cuperus, Anne A; Laken, Maarten; van den Hout, Marcel A; Engelhard, Iris M

    2016-09-01

    In Eye Movement and Desensitization and Reprocessing (EMDR) therapy, a dual-task approach is used: patients make horizontal eye movements while they recall aversive memories. Studies showed that this reduces memory vividness and/or emotionality. A strong explanation is provided by working memory theory, which suggests that other taxing dual-tasks are also effective. Experiment 1 tested whether a visuospatial task which was carried out while participants were blindfolded taxes working memory. Experiment 2 tested whether this task degrades negative memories induced by a virtual reality (VR) paradigm. In experiment 1, participants responded to auditory cues with or without simultaneously carrying out the visuospatial task. In experiment 2, participants recalled negative memories induced by a VR paradigm. The experimental group simultaneously carried out the visuospatial task, and a control group merely recalled the memories. Changes in self-rated memory vividness and emotionality were measured. The slowing down of reaction times due to the visuospatial task indicated that its cognitive load was greater than the load of the eye movements task in previous studies. The task also led to reductions in emotionality (but not vividness) of memories induced by the VR paradigm. Weaknesses are that only males were tested in experiment 1, and the effectiveness of the VR fear/trauma induction was not assessed with ratings of mood or intrusions in experiment 2. The results suggest that the visuospatial task may be applicable in clinical settings, and the VR paradigm may provide a useful method of inducing negative memories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. How age affects memory task performance in clinically normal hearing persons.

    PubMed

    Vercammen, Charlotte; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-05-01

    The main objective of this study is to investigate memory task performance in different age groups, irrespective of hearing status. Data are collected on a short-term memory task (WAIS-III Digit Span forward) and two working memory tasks (WAIS-III Digit Span backward and the Reading Span Test). The tasks are administered to young (20-30 years, n = 56), middle-aged (50-60 years, n = 47), and older participants (70-80 years, n = 16) with normal hearing thresholds. All participants have passed a cognitive screening task (Montreal Cognitive Assessment (MoCA)). Young participants perform significantly better than middle-aged participants, while middle-aged and older participants perform similarly on the three memory tasks. Our data show that older clinically normal hearing persons perform equally well on the memory tasks as middle-aged persons. However, even under optimal conditions of preserved sensory processing, changes in memory performance occur. Based on our data, these changes set in before middle age.

  7. To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.

    PubMed

    Basak, Chandramallika; O'Connell, Margaret A

    2016-01-01

    It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.

  8. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks

    PubMed Central

    Noreen, Saima; MacLeod, Malcolm D.

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks. PMID:26270470

  9. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks.

    PubMed

    Noreen, Saima; MacLeod, Malcolm D

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks.

  10. Memory Systems Do Not Divide on Consciousness: Reinterpreting Memory in Terms of Activation and Binding

    PubMed Central

    Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.

    2009-01-01

    There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this division based on awareness is a useful taxonomy for memory tasks, the authors review the evidence that the unconscious character of implicit memory does not necessitate that it be treated as a separate system of human memory. They also argue that some implicit and explicit memory tasks share the same memory representations and that the important distinction is whether the task (implicit or explicit) requires the formation of a new association. The authors review and critique dissociations from the behavioral, amnesia, and neuroimaging literatures that have been advanced in support of separate explicit and implicit memory systems by highlighting contradictory evidence and by illustrating how the data can be accounted for using a simple computational memory model that assumes the same memory representation for those disparate tasks. PMID:19210052

  11. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories

    PubMed Central

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-01-01

    It is hypothesized that a fundamental function of sleep is to restore an individual’s day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from −0.309 to −0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = −0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. PMID:27511011

  12. Diagnostic and Prognostic Value of the Combination of Two Measures of Verbal Memory in Mild Cognitive Impairment due to Alzheimer's Disease.

    PubMed

    Sala, Isabel; Illán-Gala, Ignacio; Alcolea, Daniel; Sánchez-Saudinós, Ma Belén; Salgado, Sergio Andrés; Morenas-Rodríguez, Estrella; Subirana, Andrea; Videla, Laura; Clarimón, Jordi; Carmona-Iragui, María; Ribosa-Nogué, Roser; Blesa, Rafael; Fortea, Juan; Lleó, Alberto

    2017-01-01

    Episodic memory impairment is the core feature of typical Alzheimer's disease. To evaluate the performance of two commonly used verbal memory tests to detect mild cognitive impairment due to Alzheimer's disease (MCI-AD) and to predict progression to Alzheimer's disease dementia (AD-d). Prospective study of MCI patients in a tertiary memory disorder unit. Patients underwent an extensive neuropsychological battery including two tests of declarative verbal memory: The Free and Cued Selective Reminding Test (FCSRT) and the word list learning task from the Consortium to Establish a Registry for Alzheimer's disease (CERAD-WL). Cerebrospinal fluid (CSF) was obtained from all patients and MCI-AD was defined by means of the t-Tau/Aβ1-42 ratio. Logistic regression analyses tested whether the combination of FCSRT and CERAD-WL measures significantly improved the prediction of MCI-AD. Progression to AD-d was analyzed in a Cox regression model. A total of 202 MCI patients with a mean follow-up of 34.2±24.2 months were included and 98 (48.5%) met the criteria for MCI-AD. The combination of FCSRT and CERAD-WL measures improved MCI-AD classification accuracy based on CSF biomarkers. Both tests yielded similar global predictive values (59.9-65.3% and 59.4-62.8% for FCSRT and CERAD-WL, respectively). MCI-AD patients with deficits in both FCSRT and CERAD-WL had a faster progression to AD-d than patients with deficits in only one test. The combination of FCSRT and CERAD-WL improves the classification of MCI-AD and defines different prognostic profiles. These findings have important implications for clinical practice and the design of clinical trials.

  13. Working-memory training improves developmental dyslexia in Chinese children.

    PubMed

    Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu

    2013-02-15

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.

  14. A computational model of spatial visualization capacity.

    PubMed

    Lyon, Don R; Gunzelmann, Glenn; Gluck, Kevin A

    2008-09-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to perform it. In this model, developed within the Adaptive Control of Thought-Rational (ACT-R) architecture, visualization capacity is limited by three mechanisms. Two of these (associative interference and decay) are longstanding characteristics of ACT-R's declarative memory. A third (spatial interference) is a new mechanism motivated by spatial proximity effects in our data. We tested the model in two experiments, one with parameter-value fitting, and a replication without further fitting. Correspondence between model and data was close in both experiments, suggesting that the model may be useful for understanding why visualizing new, complex spatial material is so difficult.

  15. A comparison of between- and within-subjects imitation designs.

    PubMed

    Kressley, Regina A; Knopf, Monika

    2006-12-01

    Two experimental methods, which have dominated the study of declarative memory in preverbal children with imitation tasks, namely the deferred imitation and elicited imitation paradigm, differ in the amount of physical contact with test stimuli afforded infants prior to a test for long-term recall. The current study assessed effects of pre- and post-demonstration contact with test stimuli on deferred imitation of novel, single-step unrelated actions with multiple objects by 8(1/2)- and 10(1/2)-month-old infants (N=50). The rate of target action completion after a delay remained consistent at both ages across different conditions of prior contact with test stimuli. This study shows that a within-subjects baseline appraisal is valid within certain experimental parameters and offers a more economical alternative. The results show furthermore that different experimental designs utilized to assess deferred imitation are highly comparable for the first year despite differences in determining baseline.

  16. Working Memory Integration Processes in Benign Childhood Epilepsy with Centrotemporal Spikes.

    PubMed

    Kárpáti, Judit; Donauer, Nándor; Somogyi, Eszter; Kónya, Anikó

    2015-12-01

    Benign epilepsy of childhood with centrotemporal spikes (BECTS) is the most frequent focal epilepsy in children; however, the pattern of affected memory processes remains controversial. Previous studies in BECTS imply deficits in complex working memory tasks, but not in simple modality-specific tasks. We studied working memory processes in children with BECTS by comparing performance in memory binding tasks of different complexities. We compared 17 children with BECTS (aged 6 to 13 years) to 17 healthy children matched for age, sex, and intelligence quotient. We measured spatial and verbal memory components separately and jointly on three single-binding tasks (binding of what and where; what and when; and where and when) and a combined-binding task (integration of what, where, and when). We also evaluated basic visuospatial memory functions with subtests of the Children's Memory Scale, and intellectual abilities with verbal tasks of the Wechsler Intelligence Scale for Children-Fourth Edition and the Raven Progressive Matrices. We found no difference between the BECTS and control groups in single-binding tasks; however, the children with BECTS performed significantly worse on the combined task, which included integration of spatial, verbal, and temporal information. We found no deficits in their intellectual abilities or basic visuospatial memory functions. Children with BECTS may have intact simple maintenance processes of working memory, but difficulty with high-level functions requiring attentional and executive resources. Our findings imply no specific memory dysfunction in BECTS, but suggest difficulties in integrating information within working memory, and possible frontal lobe disturbances.

  17. Effects of Task Instruction on Autobiographical Memory Specificity in Young and Older Adults

    PubMed Central

    Ford, Jaclyn Hennessey; Rubin, David C.; Giovanello, Kelly S.

    2013-01-01

    Older adults tend to retrieve autobiographical information that is overly general (i.e. not restricted to a single event, termed the overgenerality effect) relative to young adults’ specific memories. A vast majority of studies that have reported overgenerality effects explicitly instruct participants to retrieve specific memories, thereby requiring participants to maintain task goals, inhibit inappropriate responses, and control their memory search. Since these processes are impaired in healthy aging, it is important to determine whether such task instructions influence the magnitude of the overgenerality effect in older adults. In the current study, participants retrieved autobiographical memories during presentation of musical clips. Task instructions were manipulated to separate age-related differences in the specificity of underlying memory representations from age-related differences in following task instructions. Whereas young adults modulated memory specificity based on task demands, older adults did not. These findings suggest that reported rates of overgenerality in older adults’ memories may include age-related differences in memory representation, as well as differences in task compliance. Such findings provide a better understanding of the underlying cognitive mechanisms involved in age-related changes in autobiographical memory and may also be valuable for future research examining effects of overgeneral memory on general well-being. PMID:23915176

  18. The Influence of Levels of Processing on Recall from Working Memory and Delayed Recall Tasks

    ERIC Educational Resources Information Center

    Loaiza, Vanessa M.; McCabe, David P.; Youngblood, Jessie L.; Rose, Nathan S.; Myerson, Joel

    2011-01-01

    Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading…

  19. A critical evaluation of monkey models of amnesia and dementia.

    PubMed

    Ridley, R M; Baker, H F

    1991-01-01

    In this review we consider various models of amnesia and dementia in monkeys and examine the validity of such models. In Section 2 we describe the various types of memory tests (tasks) available for use with monkeys and discuss the extent to which these tasks assess different facets of memory according to present theories of human memory. We argue that the rules which govern correct task performance are best regarded as a form of semantic rather than procedural memory, and that when information about stimulus attributes or reward associations is stored long-term then that knowledge is semantic. The demonstration of episodic memory in monkeys is problematic and the term recognition memory has been used too loosely. In particular, it is difficult to dissociate episodic memory for stimulus events from the use of semantic memory for the rule of the task, since dysfunction of either can produce impairment on performance of the same task. Tasks can also be divided into those which assess memory for stimulus-reward associations (evaluative memory) and those which tax stimulus-response associations including spatial and conditional responding (non-evaluative memory). This dissociation cuts across the distinction between semantic and episodic memory. In Section 3 we examine the usefulness of the classification of tasks described in Section 2 in clarifying our understanding of the contribution of the temporal lobes and the cholinergic system to memory. We conclude that evaluative and non-evaluative memory are mediated by separate parallel systems involving the amygdala and hippocampus, respectively.

  20. Assessing the Effects of Momentary Priming on Memory Retention During an Interference Task

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.

    2007-01-01

    A memory aid, that used brief (33ms) presentations of previously learned information (target words), was assessed on its ability to reinforce memory for target words while the subject was performing an interference task. The interference task required subjects to learn new words and thus interfered with their memory of the target words. The brief presentation (momentary memory priming) was hypothesized to refresh the subjects memory of the target words. 143 subjects, in a within subject design, were given a 33ms presentation of the target memory words during the interference task in a treatment condition and a blank 33ms presentation in the control condition. The primary dependent measure, memory loss over the interference trial, was not significantly different between the two conditions. The memory prime did not appear to hinder the subjects performance on the interference task. This paper describes the experiment and the results along with suggestions for future research.

  1. The Deese-Roediger-McDermott (DRM) Task: A Simple Cognitive Paradigm to Investigate False Memories in the Laboratory.

    PubMed

    Pardilla-Delgado, Enmanuelle; Payne, Jessica D

    2017-01-31

    The Deese, Roediger and McDermott (DRM) task is a false memory paradigm in which subjects are presented with lists of semantically related words (e.g., nurse, hospital, etc.) at encoding. After a delay, subjects are asked to recall or recognize these words. In the recognition memory version of the task, subjects are asked whether they remember previously presented words, as well as related (but never presented) critical lure words ('doctor'). Typically, the critical word is recognized with high probability and confidence. This false memory effect has been robustly demonstrated across short (e.g., immediate, 20 min) and long (e.g., 1, 7, 60 d) delays between encoding and memory testing. A strength of using this task to study false memory is its simplicity and short duration. If encoding and retrieval components of the task occur in the same session, the entire task can take as little as 2 - 30 min. However, although the DRM task is widely considered a 'false memory' paradigm, some researchers consider DRM illusions to be based on the activation of semantic memory networks in the brain, and argue that such semantic gist-based false memory errors may actually be useful in some scenarios (e.g., remembering the forest for the trees; remembering that a word list was about "doctors", even though the actual word "doctor" was never presented for study). Remembering the gist of experience (instead of or along with individual details) is arguably an adaptive process and this task has provided a great deal of knowledge about the constructive, adaptive nature of memory. Therefore, researchers should use caution when discussing the overall reach and implications of their experiments when using this task to study 'false memory', as DRM memory errors may not adequately reflect false memories in the real world, such as false memory in eyewitness testimony, or false memories of sexual abuse.

  2. On the Processing of Semantic Aspects of Experience in the Anterior Medial Temporal Lobe: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Meyer, Patric; Mecklinger, Axel; Friederici, Angela D.

    2010-01-01

    Recognition memory based on familiarity judgments is a form of declarative memory that has been repeatedly associated with the anterior medial temporal lobe. It has been argued that this region sustains familiarity-based recognition not only by retrieving item-specific information but also by coding for those semantic aspects of an event that…

  3. The Universal Declaration of Human Rights

    ERIC Educational Resources Information Center

    Landorf, Hilary

    2012-01-01

    A study of human rights prepares students for their role as global citizens and their study of practices in the world's countries that relate to the rights of human beings. Today, when one talks of human rights it is usually with reference to the 1948 Universal Declaration of Human Rights (UDHR). It is the task of teachers to give students the…

  4. Evidence for modality-independent order coding in working memory.

    PubMed

    Depoorter, Ann; Vandierendonck, André

    2009-03-01

    The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.

  5. Does Sleep Improve Your Grammar? Preferential Consolidation of Arbitrary Components of New Linguistic Knowledge

    PubMed Central

    Mirković, Jelena; Gaskell, M. Gareth

    2016-01-01

    We examined the role of sleep-related memory consolidation processes in learning new form-meaning mappings. Specifically, we examined a Complementary Learning Systems account, which implies that sleep-related consolidation should be more beneficial for new hippocampally dependent arbitrary mappings (e.g. new vocabulary items) relative to new systematic mappings (e.g. grammatical regularities), which can be better encoded neocortically. The hypothesis was tested using a novel language with an artificial grammatical gender system. Stem-referent mappings implemented arbitrary aspects of the new language, and determiner/suffix+natural gender mappings implemented systematic aspects (e.g. tib scoiffesh + ballerina, tib mofeem + bride; ked jorool + cowboy, ked heefaff + priest). Importantly, the determiner-gender and the suffix-gender mappings varied in complexity and salience, thus providing a range of opportunities to detect beneficial effects of sleep for this type of mapping. Participants were trained on the new language using a word-picture matching task, and were tested after a 2-hour delay which included sleep or wakefulness. Participants in the sleep group outperformed participants in the wake group on tests assessing memory for the arbitrary aspects of the new mappings (individual vocabulary items), whereas we saw no evidence of a sleep benefit in any of the tests assessing memory for the systematic aspects of the new mappings: Participants in both groups extracted the salient determiner-natural gender mapping, but not the more complex suffix-natural gender mapping. The data support the predictions of the complementary systems account and highlight the importance of the arbitrariness/systematicity dimension in the consolidation process for declarative memories. PMID:27046022

  6. Effects of age on a real-world What-Where-When memory task

    PubMed Central

    Mazurek, Adèle; Bhoopathy, Raja Meenakshi; Read, Jenny C. A.; Gallagher, Peter; Smulders, Tom V.

    2015-01-01

    Many cognitive abilities decline with aging, making it difficult to detect pathological changes against a background of natural changes in cognition. Most of the tests to assess cognitive decline are artificial tasks that have little resemblance to the problems faced by people in everyday life. This means both that people may have little practice doing such tasks (potentially contributing to the decline in performance) and that the tasks may not be good predictors of real-world cognitive problems. In this study, we test the performance of young people (18–25 years) and older people (60+-year-olds) on a novel, more ecologically valid test of episodic memory: the real-world What-Where-When (WWW) memory test. We also compare them on a battery of other cognitive tests, including working memory, psychomotor speed, executive function, and episodic memory. Older people show the expected age-related declines on the test battery. In the WWW memory task, older people were more likely to fail to remember any WWW combination than younger people were, although they did not significantly differ in their overall WWW score due to some older people performing as well as or better than most younger people. WWW memory performance was significantly predicted by other measures of episodic memory, such as the single-trial learning and long-term retention in the Rey Auditory Verbal Learning task and Combined Object Location Memory in the Object Relocation task. Self-reported memory complaints also predicted performance on the WWW task. These findings confirm that our real-world WWW memory task is a valid measure of episodic memory, with high ecological validity, which may be useful as a predictor of everyday memory abilities. The task will require a bit more development to improve its sensitivity to cognitive declines in aging and to potentially distinguish between mentally healthy older adults and those with early signs of cognitive pathologies. PMID:26042030

  7. Sleep-dependent consolidation patterns reveal insights into episodic memory structure.

    PubMed

    Oyanedel, Carlos N; Sawangjit, Anuck; Born, Jan; Inostroza, Marion

    2018-05-18

    Episodic memory formation is considered a genuinely hippocampal function. Its study in rodents has relied on two different task paradigms, i.e. the so called "what-where-when" (WW-When) task and "what-where-which" (WW-Which) task. The WW-When task aims to assess the memory for an episode as an event bound into its context defined by spatial and distinct temporal information, the WW-Which task lacks the temporal component and introduces, instead, an "occasion setter" marking the broader contextual configuration in which the event occurred. Whether both tasks measure episodic memory in an equivalent manner in terms of recollection has been controversially discussed. Here, we compared in two groups of rats the consolidating effects of sleep on episodic-like memory between both task paradigms. Sampling and test phases were separated by a 90-min morning retention interval which did or did not allow for spontaneous sleep. Results show that sleep is crucial for the consolidation of the memory on both tasks. However, consolidating effects of sleep were stronger for the WW-Which than WW-When task. Comparing performance during the post-sleep test phase revealed that WW-When memory only gradually emerged during the 3-min test period whereas WW-Which memory was readily expressed already from the first minute onward. Separate analysis of the temporal and spatial components of WW-When performance showed that the delayed episodic memory on this task originated from the temporal component which also did not emerge until the third minute of the test phase, whereas the spatial component already showed up in the first minute. In conclusion, sleep differentially affects consolidation on the two episodic-like memory tasks, with the delayed expression of WW-When memory after sleep resulting from preferential coverage of temporal aspects by this task. Copyright © 2018. Published by Elsevier Inc.

  8. Effects of working memory load on visual selective attention: behavioral and electrophysiological evidence.

    PubMed

    Pratt, Nikki; Willoughby, Adrian; Swick, Diane

    2011-01-01

    Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.

  9. Effects of Working Memory Load on Visual Selective Attention: Behavioral and Electrophysiological Evidence

    PubMed Central

    Pratt, Nikki; Willoughby, Adrian; Swick, Diane

    2011-01-01

    Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict. PMID:21716633

  10. Effects of Stress and Task Difficulty on Working Memory and Cortical Networking.

    PubMed

    Kim, Yujin; Woo, Jihwan; Woo, Minjung

    2017-12-01

    This study investigated interactive effects of stress and task difficulty on working memory and cortico-cortical communication during memory encoding. Thirty-eight adolescent participants (mean age of 15.7 ± 1.5 years) completed easy and hard working memory tasks under low- and high-stress conditions. We analyzed the accuracy and reaction time (RT) of working memory performance and inter- and intrahemispheric electroencephalogram coherences during memory encoding. Working memory accuracy was higher, and RT shorter, in the easy versus the hard task. RT was shorter under the high-stress (TENS) versus low-stress (no-TENS) condition, while there was no difference in memory accuracy between the two stress conditions. For electroencephalogram coherence, we found higher interhemispheric coherence in all bands but only at frontal electrode sites in the easy versus the hard task. On the other hand, intrahemispheric coherence was higher in the left hemisphere in the easy (versus hard task) and higher in the right hemisphere (with one exception) in the hard (versus easy task). Inter- and intracoherences were higher in the low- versus high-stress condition. Significant interactions between task difficulty and stress condition were observed in coherences of the beta frequency band. The difference in coherence between low- and high-stress conditions was greater in the hard compared with the easy task, with lower coherence under the high-stress condition relative to the low-stress condition. Stress seemed to cause a decrease in cortical network communications between memory-relevant cortical areas as task difficulty increased.

  11. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  12. Impact of the hypothalamic-pituitary-adrenal/gonadal axes on trajectory of age-related cognitive decline.

    PubMed

    Conrad, Cheryl D; Bimonte-Nelson, Heather A

    2010-01-01

    Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease. Copyright 2010 Elsevier B.V. All rights reserved.

  13. What's the Problem? Familiarity Working Memory, and Transfer in a Problem-Solving Task.

    PubMed

    Kole, James A; Snyder, Hannah R; Brojde, Chandra L; Friend, Angela

    2015-01-01

    The contributions of familiarity and working memory to transfer were examined in the Tower of Hanoi task. Participants completed 3 different versions of the task: a standard 3-disk version, a clothing exchange task that included familiar semantic content, and a tea ceremony task that included unfamiliar semantic content. The constraints on moves were equivalent across tasks, and each could be solved with the same sequence of movements. Working memory demands were manipulated by the provision of a (static or dynamic) visual representation of the problem. Performance was equivalent for the standard Tower of Hanoi and clothing exchange tasks but worse for the tea ceremony task, and it decreased with increasing working memory demands. Furthermore, the standard Tower of Hanoi task and clothing exchange tasks independently, additively, and equivalently transferred to subsequent tasks, whereas the tea ceremony task did not. The results suggest that both familiarity and working memory demands determine overall level of performance, whereas familiarity influences transfer.

  14. Use of immersive virtual reality to assess episodic memory: A validation study in older adults.

    PubMed

    Corriveau Lecavalier, Nick; Ouellet, Émilie; Boller, Benjamin; Belleville, Sylvie

    2018-05-29

    Virtual reality (VR) allows for the creation of ecological environments that could be used for cognitive assessment and intervention. This study comprises two parts that describe and assess an immersive VR task, the Virtual Shop, which can be used to measure episodic memory. Part 1 addresses its applicability in healthy older adults by measuring presence, motivation, and cybersickness symptoms. Part 2 addresses its construct validity by investigating correlations between performance in the VR task and on a traditional experimental memory task, and by measuring whether the VR task is sensitive to age-related memory differences. Fifty-seven older and 20 younger adults were assessed in the Virtual Shop, in which they memorised and fetched 12 familiar items. Part 1 showed high levels of presence, higher levels of motivation for the VR than for the traditional task, and negligible cybersickness symptoms. Part 2 indicates that memory performance in the VR task is positively correlated with performance on a traditional memory task for both age groups, and age-related differences were found on the VR and traditional memory tasks. Thus, the use of VR is feasible in older adults and the Virtual Shop is a valid task to assess and train episodic memory in this population.

  15. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    NASA Technical Reports Server (NTRS)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  16. Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children

    PubMed Central

    Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita

    2016-01-01

    In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914

  17. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    PubMed

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  18. The effect of strategic memory training in older adults: who benefits most?

    PubMed

    Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena

    2017-12-07

    Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.

  19. Preserved memory abilities in thalamic amnesia.

    PubMed

    Nichelli, P; Bahmanian-Behbahani, G; Gentilini, M; Vecchi, A

    1988-12-01

    The pattern of preserved learning abilities is described in a severely amnesic patient after bilateral thalamic infarction. Experimental findings cannot be accounted for both by the view that only episodic memory is impaired in amnesia, while semantic memory is spared, and by the theory that what is spared in amnesia is procedural learning contrasted with impaired declarative memory. In agreement with Warrington and Weiskrantz (1982), diencephalic amnesia is considered to be a disconnection syndrome between the frontal and temporal lobes. The conditions for showing spared and impaired memory in amnesics are specified on the basis of the performance of the patient and of the data available in the literature. This allows us to derive practical suggestions for programmes aimed at remediation of memory defects.

  20. Still searching for the engram

    PubMed Central

    Eichenbaum, Howard

    2016-01-01

    For nearly a century neurobiologists have searched for the engram - the neural representation of a memory. Early studies showed that the engram is widely distributed both within and across brain areas and is supported by interactions among large networks of neurons. Subsequent research has identified engrams that support memory within dedicated functional systems for habit learning and emotional memory, but the engram for declarative memories has been elusive. Nevertheless, recent years have brought progress from molecular biological approaches that identify neurons and networks that are necessary and sufficient to support memory, and from recording approaches and population analyses that characterize the information coded by large neural networks. These new directions offer the promise of revealing the engrams for episodic and semantic memories. PMID:26944423

Top