Sample records for declining prey populations

  1. Climate variability, human wildlife conflict and population dynamics of lions Panthera leo.

    PubMed

    Trinkel, Martina

    2013-04-01

    Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82% of all known lion mortalities were caused by humans, and most of these consisted of adult females (28%) and subadult males (29%). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.

  2. Climate variability, human wildlife conflict and population dynamics of lions Panthera leo

    NASA Astrophysics Data System (ADS)

    Trinkel, Martina

    2013-04-01

    Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82 % of all known lion mortalities were caused by humans, and most of these consisted of adult females (28 %) and subadult males (29 %). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.

  3. Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil

    PubMed Central

    Hollings, Tracey; McCallum, Hamish; Kreger, Kaely; Mooney, Nick; Jones, Menna

    2015-01-01

    Apex predators structure ecosystems through lethal and non-lethal interactions with prey, and their global decline is causing loss of ecological function. Behavioural changes of prey are some of the most rapid responses to predator decline and may act as an early indicator of cascading effects. The Tasmanian devil (Sarcophilus harrisii), an apex predator, is undergoing progressive and extensive population decline, of more than 90% in long-diseased areas, caused by a novel disease. Time since local disease outbreak correlates with devil population declines and thus predation risk. We used hair traps and giving-up densities (GUDs) in food patches to test whether a major prey species of devils, the arboreal common brushtail possum (Trichosurus vulpecula), is responsive to the changing risk of predation when they forage on the ground. Possums spend more time on the ground, discover food patches faster and forage more to a lower GUD with increasing years since disease outbreak and greater devil population decline. Loss of top–down effects of devils with respect to predation risk was evident at 90% devil population decline, with possum behaviour indistinguishable from a devil-free island. Alternative predators may help to maintain risk-sensitive anti-predator behaviours in possums while devil populations remain low. PMID:26085584

  4. Effects of dams on downstream molluscan predator-prey interactions in the Colorado River estuary.

    PubMed

    Smith, Jansen A; Handley, John C; Dietl, Gregory P

    2018-05-30

    River systems worldwide have been modified for human use and the downstream ecological consequences are often poorly understood. In the Colorado River estuary, where upstream water diversions have limited freshwater input during the last century, mollusc remains from the last several hundred years suggest widespread ecological change. The once abundant clam Mulinia modesta has undergone population declines of approximately 94% and populations of predators relying on this species as a food source have probably declined, switched to alternative prey species or both. We distinguish between the first two hypotheses using a null model of predation preference to test whether M. modesta was preyed upon selectively by the naticid snail, Neverita reclusiana , along the estuary's past salinity gradient. To evaluate the third hypothesis, we estimate available prey biomass today and in the past, assuming prey were a limiting resource. Data on the frequency of drill holes-identifiable traces of naticid predation on prey shells-showed several species, including M. modesta , were preferred prey. Neverita reclusiana was probably able to switch prey. Available prey biomass also declined, suggesting the N. reclusiana population probably also declined. These results indicate a substantial change to the structure of the benthic food web. Given the global scale of water management, such changes have probably also occurred in many of the world's estuaries. © 2018 The Author(s).

  5. Status and trends in the fish community of Lake Superior, 2012

    USGS Publications Warehouse

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark

    2012-01-01

    Due to ship mechanical failures, nearshore sampling was delayed from mid-May to mid-June to mid-June to late August. The shift to summer sampling when the lake was stratified may have affected our estimates, thus our estimates of status and trends for the nearshore fish community in 2012 are tentative, pending results of future surveys. However, the results of the 2012 survey are comparable with those during 2009 and 2010 when lake-wide fish biomass declined to < 1.40 kg/ha. Declines in prey fish biomass since the late 1990s can be attributed to a combination of increased predation by recovered lake trout populations and infrequent and weak recruitment by the principal prey fishes, cisco and bloater. In turn declines in lake trout biomass since the mid-2000s are likely linked to declines in prey fish biomass. If lean and siscowet lake trout populations in nearshore waters continue to remain at current levels, predation mortality will likely maintain the relatively low prey fish biomass observed in recent years. Alternatively, if lake trout populations show a substantial decline in abundance in upcoming years, prey fish populations may rebound in a fashion reminiscent to what occurred in the late 1970s to mid-1980s. However, this scenario depends on substantial increases in harvest of lake trout, which seems unlikely given that levels of lake trout harvest have been flat or declining in many regions of Lake Superior since 2000.

  6. Assessment of Competition between Fisheries and Steller Sea Lions in Alaska Based on Estimated Prey Biomass, Fisheries Removals and Predator Foraging Behaviour

    PubMed Central

    Hui, Tabitha C. Y.; Gryba, Rowenna; Gregr, Edward J.; Trites, Andrew W.

    2015-01-01

    A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus) in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility) using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s. PMID:25950178

  7. Assessment of Competition between Fisheries and Steller Sea Lions in Alaska Based on Estimated Prey Biomass, Fisheries Removals and Predator Foraging Behaviour.

    PubMed

    Hui, Tabitha C Y; Gryba, Rowenna; Gregr, Edward J; Trites, Andrew W

    2015-01-01

    A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus) in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility) using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s.

  8. Food-limitation in a generalist predator.

    PubMed

    Rutz, Christian; Bijlsma, Rob G

    2006-08-22

    Investigating food-limitation in generalist predators is difficult, because they can switch to alternative prey, when one of their staple prey becomes scarce. Apart from data on the dynamics of the predator population, a robust study requires: (i) a documentation of the predator's entire prey base; and (ii) an experimental or natural situation, where profitable dietary shifts are impossible, because several preferred prey species decline simultaneously. Here, we provide a detailed description of how food-supply has limited a generalist avian top predator, the northern goshawk Accipiter gentilis. In our study area, populations of several principal goshawk prey species crashed simultaneously during 1975-2000, whereas other extrinsic factors remained essentially unchanged. The breeding and non-breeding segments of the local goshawk population declined markedly, associated with a significant increase in nest failures. Brood size of successful pairs remained unaffected by changes in prey availability. Breeding recruitment ceased at a time when potential replacement birds ('floaters') were still present, providing a rare empirical demonstration of an 'acceptance threshold' in raptor territory choice. To investigate how goshawk diet changed in response to varying food-supplies, we make novel use of an analytical tool from biodiversity research-'abundance-biomass-comparison curves' (ABC curves). With increasing levels of food-stress, the dominance of principal prey species in the diet decreased, and the number of small-bodied prey species increased, as did intra-guild predation. Our finding that breeder and non-breeder segments declined in concert is unexpected. Our results carry the management implication that, in food-limited raptor populations, externally induced breeder mortality can rapidly depress population size, as losses are no longer buffered when floaters reject breeding opportunities.

  9. Food-limitation in a generalist predator

    PubMed Central

    Rutz, Christian; Bijlsma, Rob G

    2006-01-01

    Investigating food-limitation in generalist predators is difficult, because they can switch to alternative prey, when one of their staple prey becomes scarce. Apart from data on the dynamics of the predator population, a robust study requires: (i) a documentation of the predator's entire prey base; and (ii) an experimental or natural situation, where profitable dietary shifts are impossible, because several preferred prey species decline simultaneously. Here, we provide a detailed description of how food-supply has limited a generalist avian top predator, the northern goshawk Accipiter gentilis. In our study area, populations of several principal goshawk prey species crashed simultaneously during 1975–2000, whereas other extrinsic factors remained essentially unchanged. The breeding and non-breeding segments of the local goshawk population declined markedly, associated with a significant increase in nest failures. Brood size of successful pairs remained unaffected by changes in prey availability. Breeding recruitment ceased at a time when potential replacement birds (‘floaters’) were still present, providing a rare empirical demonstration of an ‘acceptance threshold’ in raptor territory choice. To investigate how goshawk diet changed in response to varying food-supplies, we make novel use of an analytical tool from biodiversity research—‘abundance–biomass–comparison curves’ (ABC curves). With increasing levels of food-stress, the dominance of principal prey species in the diet decreased, and the number of small-bodied prey species increased, as did intra-guild predation. Our finding that breeder and non-breeder segments declined in concert is unexpected. Our results carry the management implication that, in food-limited raptor populations, externally induced breeder mortality can rapidly depress population size, as losses are no longer buffered when floaters reject breeding opportunities. PMID:16846915

  10. Piscivore diet response to a collapse in pelagic prey populations

    USGS Publications Warehouse

    Zeug, Steven; Feyrer, Frederick; Brodsky, Annie; Melgo, Jenny

    2017-01-01

    Pelagic fish populations in the upper San Francisco Estuary have experienced significant declines since the turn of the century; a pattern known as the pelagic organism decline (POD). This study investigated food habits of piscivorous fishes over two consecutive fall seasons following the decline of pelagic fish prey. Specifically, this study addressed the contribution of pelagic versus benthic prey to piscivorous fish diets, including the frequency of predation on special-status pelagic species, and the spatial variability in prey consumption. The piscivore community was dominated by Striped Bass and also included small numbers of Sacramento Pikeminnow and Largemouth Bass. Overall, pelagic prey items contributed less than 10% of the diet by weight in both years, whereas pre-POD studies gleaned from the literature found contributions of 39–100%, suggesting a major switch from pelagic to benthic prey resources. Between-year variation in piscivore diets reflected differences in environmental conditions associated with variation in freshwater outflow. No special status fish species were detected in any of the piscivore stomachs examined. The consequences of this pelagic to benthic diet shift warrants further investigation to understand its ecological relevance.

  11. Killer whales and marine mammal trends in the North Pacific - A re-examination of evidence for sequential megafauna collapse and the prey-switching hypothesis

    USGS Publications Warehouse

    Wade, P.R.; Burkanov, V.N.; Dahlheim, M.E.; Friday, N.A.; Fritz, L.W.; Loughlin, Thomas R.; Mizroch, S.A.; Muto, M.M.; Rice, D.W.; Barrett-Lennard, L. G.; Black, N.A.; Burdin, A.M.; Calambokidis, J.; Cerchio, S.; Ford, J.K.B.; Jacobsen, J.K.; Matkin, C.O.; Matkin, D.R.; Mehta, A.V.; Small, R.J.; Straley, J.M.; McCluskey, S.M.; VanBlaricom, G.R.; Clapham, P.J.

    2007-01-01

    Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling's removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50-100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem. ?? 2007 by the Society for Marine Mammalogy.

  12. Wolf population in the Central Superior National Forest, 1967-1985

    USGS Publications Warehouse

    Mech, L.D.

    1986-01-01

    Aerial radio-tracking and observation showed total number of wolves per year in 2,060-km2 area varied from 35 to 87 in winter and from 30 to 78 in spring and generally declined because of a decreasing deer herd. Since winter 1977-1978, the population has remained relatively stable because an increasing proportion of it has switched to preying on moose. The number of wolves preying on deer has continued to decline.

  13. Population limitation in a non-cyclic arctic fox population in a changing climate.

    PubMed

    Pálsson, Snæbjörn; Hersteinsson, Páll; Unnsteinsdóttir, Ester R; Nielsen, Ólafur K

    2016-04-01

    Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.

  14. Copperheads are common when kingsnakes are not: relationships between the abundances of a predator and one of their prey

    Treesearch

    David A. Steen; Christopher J. W. McClure; William B. Sutton; D. Craig Rudolph; Josh B. Pierce; James R. Lee; Lora L. Smith; Beau B. Gregory; Danna L. Baxley; Dirk J. Stevenson; Craig Guyer

    2014-01-01

    Common Kingsnakes (formerly known collectively as Lampropeltis getula) are experiencing localized declines throughout the southeastern United States. Because there have been limited studies to determine how snakes regulate prey populations, and because Kingsnake declines may result in ecosystem impacts, we evaluated the hypothesis that Kingsnakes regulate the abundance...

  15. Predatory senescence in ageing wolves.

    PubMed

    MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig

    2009-12-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  16. Predatory senescence in ageing wolves

    USGS Publications Warehouse

    MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.

  17. Predatory senescence in aging wolves

    USGS Publications Warehouse

    MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  18. Spatio-Temporal Variation in Predation by Urban Domestic Cats (Felis catus) and the Acceptability of Possible Management Actions in the UK

    PubMed Central

    Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.

    2012-01-01

    Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057

  19. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem.

    PubMed

    Shackell, Nancy L; Frank, Kenneth T; Fisher, Jonathan A D; Petrie, Brian; Leggett, William C

    2010-05-07

    Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower trophic levels. The increase in prey biomass was associated primarily with declines in predator body size and secondarily to an increase in stratification. Sea surface temperature and predator biomass had no influence. A regression model explained 65 per cent of prey biomass variability. Trait-mediated effects, namely a reduction in predator size, resulted in a weakening of top predation pressure. Increased stratification may have enhanced growing conditions for prey fish. Size-selective harvesting under changing climatic conditions initiated a trophic restructuring of the food chain, the effects of which may have influenced three trophic levels.

  20. Evolution mediates the effects of apex predation on aquatic food webs

    PubMed Central

    Urban, Mark C.

    2013-01-01

    Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548

  1. Evolution mediates the effects of apex predation on aquatic food webs.

    PubMed

    Urban, Mark C

    2013-07-22

    Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.

  2. Population dynamics of Amur tigers (Panthera tigris altaica) in Sikhote-Alin Biosphere Zapovednik: 1966-2012.

    PubMed

    Miquelle, Dale G; Smirnov, Evgeny N; Zaumyslova, Olga Yu; Soutyrina, Svetlana V; Johnson, Douglas H

    2015-07-01

    In 2010, the world's tiger (Panthera tigris) range countries agreed to the goal of doubling tiger numbers over 12 years, but whether such an increase is biologically feasible has not been assessed. Long-term monitoring of tigers in Sikhote-Alin Biosphere Zapovednik (SABZ), Russia provided an opportunity to determine growth rates of a recovering population. A 41-year growth phase was followed by a rapid decline in tiger numbers. Annual growth rates during the growth phase averaged 4.6%, beginning near 10% in the earliest years but quickly dropping below 5%. Sex ratio (females per male) mirrored growth rates, declining as population size increased. The rapid decline from 2009 to 2012 appeared to be tied to multiple factors, including poaching, severe winters and disease. Reproductive indicators of this population are similar to those of Bengal tiger populations, suggesting that growth rates may be similar. These results suggest that, first, tiger populations likely in general grow slowly: 3-5% yearly increases are realistic and larger growth rates are likely only when populations are highly depressed, mortality rates are low and prey populations are high relative to numbers of adult females. Second, while more research is needed, it should not be assumed that tiger populations with high prey densities will necessarily grow more quickly than populations with low prey densities. Third, while growth is slow, decline can be rapid. Fourth, because declines can happen so quickly, there is a constant need to monitor populations and be ready to respond with appropriate and timely conservation interventions if tiger populations are to remain secure. Finally, an average annual growth rate across all tiger populations of 6%, required to reach the Global Tiger Initiative's goal of doubling tiger numbers in 12 years, is a noble but unlikely scenario. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  3. Population interactions among free-living bluefish and prey fish in an ocean environment.

    PubMed

    Safina, Carl; Burger, Joanna

    1989-04-01

    We used sonar to measure relative abundance, location, and depth of prey fish schools (primarily Anchoa and Ammodytes) in the ocean near Fire Island Inlet, New York from May to August for 4 years to examine predatorprey interactions. Prey fish numbers built through May, peaked in June, and thereafter declined coincident with the arrival of predatory bluefish. Bluefish abundance and feeding behavior correlated inversely with prey fish abundance and depth. Bluefish may drive seasonal patterns of prey abundance and distribution in this area through direct predation and by causing prey to flee.

  4. Garter snakes distributions in high elevation aquatic ecosystems: Is there a link with declining amphibian populations and nonnative trout introductions?

    Treesearch

    K.R. Matthews; R.A. Knapp; K.L. Pope

    2002-01-01

    ABSTRACT.—The dramatic amphibian population declines reported worldwide likely have important effects on their predators. In the Sierra Nevada, where amphibian declines are well documented and some are closely tied to the introduction of nonnative trout, the mountain garter snake, Thamnophis elegans elegans, preys predominately on amphibians. We surveyed 2103 high-...

  5. The economics of protecting tiger populations: Linking household behavior to poaching and prey depletion

    USGS Publications Warehouse

    Damania, R.; Stringer, R.; Karanth, K.U.; Stith, B.

    2003-01-01

    The tiger (Panthera tigris) is classified as endangered and populations continue to decline. This paper presents a formal economic analysis of the two most imminent threats to the survival of wild tigers: poaching tigers and hunting their prey. A model is developed to examine interactions between tigers and farm households living in and around tiger habitats. The analysis extends the existing literature on tiger demography, incorporating predator-prey interactions and exploring the sensitivity of tiger populations to key economic parameters. The analysis aims to contribute to policy debates on how best to protect one of the world's most endangered wild cats.

  6. Sub-indicator: Prey fish

    USGS Publications Warehouse

    Weidel, Brian C.; Dunlop, Erin

    2017-01-01

    Prey fish communities across the Great Lakes continue to change, although the direction and magnitude of those changes are not consistent across the lakes. The metrics used to categorize prey fish status in this and previous periods are based on elements that are common among each of the lake’s Fish Community Objectives and include diversity and the relative role of native species in the prey fish communities. The diversity index categorized three of lakes as ‘fair’, while Superior and Erie were ‘good’ (Table 1). The short term trend, from the previous period (2008-2010) to the current period (2011-2014) found diversity in Erie and Superior to be unchanging, but the other three lakes to be ‘deteriorating’, resulting in an overall trend categorization of ‘undetermined’ (Table 1). The long term diversity trend suggested Lakes Superior and Erie have the most diverse prey communities although the index for those prey fish have been quite variable over time (Figure 1). In Lake Huron, where non-native alewife have substantially declined, the diversity index has also declined. The continued dominance of alewife in Lake Ontario (96% of the prey fish biomass) resulted in the lowest diversity index value (Figure 1). The proportion of native species within the community was judged as ‘good’ in Lakes Superior and Huron, ‘fair’ in Michigan and Erie and ‘poor’ in Ontario (Table 2). The short term trend was improving in in all lakes except Michigan (‘deteriorating’) and Ontario (‘unchanging’), resulting in an overall short term trend of ‘undetermined’ (Table 2). Over the current period, Lake Superior consistently had the highest proportion native prey fish (87%) while Lake Ontario had the lowest (1%) (Figure 2). Lake Michigan’s percent native has declined as round goby increase and comprises a greater proportion of the community. Native prey fish make up 51% of Lake Erie, although basin-specific values differed (Figure 2). Most notably, native species in Lake Huron comprised less than 10% of the community in 1970, but since alewife have declined, now represent nearly 80% of the community (Figure 2). Prey fish data are most consistent for in-lake populations, which are reported here; data from connecting channels was not consistently available across the basin. Abundance was not used to judge prey fish status since successful, basin-wide management actions, including mineral nutrient input reductions and piscivore restoration, both inherently reduce prey fish abundance. However, recent abundance trends as they relate to predator prey balance are referenced, such as in Lakes Michigan and Huron where piscivore stocking is being reduced to lower predation demand on prey fish populations and maintain sport fisheries.

  7. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change

    USGS Publications Warehouse

    Hebert, C.E.; Weseloh, D.V.C.; Idrissi, A.; Arts, M.T.; O'Gorman, R.; Gorman, O.T.; Locke, B.; Madenjian, C.P.; Roseman, E.F.

    2008-01-01

    Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry. ?? 2008 by the Ecological Society of America.

  8. The ethological trap: functional and numerical responses of highly efficient invasive predators driving prey extinctions.

    PubMed

    Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B

    2016-10-01

    Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.

  9. Kit fox population trends at the Naval Petroleum Reserves in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, T.T.; Scrivner, J.H.; Warrick, G.

    The San Joaquin kit fox was listed as an endangered subspecies following passage of the Endangered Species Protection Act of 1966, and further classified as rare under the California Endangered Species Act of 1970. The San Joaquin kit fox occurs on the Naval Petroleum Reserves in California administered by the Department of Energy (DOE). A long term kit fox population monitoring program was initiated as part of DOE's mitigation strategy to comply with the Endangered Species Act. In addition to monitoring kit fox populations, the program includes assessments of kit fox prey density and assessments of predator abundance. The objectivesmore » of this study were to: describe the long term changes in the kit fox population on the Reserves and assess the roles of coyotes and lagomorphs in kit fox population dynamics. When the fox population on NPR-1 declined between 1980 and 1984, it appeared to have been negatively impacted by a declining prey base (lagomorphs) and an increasing coyote population. Declining lagomorph densities may have been a more important factor because as coyote numbers declined between 1985 and 1990, the kit fox population remained stable. The fox population on NPR-2 remained at a higher and more stable level than the population on NPR-1. The factors determining the higher densities and greater stability of the fox population on NPR-2 are unknown.« less

  10. Top carnivores increase their kill rates on prey as a response to human-induced fear

    PubMed Central

    Smith, Justine A.; Wang, Yiwei; Wilmers, Christopher C.

    2015-01-01

    The fear induced by predators on their prey is well known to cause behavioural adjustments by prey that can ripple through food webs. Little is known, however, about the analogous impacts of humans as perceived top predators on the foraging behaviour of carnivores. Here, we investigate the influence of human-induced fear on puma foraging behaviour using location and prey consumption data from 30 tagged individuals living along a gradient of human development. We observed strong behavioural responses by female pumas to human development, whereby their fidelity to kill sites and overall consumption time of prey declined with increasing housing density by 36 and 42%, respectively. Females responded to this decline in prey consumption time by increasing the number of deer they killed in high housing density areas by 36% over what they killed in areas with little residential development. The loss of food from declines in prey consumption time paired with increases in energetic costs associated with killing more prey may have consequences for puma populations, particularly with regard to reproductive success. In addition, greater carcass availability is likely to alter community dynamics by augmenting food resources for scavengers. In light of the extensive and growing impact of habitat modification, our study emphasizes that knowledge of the indirect effects of human activity on animal behaviour is a necessary component in understanding anthropogenic impacts on community dynamics and food web function. PMID:25608884

  11. Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans.

    PubMed

    Lacy, Robert C; Williams, Rob; Ashe, Erin; Balcomb Iii, Kenneth C; Brent, Lauren J N; Clark, Christopher W; Croft, Darren P; Giles, Deborah A; MacDuffee, Misty; Paquet, Paul C

    2017-10-26

    Understanding cumulative effects of multiple threats is key to guiding effective management to conserve endangered species. The critically endangered, Southern Resident killer whale population of the northeastern Pacific Ocean provides a data-rich case to explore anthropogenic threats on population viability. Primary threats include: limitation of preferred prey, Chinook salmon; anthropogenic noise and disturbance, which reduce foraging efficiency; and high levels of stored contaminants, including PCBs. We constructed a population viability analysis to explore possible demographic trajectories and the relative importance of anthropogenic stressors. The population is fragile, with no growth projected under current conditions, and decline expected if new or increased threats are imposed. Improvements in fecundity and calf survival are needed to reach a conservation objective of 2.3% annual population growth. Prey limitation is the most important factor affecting population growth. However, to meet recovery targets through prey management alone, Chinook abundance would have to be sustained near the highest levels since the 1970s. The most optimistic mitigation of noise and contaminants would make the difference between a declining and increasing population, but would be insufficient to reach recovery targets. Reducing acoustic disturbance by 50% combined with increasing Chinook by 15% would allow the population to reach 2.3% growth.

  12. Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia.

    PubMed

    Angelstam, P; Lindström, E; Widén, P

    1984-05-01

    We tested the hypothesis that synchronous fluctuations in small game species in boreal Fennoscandia are caused by varying predation pressure. The main prey of predators are the cyclically superabundant voles. Small game species (alternative prey) are rare compared to voles. The following 4 predictions were checked: (1) Predators should shift their diet from main prey to alternative prey as main prey decline. - This was confirmed using data on red fox (Vulpes vulpes L.) diet.; (2) The mortality rate of alternative prey should be inversely correlated to the abundance of main prey. - This was true for mountain hare (Lepus timidus L.) mortality rates and the rate of nest predation on black grouse (Tetrao tetrix L.).; (3) The total consumption of prey by all the predators should at least equal the critical losses in alternative prey during a decline year. - A tentative estimate of predator consumption amounted to 10 times the losses in grouse and hare.; and (4) The absence of synchrony between the species in the boreonemoral region should be associated with a more diverse diet of predators. - This was the case for red fox diets throughout Sweden. Although all 4 predictions were confirmed, we could not necessarily exclude other hypotheses involving changes in quality or quantity of plant food.

  13. Diet quality in a wild grazer declines under the threat of an ambush predator

    PubMed Central

    Barnier, Florian; Valeix, Marion; Duncan, Patrick; Chamaillé-Jammes, Simon; Barre, Philippe; Loveridge, Andrew J.; Macdonald, David W.; Fritz, Hervé

    2014-01-01

    Predators influence prey populations not only through predation itself, but also indirectly through prompting changes in prey behaviour. The behavioural adjustments of prey to predation risk may carry nutritional costs, but this has seldom been studied in the wild in large mammals. Here, we studied the effects of an ambush predator, the African lion (Panthera leo), on the diet quality of plains zebras (Equus quagga) in Hwange National Park, Zimbabwe. We combined information on movements of both prey and predators, using GPS data, and measurements of faecal crude protein, an index of diet quality in the prey. Zebras which had been in close proximity to lions had a lower quality diet, showing that adjustments in behaviour when lions are within short distance carry nutritional costs. The ultimate fitness cost will depend on the frequency of predator–prey encounters and on whether bottom-up or top-down forces are more important in the prey population. Our finding is the first attempt to our knowledge to assess nutritionally mediated risk effects in a large mammalian prey species under the threat of an ambush predator, and brings support to the hypothesis that the behavioural effects of predation induce important risk effects on prey populations. PMID:24789903

  14. Induced changes in island fox (Urocyon littoralis) activity do not mitigate the extinction threat posed by a novel predator.

    PubMed

    Hudgens, Brian R; Garcelon, David K

    2011-03-01

    Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-naïve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.

  15. A tale of two polar bear populations: Ice habitat, harvest, and body condition

    USGS Publications Warehouse

    Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein

    2012-01-01

    One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.

  16. Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes.

    PubMed

    Lee, Derek E; Kissui, Bernard M; Kiwango, Yustina A; Bond, Monica L

    2016-12-01

    In long-distance migratory systems, local fluctuations in the predator-prey ratio can exhibit extreme variability within a single year depending upon the seasonal location of migratory species. Such systems offer an opportunity to empirically investigate cyclic population density effects on short-term food web interactions by taking advantage of the large seasonal shifts in migratory prey biomass.We utilized a large-mammal predator-prey savanna food web to evaluate support for hypotheses relating to the indirect effects of "apparent competition" and "apparent mutualism" from migratory ungulate herds on survival of resident megaherbivore calves, mediated by their shared predator. African lions ( Panthera leo ) are generalist predators whose primary, preferred prey are wildebeests ( Connochaetes taurinus ) and zebras ( Equus quagga ), while lion predation on secondary prey such as giraffes ( Giraffa camelopardalis ) may change according to the relative abundance of the primary prey species.We used demographic data from five subpopulations of giraffes in the Tarangire Ecosystem of Tanzania, East Africa, to test hypotheses relating to direct predation and indirect effects of large migratory herds on calf survival of a resident megaherbivore. We examined neonatal survival via apparent reproduction of 860 adult females, and calf survival of 449 giraffe calves, during three precipitation seasons over 3 years, seeking evidence of some effect on neonate and calf survival as a consequence of the movements of large herds of migratory ungulates.We found that local lion predation pressure (lion density divided by primary prey density) was significantly negatively correlated with giraffe neonatal and calf survival probabilities. This supports the apparent mutualism hypothesis that the presence of migratory ungulates reduces lion predation on giraffe calves.Natural predation had a significant effect on giraffe calf and neonate survival, and could significantly affect giraffe population dynamics. If wildebeest and zebra populations in this ecosystem continue to decline as a result of increasingly disrupted migrations and poaching, then giraffe calves will face increased predation pressure as the predator-prey ratio increases. Our results suggest that the widespread population declines observed in many migratory systems are likely to trigger demographic impacts in other species due to indirect effects like those shown here.

  17. Experimental and observational evidence reveals that predators in natural environments do not regulate their prey: They are passengers, not drivers

    NASA Astrophysics Data System (ADS)

    White, T. C. R.

    2013-11-01

    Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.

  18. Enhanced leaf nitrogen status stabilizes omnivore population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2017-01-01

    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.

  19. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the Intermountain Province of the Columbia Basin, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielgus, Robert B.; Shipley, Lisa

    2002-07-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the subbasins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are not ranked as target species and are believed to be increasing throughout themore » basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated ''press'' experiment in at least 2 treatment and 2 control areas of the IM subbasins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates of deer will be determined using radio telemetry. Changes in cougar functional (kills/unit time), aggregative (cougars/unit area), numerical (offspring/cougar), and total (predation rate) responses on deer will also be monitored using radio telemetry. The experiment will be conducted and completed over a period of 5 years. Results will be used to determine the cause and try to halt the mule deer population declines. Results will also guide deer mitigation and management in the IM and throughout the North American West.« less

  20. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the IM Province of the Columbia Basin, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielgus, Robert; Shipley, Lisa; Myers, Woodrow

    2003-09-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the sub basins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are believed to be increasing throughout the basin because of habitat changes broughtmore » about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated 'press' experiment in at least 2 treatment and 2 control areas of the IM sub basins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates of deer will be determined using radio telemetry. Changes in cougar functional (kills/unit time), aggregative (cougars/unit area), numerical (offspring/cougar), and total (predation rate) responses on deer will also be monitored using radio telemetry. The experiment will be conducted and completed over a period of 5 years. Results will be used to determine the cause and try to halt the mule deer population declines. Results will also guide deer mitigation and management in the IM and throughout the North American West.« less

  1. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline.

    PubMed

    Bromaghin, Jeffrey F; Mcdonald, Trent L; Stirling, Ian; Derocher, Andrew E; Richardson, Evan S; Regehr, Eric V; Douglas, David C; Durner, George M; Atwood, Todd; Amstrup, Steven C

    2015-04-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  2. Acoustic assessment of pelagic lanktivores, 2016

    USGS Publications Warehouse

    Holden, Jeremy P.; Connerton, Michael J.; Weidel, Brian C.

    2017-01-01

    Alewife (Alosa pseudoharengus) and Rainbow Smelt (Osmerus mordax) are the most abundant pelagic planktivores in Lake Ontario (Weidel et al 2017), and the most important prey for salmon and trout, making up greater than 90% of the diet of the top predator, Chinook salmon (Lantry 2001, Brandt 1986), and supporting a multimillion dollar sportfishery. Alewife are also important prey for warm water predators, notably Walleye (Sander vitreus). Abundance of Alewife and smelt has declined since the 1980s, likely due to reduced nutrient loading, proliferation of invasive dreissenid mussels, and predation by stocked salmon and trout. Cisco (Coregonus artedi), a native planktivore, historically dominated the offshore pelagic prey fish of Lake Ontario, but their populations were severely reduced in the mid-20th century due to overfishing and competition with Alewife and smelt. Remnant populations of Cisco still exist, mostly in the eastern basin, and Cisco produce periodic strong year classes once or twice per decade (Owens et al 2003, most recently in 2012 and 2014 (OMNRF, 2017).Alewife (Alosa pseudoharengus) and Rainbow Smelt (Osmerus mordax) are the most abundant pelagic planktivores in Lake Ontario (Weidel et al 2017), and the most important prey for salmon and trout, making up greater than 90% of the diet of the top predator, Chinook salmon (Lantry 2001, Brandt 1986), and supporting a multimillion dollar sportfishery. Alewife are also important prey for warm water predators, notably Walleye (Sander vitreus). Abundance of Alewife and smelt has declined since the 1980s, likely due to reduced nutrient loading, proliferation of invasive dreissenid mussels, and predation by stocked salmon and trout. Cisco (Coregonus artedi), a native planktivore, historically dominated the offshore pelagic prey fish of Lake Ontario, but their populations were severely reduced in the mid-20th century due to overfishing and competition with Alewife and smelt. Remnant populations of Cisco still exist, mostly in the eastern basin, and Cisco produce periodic strong year classes once or twice per decade (Owens et al 2003, most recently in 2012 and 2014 (OMNRF, 2017).

  3. Are snake populations in widespread decline?

    PubMed Central

    Reading, C. J.; Luiselli, L. M.; Akani, G. C.; Bonnet, X.; Amori, G.; Ballouard, J. M.; Filippi, E.; Naulleau, G.; Pearson, D.; Rugiero, L.

    2010-01-01

    Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined sharply over the same relatively short period of time with five remaining stable and one showing signs of a marginal increase. Although the causes of these declines are currently unknown, we suspect that they are multi-faceted (such as habitat quality deterioration, prey availability), and with a common cause, e.g. global climate change, at their root. PMID:20534600

  4. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Prichard, A.K.; Roby, D.D.

    2002-01-01

    Populations of the pigeon guillemot (Cepphus columba) and other piscivores have been in decline for several decades in the Gulf of Alaska and Bering Sea, and a decline in abundance of lipid-rich schooling fishes is hypothesized as the major cause. We tested this hypothesis by studying the breeding biology of pigeon guillemots during 1995-1999 while simultaneously measuring prey abundance with beach seines and bottom trawls. Our study area (Kachemak Bay, Alaska) comprises two oceanographically distinct areas. Populations of a lipid-rich schooling fish, Pacific sand lance (Ammodytes hexapterus), were higher in the warmer Inner Bay than in the colder Outer Bay, and sand lance abundance was higher during warm years. Populations of low-lipid content demersal fishes were similar between areas. Chick survival to age 15 days was 47% higher in the Inner Bay (high-lipid diet) than in the Outer Bay (low-lipid diet), and estimated reproductive success (chicks fledged nest-1) was 62% higher in the Inner Bay than in the Outer Bay. Chick provisioning rate (kJ chick-1 h-1) increased with the proportion of sand lance in the diet (r2=0.21), as did growth rate (g day-1) of younger (beta) chicks in two-chick broods (r2=0.14). Pigeon guillemots in the Inner Bay switched to demersal prey during years of below-average sand lance abundance, and these birds reacted to 38-fold interannual changes in sand lance abundance with reductions in beta chick growth rates, with no decline in beta chick survival. In contrast, the proportion of nests experiencing brood reduction in the Outer Bay (demersal diet) increased >300% during years of below-average demersal abundance, although demersal fish abundance varied only 4-fold among years. Our results support the hypothesis that recovery of pigeon guillemot populations from the effects of the Exxon Valdez oil spill is limited by availability of lipid-rich prey.

  5. Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range

    PubMed Central

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695

  6. Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.

  7. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; McDonald, Trent L.; Stirling, Ian; Derocher, Andrew E.; Richardson, Evan S.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Atwood, Todd C.; Amstrup, Steven C.

    2015-01-01

    In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark–recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25–50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606–1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.

  8. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  9. Activity patterns and time budgets of the declining sea otter population at Amchitka Island, Alaska

    USGS Publications Warehouse

    Gelatt, Thomas S.; Siniff, Donald B.; Estes, James A.

    2002-01-01

    Time budgets of predators may reflect population status if time spent foraging varies with local prey abun- dance. We assumed that the sea otter (Enhydra lutris) population at Amchitka Island, Alaska, USA, had been at equilibrium since the early 1960s and collected time budgets of otters to be used to represent future conditions of currently expanding sea otter populations. We used radiotelemetry to monitor activity-time budgets of otters from August 1992 to March 1994. Sea otter activity was directly linked to sex, age, weather condition, season, and time of day. Sea otters differed in percent time foraging among cohorts but not within cohorts. Percent time foraging ranged from 21% for females with very young (≤ 3weeks of age) dependent pups to 52% for females with old (≥10 weeks of age) pups. Otters foraged more and hauled out more as local sea conditions worsened. Adult males spent less time foraging during winter and spring, consistent with seasonal changes in prey selection. Time spent for- aging was similar to that reported for otters in California and an established population in Prince William Sound, Alaska, but greater than that of otters in recently established populations in Oregon and Alaska. Despite current evidence indicating that the population was in decline during our study, we were unable to recognize this change using time budgets. Our results illustrate the importance of stratifying analyses of activity patterns by age and sex cohorts and the complexity inherent in comparisons of behavioral data between different populations relying on distinct prey bases.

  10. Where have all the frogs and toads gone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.

    1990-06-01

    At a recent workshop in California, scientists discussed the decline of amphibian populations and suggested that these animals may be biological indicators of advanced degradation of the environment. One study described the effects of snowmelt contamination with acid deposition from smog and smelters on the breeding ponds of salamanders. Other possible reasons for decline include: heavy metals and pesticides; global climate changes; imbalances in mammal populations that prey on amphibians; predation by fishes stocked in lakes by wildlife managers; and human predation.

  11. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    USGS Publications Warehouse

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  12. Bottom trawl assessment of Lake Ontario prey fishes

    USGS Publications Warehouse

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but since 2004, the percent of juveniles within the total catch is less than 0.5%, suggesting Round Goby are limiting Slimy Sculpin reproduction. Despite Slimy Sculpin declines, benthic prey fish community diversity has increased as Deepwater Sculpin and Round Goby comprise more of the community.

  13. Genetic Signatures of Demographic Changes in an Avian Top Predator during the Last Century: Bottlenecks and Expansions of the Eurasian Eagle Owl in the Iberian Peninsula

    PubMed Central

    Graciá, Eva; Ortego, Joaquín; Godoy, José Antonio; Pérez-García, Juan Manuel; Blanco, Guillermo; del Mar Delgado, María; Penteriani, Vincenzo; Almodóvar, Irene; Botella, Francisco; Sánchez-Zapata, José Antonio

    2015-01-01

    The study of the demographic history of species can help to understand the negative impact of recent population declines in organisms of conservation concern. Here, we use neutral molecular markers to explore the genetic consequences of the recent population decline and posterior recovery of the Eurasian eagle owl (Bubo bubo) in the Iberian Peninsula. During the last century, the species was the object of extermination programs, suffering direct persecution by hunters until the 70’s. Moreover, during the last decades the eagle owl was severely impacted by increased mortality due to electrocution and the decline of its main prey species, the European rabbit (Oryctolagus cuniculus). In recent times, the decrease of direct persecution and the implementation of some conservation schemes have allowed the species’ demographic recovery. Yet, it remains unknown to which extent the past population decline and the later expansion have influenced the current species’ pattern of genetic diversity. We used eight microsatellite markers to genotype 235 eagle owls from ten Spanish subpopulations and analyse the presence of genetic signatures attributable to the recent population fluctuations experienced by the species. We found moderate levels of differentiation among the studied subpopulations and Bayesian analyses revealed the existence of three genetic clusters that grouped subpopulations from central, south-western and south-eastern Spain. The observed genetic structure could have resulted from recent human-induced population fragmentation, a patchy distribution of prey populations and/or the philopatric behaviour and habitat selection of the species. We detected an old population bottleneck, which occurred approximately 10,000 years ago, and significant signatures of recent demographic expansions. However, we did not find genetic signatures for a recent bottleneck, which may indicate that population declines were not severe enough to leave detectable signals on the species genetic makeup or that such signals have been eroded by the rapid demographic recovery experienced by the species in recent years. PMID:26230922

  14. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    EPA Science Inventory

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  15. Wolf population in the Central Superior National Forest, 1967-1985.

    Treesearch

    L. David Mech

    1986-01-01

    Aerial radio-tracking and observation showed total number of wolves per year in 2,060-sq. km. Area varied from 35 to 87 in winter and from 30 to 78 in spring and generally declined because of a decreasing deer herd. Since winter 1977-1978, the population has remained relatively stable because an increasing population has switched to preying on moose. The number of...

  16. Ecosystem scale declines in elk recruitment and population growth with wolf colonization: a before-after-control-impact approach.

    PubMed

    Christianson, David; Creel, Scott

    2014-01-01

    The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk--Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.

  17. Direct and indirect effects of climate change on amphibian populations

    USGS Publications Warehouse

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  18. Composition, shell strength, and metabolizable energy of Mulinia lateralis and Ischadium recurvum as food for wintering surf scoters (Melanitta perspicillata)

    USGS Publications Warehouse

    Berlin, Alicia; Perry, Matthew C.; Kohn, R.A.; Paynter, K.T.; Ottinger, Mary Ann

    2015-01-01

    Decline in surf scoter (Melanitta perspicillata) waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica) has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum), one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis). The composition (macronutrients, minerals, and amino acids), shell strength (N), and metabolizable energy (kJ) of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N) was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6-12 mm for M. lateralis and 18-24 mm for I. recurvum), I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum's higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey.

  19. Composition, Shell Strength, and Metabolizable Energy of Mulinia lateralis and Ischadium recurvum as Food for Wintering Surf Scoters (Melanitta perspicillata)

    PubMed Central

    Wells-Berlin, Alicia M.; Perry, Matthew C.; Kohn, Richard A.; Paynter, Kennedy T.; Ottinger, Mary Ann

    2015-01-01

    Decline in surf scoter (Melanitta perspicillata) waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica) has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum), one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis). The composition (macronutrients, minerals, and amino acids), shell strength (N), and metabolizable energy (kJ) of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N) was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6–12 mm for M. lateralis and 18–24 mm for I. recurvum), I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum’s higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey. PMID:25978636

  20. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    USGS Publications Warehouse

    Anthony, R.G.; Estes, J.A.; Ricca, M.A.; Miles, A.K.; Forsman, E.D.

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993–1994 and 2000–2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993–1994 to 2000–2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator to another.

  1. A shift in bloater consumption in Lake Michigan between 1993 and 2011 and its effects on Diporeia and Mysis prey

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.

    2016-01-01

    Bioenergetics modeling was used to determine individual and population consumption by Bloater Coregonus hoyi in Lake Michigan during three time periods with variable Bloater density: 1993–1996 (high), 1998–2002 (intermediate), and 2009–2011 (low). Despite declines in Bloater abundance between 1993 and 2011, our results did not show any density-dependent compensatory response in annual individual consumption, specific consumption, or proportion of maximum consumption consumed. Diporeia spp. accounted for a steadily decreasing fraction of annual consumption, and Bloater were apparently unable to eat enough Mysis diluviana or other prey to account for the loss of Diporeia in the environment. The fraction of production of both Diporeia and Mysis that was consumed by the Bloater population decreased over time so that the consumption-to-production ratio for Diporeia + Mysis was 0.74, 0.26, and 0.14 in 1993–1996, 1998–2002, and 2009–2011, respectively. Although high Bloater numbers in the 1980s to 1990s may have had an influence on populations of Diporeia, Bloater were not the main factor driving Diporeia to a nearly complete disappearance because Diporeia continued to decline when Bloater predation demands were lessening. Thus, there appears to be a decoupling in the inverse relationship between predator and prey abundance in Lake Michigan. Compared with Alewife Alosa pseudoharengus, the other dominant planktivore in the lake, Bloater have a lower specific consumption and higher gross conversion efficiency (GCE), indicating that the lake can support a higher biomass of Bloater than Alewife. However, declines in Bloater GCE since the 1970s and the absence of positive responses in consumption variables following declines in abundance suggest that productivity in Lake Michigan might not be able to support the same biomass of Bloater as in the past.

  2. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs

    PubMed Central

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M.; Maio, Elisa; Magalhães, Maria J.; Mills, L. Scott; Esteves, Pedro J.; Simón, Miguel Ángel; Alves, Paulo C.

    2016-01-01

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60–70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs. PMID:27796353

  3. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  4. Population and behavioural responses of native prey to alien predation.

    PubMed

    Kovacs, Eszter Krasznai; Crowther, Mathew S; Webb, Jonathan K; Dickman, Christopher R

    2012-04-01

    The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator's presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species-the bush rat Rattus fuscipes-was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.

  5. Killer whale nuclear genome and mtDNA reveal widespread population bottleneck during the last glacial maximum.

    PubMed

    Moura, Andre E; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B; Thornton, Meredith; Plön, Stephanie; de Bruyn, P J Nico; Worley, Kim C; Gibbs, Richard A; Dahlheim, Marilyn E; Hoelzel, Alan Rus

    2014-05-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.

  6. Age- and sex-specific mortality and population structure in sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Burdin, A.M.; Ryazanov, D.A.

    2000-01-01

    We used 742 beach-cast carcasses to characterize age- and sex-specific sea otter mortality during the winter of 1990-1991 at Bering Island, Russia. We also examined 363 carcasses recovered after the 1989 grounding of the T/V Exxon Valdez, to characterize age and sex composition in the living western Prince William Sound (WPWS) sea otter population. At Bering Island, mortality was male-biased (81%), and 75% were adults. The WPWS population was female-biased (59%) and most animals were subadult (79% of the males and 45% of the females). In the decade prior to 1990-1991 we found increasing sea otter densities (particularly among males), declining prey resources, and declining weights in adult male sea otters at Bering Island. Our findings suggest the increased mortality at Bering Island in 1990-1991 was a density-dependent population response. We propose male-maintained breeding territories and exclusion of juvenile females by adult females, providing a mechanism for maintaining densities in female areas below densities in male areas and for potentially moderating the effects of prey reductions on the female population. Increased adult male mortality at Bering Island in 1990-1991 likely modified the sex and age class structure there toward that observed in Prince William Sound.

  7. An adaptable but threatened big cat: density, diet and prey selection of the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia.

    PubMed

    Rostro-García, Susana; Kamler, Jan F; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W

    2018-02-01

    We studied the Indochinese leopard ( Panthera pardus delacouri ) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture-recapture models, was 1.0 leopard/100 km 2 , 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng ( Bos javanicus ), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig ( Sus scrofa ) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac ( Muntiacus vaginalis ; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5-3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided.

  8. An adaptable but threatened big cat: density, diet and prey selection of the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia

    PubMed Central

    Kamler, Jan F.; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W.

    2018-01-01

    We studied the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture–recapture models, was 1.0 leopard/100 km2, 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng (Bos javanicus), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig (Sus scrofa) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac (Muntiacus vaginalis; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5–3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided. PMID:29515839

  9. African vultures don't follow migratory herds: scavenger habitat use is not mediated by prey abundance.

    PubMed

    Kendall, Corinne J; Virani, Munir Z; Hopcraft, J Grant C; Bildstein, Keith L; Rubenstein, Daniel I

    2014-01-01

    The ongoing global decline in vulture populations raises major conservation concerns, but little is known about the factors that mediate scavenger habitat use, in particular the importance of abundance of live prey versus prey mortality. We test this using data from the Serengeti-Mara ecosystem in East Africa. The two hypotheses that prey abundance or prey mortality are the main drivers of vulture habitat use provide alternative predictions. If vultures select areas based only on prey abundance, we expect tracked vultures to remain close to herds of migratory wildebeest regardless of season. However, if vultures select areas where mortality rates are greatest then we expect vultures to select the driest regions, where animals are more likely to die of starvation, and to be attracted to migratory wildebeest only during the dry season when wildebeest mortality is greatest. We used data from GSM-GPS transmitters to assess the relationship between three vulture species and migratory wildebeest in the Mara-Serengeti ecosystem. Results indicate that vultures preferentially cluster around migratory herds only during the dry season, when herds experience their highest mortality. Additionally during the wet season, Ruppell's and Lappet-faced vultures select relatively dry areas, based on Normalized Difference Vegetation Index, whereas White-backed vultures preferred wetter areas during the wet season. Differences in habitat use among species may mediate coexistence in this scavenger guild. In general, our results suggest that prey abundance is not the primary driver of avian scavenger habitat use. The apparent reliance of vultures on non-migratory ungulates during the wet season has important conservation implications for vultures in light of on-going declines in non-migratory ungulate species and use of poisons in unprotected areas.

  10. African Vultures Don’t Follow Migratory Herds: Scavenger Habitat Use Is Not Mediated by Prey Abundance

    PubMed Central

    Kendall, Corinne J.; Virani, Munir Z.; Hopcraft, J. Grant C.; Bildstein, Keith L.; Rubenstein, Daniel I.

    2014-01-01

    The ongoing global decline in vulture populations raises major conservation concerns, but little is known about the factors that mediate scavenger habitat use, in particular the importance of abundance of live prey versus prey mortality. We test this using data from the Serengeti-Mara ecosystem in East Africa. The two hypotheses that prey abundance or prey mortality are the main drivers of vulture habitat use provide alternative predictions. If vultures select areas based only on prey abundance, we expect tracked vultures to remain close to herds of migratory wildebeest regardless of season. However, if vultures select areas where mortality rates are greatest then we expect vultures to select the driest regions, where animals are more likely to die of starvation, and to be attracted to migratory wildebeest only during the dry season when wildebeest mortality is greatest. We used data from GSM-GPS transmitters to assess the relationship between three vulture species and migratory wildebeest in the Mara-Serengeti ecosystem. Results indicate that vultures preferentially cluster around migratory herds only during the dry season, when herds experience their highest mortality. Additionally during the wet season, Ruppell’s and Lappet-faced vultures select relatively dry areas, based on Normalized Difference Vegetation Index, whereas White-backed vultures preferred wetter areas during the wet season. Differences in habitat use among species may mediate coexistence in this scavenger guild. In general, our results suggest that prey abundance is not the primary driver of avian scavenger habitat use. The apparent reliance of vultures on non-migratory ungulates during the wet season has important conservation implications for vultures in light of on-going declines in non-migratory ungulate species and use of poisons in unprotected areas. PMID:24421887

  11. Fine-scale spatio-temporal variation in tiger Panthera tigris diet: Effect of study duration and extent on estimates of tiger diet in Chitwan National Park, Nepal

    USGS Publications Warehouse

    Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.

    2011-01-01

    Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.

  12. Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    PubMed Central

    Ayres, Katherine L.; Booth, Rebecca K.; Hempelmann, Jennifer A.; Koski, Kari L.; Emmons, Candice K.; Baird, Robin W.; Balcomb-Bartok, Kelley; Hanson, M. Bradley; Ford, Michael J.; Wasser, Samuel K.

    2012-01-01

    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery. PMID:22701560

  13. Distinguishing the impacts of inadequate prey and vessel traffic on an endangered killer whale (Orcinus orca) population.

    PubMed

    Ayres, Katherine L; Booth, Rebecca K; Hempelmann, Jennifer A; Koski, Kari L; Emmons, Candice K; Baird, Robin W; Balcomb-Bartok, Kelley; Hanson, M Bradley; Ford, Michael J; Wasser, Samuel K

    2012-01-01

    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery.

  14. US Atlantic coast striped bass: Issues with a recovered population

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2003-01-01

    Striped bass, Morone saxatilis (Walbaum), is an anadromous species naturally occurring along the US Atlantic coast, which historically supported valuable commercial and recreational fisheries. In response to a near order-of-magnitude decline in landings, the Atlantic States Marine Fisheries Commission enacted a management plan in 1981 protecting fish until they could spawn at least once. By 1989, recruitment increased in natal rivers and regulations were relaxed, permitting limited fisheries by 1990. By 1995, the stock was declared fully recovered. Since the recovery, concern has increased over the health of the stocks. In the 1990s, fish in poor physical condition with dermal lesions became common in Chesapeake Bay. Pathogens of most concern in cultures from fish include the genus Mycobacterium. Coincident with declines in fish health were changes in diets, declines of preferred prey, and reduced growth and condition. Theories were suggested linking declines in condition to reductions in forage base or pathogens. Diets have changed since the 1950s and while many Chesapeake fish are infected with mycobacteria, it is still not known how or if these factors are linked. The highest priorities for research were considered to be: linking numerous local and regional studies to provide a coast-wide perspective; continuation of investigations linking population health to the prey-base; determination of the cause-effect of mycobacteria infections; and formulation of management options.

  15. Trends in Rainbow Trout recruitment, abundance, survival, and growth during a boom-and-bust cycle in a tailwater fishery

    USGS Publications Warehouse

    Korman, Josh; Yard, Micheal D.; Kennedy, Theodore A.

    2017-01-01

    Data from a large-scale mark-recapture study was used in an open population model to determine the cause for long-term trends in growth and abundance of a Rainbow Trout Oncorhynchus mykiss population in the tailwater of Glen Canyon Dam, AZ. Reduced growth affected multiple life stages and processes causing negative feedbacks that regulated the abundance of the population, including: higher mortality of larger fish; lower rates of recruitment (young of year) in years when growth was reduced; and lower rates of sexual maturation the following year. High and steady flows during spring and summer of 2011 resulted in very large recruitment event. The population declined 10-fold by 2016 due a combination of lower recruitment and reduced survival of larger trout. Survival rates for trout ≥ 225 mm in 2014, 2015, and 2016 were 11%, 21%, and 22% lower than average survival rates between 2012 and 2013, respectively. Abundance at the end of the study would have been three- to five-fold higher had survival rates for larger trout remained at the elevated levels estimated for 2012 and 2013. Growth declined between 2012 and 2014 owing to reduced prey availability, which led to very poor fish condition by fall of 2014 (~0.9-0.95). Poor condition in turn resulted in low survival rates of larger fish during fall of 2014 and winter of 2015, which contributed to the population collapse. In Glen Canyon, large recruitment events driven by high flows can lead to increases in the population that cannot be sustained due to limitations in prey supply. In the absence of being able to regulate prey supply, flows which reduce the probability of large recruitment events can be used to avoid boom-and-bust population cycles. Our study demonstrates that mark-recapture is a very informative approach for understanding the dynamics of tailwater trout populations.

  16. Patterns in prey use among fur seals and seabirds in the Pribilof Islands

    NASA Astrophysics Data System (ADS)

    Sinclair, E. H.; Vlietstra, L. S.; Johnson, D. S.; Zeppelin, T. K.; Byrd, G. V.; Springer, A. M.; Ream, R. R.; Hunt, G. L., Jr.

    2008-08-01

    We explored correlation in diet trends for five piscivorous predators that reproduce on the Pribilof Islands as illustrative of the shifting structure of the Bering Sea ecosystem. We evaluated the size and species of prey consumed by adult female and juvenile northern fur seals ( Callorhinus ursinus) and adults and chicks of black-legged kittiwakes ( Rissa tridactyla), red-legged kittiwakes ( Rissa brevirostris), thick-billed murres ( Uria lomvia), and common murres ( Uria aalge) from data collected between July and October 1960-2000. Sample sources included stomachs from seals and seabirds collected on pelagic foraging grounds in the eastern Bering Sea, seal scats from rookeries and seabird regurgitations and whole prey from nest sites on St. Paul and St. George Islands of the Pribilof Island archipelago. Typical prey included small fish and invertebrates (⩽20 cm for seals and ⩽12 cm for seabirds) that concentrate along frontal boundaries of the continental shelf/slope and in the epi-pelagic zone. Squids and fishes including walleye pollock ( Theragra chalcogramma), capelin ( Mallotus villosus), and sand lance ( Ammodytes hexapterus) were variably important in the diet of all five predators. Some prey, such as capelin, were principal in predator diets during the 1960s (seals) and into the early 1980s (seabirds), but declined or disappeared from all predator diets thereafter while others, such as walleye pollock, occurred with increasing frequency from the 1970s forward. As the number of individuals consuming walleye pollock increased, the overall volume of pollock in seabird diets declined. This decline was coincident with a decrease in the age and body size of pollock consumed by both seabirds and fur seals. Squid and pollock were negatively correlated in the diets of their primary consumers, northern fur seals (Pearson's coefficient -0.71, p=0.016) and thick-billed murres (Pearson's coefficient=-0.74, p=0.015) from the 1970s forward. Inter-island variation in diet was evident to varying degrees for all predators, with a prevalence of fish on St. Paul Island and invertebrates on St. George Island. Bayesian time-series analysis of synthesized data described significant temporal cross-correlation in diet among northern fur seals, red- and black-legged kittiwakes, and thick-billed murres. For all correlated predators except common murres, beta-binomial modeling indicated that trends in the occurrence of four of the five primary prey (sand lance, capelin, squid, and pollock) evaluated, were significantly associated with eastern Bering Sea time-series trends in sea surface temperature, ice retreat or a combination of both. Data synthesis highlighted potential competition and a scenario for the effects of an altered prey field on the population stability of predators. The association between correlated diet changes among predators and indices of oceanographic shifts in the 1970s and the 1990s allow scrutiny of hypotheses concerning causal mechanisms in population declines.

  17. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.

    PubMed

    Mills, Katherine E; Pershing, Andrew J; Sheehan, Timothy F; Mountain, David

    2013-10-01

    North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river-specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate-driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations. © 2013 John Wiley & Sons Ltd.

  18. The sequential megafaunal collapse hypothesis: Testing with existing data

    NASA Astrophysics Data System (ADS)

    DeMaster, Douglas P.; Trites, Andrew W.; Clapham, Phillip; Mizroch, Sally; Wade, Paul; Small, Robert J.; Hoef, Jay Ver

    2006-02-01

    Springer et al. [Springer, A.M., Estes, J.A., van Vliet, G.B., Williams, T.M., Doak, D.F., Danner, E.M., Forney, K.A., Pfister, B., 2003. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? Proceedings of the National Academy of Sciences 100 (21), 12,223-12,228] hypothesized that great whales were an important prey resource for killer whales, and that the removal of fin and sperm whales by commercial whaling in the region of the Bering Sea/Aleutian Islands (BSAI) in the late 1960s and 1970s led to cascading trophic interactions that caused the sequential decline of populations of harbor seal, northern fur seal, Steller sea lion and northern sea otter. This hypothesis, referred to as the Sequential Megafaunal Collapse (SMC), has stirred considerable interest because of its implication for ecosystem-based management. The SMC has the following assumptions: (1) fin whales and sperm whales were important as prey species in the Bering Sea; (2) the biomass of all large whale species (i.e., North Pacific right, fin, humpback, gray, sperm, minke and bowhead whales) was in decline in the Bering Sea in the 1960s and early 1970s; and (3) pinniped declines in the 1970s and 1980s were sequential. We concluded that the available data are not consistent with the first two assumptions of the SMC. Statistical tests of the timing of the declines do not support the assumption that pinniped declines were sequential. We propose two alternative hypotheses for the declines that are more consistent with the available data. While it is plausible, from energetic arguments, for predation by killer whales to have been an important factor in the declines of one or more of the three populations of pinnipeds and the sea otter population in the BSAI region over the last 30 years, we hypothesize that the declines in pinniped populations in the BSAI can best be understood by invoking a multiple factor hypothesis that includes both bottom-up forcing (as indicated by evidence of nutritional stress in the western Steller sea lion population) and top-down forcing (e.g., predation by killer whales, mortality incidental to commercial fishing, directed harvests). Our second hypothesis is a modification of the top-down forcing mechanism (i.e., killer whale predation on one or more of the pinniped populations and the sea otter population is mediated via the recovery of the eastern North Pacific population of the gray whale). We remain skeptical about the proposed link between commercial whaling on fin and sperm whales, which ended in the mid-1960s, and the observed decline of populations of northern fur seal, harbor seal, and Steller sea lion some 15 years later.

  19. Ecosystem Scale Declines in Elk Recruitment and Population Growth with Wolf Colonization: A Before-After-Control-Impact Approach

    PubMed Central

    Christianson, David; Creel, Scott

    2014-01-01

    The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk – Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves. PMID:25028933

  20. Invaders eating invaders: Exploitation of novel alien prey by the alien shimofuri goby in the San Francisco Estuary, California

    USGS Publications Warehouse

    Matern, S.A.; Brown, L.R.

    2005-01-01

    The shimofuri goby (Tridentiger bifasciatus), which is native to Asian estuaries, was recently introduced to the San Francisco Estuary, California, USA. We conducted gut content analyses to examine the goby's feeding ecology in this highly invaded estuary. Shimofuri gobies were generalist predators on benthic invertebrates, consuming seasonally abundant prey, especially amphipods (Corophium spp.). In addition, shimofuri goby utilized two novel prey items not exploited by other resident fishes - hydroids (Cordylophora caspia) and barnacle (Balanus improvisus) cirri, both of which are alien. The shimofuri goby's feeding ecology appears well-suited to the fluctuating environment of the San Francisco Estuary and may partially explain observed increases in shimofuri goby abundance compared with declines in populations of some native species. ?? Springer 2005.

  1. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  2. Killer Whale Nuclear Genome and mtDNA Reveal Widespread Population Bottleneck during the Last Glacial Maximum

    PubMed Central

    Moura, Andre E.; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B.; Thornton, Meredith; Plön, Stephanie; de Bruyn, P.J. Nico; Worley, Kim C.; Gibbs, Richard A.; Dahlheim, Marilyn E.; Hoelzel, Alan Rus

    2014-01-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline. PMID:24497033

  3. Conservation of wildlife populations: factoring in incremental disturbance.

    PubMed

    Stewart, Abbie; Komers, Petr E

    2017-06-01

    Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator-prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe-haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose ( Alces alces ) density and wolf ( Canis lupus ) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km 2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator-prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.

  4. Changes in a population of exotic rainbow smelt in Lake Superior: Boom to bust, 1974-2005

    USGS Publications Warehouse

    Gorman, O.T.

    2007-01-01

    Changes in a population of rainbow smelt (Osmerus mordax) in the Apostle Islands region of Lake Superior were chronicled over a 32-yr time series, 1974–2005. At the beginning of the time series, rainbow smelt was the predominant prey species, abundance of lake herring (Coregonis artedi) was very low, and the dominant predator was stocked lake trout (Salvelinus namaycush). Following a period of successful lake trout stocking in the 1970s, the rainbow smelt population declined sharply in 1980, largely through mortality of adult fish and subsequent poor recruitment. In the succeeding 4 years, rainbow smelt populations reached historic low levels, resulting in reduced food resources for both wild and stocked lake trout. During 1985–1990 lake herring stocks began a spectacular recovery following the appearance of a very strong 1984 year class and subsequent 1988, 1989, and 1990 year classes. Rainbow smelt benefited from the high abundance of young lake herring as an alternate prey source for lake trout and showed a partial recovery in the late 1980s. However, a growing lake trout population coupled with an 8-yr period of low herring reproduction after 1990 resulted in a diminished rainbow smelt population dominated by age-1 and 2 fish and showing a pattern of alternating recruitment attributed to cannibalism. Low productivity of rainbow smelt and intermittent production of herring over the past decade has left lake trout populations with a diminished prey base. Although lake trout recovery benefited from the presence of rainbow smelt as a prey resource, the Lake Superior fish community was fundamentally altered by the introduction of rainbow smelt.

  5. The bioenergetic consequences of invasive-induced food web disruption to Lake Ontario alewives

    USGS Publications Warehouse

    Stewart, Thomas J.; O'Gorman, Robert; Sprules, W. Gary; Lantry, B.F.

    2010-01-01

    Alewives Alosa pseudoharengus are the dominant prey fish in Lake Ontario, and their response to ecological change can alter the structure and function of the Lake Ontario food web. Using stochastic population-based bioenergetic models of Lake Ontario alewives for 1987–1991 and 2001–2005, we evaluated changes to alewife production, consumption, and associated bioenergetic ratios after invasive-induced food web disruption. After the disruption, mean biomass of alewives declined from 28.0 to 14.6 g/m2, production declined from 40.8 to 13.6 g·m−2·year−1, and consumption declined from 342.1 to 137.2 g·m−2·year−1, but bootstrapping of error sources suggested that the changes were not statistically significant. Population-based bioenergetic ratios of production to biomass (P/B ratio), total consumption to biomass (Q/B ratio), and production efficiency did not change. Pathways of energy flow measured as prey-group-specific Q/B ratios changed significantly between the two time periods for invasive predatory cladocerans (from 0.6 to 1.3), Mysis diluviana (from 0.4 to 2.5), and other prey (from 0.8 to 0.1), but the observed decline in the zooplankton Q/B ratio (from 10.6 to 5.5) was not significant. Gross production efficiency did not change; values ranged from 8% to 15%. Age-group mean gross conversion efficiency (GCE) declined with age; GCE ranged from 7.5% to 11.0% for yearlings, was approximately 5% for age-2 alewives, and was less than 2% for age-3 and older alewives. The GCE increased significantly between the time periods for yearling alewives. Our analyses support the hypothesis that after 2003, alewives could not sustain their growth while feeding on zooplankton closer to shore. Modeling of observed spatial variation in diet and alternative occupied temperatures demonstrates the potential for reducing consumption by alewives. Our results suggest that Lake Ontario alewives can exploit spatial heterogeneity in resource patches and thermal habitat to partially mitigate the effects of food web disruption. Fish management implications are discussed.

  6. A Subterranean Camera Trigger for Identifying Predators Excavating Turtle Nests

    Treesearch

    Thomas J. Maier; Michael N. Marchand; Richard M. DeGraaf; John A. Litvaitis

    2002-01-01

    Predation is the predominant source of nest mortality for most North American turtle species, including populations that are in decline (Brooks et al. 1992; Congdon et al. 2000). The identification of nest predators---crucial to understanding predator-prey relationships---has been previously accomplished largely by use of techniques that rely on the availability of...

  7. Population limitation and the wolves of Isle Royale

    USGS Publications Warehouse

    Peterson, Rolf O.; Thomas, Nancy J.; Thurber, Joanne M.; Vucetich, John A.; Waite, Thomas A.

    1998-01-01

    Population regulation for gray wolves in Isle Royale National Park, Michigan, was examined in 1987-1995 when wolves were in chronic decline following a crash of the population in 1981-1982. Canine parvovirus (CPV-2) was probably influential during the crash, but it disappeared by the late 1980s. High mortality abruptly ceased after 1988, but low recruitment in the absence of disease and obvious shortage of food prevented recovery of the wolf population. In 1983-1995, with a comparable number of moose '10 years old as potential prey, wolves were only half as numerous as in 1959-1980. A simulation of annual fluctuations in effective population size (Ne) for wolves on Isle Royale suggests that their genetic heterozygosity has declined ca. 13% with each generation and ca. 80% in the 50- year history of this population. Inbreeding depression and stochastic demographic variation both remain possible explanations for recent low recruitment.

  8. Invariant polar bear habitat selection during a period of sea ice loss

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; Rode, Karyn D.; St Martin, Michelle

    2016-01-01

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.

  9. Diet overlap of top-level predators in recent sympatry: bull trout and nonnative lake trout

    USGS Publications Warehouse

    Guy, Christopher S.; McMahon, Thomas E.; Fredenberg, Wade A.; Smith, Clinton J.; Garfield, David W.; Cox, Benjamin S.

    2011-01-01

    The establishment of nonnative lake trout Salvelinus namaycush in lakes containing lacustrine–adfluvial bull trout Salvelinus confluentus often results in a precipitous decline in bull trout abundance. The exact mechanism for the decline is unknown, but one hypothesis is related to competitive exclusion for prey resources. We had the rare opportunity to study the diets of bull trout and nonnative lake trout in Swan Lake, Montana during a concomitant study. The presence of nonnative lake trout in Swan Lake is relatively recent and the population is experiencing rapid population growth. The objective of this study was to evaluate the diets of bull trout and lake trout during the early expansion of this nonnative predator. Diets were sampled from 142 bull trout and 327 lake trout during the autumn in 2007 and 2008. Bull trout and lake trout had similar diets, both consumed Mysis diluviana as the primary invertebrate, especially at juvenile stages, and kokanee Oncorhynchus nerka as the primary vertebrate prey, as adults. A diet shift from primarily M. diluviana to fish occurred at similar lengths for both species, 506 mm (476–545 mm, 95% CI) for bull trout and 495 mm (470–518 mm CI) for lake trout. These data indicate high diet overlap between these two morphologically similar top-level predators. Competitive exclusion may be a possible mechanism if the observed overlap remains similar at varying prey densities and availability.

  10. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  11. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland

    USGS Publications Warehouse

    Beerens, James M.; Gawlik, Dale E.; Herring, Garth; Cook, Mark I.

    2011-01-01

    Seasonal and annual variation in food availability during the breeding season plays an influential role in the population dynamics of many avian species. In highly dynamic ecosystems like wetlands, finding and exploiting food resources requires a flexible behavioral response that may produce different population trends that vary with a species' foraging strategy. We quantified dynamic foraging-habitat selection by breeding and radiotagged White Ibises (Eudocimus albus) and Great Egrets (Ardea alba) in the Florida Everglades, where fluctuation in food resources is pronounced because of seasonal drying and flooding. The White Ibis is a tactile “searcher” species in population decline that specializes on highly concentrated prey, whereas the Great Egret, in a growing population, is a visual “exploiter” species that requires lower prey concentrations. In a year with high food availability, resource-selection functions for both species included variables that changed over multiannual time scales and were associated with increased prey production. In a year with low food availability, resource-selection functions included short-term variables that concentrated prey (e.g., water recession rates and reversals in drying pattern), which suggests an adaptive response to poor foraging conditions. In both years, the White Ibis was more restricted in its use of habitats than the Great Egret. Real-time species—habitat suitability models were developed to monitor and assess the daily availability and quality of spatially explicit habitat resources for both species. The models, evaluated through hindcasting using independent observations, demonstrated that habitat use of the more specialized White Ibis was more accurately predicted than that of the more generalist Great Egret.

  12. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

    PubMed Central

    Wiley, Anne E.; Ostrom, Peggy H.; Welch, Andreanna J.; Fleischer, Robert C.; Gandhi, Hasand; Southon, John R.; Stafford, Thomas W.; Penniman, Jay F.; Hu, Darcy; Duvall, Fern P.; James, Helen F.

    2013-01-01

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ15N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094

  13. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs.

    PubMed

    Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F

    2013-05-28

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.

  14. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems.

    PubMed

    Donnelly, Alison; Caffarra, Amelia; O'Neill, Bridget F

    2011-11-01

    Mismatches in phenology between mutually dependent species, resulting from climate change, can have far-reaching consequences throughout an ecosystem at both higher and lower trophic levels. Rising temperatures, due to climate warming, have resulted in advances in development and changes in behaviour of many organisms around the world. However, not all species or phenophases are responding to this increase in temperature at the same rate, thus creating a disruption to previously synchronised interdependent key life-cycle stages. Mismatches have been reported between plants and pollinators, predators and prey, and pests and hosts. Here, we review mismatches between interdependent phenophases at different trophic levels resulting from climate change. We categorized the studies into (1) terrestrial (natural and agricultural) ecosystems, and (2) aquatic (freshwater and marine) ecosystems. As expected, we found reports of 'winners' and 'losers' in each system, such as earlier emergence of prey enabling partial avoidance of predators, potential reductions in crop yield if herbivore pests emerge before their predators and possible declines in marine biodiversity due to disruption in plankton-fish phenologies. Furthermore, in the marine environment rising temperatures have resulted in synchrony in a previously mismatched prey and predator system, resulting in an abrupt population decline in the prey species. The examples reviewed suggest that more research into the complex interactions between species in terrestrial and aquatic ecosystems is necessary to make conclusive predictions of how climate warming may impact the fragile balances within ecosystems in future.

  15. Climate change can alter predator-prey dynamics and population viability of prey.

    PubMed

    Bastille-Rousseau, Guillaume; Schaefer, James A; Peers, Michael J L; Ellington, E Hance; Mumma, Matthew A; Rayl, Nathaniel D; Mahoney, Shane P; Murray, Dennis L

    2018-01-01

    For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.

  16. Application Of Stable Isotope Analysis To Study Temporal Changes In Foraging Ecology In A Highly Endangered Amphibian

    PubMed Central

    Gillespie, J. Hayley

    2013-01-01

    Background Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable isotope analysis in identifying preferred prey species that can be used to guide conservation management of both wild and captive food sources for endangered species. PMID:23341920

  17. Invariant polar bear habitat selection during a period of sea ice loss.

    PubMed

    Wilson, Ryan R; Regehr, Eric V; Rode, Karyn D; St Martin, Michelle

    2016-08-17

    Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears. © 2016 The Author(s).

  18. Estimation of food consumption from pellets cast by captive Ural Owls (Strix uralensis)

    Treesearch

    Aki Higuchi; Manabu T. Abe

    1997-01-01

    There is considerable data in the literature on the diet of the Ural Owl (Strix uralensis) based on pellet analysis. Though it is possible to identify prey items by this method, the volume of food consumption is still unknown. The population of Ural Owls in Japan is declining due to the reduction of old-growth forest and the concurrent loss of...

  19. Fewer but not smaller schools in declining fish and krill populations.

    PubMed

    Brierley, Andrew S; Cox, Martin J

    2015-01-05

    Many pelagic species (species that live in the water column), including herring and krill, aggregate to form schools, shoals, or swarms (hereafter simply "schools," although the words are not synonyms). Schools provide benefits to individual members, including locomotory economy and protection from predators that prey on individuals, but paradoxically make schooling species energetically viable and commercially attractive targets for predators of groups and for fishers. Large schools are easier to find and yield greater prey/catch than small schools, and there is a requirement from fields as diverse as theoretical ecology and fisheries management to understand whether and how aggregation sizes change with changing population size. We collated data from vertical echosounder surveys of taxonomically diverse pelagic stocks from geographically diverse ecosystems. The data contain common significant positive linear stock-biomass to school-number relationships. They show that the numbers of schools in the stocks change with changing stock biomass and suggest that the distributions of school sizes do not change with stock biomass. New data that we collected using a multibeam sonar, which can image entire schools, contained the same stock-biomass to school-number relationship and confirm that the distribution of school sizes is not related to changing stock size: put simply, as stocks decline, individuals are distributed among fewer schools, not smaller schools. Since school characteristics affect catchability (the ease or difficulty with which fishers can capture target species) and availability of prey to predators, our findings have commercial and ecological implications, particularly within the aspirational framework of ecosystem-based management of marine systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bottom-up effects of a no-take zone on endangered penguin demographics.

    PubMed

    Sherley, Richard B; Winker, Henning; Altwegg, Res; van der Lingen, Carl D; Votier, Stephen C; Crawford, Robert J M

    2015-07-01

    Marine no-take zones can have positive impacts for target species and are increasingly important management tools. However, whether they indirectly benefit higher order predators remains unclear. The endangered African penguin (Spheniscus demersus) depends on commercially exploited forage fish. We examined how chick survival responded to an experimental 3-year fishery closure around Robben Island, South Africa, controlling for variation in prey biomass and fishery catches. Chick survival increased by 18% when the closure was initiated, which alone led to a predicted 27% higher population compared with continued fishing. However, the modelled population continued to decline, probably because of high adult mortality linked to poor prey availability over larger spatial scales. Our results illustrate that small no-take zones can have bottom-up benefits for highly mobile marine predators, but are only one component of holistic, ecosystem-based management regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Identifying Conservation Successes, Failures and Future Opportunities; Assessing Recovery Potential of Wild Ungulates and Tigers in Eastern Cambodia

    PubMed Central

    O'Kelly, Hannah J.; Evans, Tom D.; Stokes, Emma J.; Clements, Tom J.; Dara, An; Gately, Mark; Menghor, Nut; Pollard, Edward H. B.; Soriyun, Men; Walston, Joe

    2012-01-01

    Conservation investment, particularly for charismatic and wide-ranging large mammal species, needs to be evidence-based. Despite the prevalence of this theme within the literature, examples of robust data being generated to guide conservation policy and funding decisions are rare. We present the first published case-study of tiger conservation in Indochina, from a site where an evidence-based approach has been implemented for this iconic predator and its prey. Despite the persistence of extensive areas of habitat, Indochina's tiger and ungulate prey populations are widely supposed to have precipitously declined in recent decades. The Seima Protection Forest (SPF), and broader Eastern Plains Landscape, was identified in 2000 as representing Cambodia's best hope for tiger recovery; reflected in its designation as a Global Priority Tiger Conservation Landscape. Since 2005 distance sampling, camera-trapping and detection-dog surveys have been employed to assess the recovery potential of ungulate and tiger populations in SPF. Our results show that while conservation efforts have ensured that small but regionally significant populations of larger ungulates persist, and density trends in smaller ungulates are stable, overall ungulate populations remain well below theoretical carrying capacity. Extensive field surveys failed to yield any evidence of tiger, and we contend that there is no longer a resident population within the SPF. This local extirpation is believed to be primarily attributable to two decades of intensive hunting; but importantly, prey densities are also currently below the level necessary to support a viable tiger population. Based on these results and similar findings from neighbouring sites, Eastern Cambodia does not currently constitute a Tiger Source Site nor meet the criteria of a Global Priority Tiger Landscape. However, SPF retains global importance for many other elements of biodiversity. It retains high regional importance for ungulate populations and potentially in the future for Indochinese tigers, given adequate prey and protection. PMID:23077476

  2. Identifying conservation successes, failures and future opportunities; assessing recovery potential of wild ungulates and tigers in Eastern Cambodia.

    PubMed

    O'Kelly, Hannah J; Evans, Tom D; Stokes, Emma J; Clements, Tom J; Dara, An; Gately, Mark; Menghor, Nut; Pollard, Edward H B; Soriyun, Men; Walston, Joe

    2012-01-01

    Conservation investment, particularly for charismatic and wide-ranging large mammal species, needs to be evidence-based. Despite the prevalence of this theme within the literature, examples of robust data being generated to guide conservation policy and funding decisions are rare. We present the first published case-study of tiger conservation in Indochina, from a site where an evidence-based approach has been implemented for this iconic predator and its prey. Despite the persistence of extensive areas of habitat, Indochina's tiger and ungulate prey populations are widely supposed to have precipitously declined in recent decades. The Seima Protection Forest (SPF), and broader Eastern Plains Landscape, was identified in 2000 as representing Cambodia's best hope for tiger recovery; reflected in its designation as a Global Priority Tiger Conservation Landscape. Since 2005 distance sampling, camera-trapping and detection-dog surveys have been employed to assess the recovery potential of ungulate and tiger populations in SPF. Our results show that while conservation efforts have ensured that small but regionally significant populations of larger ungulates persist, and density trends in smaller ungulates are stable, overall ungulate populations remain well below theoretical carrying capacity. Extensive field surveys failed to yield any evidence of tiger, and we contend that there is no longer a resident population within the SPF. This local extirpation is believed to be primarily attributable to two decades of intensive hunting; but importantly, prey densities are also currently below the level necessary to support a viable tiger population. Based on these results and similar findings from neighbouring sites, Eastern Cambodia does not currently constitute a Tiger Source Site nor meet the criteria of a Global Priority Tiger Landscape. However, SPF retains global importance for many other elements of biodiversity. It retains high regional importance for ungulate populations and potentially in the future for Indochinese tigers, given adequate prey and protection.

  3. Grazer Impacts on Synechococcus Populations in the Coastal Gulf of Maine; Identifying Specific Microbial Interactions to Understand Bloom Dynamics

    NASA Astrophysics Data System (ADS)

    Countway, P. D.; Poulton, N.; Sieracki, M.; Hoeglund, A.; Anderson, S.; Burns, W. G.

    2016-02-01

    Protistan grazers help to shape the diversity, abundance, and composition of bacterial and phytoplankton communities, yet very little is known about the specific interactions between grazers and their prey. Grazers play key roles in the demise of phytoplankton blooms, with the abundance of grazers often increasing dramatically as prey-species decline. The timing and fate of Synechococcus blooms was investigated over a two-year period in Booth Bay, Maine (USA). The Synechococcus bloom in this region is characterized by several peaks in cell abundance, followed by periods of rapid decline. Two clades of Synechococcus (rpoC1 gene clades I and IV) were detected at our study site, with clade I typically present at higher abundance than clade IV. Modified grazing experiments were conducted at different stages of the Synechococcus bloom in which the natural plankton community was diluted with either 0.45 µm (grazer-free) or 30 kDa (grazer- and virus-free) filtered seawater. In general, the impact of grazers on Synechococcus populations was greater than the impact due to encounters with viruses during 24-hour in situ incubations. Interactions between grazers and Synechococcus were investigated using Fluorescence Activated Cell Sorting (FACS) combined with single-cell genomics to identify specific associations between sorted-grazers and their prey. Single-cell sequencing revealed a diverse array of heterotrophic protists on sampling dates that occurred after periods of rapid decrease in the abundance of Synechococcus. Cultures of Synechococcus were added to natural plankton communities to stimulate grazers, which were subsequently cell-sorted in bulk mode and sequenced. These experiments revealed similar taxonomic affiliations of putative grazer types (e.g., Cercozoa) that responded to the presence of Synechococcus prey. Protistan grazers appear to exert a strong degree of control on the abundance and duration of the annual Synechococcus bloom in the coastal Gulf of Maine.

  4. Linking removal targets to the ecological effects of invaders: a predictive model and field test.

    PubMed

    Green, Stephanie J; Dulvy, Nicholas K; Brooks, Annabelle M L; Akins, John L; Cooper, Andrew B; Miller, Skylar; Côté, Isabelle M

    Species invasions have a range of negative effects on recipient ecosystems, and many occur at a scale and magnitude that preclude complete eradication. When complete extirpation is unlikely with available management resources, an effective strategy may be to suppress invasive populations below levels predicted to cause undesirable ecological change. We illustrated this approach by developing and testing targets for the control of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) on Western Atlantic coral reefs. We first developed a size-structured simulation model of predation by lionfish on native fish communities, which we used to predict threshold densities of lionfish beyond which native fish biomass should decline. We then tested our predictions by experimentally manipulating lionfish densities above or below reef-specific thresholds, and monitoring the consequences for native fish populations on 24 Bahamian patch reefs over 18 months. We found that reducing lionfish below predicted threshold densities effectively protected native fish community biomass from predation-induced declines. Reductions in density of 25–92%, depending on the reef, were required to suppress lionfish below levels predicted to overconsume prey. On reefs where lionfish were kept below threshold densities, native prey fish biomass increased by 50–70%. Gains in small (<6 cm) size classes of native fishes translated into lagged increases in larger size classes over time. The biomass of larger individuals (>15 cm total length), including ecologically important grazers and economically important fisheries species, had increased by 10–65% by the end of the experiment. Crucially, similar gains in prey fish biomass were realized on reefs subjected to partial and full removal of lionfish, but partial removals took 30% less time to implement. By contrast, the biomass of small native fishes declined by >50% on all reefs with lionfish densities exceeding reef-specific thresholds. Large inter-reef variation in the biomass of prey fishes at the outset of the study, which influences the threshold density of lionfish, means that we could not identify a single rule of thumb for guiding control efforts. However, our model provides a method for setting reef-specific targets for population control using local monitoring data. Our work is the first to demonstrate that for ongoing invasions, suppressing invaders below densities that cause environmental harm can have a similar effect, in terms of protecting the native ecosystem on a local scale, to achieving complete eradication.

  5. Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan

    USGS Publications Warehouse

    George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.

    2013-01-01

    Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.

  6. Trophic overlap between expanding and contracting fish predators in a range margin undergoing change.

    PubMed

    Westerbom, Mats; Lappalainen, Antti; Mustonen, Olli; Norkko, Alf

    2018-05-21

    Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.

  7. Change in numbers of resident and migratory shorebirds at the Cabo Rojo Salt Flats, Puerto Rico, USA (1985–2014)

    USGS Publications Warehouse

    Parks, Morgan A.; Collazo, Jaime A.; Colon, Jose A.; Ramos Alvarez, Katsi R.; Diaz, Oscar

    2016-01-01

    North American migratory shorebirds have declined markedly since the 1980s, underscoring the importance of population surveys to conduct status and trend assessments. Shorebird surveys were conducted during three multi-year periods between 1985 and 2014 and used to assess changes in numbers and species composition at the Cabo Rojo Salt Flats, Puerto Rico, USA, a site of regional importance in the eastern Caribbean. Eight fewer species (total = 21) were recorded in 2013–2014 as compared to the 29 from 1985–1992; all eight species were Nearctic migrants. Small calidrids had the highest population counts; however, this suite of species and all others experienced a ≥ 70% decline. Combined counts from the salt flats and neighboring wetlands in 2013–2014 were lower than counts only from the Cabo Rojo Salt Flats in two previous multi-year survey periods, which indicated a real change in numbers not just a shift in wetland use. Invertebrate prey density was lower in 2013–2014 than in 1994. Body fat condition of Semipalmated Sandpipers (Calidris pusilla), an index of habitat quality, did not differ between 1985–1992 and 2013–2014. These findings do not exclude the possibility that other species might be affected by lower prey density, or that local declines in numbers reflect changes at hemispheric, not local, scales. The magnitude of change between local and hemispheric scales closely matched for some species. Continued monitoring at the salt flats is warranted to help gauge the status of shorebirds in Puerto Rico and discern the probable cause of declines. Monitoring other sites in the Caribbean is needed for stronger inferences about regional status and trends.

  8. Bare ground as a crucial habitat feature for a rare terrestrially foraging farmland bird of Central Europe

    NASA Astrophysics Data System (ADS)

    Tagmann-Ioset, Aline; Schaub, Michael; Reichlin, Thomas S.; Weisshaupt, Nadja; Arlettaz, Raphaël

    2012-02-01

    Most farmland birds have declined significantly throughout the world due to agricultural intensification. Agri-environmental policies could not halt the decline of ground-foraging insectivorous farmland birds in Europe, indicating a gap in knowledge of species' ecological requirements. This represents a major impediment to the development of efficient, evidence-based agri-environmental measures. Using radio-tracking we studied habitat selection by farmland Hoopoes, a rare terrestrially foraging bird in Central Europe, and assessed habitat preferences of their main prey (Molecrickets), with the aim to identify optimal foraging habitat profiles in order to guide farmland management. Hierarchical logistic regression modelling of habitat descriptors at actual foraging locations vs. random locations within the home ranges of 13 males showed that the availability of bare ground was the principal determinant of foraging activity, with an optimum of 60-70% bare ground at patch scale. This ideal habitat configuration, which facilitates birds' terrestrial hunting, was found primarily in intensively farmed fruit tree plantations which dominated the landscape matrix: this habitat offers extensive strips of bare ground due to systematic removal of ground vegetation along tree rows. In contrast, dense grassland and cropland were avoided. Another important habitat feature was the availability of nongravelly soil, which enabled Hoopoes to probe the earth with their long, curved bill in search of underground invertebrates. The role of Molecrickets, however, appeared secondary to foraging patch selection, suggesting that prey accessibility was per se more important than prey abundance. Creating patches of bare ground within modern farmland where sufficient supplies of suitable invertebrate prey exist will support Hoopoe populations.

  9. Examining the potential for nutritional stress in young Steller sea lions: physiological effects of prey composition.

    PubMed

    Rosen, David A S; Trites, Andrew W

    2005-05-01

    The effects of high- and low-lipid prey on the body mass, body condition, and metabolic rates of young captive Steller sea lions (Eumetopias jubatus) were examined to better understand how changes in prey composition might impact the physiology and health of wild sea lions and contribute to their population decline. Results of three feeding experiments suggest that prey lipid content did not significantly affect body mass or relative body condition (lipid mass as a percent of total mass) when sea lions could consume sufficient prey to meet their energy needs. However, when energy intake was insufficient to meet daily requirements, sea lions lost more lipid mass (9.16+/-1.80 kg+/-SE) consuming low-lipid prey compared with eating high-lipid prey (6.52+/-1.65 kg). Similarly, the sea lions lost 2.7+/-0.9 kg of lipid mass while consuming oil-supplemented pollock at maintenance energy levels but gained 5.2+/-2.7 kg lipid mass while consuming identical energetic levels of herring. Contrary to expectations, there was a 9.7+/-1.8% increase in metabolism during mass loss on submaintenance diets. Relative body condition decreased only 3.7+/-3.8% during periods of imposed nutritional stress, despite a 10.4+/-4.8% decrease in body mass. These findings raise questions regarding the efficacy of measures of relative body condition to detect such changes in nutritional status among wild animals. The results of these three experiments suggest that prey composition can have additional effects on sea lion energy stores beyond the direct effects of insufficient energy intake.

  10. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    NASA Astrophysics Data System (ADS)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  11. Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    PubMed Central

    Limberger, Romana; Wickham, Stephen A.

    2011-01-01

    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation. PMID:22194992

  12. Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    PubMed Central

    Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.

    2012-01-01

    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650

  13. Evaluating apparent competition in limiting the recovery of an endangered ungulate.

    PubMed

    Johnson, Heather E; Hebblewhite, Mark; Stephenson, Thomas R; German, David W; Pierce, Becky M; Bleich, Vernon C

    2013-01-01

    Predation can disproportionately affect endangered prey populations when generalist predators are numerically linked to more abundant primary prey. Apparent competition, the term for this phenomenon, has been increasingly implicated in the declines of endangered prey populations. We examined the potential for apparent competition to limit the recovery of Sierra Nevada bighorn sheep (Ovis canadensis sierrae), an endangered subspecies under the US Endangered Species Act. Using a combination of location, demographic, and habitat data, we assessed whether cougar (Puma concolor) predation on endangered bighorn sheep was a consequence of their winter range overlap with abundant mule deer (Odocoileus hemionus). Consistent with the apparent competition hypothesis, bighorn sheep populations with higher spatial overlap with deer exhibited higher rates of cougar predation which had additive effects on adult survival. Bighorn sheep killed by cougars were primarily located within deer winter ranges, even though those areas constituted only a portion of the bighorn sheep winter ranges. We suspect that variation in sympatry between bighorn sheep and deer populations was largely driven by differences in habitat selection among bighorn sheep herds. Indeed, bighorn sheep herds that experienced the highest rates of predation and the greatest spatial overlap with deer also exhibited the strongest selection for low elevation habitat. Although predator-mediated apparent competition may limit some populations of bighorn sheep, it is not the primary factor limiting all populations, suggesting that the dynamics of different herds are highly idiosyncratic. Management plans for endangered species should consider the spatial distributions of key competitors and predators to reduce the potential for apparent competition to hijack conservation success.

  14. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  15. Managing a subsidized predator population: Reducing common raven predation on desert tortoises

    USGS Publications Warehouse

    Boarman, W.I.

    2003-01-01

    Human communities often are an inadvertent source of food, water, and other resources to native species of wildlife. Because these resources are more stable and predictable than those in a natural environment, animals that subsist on them are able to increase in numbers and expand their range, much to the detriment of their competitors and species they prey upon. In the Mojave Desert, common ravens (Corvus corax) have benefited from human-provided resources to increase in population size precipitously in recent years. This trend has caused concern because ravens prey on juvenile desert tortoises (Gopherus agassizii), a federally threatened species. In this paper, I discuss management strategies to reduce raven predation on desert tortoises. The recommendations fall into three categories: (1) managing raven populations by reducing access to anthropogenic resources; (2) removing offending ravens or other birds in specially targeted tortoise management zones; and (3) continuing research on raven ecology, raven behavior, and methods of reducing raven predation on tortoises. I also recommend approaching the problem within an adaptive management framework: management efforts should first be employed as scientific experiments - with replicates and controls - to yield an unbiased assessment of their effectiveness. Furthermore, these strategies should be implemented in concert with actions that reduce other causes of desert tortoise mortality to aid the long-term recovery of their populations. Overall, the approaches outlined in this paper are widely applicable to the management of subsidized predators, particularly where they present a threat to a declining species of prey.

  16. Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range

    PubMed Central

    Johnson, Christopher N.; Barmuta, Leon A.; Jones, Menna E.

    2017-01-01

    Australia’s native marsupial fauna has just two primarily flesh-eating ‘hypercarnivores’, the Tasmanian devil (Sarcophilus harrisii) and the spotted-tailed quoll (Dasyurus maculatus) which coexist only on the island of Tasmania. Devil populations are currently declining due to a fatal transmissible cancer. Our aim was to analyse the diet of both species across their range in Tasmania, as a basis for understanding how devil decline might affect the abundance and distribution of quolls through release from competition. We used faecal analysis to describe diets of one or both species at 13 sites across Tasmania. We compared diet composition and breadth between the two species, and tested for geographic patterns in diets related to rainfall and devil population decline. Dietary items were classified into 6 broad categories: large mammals (≥ 7.0kg), medium-sized mammals (0.5–6.9kg), small mammals (< 0.5kg), birds, reptiles and invertebrates. Diet overlap based on prey-size category was high. Quoll diets were broader than devils at all but one site. Devils consumed more large and medium-sized mammals and quolls more small mammals, reptiles and invertebrates. Medium-sized mammals (mainly Tasmanian pademelon Thylogale billardierii), followed by large mammals (mainly Bennett’s wallaby Macropus rufogriseus) and birds, were the most important prey groups for both species. Diet composition varied across sites, suggesting that both species are flexible and opportunistic foragers, but was not related to rainfall for devils. Quolls included more large mammals but fewer small mammals and invertebrates in their diet in the eastern drier parts of Tasmania where devils have declined. This suggests that a competitive release of quolls may have occurred and the substantial decline of devils has provided more food in the large-mammal category for quolls, perhaps as increased scavenging opportunities. The high diet overlap suggests that if resources become limited in areas of high devil density, interspecific competition could occur. PMID:29176811

  17. Conservation genetics of the endangered Isle Royale gray wolf

    USGS Publications Warehouse

    Wayne, R.K.; Lehman, N.; Girman, D.; Gogan, P.J.P.; Gilbert, D.A.; Hansen, K.; Peterson, R.O.; Seal, U.S.; Eisenhawer, Andrew; Mech, L.D.; Krumenaker, R.J.

    1991-01-01

    The small group of wolves on Isle Royale has been studied for over three decades as a model of the relationship between large carnivores and their prey. During the last ten years the population declined from 50 individuals to as few as 12 individuals. The causes of this decline may be food shortages, disease, or reduced genetic variability. We address the issues of genetic variability and relationships of Isle Royale wolves using allozyme electrophoresis, mtDNA restriction-site analysis, and multilocus hypervariable minisatellite DNA analysis (genetic fingerprinting). Our results indicate that approximately 50% of the allozyme heterozygosity has been lost in the island population, a decline similar to that expected if no immigration had occurred from the mainland. The genetic fingerprinting data indicate that the seven sampled Isle Royale wolves are as similar as captive populations of siblings. Surprisingly, the Isle Royale wolves have an mtDNA genotype that is very rare on the mainland, being found in only one of 144 mainland wolves. This suggests that the remaining Isle Royale wolves are probably derived from a single female founder.

  18. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf.

    PubMed

    Paredes, Rosana; Orben, Rachael A; Suryan, Robert M; Irons, David B; Roby, Daniel D; Harding, Ann M A; Young, Rebecca C; Benoit-Bird, Kelly; Ladd, Carol; Renner, Heather; Heppell, Scott; Phillips, Richard A; Kitaysky, Alexander

    2014-01-01

    We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla) have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008-2010) at two sites in the Pribilof Islands, where the population has either declined (St. Paul) or remained stable (St. George). Foraging conditions were assessed from changes in (1) bird diets, (2) the biomass and distribution of juvenile pollock (Theragra chalcogramma) in 2008 and 2009, and (3) eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability). In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids). Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

  19. Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population

    PubMed Central

    Fabbri, Elena; Ahmed, Atidje; Bolfíková, Barbora Černá; Czarnomska, Sylwia D.; Galov, Ana; Godinho, Raquel; Hindrikson, Maris; Hulva, Pavel; Jędrzejewska, Bogumiła; Jelenčič, Maja; Kutal, Miroslav; Saarma, Urmas; Skrbinšek, Tomaž; Randi, Ettore

    2017-01-01

    The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps. PMID:28489863

  20. Factors influencing Dipylidium sp. infection in a free-ranging social carnivore, the spotted hyaena (Crocuta crocuta)☆

    PubMed Central

    East, Marion L.; Kurze, Christoph; Wilhelm, Kerstin; Benhaiem, Sarah; Hofer, Heribert

    2013-01-01

    We provide the first genetic sequence data for a Dipylidium species from a wild carnivore plus an analysis of the effects of ecological, demographic, physiological and behavioural factors on Dipylidium sp. infection prevalence in a social carnivore, the spotted hyaena (Crocuta crocuta), in the Serengeti National Park, Tanzania. Our sequence data from a mitochondrial gene fragment (1176 base pair long) had a similarity of between 99% and 89% to Dipylidium caninum. We determined infection prevalence in 146 faecal samples from 124 known animals in three social groups (termed clans) using molecular screening and Dipylidium proglottid presence. Our analysis revealed significantly higher infection prevalence in juveniles (55%) than adults (15.8%), indicating that predominantly juveniles maintained infection in clans. The likelihood of infection in juveniles significantly: (1) increased as the number of adults and older juveniles (>6 months) at communal dens increased, implying a positive relationship between this factor and the size of the intermediate host (probably a flea species) population at communal dens; (2) decreased as the number of younger juveniles (<6 months) increased, suggesting that the chance of susceptible juveniles ingesting infected fleas during self-grooming declined as the number of infected fleas per younger juvenile declined; and (3) decreased during periods of low prey abundance in clan territories when an increased reliance on long-distances foraging excursions reduces the number of clan members visiting communal dens, possibly resulting in a decline in flea populations at dens. Long-distance foraging also increases the intervals (in days) between nursing visits by lactating females to their offspring. Lengthy intervals between milk intake by infected juveniles may reduce adult Dipylidium fecundity and hence decrease infection prevalence in the den flea population. Our study provides useful insights into Dipylidium epidemiology in a social carnivore population subject to large fluctuations in prey abundance. PMID:24533344

  1. Factors influencing Dipylidium sp. infection in a free-ranging social carnivore, the spotted hyaena (Crocuta crocuta).

    PubMed

    East, Marion L; Kurze, Christoph; Wilhelm, Kerstin; Benhaiem, Sarah; Hofer, Heribert

    2013-12-01

    We provide the first genetic sequence data for a Dipylidium species from a wild carnivore plus an analysis of the effects of ecological, demographic, physiological and behavioural factors on Dipylidium sp. infection prevalence in a social carnivore, the spotted hyaena (Crocuta crocuta), in the Serengeti National Park, Tanzania. Our sequence data from a mitochondrial gene fragment (1176 base pair long) had a similarity of between 99% and 89% to Dipylidium caninum. We determined infection prevalence in 146 faecal samples from 124 known animals in three social groups (termed clans) using molecular screening and Dipylidium proglottid presence. Our analysis revealed significantly higher infection prevalence in juveniles (55%) than adults (15.8%), indicating that predominantly juveniles maintained infection in clans. The likelihood of infection in juveniles significantly: (1) increased as the number of adults and older juveniles (>6 months) at communal dens increased, implying a positive relationship between this factor and the size of the intermediate host (probably a flea species) population at communal dens; (2) decreased as the number of younger juveniles (<6 months) increased, suggesting that the chance of susceptible juveniles ingesting infected fleas during self-grooming declined as the number of infected fleas per younger juvenile declined; and (3) decreased during periods of low prey abundance in clan territories when an increased reliance on long-distances foraging excursions reduces the number of clan members visiting communal dens, possibly resulting in a decline in flea populations at dens. Long-distance foraging also increases the intervals (in days) between nursing visits by lactating females to their offspring. Lengthy intervals between milk intake by infected juveniles may reduce adult Dipylidium fecundity and hence decrease infection prevalence in the den flea population. Our study provides useful insights into Dipylidium epidemiology in a social carnivore population subject to large fluctuations in prey abundance.

  2. Fish farms, parasites, and predators: implications for salmon population dynamics.

    PubMed

    Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A

    2011-04-01

    For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.

  3. Bats as the main prey of wintering long-eared owl (Asio otus) in Beijing: Integrating biodiversity protection and urban management.

    PubMed

    Tian, Long; Zhou, Xuwei; Shi, Yang; Guo, Yumin; Bao, Weidong

    2015-03-01

    The loss of biodiversity from urbanized areas is a major environmental problem challenging policy-makers throughout the world. Solutions to this problem are urgently required in China. We carried out a case study of wintering long-eared owls (Asio otus) and their main prey to illustrate the negative effects of urbanization combined with ineffective conservation of biodiversity in Beijing. Field monitoring of owl numbers at two roosting sites from 2004 to 2012 showed that the owl population had fallen rapidly in metropolitan Beijing. Analysis of pellet contents identified only seven individuals of two species of shrew. The majority of mammalian prey comprised four bat and seven rodent species, making up 29.3% and 29.5% of the prey items, respectively. Prey composition varied significantly among years at the two sample sites. At the urban site the consumption of bats and rodents declined gradually over time, while predation on birds increased. In contrast, at the suburban site the prey composition showed an overall decrease in the number of bats, a sharp increase and a subsequent decrease in bird prey, and the number of rodent prey fell to a low point. Rapid development of real estate and inadequate greenfield management in city parks resulted in negative effects on the bird and small mammal habitat of urban areas in Beijing. We suggest that measures to conserve biodiversity should be integrated into future urban planning to maintain China's rich biodiversity while also achieving sustainable economic development. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  4. A review of predation as a limiting factor for bird populations in mesopredator-rich landscapes: a case study of the UK.

    PubMed

    Roos, Staffan; Smart, Jennifer; Gibbons, David W; Wilson, Jeremy D

    2018-05-22

    The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high-yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high-quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground-nesting seabirds, waders and gamebirds can be limited by predation. Using life-history characteristics of prey species, we found that mainly long-lived species with high adult survival and late onset of breeding were limited by predation. Single-brooded species were also more likely to be limited by predation than multi-brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non-native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator-prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator-management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time-consuming, we advocate that future research should identify land-use practices and landscape configurations that would reduce predator numbers and predation rates. © 2018 Cambridge Philosophical Society.

  5. Desert mammal populations are limited by introduced predators rather than future climate change

    PubMed Central

    Wardle, Glenda M.; Dickman, Chris R.

    2017-01-01

    Climate change is predicted to place up to one in six species at risk of extinction in coming decades, but extinction probability is likely to be influenced further by biotic interactions such as predation. We use structural equation modelling to integrate results from remote camera trapping and long-term (17–22 years) regional-scale (8000 km2) datasets on vegetation and small vertebrates (greater than 38 880 captures) to explore how biotic processes and two key abiotic drivers influence the structure of a diverse assemblage of desert biota in central Australia. We use our models to predict how changes in rainfall and wildfire are likely to influence the cover and productivity of the dominant vegetation and the impacts of predators on their primary rodent prey over a 100-year timeframe. Our results show that, while vegetation cover may decline due to climate change, the strongest negative effect on prey populations in this desert system is top-down suppression from introduced predators. PMID:29291051

  6. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator-prey interactions.

    PubMed

    Selden, Rebecca L; Batt, Ryan D; Saba, Vincent S; Pinsky, Malin L

    2018-01-01

    Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO 2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. © 2017 John Wiley & Sons Ltd.

  7. Diet of juvenile burbot and insight on gape limitation

    USGS Publications Warehouse

    Klein, Zachary B.; Hardy, Ryan S.; Quist, Michael C.

    2016-01-01

    Throughout much of their distribution, Burbot (Lota lota ) populations are declining or have been extirpated. Burbot in the Kootenai River, Idaho represent one such imperiled population. In an effort to restore Burbot in the Kootenai River, managers have turned to conservation aquaculture. However, no appreciable increase in natural recruitment has been observed in the system. The lack of natural recruitment is believed to be partly due to a deficiency of high-quality prey. As a result, we sought to i) describe the diet of juvenile Burbot, ii) evaluate the influence of Burbot mouth gape on diet and iii) estimate prey availability at release locations. Burbot were stocked into two earthen ponds at the Boundary Creek Wildlife Management Area (BCWMA) and sampled weekly to evaluate diet. Zooplankton were sampled weekly from each pond and from release locations of hatchery-reared Burbot (i.e., Kootenai River, Goat River, Boundary Creek, Deep Creek) to quantify prey availability. Over the course of the study (~3 months), Burbot primarily fed on Cyclopoida. Burbot never appeared to be gape limited and exhibited little variability in the size of zooplankton ingested. Zooplankton densities at stocking locations were relatively low in comparison to BCWMA ponds. Low zooplankton densities at release sites indicate that alternative management actions may need to be considered to enhance Burbot recruitment in the Kootenai River drainage.

  8. Prey selection and dietary flexibility of three species of mammalian predator during an irruption of non-cyclic prey

    PubMed Central

    Dickman, Christopher R.

    2017-01-01

    Predators often display dietary shifts in response to fluctuating prey in cyclic systems, but little is known about predator diets in systems that experience non-cyclic prey irruptions. We tracked dietary shifts by feral cats (Felis catus), red foxes (Vulpes vulpes) and dingoes (Canis dingo) through a non-cyclic irruption of small mammalian prey in the Simpson Desert, central Australia. We predicted that all three predators would alter their diets to varying degrees as small mammals declined post irruption, and to test our predictions we live-trapped small mammals through the irruption event and collected scats to track predator diets. Red foxes and dingoes included a broader variety of prey in their diets as small mammals declined. Feral cats did not exhibit a similar dietary shift, but did show variable use and selectivity of small mammal species through the irruption cycle. Results were largely consistent with prior studies that highlighted the opportunistic feeding habits of the red fox and dingo. They also, however, showed that feral cats may exhibit less dietary flexibility in response to small mammal irruptions, emphasizing the importance of tracking predator diets before, during and after irruption events. PMID:28989739

  9. Detection and effects of harmful algal toxins in Scottish harbour seals and potential links to population decline.

    PubMed

    Jensen, Silje-Kristin; Lacaze, Jean-Pierre; Hermann, Guillaume; Kershaw, Joanna; Brownlow, Andrew; Turner, Andrew; Hall, Ailsa

    2015-04-01

    Over the past 15 years or so, several Scottish harbour seal (Phoca vitulina) populations have declined in abundance and several factors have been considered as possible causes, including toxins from harmful algae. Here we explore whether a link could be established between two groups of toxins, domoic acid (DA) and saxitoxins (STXs), and the decline in the harbour seal populations in Scotland. We document the first evidence that harbour seals are exposed to both DA and STXs from consuming contaminated fish. Both groups of toxins were found in urine and faeces sampled from live captured (n = 162) and stranded animals (n = 23) and in faecal samples collected from seal haul-out sites (n = 214) between 2008 and 2013. The proportion of positive samples and the toxins levels measured in the excreta were significantly higher in areas where harbour seal abundance is in decline. There is also evidence that DA has immunomodulatory effects in harbour seals, including lymphocytopenia and monocytosis. Scottish harbour seals are exposed to DA and STXs through contaminated prey at potentially lethal levels and with this evidence we suggest that exposure to these toxins are likely to be important factors driving the harbour seal decline in some regions of Scotland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Population trends in northern spotted owls: Associations with climate in the Pacific Northwest

    USGS Publications Warehouse

    Glenn, E.M.; Anthony, R.G.; Forsman, E.D.

    2010-01-01

    We used reverse time capture-mark-recapture models to describe associations between rate of population change (??) and climate for northern spotted owls (Strix occidentalis caurina) at six long-term study areas in Washington and Oregon, USA. Populations in three of six areas showed strong evidence of declining populations, while populations in two additional areas were likely declining as well. At four areas, ?? was positively associated with wetter-than-normal conditions during the growing season, which likely affects prey availability. Lambda was also negatively associated with cold, wet winters and nesting seasons, and the number of hot summer days. The amount of annual variation in ?? accounted for by climate varied across study areas (3-85%). Rate of population change was more sensitive to adult survival than to recruitment; however, there was considerable variation among years and across study areas for all demographic rates. While annual survival was more closely related to regional climate conditions, recruitment was often associated with local weather. In addition to climate, declines in recruitment at four of six areas were associated with increased presence of barred owls. Climate change models predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest in the first half of the 21st century. Our results indicate that these conditions have the potential to negatively affect annual survival, recruitment, and consequently population growth rates for northern spotted owls. ?? 2010 Elsevier Ltd.

  11. One-prey two-predator model with prey harvesting in a food chain interaction

    NASA Astrophysics Data System (ADS)

    Sayekti, I. M.; Malik, M.; Aldila, D.

    2017-07-01

    The interaction between prey, secondary predator, and primary predator as a mathematical model of the one-prey and two-predator system with constant harvesting in prey population will be introduced in this article. Their interaction might describe as a food pyramid, with the preys is in the lowest level of the pyramid, secondary predators in the middle, and primary predators in the top of the pyramid. Human intervention to controlling prey population is needed and will be analyzed how this will effect on the existence of secondary predator and primary predator population. Equilibrium points and their existence criteria will be analyzed to find a threshold that will guarantee the coexistence of this system. Some numerical simulation will be given to illustrate the analytical results. We find that as long as harvesting rate in prey population is smaller than prey intrinsic growth rate, coexistence might achieve.

  12. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development

    PubMed Central

    Beston, Julie A.; Diffendorfer, Jay E.; Loss, Scott R.; Johnson, Douglas H.

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity. PMID:26963254

  13. Prioritizing avian species for their risk of population-level consequences from wind energy development

    USGS Publications Warehouse

    Beston, Julie A.; Diffendorfer, James E.; Loss, Scott; Johnson, Douglas H.

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.

  14. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.

    PubMed

    Beston, Julie A; Diffendorfer, Jay E; Loss, Scott R; Johnson, Douglas H

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species' distributions relative to turbine locations, number of suitable habitat types, and species' conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson's hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.

  15. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  16. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore

    USGS Publications Warehouse

    Rayl, Nathaniel; Bastille-Rousseau, Guillaume; Organ, John F.; Mumma, Matthew; Mahoney, Shane P.; Soulliere, Colleen; Lewis, Keith; Otto, Robert; Murray, Dennis; Waits, Lisette; Fuller, Todd

    2018-01-01

    Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator–prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves).During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined.As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per‐capita rate at which bears killed calves followed a type‐I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves.Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time‐scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator–prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore.

  17. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore.

    PubMed

    Rayl, Nathaniel D; Bastille-Rousseau, Guillaume; Organ, John F; Mumma, Matthew A; Mahoney, Shane P; Soulliere, Colleen E; Lewis, Keith P; Otto, Robert D; Murray, Dennis L; Waits, Lisette P; Fuller, Todd K

    2018-05-01

    Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time-scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator-prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  18. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.

    PubMed

    Lehikoinen, Aleksi

    2011-01-01

    Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM) and decreased the overlap of migration season with later departing short-distance migrants (SDM). Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.

  19. Food specialization and radiation of Hawaiian honeycreepers

    USGS Publications Warehouse

    Banko, Paul C.; Banko, Winston E.

    2006-01-01

    Hawaiian honeycreepers are renowned for adaptive radiation and diet specialization. Specialization arose from competition for the relatively few resources available in this remote archipelago and because arthropod prey sufficient to satisfy nestling protein requirements could only be captured by highly modified bills. Historically, most species fed their nestlings with larvae of the widespread geometrid moth genus, Scotorythra; but other invertebrates were important also. Thus the palila, Loxioides bailleui, a specialist on potentially toxic Sophora chrysophylla seeds, feeds its nestlings on Cydia moth larvae found inside Sophora seeds. Sophora seeds are also fed to the nestlings, and seed availability largely determines the timing and extent of breeding. By this and other means, food specialization contributed to reproductive isolation in Loxioides and possibly other honeycreepers. Alien threats to insect prey affect Loxioides populations and have hastened the extinction or decline of other specialized Hawaiian birds

  20. Interactions of the Asian Lady Beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and the North American Native Lady Beetle, Coccinella novemnotata (Coleoptera: Coccinellidae): Prospects for Recovery Post-Decline.

    PubMed

    Ducatti, Rafael Dal Bosco; Ugine, Todd A; Losey, John

    2017-02-01

    The decline of the North American native lady beetle, Coccinella novemnotata Herbst, is strongly correlated with the introduction of Coccinella septempunctata L., and C. novemnotata are locally extirpated across much of the United States. Since C. novemnotata's decline, the invasive Harmonia axyridis Pallas has become dominant in North America. This study investigated whether H. axyridis has the potential to impede the recovery of C. novemnotata populations. To determine how H. axyridis interacts with C. novemnotata via intraguild predation and competition for prey, we paired first-instar C. novemnotata with first-instar H. axyridis at low and high densities of pea aphid. Coccinella novemnotata survival when paired interspecifically was significantly lower than H. axyridis survival at both aphid densities. Both species had similar weights at eclosion across aphid densities; however, H. axyridis developed faster than C. novemnotata. To examine the effect of larval size on intraguild interactions, we conducted a second experiment where we varied the C. novemnotata and H. axyridis instar in our pairings. Coccinella novemnotata survival and final weight increased when paired with younger H. axyridis larvae. The percentage survival of C. novemnotata in interspecific treatments, at the low aphid density, was lower than for same-aged C. novemnotata reared conspecifically, except for pairs initiated with C. novemnotata larvae that were two instars more advanced than H. axyridis larvae. These results suggest that intraguild predation and competition for prey by H. axyridis have the potential to affect the recovery of C. novemnotata populations negatively. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Mevin B.; DeVink, Jean-Michel; Koons, David N.

    2015-01-01

    An understanding of species relationships is critical in the management and conservation of populations facing climate change, yet few studies address how climate alters species interactions and other population drivers. We use a long-term, broad-scale data set of relative abundance to examine the influence of climate, predators, and density dependence on the population dynamics of declining scaup (Aythya) species within the core of their breeding range. The state-space modeling approach we use applies to a wide range of wildlife species, especially populations monitored over broad spatiotemporal extents. Using this approach, we found that immediate snow cover extent in the preceding winter and spring had the strongest effects, with increases in mean snow cover extent having a positive effect on the local surveyed abundance of scaup. The direct effects of mesopredator abundance on scaup population dynamics were weaker, but the results still indicated a potential interactive process between climate and food web dynamics (mesopredators, alternative prey, and scaup). By considering climate variables and other potential effects on population dynamics, and using a rigorous estimation framework, we provide insight into complex ecological processes for guiding conservation and policy actions aimed at mitigating and reversing the decline of scaup.

  2. Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator.

    PubMed

    Galicia, Melissa P; Thiemann, Gregory W; Dyck, Markus G; Ferguson, Steven H; Higdon, Jeff W

    2016-08-01

    Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010-2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large-bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice-free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on-ice feeding opportunities for polar bears.

  3. Status and trends of prey fish populations in Lake Michigan, 2008

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Holuszko, Jeffrey D.; Desorcie, Timothy J.; Adams, Jean V.

    2009-01-01

    The Great Lakes Science Center (GLSC) has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2008. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2008 was estimated at 8.27 kilotonnes (kt) (1 kt = 1000 metric tons), which was the smallest biomass estimate in the entire time series and 29% lower than the 2007 estimate. Lake-wide biomass of bloater in 2008 was estimated at 3.33 kt, which was the lowest estimate since 1977 and 38% lower than the 2007 estimate. Rainbow smelt lake-wide biomass equaled 0.89 kt, which was only 0.01 kt higher than 2007, which is the lowest estimate in the time series. Deepwater sculpin lake-wide biomass equaled 5.23 kt, which is the fourth straight year of declining biomass. The 2008 estimate is the second smallest in the time series, and 39% lower than the 2007 estimate. Slimy sculpin lake-wide biomass remained relatively high in 2008 (2.75 kt), increasing 25% over 2007. Ninespine stickleback lake-wide biomass equaled only 0.50 kt in 2008, which was 79% lower than the 2007 estimate. The final prey fish, exotic round goby, increased two orders of magnitude between 2007 and 2008, from 0.02 to 4.65 kt. Round gobies now represent 18% of the prey fish biomass. Burbot lake-wide biomass (0.91 kt in 2008) has remained fairly constant since 2002. Numeric density of age-0 yellow perch (i.e., < 100 mm) equaled 0.7 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass of dreissenid mussels dropped precipitously in 2008, down to 9.47 kt, and a 96% decline from the 2007 biomass estimate. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2008 was 25.62 kt, which was the lowest observed since the survey began in 1973.

  4. Egg Production in a Coastal Seabird, the Glaucous-Winged Gull (Larus glaucescens), Declines during the Last Century

    PubMed Central

    Blight, Louise K.

    2011-01-01

    Seabirds integrate information about oceanic ecosystems across time and space, and are considered sensitive indicators of marine conditions. To assess whether hypothesized long-term foodweb changes such as forage fish declines may be reflected in a consumer's life history traits over time, I used meta-regression to evaluate multi-decadal changes in aspects of egg production in the glaucous-winged gull (Larus glaucescens), a common coastal bird. Study data were derived from literature searches of published papers and unpublished historical accounts, museum egg collections, and modern field studies, with inclusion criteria based on data quality and geographic area of the original study. Combined historical and modern data showed that gull egg size declined at an average of 0.04 cc y−1 from 1902 (108 y), equivalent to a decline of 5% of mean egg volume, while clutch size decreased over 48 y from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009. There was a negative relationship between lay date and mean clutch size in a given year, with smaller clutches occurring in years where egg laying commenced later. Lay date itself advanced over time, with commencement of laying presently (2008–2010) 7 d later than in previous studies (1959–1986). This study demonstrates that glaucous-winged gull investment in egg production has declined significantly over the past ∼50–100 y, with such changes potentially contributing to recent population declines. Though gulls are generalist feeders that should readily be able to buffer themselves against food web changes, they are likely nutritionally constrained during the early breeding period, when egg production requirements are ideally met by consumption of high-quality prey such as forage fish. This study's results suggest a possible decline in the availability of such prey, and the incremental long-term impoverishment of a coastal marine ecosystem bordering one of North America's rapidly growing urban areas. PMID:21789207

  5. Trophic Scaling and Occupancy Analysis Reveals a Lion Population Limited by Top-Down Anthropogenic Pressure in the Limpopo National Park, Mozambique

    PubMed Central

    Everatt, Kristoffer T.; Andresen, Leah; Somers, Michael J.

    2014-01-01

    The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km2 vs. 3.05 lions/100 km2). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2 400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against. PMID:24914934

  6. Trophic scaling and occupancy analysis reveals a lion population limited by top-down anthropogenic pressure in the Limpopo National Park, Mozambique.

    PubMed

    Everatt, Kristoffer T; Andresen, Leah; Somers, Michael J

    2014-01-01

    The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km² vs. 3.05 lions/100 km²). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2,400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against.

  7. Keeping the herds healthy and alert: Implications of predator control for infectious disease

    USGS Publications Warehouse

    Packer, Craig; Holt, Robert D.; Hudson, Peter J.; Lafferty, Kevin D.; Dobson, Andrew P.

    2003-01-01

    Predator control programmes are generally implemented in an attempt to increase prey population sizes. However, predator removal could prove harmful to prey populations that are regulated primarily by parasitic infections rather than by predation. We develop models for microparasitic and macroparasitic infection that specify the conditions where predator removal will (a) increase the incidence of parasitic infection, (b) reduce the number of healthy individuals in the prey population and (c) decrease the overall size of the prey population. In general, predator removal is more likely to be harmful when the parasite is highly virulent, macroparasites are highly aggregated in their prey, hosts are long-lived and the predators select infected prey.

  8. Induced defences in an endangered amphibian in response to an introduced snake predator.

    PubMed

    Moore, Robin D; Griffiths, Richard A; O'Brien, Cliona M; Murphy, Adam; Jay, David

    2004-09-01

    Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes ( Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca ( Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.

  9. Selective Predation of a Stalking Predator on Ungulate Prey

    PubMed Central

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  10. Modelling the dynamics of traits involved in fighting-predators-prey system.

    PubMed

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  11. Snake (Colubridae: Thamnophis) predatory responses to chemical cues from native and introduced prey species

    USGS Publications Warehouse

    Mullin, S.J.; Imbert, H.; Fish, J.M.; Ervin, E.L.; Fisher, R.N.

    2004-01-01

    Several aquatic vertebrates have been introduced into freshwater systems in California over the past 100 years. Some populations of the two-striped garter snake (Thamnophis hammondii) have lived in sympatry with these species since their introduction; other populations have never encountered them. To assess the possible adaptation to a novel prey, we tested the predatory responses of T. hammondii from different populations to different chemosensory cues from native and introduced prey species. We presented chemical extracts from potential prey types and 2 control odors to individual snakes on cotton swabs and recorded the number of tongue flicks and attacks directed at each swab. Subject response was higher for prey odors than control substances. Odors from introduced centrarchid fish (Lepomis) elicited higher response levels than other prey types, including native anuran larvae (Pseudacris regilla). The pattern of response was similar for both populations of snakes (experienced and nai??ve, with respect to the introduced prey). We suggest that the generalist aquatic lifestyle of T. hammondii has allowed it to take advantage of increasing populations of introduced prey. Decisions on the management strategies for some of these introduced prey species should include consideration of how T. hammondii populations might respond in areas of sympatry.

  12. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    USGS Publications Warehouse

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main conclusions The decadal declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on the foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, the trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.

  13. Connectivity between migrating and landlocked populations of a diadromous fish species investigated using otolith microchemistry.

    PubMed

    Tulp, Ingrid; Keller, Marieke; Navez, Jacques; Winter, Hendrik V; de Graaf, Martin; Baeyens, Willy

    2013-01-01

    Smelt Osmerus eperlanus has two different life history strategies in The Netherlands. The migrating population inhabits the Wadden Sea and spawns in freshwater areas. After the closure of the Afsluitdijk in 1932, part of the smelt population became landlocked. The fresh water smelt population has been in severe decline since 1990, and has strongly negatively impacted the numbers of piscivorous water birds relying on smelt as their main prey. The lakes that were formed after the dike closure, IJsselmeer and Markermeer have been assigned as Natura 2000 sites, based on their importance for (among others) piscivorous water birds. Because of the declining fresh water smelt population, the question arose whether this population is still supported by the diadromous population. Opportunities for exchange between fresh water and the sea are however limited to discharge sluices. The relationship between the diadromous and landlocked smelt population was analysed by means of otolith microchemistry. Our interpretation of otolith strontium ((88)Sr) patterns from smelt specimens collected in the fresh water area of Lake IJsselmeer and Markermeer, compared to those collected in the nearby marine environment, is that there is currently no evidence for a substantial contribution from the diadromous population to the spawning stock of the landlocked population.

  14. Lions and prions and deer demise.

    PubMed

    Miller, Michael W; Swanson, Heather M; Wolfe, Lisa L; Quartarone, Fred G; Huwer, Sherri L; Southwick, Charles H; Lukacs, Paul M

    2008-01-01

    Contagious prion diseases--scrapie of sheep and chronic wasting disease of several species in the deer family--give rise to epidemics that seem capable of compromising host population viability. Despite this prospect, the ecological consequences of prion disease epidemics in natural populations have received little consideration. Using a cohort study design, we found that prion infection dramatically lowered survival of free-ranging adult (>2-year-old) mule deer (Odocoileus hemionus): estimated average life expectancy was 5.2 additional years for uninfected deer but only 1.6 additional years for infected deer. Prion infection also increased nearly fourfold the rate of mountain lions (Puma concolor) preying on deer, suggesting that epidemics may alter predator-prey dynamics by facilitating hunting success. Despite selective predation, about one fourth of the adult deer we sampled were infected. High prevalence and low survival of infected deer provided a plausible explanation for the marked decline in this deer population since the 1980s. Remarkably high infection rates sustained in the face of intense predation show that even seemingly complete ecosystems may offer little resistance to the spread and persistence of contagious prion diseases. Moreover, the depression of infected populations may lead to local imbalances in food webs and nutrient cycling in ecosystems in which deer are important herbivores.

  15. Venom variation and chemoreception of the viperid Agkistrodon contortrix: evidence for adaptation?

    PubMed

    Greenbaum, Eli; Galeva, Nadezhda; Jorgensen, Michael

    2003-08-01

    Previous studies of chemoreceptive behavior in vipers suggest that snakes focus on the scent of envenomated tissue to track their prey following envenomation. Other studies have indicated a correlation between qualitative differences in venom biochemistry and geographic variation in diet. The North American copperhead (Agkistrodon contortrix) varies geographically in diet and venom biochemistry; snakes were collected from three populations (Kansas, Texas, and Louisiana) that are known to have different prey preferences. Behavioral experiments were conducted to assess whether copperheads preferred envenomated prey more than nonenvenomated prey, as do other species of vipers studied thus far. Additional experiments tested the ability of copperheads to distinguish between envenomated prey from different geographic populations, and between geographic populations of copperheads and two other species of viper. Results indicated that copperheads prefer envenomated prey to nonenvenomated prey. In envenomated-prey discrimination experiments, copperheads distinguished between envenomated prey from different geographic populations, and some snakes distinguished envenomated prey of A. contortrix from those of A. piscivorns and Sistrurus catenatus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to study the variation of venom biochemistry in this species and two other taxa (A. piscivorus and S. catenatus), and confirmed intraspecific and interspecific variation of venom proteins. Relative potency of the venom from different populations as indicated by time to immobilization experiments was in the order: Louisiana > Texas > Kansas. The relative potency of the venom from each population matched the order of preference in the chemoreception experiments. These results suggest that chemoreception is sensitive to subtle differences in venom biochemistry and may reflect adaptation to improve efficiency of finding envenomated prey.

  16. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.

    PubMed

    Wang, Xiaoying; Zou, Xingfu

    2017-06-01

    Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.

  17. A Lota lota consumption: Trophic dynamics of nonnative Burbot in a valuable sport fishery

    USGS Publications Warehouse

    Klobucar, Stephen L.; Saunders, W. Carl; Budy, Phaedra

    2016-01-01

    Unintentional and illegal introductions of species disrupt food webs and threaten the success of managed sport fisheries. Although many populations of Burbot Lota lota are declining in the species’ native range, a nonnative population recently expanded into Flaming Gorge Reservoir (FGR), Wyoming–Utah, and threatens to disrupt predator–prey interactions within this popular sport fishery. To determine potential impacts on sport fishes, especially trophy Lake Trout Salvelinus namaycush, we assessed the relative abundance of Burbot and quantified the potential trophic or food web impacts of this population by using diet, stable isotope, and bioenergetic analyses. We did not detect a significant potential for food resource competition between Burbot and Lake Trout (Schoener’s overlap index = 0.13), but overall consumption by Burbot likely affects other sport fishes, as indicated by our analyses of trophic niche space. Diet analyses suggested that crayfish were important diet items across time (89.3% of prey by weight in autumn; 49.4% in winter) and across Burbot size-classes (small: 77.5% of prey by weight; medium: 76.6%; large: 39.7%). However, overall consumption by Burbot increases as water temperatures cool, and fish consumption by Burbot in FGR was observed to increase during winter. Specifically, large Burbot consumed more salmonids, and we estimated (bioenergetically) that up to 70% of growth occurred in late autumn and winter. Further, our population-wide consumption estimates indicated that Burbot could consume up to double the biomass of Rainbow Trout Oncorhynchus mykiss stocked annually (>1.3 × 105 kg; >1 million individuals) into FGR. Overall, we provide some of the first information regarding Burbot trophic interactions outside of the species’ native range; these findings can help to inform the management of sport fisheries if Burbot range expansion occurs elsewhere.

  18. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  19. Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship

    PubMed Central

    Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

    2012-01-01

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

  20. Algal subsidies enhance invertebrate prey for threatened shorebirds: A novel conservation tool on ocean beaches?

    NASA Astrophysics Data System (ADS)

    Schlacher, Thomas A.; Hutton, Briony M.; Gilby, Ben L.; Porch, Nicholaus; Maguire, Grainne S.; Maslo, Brooke; Connolly, Rod M.; Olds, Andrew D.; Weston, Michael A.

    2017-05-01

    Birds breeding on ocean beaches are threatened globally, often requiring significant investments in species conservation and habitat management. Conservation actions typically encompass spatial and temporal threat reductions and protection of eggs and broods. Still, populations decline or recover only slowly, calling for fresh approaches in beach-bird conservation. Because energetic demands are critically high during the nesting and chick rearing phases, and chick survival is particularly low, supplementing prey to breeding birds and their offspring is theoretically attractive as a means to complement more traditional conservation measures. Prey for plovers and similar species on ocean beaches consists of invertebrates (e.g. small crustaceans, insects) many of which feed on stranded masses of plant material (e.g. kelp and seagrass) and use this 'wrack' as habitat. We added wrack to the upper beach where plovers nest and their chicks forage to test whether algal subsidies promote the abundance and diversity of their invertebrate prey. Adding wrack to the upper beach significantly increased the abundance and diversity of invertebrate prey items. At wrack subsidies greater than 50% of surface cover invertebrate assemblages became highly distinct compared with those that received smaller additions of wrack. Substantial (2-4 fold) increases in the abundance amphipods and isopods that are principal prey items for plovers drove these shifts. This proof-of-concept study demonstrates the feasibility of food provisioning for birds on ocean shores. Whilst novel, it is practicable, inexpensive and does not introduce further restrictions or man-made structures. Thus, it can meaningfully add to the broader arsenal of conservation tools for threatened species that are wholly reliant on sandy beaches as breeding and foraging habitats.

  1. Relationships between bald eagle productivity and dynamics of fish populations and fisheries in the Wisconsin waters of Lake Superior, 1983-1999

    USGS Publications Warehouse

    Hoff, Michael H.; Meyer, Michael W.; Van Stappen, Julie; Fratt, Thomas W.

    2004-01-01

    Bald eagle (Haliaeetus leucocephalus) abundance declined in the 1950s and 1960s along the Wisconsin waters of Lake Superior, and were nearly absent along Wisconsin's Lake Superior shoreline. The population began to increase again between 1980 and 1983, and since then bald eagles nesting on islands along Wisconsin's Lake Superior shoreline (i.e., Apostle Islands) reproduced at a lower rate than have those nesting along the mainland shoreline of the lake and inland. Recent research indicated that bioaccumulation of toxic chemicals in the aquatic food chain no longer limits bald eagle reproduction there, and that productivity at island nests was lower than at mainland nests and inland nests as the result of low food availability. Management agencies have sought models that accurately predict productivity and explain ecological relationships, but no satisfactory models had previously been developed. Modeling was conducted here to determine which factors best explained productivity variability. The Ricker stock-recruitment model derived from only the bivariate breeding pair and productivity data explained only 1% of the variability in productivity data. The functional relationship that explained the greatest amount of productivity variation (83%) included the number of breeding pairs, burbot (Lota lota) biomass, longnose sucker (Catostomus catostomus) biomass, and commercial harvest of nontarget fishes. Model results were interpreted to mean that productivity was positively affected by populations of burbot and longnose sucker, which are important prey items, and by commercial fishermen feeding nontarget fish to bald eagles. Harvest of nontarget fishes by tribal fishermen and burbot and longnose sucker populations have not tended to change during the entire study period, although the burbot population has declined since 1991. Therefore, bald eagle productivity is not predicted to increase unless burbot, longnose sucker, or other preferred prey of bald eagles increases in the Apostle Islands.

  2. Trophic omnivory across a productivity gradient: intraguild predation theory and the structure and strength of species interactions.

    PubMed

    Novak, Mark

    2013-09-07

    Intraguild predation theory centres on two predictions: (i) for an omnivore and an intermediate predator (IG-prey) to coexist on shared resources, the IG-prey must be the superior resource competitor, and (ii) increasing resource productivity causes the IG-prey's equilibrium abundance to decline. I tested these predictions with a series of species-rich food webs along New Zealand's rocky shores, focusing on two predatory whelks, Haustrum haustorium, a trophic omnivore, and Haustrum scobina, the IG-prey. In contrast to theory, the IG-prey's abundance increased with productivity. Furthermore, feeding rates and allometric considerations indicate a competitive advantage for the omnivore when non-shared prey are considered, despite the IG-prey's superiority for shared prey. Nevertheless, clear and regular cross-gradient changes in network structure and interaction strengths were observed that challenge the assumptions of current theory. These insights suggest that the consideration of consumer-dependent functional responses, non-equilibrium dynamics, the dynamic nature of prey choice and non-trophic interactions among basal prey will be fruitful avenues for theoretical development.

  3. Trophic omnivory across a productivity gradient: intraguild predation theory and the structure and strength of species interactions

    PubMed Central

    Novak, Mark

    2013-01-01

    Intraguild predation theory centres on two predictions: (i) for an omnivore and an intermediate predator (IG-prey) to coexist on shared resources, the IG-prey must be the superior resource competitor, and (ii) increasing resource productivity causes the IG-prey's equilibrium abundance to decline. I tested these predictions with a series of species-rich food webs along New Zealand's rocky shores, focusing on two predatory whelks, Haustrum haustorium, a trophic omnivore, and Haustrum scobina, the IG-prey. In contrast to theory, the IG-prey's abundance increased with productivity. Furthermore, feeding rates and allometric considerations indicate a competitive advantage for the omnivore when non-shared prey are considered, despite the IG-prey's superiority for shared prey. Nevertheless, clear and regular cross-gradient changes in network structure and interaction strengths were observed that challenge the assumptions of current theory. These insights suggest that the consideration of consumer-dependent functional responses, non-equilibrium dynamics, the dynamic nature of prey choice and non-trophic interactions among basal prey will be fruitful avenues for theoretical development. PMID:23864601

  4. Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil.

    PubMed

    Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish

    2014-02-01

    As apex predators disappear worldwide, there is escalating evidence of their importance in maintaining the integrity and diversity of the ecosystems they inhabit. The largest extant marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii) is threatened with extinction from a transmissible cancer, devil facial tumor disease (DFTD). The disease, first observed in 1996, has led to apparent population declines in excess of 95% in some areas and has spread to more than 80% of their range. We analyzed a long-term Tasmania-wide data set derived from wildlife spotlighting surveys to assess the effects of DFTD-induced devil decline on populations of other mammals and to examine the relative strength of top-down and bottom-up control of mesopredators between 2 regions with different environmental conditions. Collection of the data began >10 years before DFTD was first observed. A decrease in devil populations was immediate across diseased regions following DFTD arrival, and there has been no indication of population recovery. Feral cats (Felis catus) increased in areas where the disease was present the longest, and feral cat occurrence was significantly and negatively associated with devils. The smallest mesopredator, the eastern quoll (Dasyurus viverrinus), declined rapidly following DFTD arrival. This result suggests the species was indirectly protected by devils through the suppression of larger predators. Rainfall deficiency was also a significant predictor of their decline. Environmental variables determined the relative importance of top-down control in the population regulation of mesopredators. In landscapes of low rainfall and relatively higher proportions of agriculture and human settlement, top-down forces were dampened and bottom-up forces had the most effect on mesopredators. For herbivore prey species, there was evidence of population differences after DFTD arrival, but undetected environmental factors had greater effects. The unique opportunity to assess population changes over extensive temporal and spatial scales following apex predator loss further demonstrated their role in structuring ecosystems and of productivity in determining the strength of top-down control. © 2013 Society for Conservation Biology.

  5. Local trophic specialisation in a cosmopolitan spider (Araneae).

    PubMed

    Líznarová, Eva; Sentenská, Lenka; García, Luis Fernando; Pekár, Stano; Viera, Carmen

    2013-02-01

    Trophic specialisation can be observed in species with long-term constant exploitation of a certain prey in all populations or in a population of a species with short-term exploitation of a certain prey. While in the former case the species would evolve stereotyped or specialised trophic adaptations, the trophic traits of the latter should be versatile or generalised. Here, we studied the predatory behavioural adaptations of a presumed myrmecophagous spider, Oecobius navus. We chose two distinct populations, one in Portugal and the other in Uruguay. We analysed the actual prey of both populations and found that the Portuguese population feeds mainly on dipterans, while the Uruguayan population feeds mainly on ants. Indeed, dipterans and springtails in Portugal, and ants in Uruguay were the most abundant potential prey. In laboratory trials O. navus spiders recognised and captured a wide variety of prey. The capture efficiency of the Portuguese population measured as components of the handling time was higher for flies than for ants, while that of the Uruguayan population was higher for ants. We found phenotypic plasticity in behavioural traits that lead to increased capture efficiency with respect to the locally abundant prey, but it remains to be determined whether the traits of the two populations are genetically fixed. We conclude that O. navus is a euryphagous generalist predator which shows local specialisation on the locally abundant prey. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Causes and consequences of marine mammal population declines in southwest Alaska: a food-web perspective.

    PubMed

    Estes, J A; Doak, D F; Springer, A M; Williams, T M

    2009-06-27

    Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al. proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predator-prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely.

  7. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    PubMed

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  8. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    PubMed Central

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P. J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears. PMID:23677350

  9. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    USGS Publications Warehouse

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  10. Specialists and generalists coexist within a population of spider-hunting mud dauber wasps

    PubMed Central

    Taylor, Lisa A.

    2017-01-01

    Abstract Individual foraging specialization describes the phenomenon where conspecifics within a population of generalists exhibit differences in foraging behavior, each specializing on different prey types. Individual specialization is widespread in animals, yet is understudied in invertebrates, despite potential impacts to food web and population dynamics. Sceliphron caementarium (Hymenoptera: Sphecidae) is an excellent system to examine individual specialization. Females of these mud dauber wasps capture and paralyze spiders which they store in mud nests to provision their offspring. Individuals may make hundreds of prey choices in their short lifespan and fully intact prey items can be easily excavated from their mud nests, where each distinct nest cell represents a discrete foraging bout. Using data collected from a single population of S. caementarium (where all individuals had access to the same resources), we found evidence of strong individual specialization; individuals utilized different resources (with respect to prey taxa, prey ecological guild, and prey size) to provision their nests. The extent of individual specialization differed widely within the population with some females displaying extreme specialization (taking only prey from a single species) while others were generalists (taking prey from up to 6 spider families). We also found evidence of temporal consistency in individual specialization over multiple foraging events. We discuss these findings broadly in the context of search images, responses to changing prey availability, and intraspecific competition pressure. PMID:29622922

  11. Predator cannibalism can intensify negative impacts on heterospecific prey.

    PubMed

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.

  12. Optimal control of predator-prey mathematical model with infection and harvesting on prey

    NASA Astrophysics Data System (ADS)

    Diva Amalia, R. U.; Fatmawati; Windarto; Khusnul Arif, Didik

    2018-03-01

    This paper presents a predator-prey mathematical model with infection and harvesting on prey. The infection and harvesting only occur on the prey population and it assumed that the prey infection would not infect predator population. We analysed the mathematical model of predator-prey with infection and harvesting in prey. Optimal control, which is a prevention of the prey infection, also applied in the model and denoted as U. The purpose of the control is to increase the susceptible prey. The analytical result showed that the model has five equilibriums, namely the extinction equilibrium (E 0), the infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), the predator extinction equilibrium (E 3), and the coexistence equilibrium (E 4). The extinction equilibrium (E 0) is not stable. The infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), also the predator extinction equilibrium (E 3), are locally asymptotically stable with some certain conditions. The coexistence equilibrium (E 4) tends to be locally asymptotically stable. Afterwards, by using the Maximum Pontryagin Principle, we obtained the existence of optimal control U. From numerical simulation, we can conclude that the control could increase the population of susceptible prey and decrease the infected prey.

  13. Cannibalism in discrete-time predator-prey systems.

    PubMed

    Chow, Yunshyong; Jang, Sophia R-J

    2012-01-01

    In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.

  14. An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for Kiwikiu (Pseudonestor xanthophrys) and Maui `Alauahio (Parareomyza montana).

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Cappadonna, Justin; Steele, Claire; Leonard, David L.; Mounce, Hanna L.; Becker, Dusti; Swinnerton, Kirsty

    2015-01-01

    Hawaiian forest birds have declined dramatically since humans arrived in the archipelago. Birds from all foraging guilds have been affected but insectivorous species are currently at greatest risk of extinction. On the island of Maui, populations and ranges of the insectivorous kiwikiu (Maui parrotbill; Pseudonestor xanthophrys) and Maui ‘alauahio (Maui creeper; Paroreomyza montana) have declined significantly from historic levels primarily due to habitat loss, predation,disease, and food web disruption, leading to federal listings of endangered species and species of concern, respectively. Recovery plans for these birds include reestablishment of populations in parts of their former range. Nakula Natural Area Reserve on the leeward side of HaleakalāVolcano has been targeted for release of wild-caught or captive-bred individuals. The mesic, montane koa-‘ōhi‘a (Acacia koa-Metrosideros polymorpha) forest at Nakula has been heavily impacted through grazing by feral ungulates, but recent management actions to exclude these animals are promoting forest recovery. The objective of this study was to assess the arthropod prey base at Nakula in preparation for reintroductions of kiwikiu and Maui ‘alauahio. To accomplish that goal, we compared arthropod abundances at Nakula to those at Hanawi Natural Area Reserve and Waikamoi Preserve, areas where kiwikiu and Maui ‘alauahio are currently found. We also identified diets of kiwikiu and Maui ‘alauahio from fecal samples to better understand and evaluate the prey base at Nakula. Assessment methods included clipping branch tips to sample arthropods within the foliage of koa and ‘ōhi‘a, using traps to quantify arthropods on koa and ‘ōhi‘a bark surfaces, counting exit holes to quantify abundances of beetles (Coleoptera) within dead branches of koa, and measuring the density of arthropods within the stems of ‘ākala (Rubus hawaiiensis). The diet of kiwikiu was dominated by caterpillars (Lepidoptera larvae), which comprised 90% of all prey items for 50 adult birds and 98% of all prey for two nestlings. Caterpillars were also the most important prey for Maui ‘alauahio (43% for 104 adult birds) although spiders (Araneae, 16%), beetles (12%) and true bugs, planthoppers and psyllids (Hemiptera; 12%) were also important. Caterpillars were generally the most abundant type of arthropod in the foliage of koa and ‘ōhi‘a, although spiders, beetles and hemipterans were also common. Total arthropod biomass and caterpillar biomass at Nakula was as great, or greater, than that observed at Hanawi and Waikamoi per unit of foliage of both koa and ‘ōhi‘a. Spiders generally dominated the bark fauna on both koa and ‘ōhi‘a at all sites although isopods (Isopoda), millipedes (Myriapoda: Millipeda) and lacewings (Neuroptera) were also abundant at Waikamoi and Hanawi. Total arthropod biomass on bark, as well as the biomass of several individual taxa, was significantly lower at Nakula than the other sites. Our measurement of the density of beetle exit holes in dead koa branches found no difference between Nakula and Waikamoi. Finally, no difference existed in the abundance of arthropods (primarily caterpillars and moth pupae) within ‘ākala stems among sites. With the exception of bark surfaces, our results suggest that the arthropod prey base for birds on primary foraging substrates at Nakula is similar to that found at two sites within the current range of kiwikiu and Maui ‘alauahio. However, our results should be viewed with caution because they are limited to the scale of individual branch, tree, or ‘ākala stem. To complete the assessment, our results should be scaled up to the landscape level by determining the density of each substrate within each site. Key arthropod prey of kiwikiu and Maui ‘alauahio are available at Nakula and, as habitat restoration continues, food abundance should increase to the point at which populations of these birds can be supported.

  15. Snake fungal disease in North America: U.S. Geological Survey updates

    USGS Publications Warehouse

    Thompson, Noelle E.; Lankau, Emily W.; Moede Rogall, Gail

    2018-01-12

    Snake fungal disease (SFD) results from a skin infection that has been documented only in snakes. Historically, reports of snakes with skin infections of unknown origin have been sporadic. Recently, the number of reported cases of skin infections in snakes has increased substantially. This emerging infectious disease, confirmed in numerous species of snakes, is caused by the fungus Ophidiomyces ophiodiicola. As of August 2017, O. ophiodiicola has been detected in at least 23 States and one Canadian Province. However, researchers suspect that SFD may be more widely distributed than these documented cases suggest, because efforts to monitor the health of many snake populations are limited. Snake fungal disease may also be underreported in populations where it affects snakes infrequently or in species that develop less severe illness. Signs of SFD include crusted or ulcerated scales, nodules (that is, abnormal bumps) under the skin, and facial disfiguration that can be quite severe, leading to emaciation and death. Many snake populations are already in decline due to habitat loss and dwindling prey populations, and the recent emergence of SFD may accelerate this decline, causing certain species to disappear entirely from some locations.

  16. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  17. Prey depletion as a threat to the world's large carnivores

    PubMed Central

    Ripple, William J.

    2016-01-01

    Large terrestrial carnivores are an ecologically important, charismatic and highly endangered group of species. Here, we assess the importance of prey depletion as a driver of large carnivore endangerment globally using lists of prey species for each large carnivore compiled from the literature. We consider spatial variation in prey endangerment, changes in endangerment over time and the causes of prey depletion, finding considerable evidence that loss of prey base is a major and wide-ranging threat among large carnivore species. In particular, the clouded leopard (Neofelis nebulosa), Sunda clouded leopard (Neofelis diardi), tiger (Panthera tigris), dhole (Cuon alpinus) and Ethiopian wolf (Canis simensis) all have at least 40% of their prey classified as threatened on the International Union for the Conservation of Nature (IUCN) Red List and, along with the leopard (Panethra pardus), all of these species except the Ethiopian wolf have at least 50% of their prey classified as declining. Of the 494 prey species in our analysis, an average of just 6.9% of their ranges overlap protected areas. Together these results show the importance of a holistic approach to conservation that involves protecting both large carnivores directly and the prey upon which they depend. PMID:27853599

  18. Interactive effects of prey and weather on golden eagle reproduction

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; McDonald, T.L.

    1997-01-01

    1. The reproduction of the golden eagle Aquila chrysaetos was studied in southwestern Idaho for 23 years, and the relationship between eagle reproduction and jackrabbit Lepus californicus abundance, weather factors, and their interactions, was modelled using general linear models. Backward elimination procedures were used to arrive at parsimonious models.2. The number of golden eagle pairs occupying nesting territories each year showed a significant decline through time that was unrelated to either annual rabbit abundance or winter severity. However, eagle hatching dates were significantly related to both winter severity and jackrabbit abundance. Eagles hatched earlier when jackrabbits were abundant, and they hatched later after severe winters.3. Jackrabbit abundance influenced the proportion of pairs that laid eggs, the proportion of pairs that were successful, mean brood size at fledging, and the number of young fledged per pair. Weather interacted with prey to influence eagle reproductive rates.4. Both jackrabbit abundance and winter severity were important in predicting the percentage of eagle pairs that laid eggs. Percentage laying was related positively to jackrabbit abundance and inversely related to winter severity.5. The variables most useful in predicting percentage of laying pairs successful were rabbit abundance and the number of extremely hot days during brood-rearing. The number of hot days and rabbit abundance were also significant in a model predicting eagle brood size at fledging. Both success and brood size were positively related to jackrabbit abundance and inversely related to the frequency of hot days in spring.6. Eagle reproduction was limited by rabbit abundance during approximately twothirds of the years studied. Weather influenced how severely eagle reproduction declined in those years.7. This study demonstrates that prey and weather can interact to limit a large raptor population's productivity. Smaller raptors could be affected more strongly, especially in colder or wetter climates.

  19. Large-scale changes in bloater growth and condition in Lake Huron

    USGS Publications Warehouse

    Prichard, Carson G.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Riley, Stephen C.

    2016-01-01

    Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum shrimp Mysis diluviana and zooplankton.

  20. The curse of the prey: Sarcoptes mite molecular analysis reveals potential prey-to-predator parasitic infestation in wild animals from Masai Mara, Kenya

    PubMed Central

    2011-01-01

    Background Recently, there have been attempts to understand the molecular epidemiology of Sarcoptes scabiei, to evaluate the gene flow between isolates of S. scabiei from different hosts and geographic regions. However, to our knowledge, a molecular study has not been carried out to assess the molecular diversity and gene flow of Sarcoptes mite in a predator/prey ecosystem. Results Our study revealed an absence of gene flow between the two herbivore (Thomson's gazelle and wildebeest)- and between the two carnivore (lion and cheetah)-derived Sarcoptes populations from Masai Mara (Kenya), which is in discrepancy with the host-taxon law described for wild animals in Europe. Lion- and wildebeest-derived Sarcoptes mite populations were similar yet different from the Thomson's gazelle-derived Sarcoptes population. This could be attributed to Sarcoptes cross-infestation from wildebeest ("favourite prey") of the lion, but not from Thomson's gazelle. The cheetah-derived Sarcoptes population had different subpopulations: one is cheetah-private, one similar to the wildebeest- and lion-derived Sarcoptes populations, and another similar to the Thomson's gazelle-derived Sarcoptes mite population, where both wildebeest and Thomson's gazelle are "favourite preys" for the cheetah. Conclusions In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation in wild animals is prey-to-predator-wise, depending on the predator's "favourite prey". More studies on the lion and cheetah diet and behaviour could be of great help to clarify the addressed hypotheses. This study could have further ramification in the epidemiological studies and the monitoring protocols of the neglected Sarcoptes mite in predator/prey ecosystems. PMID:21978557

  1. Diet and prey selection by Lake Superior lake trout during springs 1986-2001

    USGS Publications Warehouse

    Ray, B.A.; Hrabik, T.R.; Ebener, M.P.; Gorman, O.T.; Schreiner, D.R.; Schram, S.T.; Sitar, S.P.; Mattes, W.P.; Bronte, C.R.

    2007-01-01

    We describe the diet and prey selectivity of lean (Salvelinus namaycush namaycush) and siscowet lake trout (S. n. siscowet) collected during spring (April–June) from Lake Superior during 1986–2001. We estimated prey selectivity by comparing prey numerical abundance estimates from spring bottom trawl surveys and lake trout diet information in similar areas from spring gill net surveys conducted annually in Lake Superior. Rainbow smelt (Osmerus mordax) was the most common prey and was positively selected by both lean and siscowet lake trout throughout the study. Selection by lean lake trout for coregonine (Coregonus spp.) prey increased after 1991 and corresponded with a slight decrease in selection for rainbow smelt. Siscowet positively selected for rainbow smelt after 1998, a change that was coincident with the decrease in selection for this prey item by lean lake trout. However, diet overlap between lean and siscowet lake trout was not strong and did not change significantly over the study period. Rainbow smelt remains an important prey species for lake trout in Lake Superior despite declines in abundance.

  2. Chronicling long-term predator responses to a shifting forage base in Chesapeake Bay: an energetics approach

    USGS Publications Warehouse

    Overton, Anthony S.; Griffin, Jennifer C.; Margraf, F. Joseph; May, Eric B.; Hartman, Kyle J.

    2015-01-01

    The population of Striped Bass Morone saxatilis in Chesapeake Bay has increased significantly since the 1980s because of management efforts while the relative abundance of some key prey fish has declined since the 1970s. We examined the trophic interactions and prey consumption patterns of Striped Bass in Chesapeake Bay to determine how Striped Bass have responded to changing prey resources. Seasonal diet, growth, and thermal data were collected from 1955 to 1959, 1990 to 1992, and 1998 to 2001; these data were coupled with a bioenergetics model approach to characterize temporal patterns in prey consumption for Striped Bass. The estimates were compared across each period to build a historical prey consumption profile from 1955 to 2001. Prey consumption dynamics for Striped Bass have changed dramatically between 1955 and 2001. In general, Striped Bass in the early and late 1990s consumed less Atlantic Menhaden Brevoortia tyranus and more Bay Anchovy Anchoa mitchilli than during the 1950s. The largest differences in consumption were observed in the younger age-classes. During 1998–2001, age-1 and age-2 Striped Bass consumed, respectively, 15.5 and 11.9 times less Atlantic Menhaden than during the 1950sand 12.2 and 7.2 less than during 1990–1992. Bay Anchovy were almost absent in the diet of bass age 3 and older during the 1950s but were consumed by the age-3+ group during 1990–1992 and to a greater extent during 1998–2001. Age-3+ Striped Bass during 1998–2001, on average, consumed twice as much Bay Anchovy than during 1990–1992. Blue crab Callinectes sappidus were consumed only by age 2 in the 1950s and 1990–1992 and by ages 2 and older in 1998–2001. Age-2 bass consumed 8.8 more blue crab in 1990–1992 and 7.5 times more in 1998–2001 than during the 1950s. The patterns in the consumption of Atlantic Menhaden coincided with increased consumption of Bay Anchovy and blue crab, possibly as a result of the declines in Atlantic Menhaden relative abundance in Chesapeake Bay. The difference in consumption was also evident in the total energy consumed; age-1 and age-6 Striped Bass consumed 1.6 times more energy in 1955–1959 than during 1998–2001. Our research demonstrates how the elements of Striped Bass feeding, including diet composition, amount of food eaten, and consumption rates, are affected by prey resources.

  3. Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Kat, P W; Mills, M G; Ginsberg, J R; Borner, M; Wilson, V; Fanshawe, J H; Fitzgibbon, C; Lau, L M; Wayne, R K

    1993-01-01

    African wild dog populations have declined precipitously during the last 100 years in eastern Africa. The possible causes of this decline include a reduction in prey abundance and habitat; disease; and loss of genetic variability accompanied by inbreeding depression. We examined the levels of genetic variability and distinctiveness among populations of African wild dogs using mitochondrial DNA (mtDNA) restriction site and sequence analyses and multivariate analysis of cranial and dental measurements. Our results indicate that the genetic variability of eastern African wild dog populations is comparable to that of southern Africa and similar to levels of variability found in other large canids. Southern and eastern populations of wild dogs show about 1% divergence in mtDNA sequence and form two monophyletic assemblages containing three mtDNA genotypes each. No genotypes are shared between the two regions. With one exception, all wild dogs examined from zoos had southern African genotypes. Morphological analysis supports the distinction of eastern and southern African wild dog populations, and we suggest they should be considered separate subspecies. An eastern African wild dog breeding program should be initiated to ensure preservation of the eastern African form and to slow the loss of genetic variability that, while not yet apparent, will inevitably occur if wild populations continue to decline. Finally, we examined the phylogenetic relationships of wild dogs to other wolf-like canids through analysis of 736 base pairs (bp) of cytochrome b sequence and showed wild dogs to belong to a phylogenetically distinct lineage of the wolf-like canids.

  4. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    PubMed

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its destruction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after which a total collapse of the three-dimensional system occurs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  6. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear.

    PubMed

    Pagano, A M; Durner, G M; Rode, K D; Atwood, T C; Atkinson, S N; Peacock, E; Costa, D P; Owen, M A; Williams, T M

    2018-02-02

    Regional declines in polar bear ( Ursus maritimus ) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey

    Treesearch

    Tammy L. Hamer; Curtis H. Flather; Barry R. Noon

    2006-01-01

    The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We...

  8. A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition.

    PubMed

    Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M

    2004-04-07

    Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.

  9. The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations

    PubMed Central

    Preisser, Evan L.; Bolnick, Daniel I.

    2008-01-01

    Background Most ecological models assume that predator and prey populations interact solely through consumption: predators reduce prey densities by killing and consuming individual prey. However, predators can also reduce prey densities by forcing prey to adopt costly defensive strategies. Methodology/Principal Findings We build on a simple Lotka-Volterra predator-prey model to provide a heuristic tool for distinguishing between the demographic effects of consumption (consumptive effects) and of anti-predator defenses (nonconsumptive effects), and for distinguishing among the multiple mechanisms by which anti-predator defenses might reduce prey population growth rates. We illustrate these alternative pathways for nonconsumptive effects with selected empirical examples, and use a meta-analysis of published literature to estimate the mean effect size of each pathway. Overall, predation risk tends to have a much larger impact on prey foraging behavior than measures of growth, survivorship, or fecundity. Conclusions/Significance While our model provides a concise framework for understanding the many potential NCE pathways and their relationships to each other, our results confirm empirical research showing that prey are able to partially compensate for changes in energy income, mitigating the fitness effects of defensive changes in time budgets. Distinguishing the many facets of nonconsumptive effects raises some novel questions, and will help guide both empirical and theoretical studies of how predation risk affects prey dynamics. PMID:18560575

  10. Ecological drivers of variation in tool-use frequency across sea otter populations

    USGS Publications Warehouse

    Fujii, Jessica; Ralls, Katherine; Tinker, M. Tim

    2015-01-01

    Sea otters are well-known tool users, employing objects such as rocks or shells to break open hard-shelled invertebrate prey. However, little is known about how the frequency of tool use varies among sea otter populations and the factors that drive these differences. We examined 17 years of observational data on prey capture and tool use from 8 sea otter populations ranging from southern California to the Aleutian Islands in Alaska. There were significant differences in the diets of these populations as well as variation in the frequency of tool use. Sea otters at Amchitka Island, Alaska, used tools on less than 1% of dives that resulted in the capture of prey compared with approximately 16% in Monterey, California. The percentage of individuals in the population that used tools ranged from 10% to 93%. In all populations, marine snails and thick-shelled bivalves were most likely to be associated with tool use, whereas soft-bodied prey items such as worms and sea stars were the least likely. The probability that a tool would be used on a given prey type varied across populations. The morphology of the prey item being handled and the prevalence of various types of prey in local diets were major ecological drivers of tool use: together they accounted for about 64% of the variation in tool-use frequency among populations. The remaining variation may be related to changes in the relative costs and benefits to an individual otter of learning to use tools effectively under differing ecological circumstances.

  11. Specialist Individuals, Generalist Populations, and Gentoo Penguin Foraging Ecology Across the Scotia Arc During a Time of Rapid Environmental Change

    NASA Astrophysics Data System (ADS)

    Herman, R.; Polito, M. J.

    2016-02-01

    Populations of Gentoo penguins (Pygoscelis papua), have increased in the Scotia arc in the last four decades, while sister species such as Chinstrap (P. antarctics) and Adélie penguins (P. adeliae) have experienced substantial declines in numbers. Previous dietary analyses suggest Gentoo penguins have a generalist foraging niche, which may help buffer them from recent climate-driven declines in key prey species, such as Antarctic krill (Euphausia superba). Ecological theory indicates that generalist populations fall under two different categories: Type A generalist populations exhibit large variation within individuals, and little variation between individuals, where Type B generalist populations are comprised of individual specialists, with large variation between individuals. It is important to identify which type of generalist population Gentoo penguins fall under, as these strategies impart differing ecological and evolutionary ramifications under times of environmental change. We conducted stable isotope analysis using tail feathers from Gentoo penguins at four breeding sites across the Scotia arc, including the Falkland Islands, South Georgia, the South Shetland Islands, and the Western Antarctic Peninsula, to assess individual variation in winter diets and determine the type of generalist strategies that Gentoo penguins utilize. Preliminary analysis indicates the presence of individual specialization within the four geographically distinct breeding colonies, suggesting that individual resilience to further shifts in food availability may vary within Gentoo penguin populations.

  12. Microsatellites identify depredated waterfowl remains from glaucous gull stomachs

    USGS Publications Warehouse

    Scribner, K.T.; Bowman, Timothy D.

    1998-01-01

    Prey remains can provide valuable sources of information regarding causes of predation and the species composition of a predator's diet. Unfortunately, the highly degraded state of many prey samples from gastrointestinal tracts often precludes unambiguous identification. We describe a procedure by which PCR amplification of taxonomically informative microsatellite loci were used to identify species of waterfowl predated by glaucous gulls (Larus hyperboreus). We found that one microsatellite locus unambiguously distinguished between species of the subfamily Anserinae (whistling ducks, geese and swans) and those of the subfamily Anatidae (all other ducks). An additional locus distinguished the remains of all geese and swan species known to nest on the Yukon-Kuskokwim delta in western Alaska. The study focused on two waterfowl species which have experienced precipitous declines in population numbers: emperor geese (Chen canagica) and spectacled eiders (Somateria fischeri). No evidence of predation on spectacled eiders was observed. Twenty-six percent of all glaucous gull stomachs examined contained the remains of juvenile emperor geese.

  13. Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales.

    PubMed

    Krahn, Margaret M; Hanson, M Bradley; Baird, Robin W; Boyer, Richard H; Burrows, Douglas G; Emmons, Candice K; Ford, John K B; Jones, Linda L; Noren, Dawn P; Ross, Peter S; Schorr, Gregory S; Collier, Tracy K

    2007-12-01

    "Southern Resident" killer whales include three "pods" (J, K and L) that reside primarily in Puget Sound/Georgia Basin during the spring, summer and fall. This population was listed as "endangered" in the US and Canada following a 20% decline between 1996 and 2001. The current study, using blubber/epidermis biopsy samples, contributes contemporary information about potential factors (i.e., levels of pollutants or changes in diet) that could adversely affect Southern Residents. Carbon and nitrogen stable isotopes indicated J- and L-pod consumed prey from similar trophic levels in 2004/2006 and also showed no evidence for a large shift in the trophic level of prey consumed by L-pod between 1996 and 2004/2006. Sigma PCBs decreased for Southern Residents biopsied in 2004/2006 compared to 1993-1995. Surprisingly, however, a three-year-old male whale (J39) had the highest concentrations of Sigma PBDEs, Sigma HCHs and HCB. POP ratio differences between J- and L-pod suggested that they occupy different ranges in winter.

  14. Relationship between exploitation, oscillation, MSY and extinction.

    PubMed

    Ghosh, Bapan; Kar, T K; Legovic, T

    2014-10-01

    We give answers to two important problems arising in current fisheries: (i) how maximum sustainable yield (MSY) policy is influenced by the initial population level, and (ii) how harvesting, oscillation and MSY are related to each other in prey-predator systems. To examine the impact of initial population on exploitation, we analyze a single species model with strong Allee effect. It is found that even when the MSY exists, the dynamic solution may not converge to the equilibrium stock if the initial population level is higher but near the critical threshold level. In a prey-predator system with Allee effect in the prey species, the initial population does not have such important impact neither on MSY nor on maximum sustainable total yield (MSTY). However, harvesting the top predator may cause extinction of all species if odd number of trophic levels exist in the ecosystem. With regard to the second problem, we study two prey-predator models and establish that increasing harvesting effort either on prey, predator or both prey and predator destroys previously existing oscillation. Moreover, equilibrium stock both at MSY and MSTY level is stable. We also discuss the validity of found results to other prey-predator systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park

    USGS Publications Warehouse

    Dorcas, Michael E.; Wilson, John D.; Reed, Robert N.; Snow, Ray W.; Rochford, Michael R.; Miller, Melissa A.; Meshaka, Walter E.; Andreadis, Paul T.; Mazzotti, Frank J.; Romagosa, Christina M.; Hart, Kristen M.

    2012-01-01

    Invasive species represent a significant threat to global biodiversity and a substantial economic burden. Burmese pythons, giant constricting snakes native to Asia, now are found throughout much of southern Florida, including all of Everglades National Park (ENP). Pythons have increased dramatically in both abundance and geographic range since 2000 and consume a wide variety of mammals and birds. Here we report severe apparent declines in mammal populations that coincide temporally and spatially with the proliferation of pythons in ENP. Before 2000, mammals were encountered frequently during nocturnal road surveys within ENP. In contrast, road surveys totaling 56,971 km from 2003–2011 documented a 99.3% decrease in the frequency of raccoon observations, decreases of 98.9% and 87.5% for opossum and bobcat observations, respectively, and failed to detect rabbits. Road surveys also revealed that these species are more common in areas where pythons have been discovered only recently and are most abundant outside the python's current introduced range. These findings suggest that predation by pythons has resulted in dramatic declines in mammals within ENP and that introduced apex predators, such as giant constrictors, can exert significant top-down pressure on prey populations. Severe declines in easily observed and/or common mammals, such as raccoons and bobcats, bode poorly for species of conservation concern, which often are more difficult to sample and occur at lower densities.

  16. Killer whales (Orcinus orca) face protracted health risks associated with lifetime exposure to PCBs.

    PubMed

    Hickie, Brendan E; Ross, Peter S; Macdonald, Robie W; Ford, John K B

    2007-09-15

    Polychlorinated biphenyl (PCB) concentrations declined rapidly in environmental compartments and most biota following implementation of regulations in the 1970s. However, the metabolic recalcitrance of PCBs may delay responses to such declines in large, long-lived species, such as the endangered and highly PCB-contaminated resident killer whales (Orcinus orca) of the Northeastern Pacific Ocean. To investigate the influence of life history on PCB-related health risks, we developed models to estimate PCB concentrations in killer whales during the period from 1930 forward to 2030, both within a lifetime (approximately 50 years) and across generations, and then evaluated these in the context of health effects thresholds established for marine mammals. Modeled PCB concentrations in killer whales responded slowly to changes in loadings to the environment as evidenced by slower accumulation and lower magnitude increases in PCB concentrations relative to prey, and a delayed decline that was particularly evident in adult males. Since PCBs attained peak levels well above the effects threshold (17 mg/kg lipid) in approximately 1969, estimated concentrations in both the northern and the more contaminated southern resident populations have declined gradually. Projections suggest that the northern resident population could largely fall below the threshold concentration by 2030 while the endangered southern residents may not do so until at least 2063. Long-lived aquatic mammals are therefore not protected from PCBs by current dietary residue guidelines.

  17. Changes of population trends and mortality patterns in response to the reintroduction of large predators: The case study of African ungulates

    NASA Astrophysics Data System (ADS)

    Grange, Sophie; Owen-Smith, Norman; Gaillard, Jean-Michel; Druce, Dave J.; Moleón, Marcos; Mgobozi, Mandisa

    2012-07-01

    Large predators have been reintroduced to an increasing number of protected areas in South Africa. However, the conditions allowing both prey and predator populations to be sustained in enclosed areas are still unclear as there is a lack of understanding of the consequences of such reintroductions for ungulate population dynamics. Variation in lion numbers, two decades after their first release, offered a special opportunity to test the effects of predation pressure on the population dynamics of seven ungulate species in the 960 km2 Hluhluwe-iMfolozi Park (HiP), South Africa. We used two different approaches to examine predator-prey relationships: the population response of ungulates to predation pressure after accounting for possible confounding factors, and the pattern of ungulate adult mortality observed from carcass records. Rainfall patterns affected observed mortalities of several ungulate species in HiP. Although lion predation accounted for most ungulate mortality, it still had no detectable influence on ungulate population trends and mortality patterns, with one possible exception. This evidence suggests that the lion population had not yet attained the maximum abundance potentially supported by their ungulate prey; but following recent increases in lion numbers it will probably occur soon. It remains uncertain whether a quasi-stable balance will be reached between prey and predator populations, or whether favoured prey species will be depressed towards levels potentially generating oscillatory dynamics in this complex large mammal assemblage. We specifically recommend a continuous monitoring of predator and prey populations in HiP since lions are likely to show more impacts on their prey species in the next years.

  18. Population characteristics of channel catfish near the northern edge of their distribution: implications for management

    USGS Publications Warehouse

    Carter-Lynn, K. P.; Quist, Michael C.

    2015-01-01

    Channel catfish, Ictalurus punctatus (Rafinesque), populations in six lakes in northern Idaho, USA, were sampled to describe their population characteristics. During the summers of 2011 and 2012, 4864 channel catfish were sampled. Channel catfish populations had low to moderate catch rates, and length structure was dominated by fish <400 mm. Channel catfish were in good body condition. All populations were maintained by stocking age-1 or age-2 fish. Growth of fish reared in thermally enriched environments prior to stocking was fast compared to other North American channel catfish populations. After stocking, growth of channel catfish declined rapidly. Once stocked, cold water temperatures, prey resources and (or) genetic capabilities limited growth. Total annual mortality of age 2 and older channel catfish was generally <40%. Tag returns indicated that angler exploitation was low, varying from 0 to 43% among lakes. This research provides insight on factors regulating channel catfish population dynamics and highlights important considerations associated with their ecology and management.

  19. Stochastic predation events and population persistence in bighorn sheep

    PubMed Central

    Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

    2006-01-01

    Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

  20. A modified predator-prey model for the interaction of police and gangs.

    PubMed

    Sooknanan, J; Bhatt, B; Comissiong, D M G

    2016-09-01

    A modified predator-prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states-four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct.

  1. A modified predator–prey model for the interaction of police and gangs

    PubMed Central

    Sooknanan, J.; Bhatt, B.

    2016-01-01

    A modified predator–prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states—four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct. PMID:27703682

  2. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia

    USGS Publications Warehouse

    Owens, Randall W.; Dittman, Dawn E.

    2003-01-01

    In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths <100 m, and perhaps in some areas >100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of abundance. We do not expect slimy sculpin and lake whitefish to recover unless Diporeia returns to earlier levels of abundance.

  3. Adapted conservation measures are required to save the Iberian lynx in a changing climate

    NASA Astrophysics Data System (ADS)

    Fordham, D. A.; Akçakaya, H. R.; Brook, B. W.; Rodríguez, A.; Alves, P. C.; Civantos, E.; Triviño, M.; Watts, M. J.; Araújo, M. B.

    2013-10-01

    The Iberian lynx (Lynx pardinus) has suffered severe population declines in the twentieth century and is now on the brink of extinction. Climate change could further threaten the survival of the species, but its forecast effects are being neglected in recovery plans. Quantitative estimates of extinction risk under climate change have so far mostly relied on inferences from correlative projections of species' habitat shifts. Here we use ecological niche models coupled to metapopulation simulations with source-sink dynamics to directly investigate the combined effects of climate change, prey availability and management intervention on the persistence of the Iberian lynx. Our approach is unique in that it explicitly models dynamic bi-trophic species interactions in a climate change setting. We show that anticipated climate change will rapidly and severely decrease lynx abundance and probably lead to its extinction in the wild within 50 years, even with strong global efforts to mitigate greenhouse gas emissions. In stark contrast, we also show that a carefully planned reintroduction programme, accounting for the effects of climate change, prey abundance and habitat connectivity, could avert extinction of the lynx this century. Our results demonstrate, for the first time, why considering prey availability, climate change and their interaction in models is important when designing policies to prevent future biodiversity loss.

  4. Does colour polymorphism enhance survival of prey populations?

    PubMed Central

    Wennersten, Lena; Forsman, Anders

    2009-01-01

    That colour polymorphism may protect prey populations from predation is an old but rarely tested hypothesis. We examine whether colour polymorphic populations of prey exposed to avian predators in an ecologically valid visual context were exposed to increased extinction risk compared with monomorphic populations. We made 2976 artificial pastry prey, resembling Lepidoptera larvae, in four different colours and presented them in 124 monomorphic and 124 tetramorphic populations on tree trunks and branches such that they would be exposed to predation by free-living birds, and monitored their ‘survival’. Among monomorphic populations, there was a significant effect of prey coloration on survival, confirming that coloration influenced susceptibility to visually oriented predators. Survival of polymorphic populations was inferior to that of monomorphic green populations, but did not differ significantly from monomorphic brown, yellow or red populations. Differences in survival within polymorphic populations paralleled those seen among monomorphic populations; the red morph most frequently went extinct first and the green morph most frequently survived the longest. Our findings do not support the traditional protective polymorphism hypothesis and are in conflict with those of earlier studies. As a possible explanation to our findings, we offer a competing ‘giveaway cue’ hypothesis: that polymorphic populations may include one morph that attracts the attention of predators and that polymorphic populations therefore may suffer increased predation compared with some monomorphic populations. PMID:19324729

  5. Carnivore repatriation and holarctic prey: narrowing the deficit in ecological effectiveness.

    PubMed

    Berger, Joel

    2007-08-01

    The continuing global decline of large carnivores has catalyzed great interest in reintroduction to restore populations and to reestablish ecologically functional relationships. I used variation in the distribution of four Holarctic prey species and their behavior as proxies to investigate the pace and intensity by which responses are lost or reinvigorated by carnivore repatriation. By simulating the presence of wolves (Canis lupus), tigers (Panthera tigris), and brown bears (Ursus arctos) at 19 transcontinental sites, I assayed three metrics of prey performance in areas with no large terrestrial carnivores (the polar islands of Greenland and Svalbard), extant native carnivores (Eastern Siberian Shield, boreal Canada, and Alaska); and repatriated carnivores (the Yellowstone region and Rocky Mountains). The loss and reestablishment of large carnivores changed the ecological effectiveness of systems by (1) dampening immediate group benefits, diminishing awareness, and diminishing flight reaction in caribou (Rangifer tarandus) where predation was eliminated and (2) reinstituting sensitivity to carnivores by elk (Cervus elaphus) and moose (Alces alces) in the Yellowstone region to levels observed in Asian elk when sympatric with Siberian tigers and wolves or in Alaskan moose sympatric with wolves. Behavioral compensation to reintroduced carnivores occurred within a single generation, but only the vigilance reaction of bison (Bison bison) in Yellowstone exceeded that of their wolf-exposed conspecifics from boreal Canada. Beyond these overt responses by prey, snow depth and distance to suitably vegetated habitat was related to heightened vigilance in moose and elk, respectively, but only at sites with carnivores. These findings are insufficient to determine whether similar patterns might apply to other species or in areas with alien predators, and they suggest that the presumed excessive vulnerability of naïve prey to repatriated carnivores may be ill-founded. Although behavior offers a proxy to evaluate ecological effectiveness, a continuing challenge will be to understand how naïve prey respond to novel or introduced predators.

  6. Estimating the Potential Impacts of Large Mesopredators on Benthic Resources: Integrative Assessment of Spotted Eagle Ray Foraging Ecology in Bermuda

    PubMed Central

    Ajemian, Matthew J.; Powers, Sean P.; Murdoch, Thaddeus J. T.

    2012-01-01

    Declines of large sharks and subsequent release of elasmobranch mesopredators (smaller sharks and rays) may pose problems for marine fisheries management as some mesopredators consume exploitable shellfish species. The spotted eagle ray (Aetobatus narinari) is the most abundant inshore elasmobranch in subtropical Bermuda, but its predatory role remains unexamined despite suspected abundance increases and its hypothesized specialization for mollusks. We utilized a combination of acoustic telemetry, benthic invertebrate sampling, gut content analysis and manipulative experiments to assess the impact of spotted eagle rays on Bermudian shellfish resources. Residency and distribution of adult spotted eagle rays was monitored over two consecutive summers in Harrington Sound (HS), an enclosed inshore lagoon that has historically supported multiple recreational and commercial shellfish species. Telemetered rays exhibited variable fidelity (depending on sex) to HS, though generally selected regions that supported relatively high densities of potential mollusk prey. Gut content analysis from rays collected in HS revealed a diet of mainly bivalves and a few gastropods, with calico clam (Macrocallista maculata) representing the most important prey item. Manipulative field and mesocosm experiments with calico clams suggested that rays selected prey patches based on density, though there was no evidence of rays depleting clam patches to extirpation. Overall, spotted eagle rays had modest impacts on local shellfish populations at current population levels, suggesting a reduced role in transmitting cascading effects from apex predator loss. However, due to the strong degree of coupling between rays and multiple protected mollusks in HS, ecosystem-based management that accounts for ray predation should be adopted. PMID:22802956

  7. Sustainability of hatchery-dependent salmonine fisheries in Lake Ontario: The conflict between predator demand and predator supply

    USGS Publications Warehouse

    Jones, Michael L.; Koonce, Joseph F.; O'Gorman, Robert

    1993-01-01

    The offshore fish community of Lake Ontario is presently dominated by intensively managed, nonnative species: Alewife Alosa pseudoharengus and rainbow smelt Osmerus mordax at the planktivore level and stocked salmonines at the piscivore level. Salmonine stocking rates per unit area of Lake Ontario are the highest in the Great Lakes, and fishery managers are concerned about the sustainability of the fishery under present stocking policies, particularly with the recent collapse of the Lake Michigan fishery for chinook salmon Oncorhynchus tshawytscha. In this paper, we describe and present the results of a simulation model that integrates predator demand estimates derived from bioenergetics, prey and predator population dynamics, and a predation model based on the multiple-species functional response, Model reconstructions of historical alewife biomass trends and salmonine diets corresponded reasonably well with existing data for the period 1978–1992. The simulations suggest that current predator demand does not exceed the threshold beyond which alewife biomass cannot be sustained, but they indicate that the sustainability of the prey fish community is extremely sensitive to fluctuations in overwinter survival of alewife; an additional mortality of 25% in a single winter would be sufficient to cause the collapse of the alewife population. The model includes a number of assumptions and simplifications with a limited empirical basis; better estimates of salmonine survival rates, an evaluation of the importance of spatial and temporal interactions among predators and prey, and incorporation of the effects of recently observed declines in system productivity at lower trophic levels would significantly increase confidence in the model's projections.

  8. Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda.

    PubMed

    Ajemian, Matthew J; Powers, Sean P; Murdoch, Thaddeus J T

    2012-01-01

    Declines of large sharks and subsequent release of elasmobranch mesopredators (smaller sharks and rays) may pose problems for marine fisheries management as some mesopredators consume exploitable shellfish species. The spotted eagle ray (Aetobatus narinari) is the most abundant inshore elasmobranch in subtropical Bermuda, but its predatory role remains unexamined despite suspected abundance increases and its hypothesized specialization for mollusks. We utilized a combination of acoustic telemetry, benthic invertebrate sampling, gut content analysis and manipulative experiments to assess the impact of spotted eagle rays on Bermudian shellfish resources. Residency and distribution of adult spotted eagle rays was monitored over two consecutive summers in Harrington Sound (HS), an enclosed inshore lagoon that has historically supported multiple recreational and commercial shellfish species. Telemetered rays exhibited variable fidelity (depending on sex) to HS, though generally selected regions that supported relatively high densities of potential mollusk prey. Gut content analysis from rays collected in HS revealed a diet of mainly bivalves and a few gastropods, with calico clam (Macrocallista maculata) representing the most important prey item. Manipulative field and mesocosm experiments with calico clams suggested that rays selected prey patches based on density, though there was no evidence of rays depleting clam patches to extirpation. Overall, spotted eagle rays had modest impacts on local shellfish populations at current population levels, suggesting a reduced role in transmitting cascading effects from apex predator loss. However, due to the strong degree of coupling between rays and multiple protected mollusks in HS, ecosystem-based management that accounts for ray predation should be adopted.

  9. Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem

    USGS Publications Warehouse

    Dale, B.W.; Adams, Layne G.; Bowyer, R.T.

    1994-01-01

    1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.

  10. Status and ecology of kittiwakes (Rissa tridactyla and R. brevirostris) in the North Pacific

    USGS Publications Warehouse

    Hatch, Scott A.; Byrd, G.V.; Irons, D.B.; Hunt, G.L.; Vermeer, Kees; Briggs, K.T.; Morgan, K.H.; Siegel-Causey, D.

    1993-01-01

    Black-legged Kittiwakes (Rissa tridactyla) are widely distributed in the subarctic North Pacific and adjacent seas, with a total breeding population of about 2.6 million individuals. Red-legged Kittiwakes (R. brevirostris) breed in four locations, and at least 95% of their estimated world population of 230,000 birds nest on one island (St. George, Pribilof Islands). Compared to Black-legged Kittiwakes in Britain, both species in Alaska have exhibited poor productivity since at least the mid-1970s. The situation worsened during the 1980s, with recent (1985-1989) estimates of annual productivity averaging 0.19 young per nest. The frequency of "colony failures" (<0.1 young per nest) exceeded 50% in Alaska between 1985 and 1989. Low productivity has involved, to varying degrees, the failure of many birds to lay eggs, reduced clutch sizes, low hatching success, and poor chick survival. There is evidence of population declines in some colonies of Black-legged Kittiwakes, but other colonies appear to be stable or increasing. High adult survival may account for the relative stability of Black-legged Kittiwakes, but widespread declines are anticipated unless productivity improves. The evidence suggests that poor productivity results from low surface availability of key prey species.

  11. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    PubMed Central

    Jackson, James M.; Lenz, Petra H.

    2016-01-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions. PMID:27658849

  12. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods.

    PubMed

    Jackson, James M; Lenz, Petra H

    2016-09-23

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  13. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods

    NASA Astrophysics Data System (ADS)

    Jackson, James M.; Lenz, Petra H.

    2016-09-01

    Capture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch. Initially, capture success was limited to nauplii with few attacks on larger stages. Captures of copepodites were first observed at 3 dph, and of adults at 8 dph. Consistent strikes at the larger prey were observed on the day prior to successful captures (2 dph for copepodites, 7 dph for adults). Difference in capture success between nauplii and adults at 8 dph was an order of magnitude. Differences in capture success among prey types persisted but decreased to three-fold by 14 dph. Younger A. ocellaris attacked nauplii preferentially and avoided adult prey. Strike selectivity declined with age, and no selectivity was observed after 10 dph. However, numerically 50% of the ingested prey were still nauplii at 14 dph under the experimental conditions.

  14. Age-related decline in lateralised prey capture success in Garnett's bushbaby (Otolemur garnettii).

    PubMed

    Hanbury, David B; Edens, Kyle D; Legg, Claire E; Harrell, Shane P; Greer, Tammy F; Watson, Sheree L

    2012-01-01

    We examined differences in prey capture success when reaching for moving prey with the preferred and non-preferred hand (as determined previously using stationary food items) in 12 Garnett's bushbabies (Otolemur garnettii). Hand preference was determined by a test of simple reaching for stationary food items. We assessed both the frequency of hand use and success rates for each hand in capturing live mealworms. We also examined the effect of age on overall prey capture success. Subjects were individually presented with live mealworms in a cup partially filled with a cornmeal medium. The preferred hand was used significantly more often than the non-preferred hand to obtain the moving prey; however, no differences were found in the frequency of usage of the left vs the right hand. Furthermore, there were no differences in the success rates of the left vs the right hand, nor the preferred vs the non-preferred hand. There was a significant negative correlation between age and prey capture success. These data suggest that age, rather than preferred hand, may be the most relevant factor in the bushbabies' prey capture success.

  15. Bottom-up processes drive reproductive success in an apex predator.

    PubMed

    Schmidt, Joshua H; McIntyre, Carol L; Roland, Carl A; MacCluskie, Margaret C; Flamme, Melanie J

    2018-02-01

    One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator-prey relationships. Understanding the relative role of top-down versus bottom-up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator-prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long-term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom-up processes, with little evidence of top-down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom-up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle-hare-ptarmigan relationships we studied, our results suggest caution in interpreting predator-prey abundance patterns among other species as strong evidence for top-down control.

  16. Colour Polymorphism Protects Prey Individuals and Populations Against Predation.

    PubMed

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2016-02-23

    Colour pattern polymorphism in animals can influence and be influenced by interactions between predators and prey. However, few studies have examined whether polymorphism is adaptive, and there is no evidence that the co-occurrence of two or more natural prey colour variants can increase survival of populations. Here we show that visual predators that exploit polymorphic prey suffer from reduced performance, and further provide rare evidence in support of the hypothesis that prey colour polymorphism may afford protection against predators for both individuals and populations. This protective effect provides a probable explanation for the longstanding, evolutionary puzzle of the existence of colour polymorphisms. We also propose that this protective effect can provide an adaptive explanation for search image formation in predators rather than search image formation explaining polymorphism.

  17. Colour Polymorphism Protects Prey Individuals and Populations Against Predation

    PubMed Central

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2016-01-01

    Colour pattern polymorphism in animals can influence and be influenced by interactions between predators and prey. However, few studies have examined whether polymorphism is adaptive, and there is no evidence that the co-occurrence of two or more natural prey colour variants can increase survival of populations. Here we show that visual predators that exploit polymorphic prey suffer from reduced performance, and further provide rare evidence in support of the hypothesis that prey colour polymorphism may afford protection against predators for both individuals and populations. This protective effect provides a probable explanation for the longstanding, evolutionary puzzle of the existence of colour polymorphisms. We also propose that this protective effect can provide an adaptive explanation for search image formation in predators rather than search image formation explaining polymorphism. PMID:26902799

  18. Food habits of pumas in northwestern Sonora, Mexico

    USGS Publications Warehouse

    Rosas-Rosas, O. C.; Valdez, R.; Bender, L.C.; Daniel, D.

    2003-01-01

    It is questionable whether food-habits studies of pumas conducted in the southwestern United States can be extrapolated to northwestern Mexico, because of differences in management, distribution, and abundance of wildlife. We determined food habits of pumas (Puma concolor) in the Sonoran Desert of northwestern Sonora, Mexico. Based on studies in the western United States, we hypothesized that desert mule deer (Odocoileus hemionus) were the major food source of pumas in Sonoran Desert habitats of Mexico. The study area supports populations of desert mule deer, white-tailed deer (Odocoileus virginianus), lagomorphs (Lepus spp. and Sylvilagus audubonii), collared peccary (Pecari tajacu), and the largest population (???300 individuals) of desert bighorn sheep (Ovis canadensis) in Sonora. Based on pugmark characteristics, we recorded 3 different adult resident pumas in approximately 90 km2. We analyzed 60 puma fecal samples collected September 1996-November 1998. Primary prey items based on frequency of occurrence and estimated biomass consumed were desert bighorn sheep (40% and 45%, respectively), lagomorphs (33%, 19%), deer (17%, 17%), and collared peccary (15%, 11%). The high percentage of desert bighorn sheep in puma diets may be due to high abundance relative to mule deer, which declined in number during our study. No differences were found in puma diets between seasons (??22=2.4526, P=0.2934). Fluctuations in mule deer populations in northwestern Sonora may influence prey selection by pumas.

  19. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  20. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    PubMed

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  1. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    PubMed Central

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  2. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  3. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    USGS Publications Warehouse

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  4. Optimal Harvesting in an Age-Structured Predator-Prey Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fister, K. Renee; Lenhart, Suzanne

    2006-06-15

    We investigate optimal harvesting control in a predator-prey model in which the prey population is represented by a first-order partial differential equation with age-structure and the predator population is represented by an ordinary differential equation in time. The controls are the proportions of the populations to be harvested, and the objective functional represents the profit from harvesting. The existence and uniqueness of the optimal control pair are established.

  5. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-01-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  6. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-06-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  7. Effect of light, prey density, and prey type on the feeding rates of Hemimysis anomala

    USGS Publications Warehouse

    Halpin, Kathleen E.; Boscarino, Brent T.; Rudstam, Lars G.; Walsh, Mureen G.; Lantry, Brian F.

    2013-01-01

    Hemimysis anomala is a near-shore mysid native to the Ponto-Caspian region that was discovered to have invaded Great Lakes ecosystems in 2006. We investigated feeding rates and prey preferences of adult and juvenile Hemimysis in laboratory experiments to gain insight on the potential for Hemimysis to disrupt food webs. For both age groups (AGs), we measured feeding rates as a function of prey abundance (Bosmina longirostris as prey), prey type (B. longirostris, Daphnia pulex, and Mesocyclops sp.), and light levels (no light and dim light). Mean feeding rates on Bosmina increased with prey density and reached 23 ind. (2 h)−1 for adults and 17 ind. (2 h)−1 for juveniles. Dim light had little effect on prey selection or feeding rate compared to complete darkness. When feeding rates on alternate prey were compared, both AGs fed at higher rates on Bosmina than Daphnia, but only juveniles fed at significantly higher rates on Bosmina relative to Mesocyclops. No significant differences were observed between feeding rates on Mesocyclops and on Daphnia. Hemimysis feeding rates were on the order of 30–60% of their body weight per day, similar to predatory cladocerans that have been implicated in zooplankton declines in Lakes Huron and Ontario.

  8. Prey state shapes the effects of temporal variation in predation risk

    PubMed Central

    Matassa, Catherine M.; Trussell, Geoffrey C.

    2014-01-01

    The ecological impacts of predation risk are influenced by how prey allocate foraging effort across periods of safety and danger. Foraging decisions depend on current danger, but also on the larger temporal, spatial or energetic context in which prey manage their risks of predation and starvation. Using a rocky intertidal food chain, we examined the responses of starved and fed prey (Nucella lapillus dogwhelks) to different temporal patterns of risk from predatory crabs (Carcinus maenas). Prey foraging activity declined during periods of danger, but as dangerous periods became longer, prey state altered the magnitude of risk effects on prey foraging and growth, with likely consequences for community structure (trait-mediated indirect effects on basal resources, Mytilus edulis mussels), prey fitness and trophic energy transfer. Because risk is inherently variable over time and space, our results suggest that non-consumptive predator effects may be most pronounced in productive systems where prey can build energy reserves during periods of safety and then burn these reserves as ‘trophic heat’ during extended periods of danger. Understanding the interaction between behavioural (energy gain) and physiological (energy use) responses to risk may illuminate the context dependency of trait-mediated trophic cascades and help explain variation in food chain length. PMID:25339716

  9. Invasive lionfish drive Atlantic coral reef fish declines.

    PubMed

    Green, Stephanie J; Akins, John L; Maljković, Aleksandra; Côté, Isabelle M

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  10. Invasive Lionfish Drive Atlantic Coral Reef Fish Declines

    PubMed Central

    Green, Stephanie J.; Akins, John L.; Maljković, Aleksandra; Côté, Isabelle M.

    2012-01-01

    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them. PMID:22412895

  11. The Northern Bering Sea: An Arctic Ecosystem in Change

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in a 20-yr environmental time-series in the Bering Strait region.

  12. Is It Necessary Managing Carnivores to Reverse the Decline of Endangered Prey Species? Insights from a Removal Experiment of Mesocarnivores to Benefit Demographic Parameters of the Pyrenean Capercaillie

    PubMed Central

    Moreno-Opo, Rubén; Afonso, Iván; Jiménez, José; Fernández-Olalla, Mariana; Canut, Jordi; García-Ferré, Diego; Piqué, Josep; García, Francisco; Roig, Job; Muñoz-Igualada, Jaime; González, Luis Mariano; López-Bao, José Vicente

    2015-01-01

    Mesopredator control has long been used to alleviate the effect of elevated predation pressure on vulnerable, threatened or valuable species. However, the convenience of using mesopredator controls is technically questionable and scientifically-sound research is therefore required to evaluate the impact of predation on prey case by case. In this study we evaluated the effect of the alteration of terrestrial mesopredator dynamics on the demographic parameters of a relict capercaillie Tetrao urogallus aquitanicus population currently in decline for which the impact of predation has not previously been assessed. We used a six-year mesocarnivore removal experiment (2008–2013) together with seven-years of previous demographic information on capercaillies (1999–2007) within a before-after control-impact (BACI) design to evaluate the effect of mesocarnivore removal on capercaillie demographic parameters and on spatial behaviour of the most frequent predatory mesocarnivores of the capercaillie (Martes spp. and red fox Vulpes vulpes). Using a dynamic site-occupancy approach, the reduction of mesocarnivore population levels as a result of removal was clear for marten species, mainly during key months for capercaillie reproduction, but not for the red fox. Our results show that the breeding success of capercaillies was enhanced in areas where carnivores were removed and was inversely related to the occupation level of the studied mesocarnivores, although being only significant for Martes spp. Moreover, capercaillie predation rates were lower and adult survival seemingly higher in treatment during the removal phase. Cost-effective, long-term management interventions to ensure the recovery of this threatened capercaillie population are discussed in the light of the results. At our study area, the decision for implementing predation management should be included within a broader long-term conservation perspective. In this regard, a more feasible and sustainable management intervention in ecological and economic terms may be to balance the impact of mesocarnivores on capercaillies through the recovery of apex predators. PMID:26489094

  13. Amphibian monitoring in the Atchafalaya Basin

    USGS Publications Warehouse

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  14. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    PubMed Central

    Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093

  15. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  16. Foraging patterns and prey selection in an increasing and expanding sea otter population

    USGS Publications Warehouse

    Laidre, K.L.; Jameson, R.J.

    2006-01-01

    Focal observations of sea otter (Enhydra lutris kenyoni) foraging patterns and prey selection were collected in coastal Washington between 1993 and 1999. Records consisted of 13,847 individual dives from 841 feeding bouts ranging from 1 min to >4 h. Average dive time was 55 s ?? 0.9 SE and average surface time was 45 s ?? 2.3 SE, irrespective of dive success. At least 77% of all dives (n = 10,636) were successful prey captures (dives in low light or of undetermined success were excluded). Prey capture success was significantly lower for subadults (63% ?? 5 SE) than adults (82% ?? 1 SE; P 60% red urchins (Strongylocentrotus franciscanus), with only 2 other prey species comprising >10% of their diet. Prey size and prey category were dominant predictor variables in generalized linear models of dive duration and postdive surface duration on successful dives. Significant increases in areal extent of surface canopy of giant kelp (Macrocystis integrifolia) and bull kelp (Nereocystis leutkeana) were found both in the outer coast and the Strait of Juan de Fuca (0.4-0.5 km2 per year, P < 0.05) and suggest increasing suitable habitat for a growing population. The growth and expansion of a small and isolated sea otter population provides a unique opportunity to examine the relationship between dietary diversity and population status and explore similarities and differences between trophic paradigms established for sea otter populations at other localities. ?? 2006 American Society of Mammalogists.

  17. Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves.

    PubMed

    Walzer, A; Blümel, S; Schausberger, P

    2001-01-01

    The success of combined release of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus in suppression of spider mites may be related to the effects of the interactions between the two predators on their population dynamics. We studied population growth and persistence of the specialist P persimilis and the generalist N. californicus reared singly versus reared in combination after simultaneous and successive predator introductions on detached bean leaf arenas with abundant prey, Tetranychus urticae. and with diminishing prey. When reared singly with abundant prey, either predator population persisted at high densities to the end of the experiment. In every predator combination system with abundant prey and various initial predator:predator ratios N. californicus displaced P persimilis. When held singly with diminishing prey, the population of P. persimilis grew initially faster than the population of N. californicus but both species reached similar population peaks. Irrespective whether reared singly or in combination. N. californicus persisted three to five times longer after prey depletion than did P. persimilis. Regarding the crucial interactions in the predator combination systems, we conclude that intraguild predation was a stronger force than food competition and finally resulted in the displacement of P. persimilis. Previous studies showed that intraguild predation between the specialist P. persimilis and the generalist N. californicus is strongly asymmetric favoring the generalist. We discuss the implications of potential interactions between P. persimilis and N. californicus to biological control of spider mites.

  18. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation

    PubMed Central

    Celis, Gerardo; Branch, Lyn C.

    2018-01-01

    Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads increase access for hunters. We examine how increased landscape access by hunters may lead to cascading effects that influence the prey community and abundance of the jaguar (Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological effects originating from anthropogenic actions is essential for conservation and management of wildlife populations in areas undergoing infrastructure development. Our study was conducted in Yasuní Biosphere Reserve, the protected area with highest potential for jaguar conservation in Ecuador, and an area both threatened by road development and inhabited by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance with camera traps in four sites that differed in accessibility to hunters and used site occupancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jaguars. Jaguar density was up to 18 times higher in the most remote site compared to the most accessible site. Our results provide a strong case for the need to: 1) consider conservation of large carnivores and other wildlife in policies about road construction in protected areas, 2) coordinate conservation initiatives with local governments so that development activities do not conflict with conservation objectives, and 3) promote development of community-based strategies for wildlife management that account for the needs of large carnivores. PMID:29298311

  19. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation.

    PubMed

    Espinosa, Santiago; Celis, Gerardo; Branch, Lyn C

    2018-01-01

    Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads increase access for hunters. We examine how increased landscape access by hunters may lead to cascading effects that influence the prey community and abundance of the jaguar (Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological effects originating from anthropogenic actions is essential for conservation and management of wildlife populations in areas undergoing infrastructure development. Our study was conducted in Yasuní Biosphere Reserve, the protected area with highest potential for jaguar conservation in Ecuador, and an area both threatened by road development and inhabited by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance with camera traps in four sites that differed in accessibility to hunters and used site occupancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jaguars. Jaguar density was up to 18 times higher in the most remote site compared to the most accessible site. Our results provide a strong case for the need to: 1) consider conservation of large carnivores and other wildlife in policies about road construction in protected areas, 2) coordinate conservation initiatives with local governments so that development activities do not conflict with conservation objectives, and 3) promote development of community-based strategies for wildlife management that account for the needs of large carnivores.

  20. A Comparison of Conservation Reserve Program Habitat Plantings with Respect to Arthropod Prey for Grassland Birds

    USGS Publications Warehouse

    McIntyre, N.E.; Thompson, Thomas R.

    2003-01-01

    The Conservation Reserve Program (CRP) was designed to reduce soil erosion and curb agricultural overproduction by converting highly erodible agricultural land to various forms of perennial habitat. It has had an incidental benefit of providing habitat for wildlife and has been beneficial in reversing population declines of several grassland bird species. However, the mechanisms behind these reversals remain unknown. One such mechanism may be differences in food availability on CRP vs. non-CRP land or between different types of CRP. The influence of CRP habitat type on the abundance of arthropod prey used by grassland birds has not been previously explored. We compared the abundance and diversity of arthropods among four CRP habitat types in Texas [replicated plots of exotic lovegrass (Eragrostis curvula), Old World bluestem (Bothriochloa ischaemum), mixed native grasses with buffalograss (Buchloe?? dactyloides) and mixed native grasses without buffalograss] and native shortgrass prairie. Attention was focused on adult and juvenile spiders (Order Araneae), beetles (Coleoptera), orthopterans (Orthroptera: grasshoppers and crickets) and lepidopterans (Lepidoptera: butterflies and moths), as these taxa are the primary prey items of grassland birds during the breeding season. Arthropod diversity and abundance were higher on indigenous prairie compared to CRP, reflecting differences in vegetative diversity and structure, but there were no differences in arthropod richness or abundance among CRP types. These results indicate that, although CRP is not equivalent to native prairie in terms of vegetation or arthropod diversity, CRP lands do support arthropod prey for grassland birds. More direct assays of the survivorship and fitness of birds on CRP compared to native shortgrass prairie are clearly warranted.

  1. Age and growth of alewives in the changing pelagia of Lake Ontario, 1978-1992

    USGS Publications Warehouse

    O'Gorman, Robert; Johannsson, Ora E.; Schneider, Clifford P.

    1997-01-01

    We documented the age and growth of alewives Alosa pseudoharenqus in Lake Ontario during 1978-1992 and determined if growth was affected by intraspecific competition for epilimnetic zooplankton, lake temperature, or demand of salmonine piscivores for prey. Ages of juvenile alewives were determined from scales during 1978-1983, and ages of juvenile and adult alewives were determined from otoliths during 1984-1992. Indices of abundance for alewives were calculated from spring bottom trawl catches in 1978-1992; zooplankton density and epilimnetic temperature were monitored at two stations during 1981-1991; and salmonine demand each year during 1978-1992 was calculated with a simulation model. Although we encountered 11-year-old alewives, few fish lived longer than 7 years, and most fish in the population were younger than 6 years. Mean sizes at ages 1, 2, and 3 in spring averaged 93 mm (5.1 g), 133 mm (17 g), and 149 mm (22 g), but from age 3 to age 8, mean size increased by only 5-7 mm and 2-3 g per year. Female alewives lived longer than male alewives and were always longer than male alewives at age 4 and older. Epilimnetic temperatures were suitable for rapid growth of juvenile alewives each year. Lake temperature had the potential to affect growth of adults but adult growth was not correlated with temperature suitability indices perhaps because temperature regimes differed among lake regions and alewives were mobile. Growth of alewives was not correlated with salmonine demand for prey. Competition for zooplankton among the two youngest alewife cohorts affected growth of age-1 alewives. Zooplankton density declined sharply in 1986, and should it decline again, growth of age-1 alewives will slow, unless numbers of age-0 alewives fall. Whether growth of age-1 fish declines or numbers of age-0 fish fall, the result of another decline in zooplankton density will be a reduction in the production of alewives needed to support piscivores.

  2. Prey-driven control of predator assemblages: zooplankton abundance drives aquatic beetle colonization.

    PubMed

    Pintar, Matthew R; Resetarits, William J

    2017-08-01

    Trophic interactions are critical determinants of community structure and ecosystem function. In freshwater habitats, top predators are traditionally viewed as drivers of ecosystem structure, shaping populations of consumers and primary producers. The temporary nature of small water bodies makes them dependent on colonization by many organisms, particularly insects that form highly diverse predator assemblages. We conducted mesocosm experiments with naturally colonizing populations of aquatic beetles to assess how prey (zooplankton) abundances influenced colonization and assemblages of natural populations of aquatic beetles. We experimentally demonstrate that zooplankton populations can be proximate regulators of predator populations and assemblages via prey-density-dependent predator recruitment. Our results provide support for the importance of prey populations in structuring predator populations and the role of habitat selection in structuring communities. We indicate that traditional views of predators as drivers of ecosystem structure in many systems may not provide a comprehensive picture, particularly in the context of highly disturbed or ephemeral habitats. © 2017 by the Ecological Society of America.

  3. White-tailed deer (Odocoileus virginianus) subsidize gray wolves (Canis lupus) during a moose (Alces americanus) decline: A case of apparent competition?

    USGS Publications Warehouse

    Barber-Meyer, Shannon; Mech, L. David

    2016-01-01

    Moose (Alces americanus) in northeastern Minnesota have declined by 55% since 2006. Although the cause is unresolved, some studies have suggested that Gray Wolves (Canis lupus) contributed to the decline. After the Moose decline, wolves could either decline or switch prey. To determine which occurred in our study area, we compared winter wolf counts and summer diet before and after the Moose decline. While wolf numbers in our study area nearly doubled from 23 in winter 2002 to an average of 41 during winters 2011–2013, calf:cow ratios (the number of calves per cow observed during winter surveys) in the wider Moose range more than halved from 0.93 in 2002 to an average of 0.31 during 2011–2013. Compared to summer 2002, wolves in summers 2011–2013 consumed fewer Moose and more White-tailed Deer (Odocoileus virginianus). While deer densities were similar during each period, average vulnerability, as reflected by winter severity, was greater during 2011–2013 than 2002, probably explaining the wolf increase. During the wolf increase Moose calves remained a summer food item. These findings suggest that in part of the Moose range, deer subsidized wolf numbers while wolves also preyed on Moose calves. This contributed to a Moose decline and is a possible case of apparent competition and inverse-density-dependent predation.

  4. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.

    PubMed

    Eide, Nina E; Stien, Audun; Prestrud, Pål; Yoccoz, Nigel G; Fuglei, Eva

    2012-05-01

    1. Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2. We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3. This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4. With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  5. Predator-prey models with component Allee effect for predator reproduction.

    PubMed

    Terry, Alan J

    2015-12-01

    We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.

  6. Evidence for predatory control of the invasive round goby

    USGS Publications Warehouse

    Madenjian, C.P.; Stapanian, M.A.; Witzel, L.D.; Einhouse, D.W.; Pothoven, S.A.; Whitford, H.L.

    2011-01-01

    We coupled bioenergetics modeling with bottom trawl survey results to evaluate the capacity of piscivorous fish in eastern Lake Erie to exert predatory control of the invading population of round goby Neogobius melanostomus. In the offshore (>20 m deep) waters of eastern Lake Erie, burbot Lota lota is a native top predator, feeding on a suite of prey fishes. The round goby invaded eastern Lake Erie during the late 1990s, and round goby population size increased dramatically during 1999–2004. According to annual bottom trawl survey results, round goby abundance in offshore waters peaked in 2004, but then declined during 2004–2008. Coincidentally, round goby became an important component of burbot diet beginning in 2003. Using bottom trawling and gill netting, we estimated adult burbot abundance and age structure in eastern Lake Erie during 2007. Diet composition and energy density of eastern Lake Erie burbot were also determined during 2007. This information, along with estimates of burbot growth, burbot mortality, burbot water temperature regime, and energy densities of prey fish from the literature, were incorporated into a bioenergetics model application to estimate annual consumption of round goby by the adult burbot population. Results indicated that the adult burbot population in eastern Lake Erie annually consumed 1,361 metric tons of round goby. Based on the results of bottom trawling, we estimated the biomass of yearling and older round goby in offshore waters eastern Lake Erie during 2007–2008 to be 2,232 metric tons. Thus, the adult burbot population was feeding on round goby at an annual rate equal to 61% of the estimated round goby standing stock. We concluded that the burbot population had high potential to exert predatory control on round goby in offshore waters of eastern Lake Erie.

  7. No evidence of metabolic depression in Western Alaskan juvenile Steller sea lions (Eumetopias jubatus).

    PubMed

    Hoopes, Lisa A; Rea, Lorrie D; Christ, Aaron; Worthy, Graham A J

    2014-01-01

    Steller sea lion (Eumetopias jubatus) populations have undergone precipitous declines through their western Alaskan range over the last four decades with the leading hypothesis to explain this decline centering around changing prey quality, quantity, or availability for this species (i.e., nutritional stress hypothesis). Under chronic conditions of reduced food intake sea lions would conserve energy by limiting energy expenditures through lowering of metabolic rate known as metabolic depression. To examine the potential for nutritional stress, resting metabolic rate (RMR) and body composition were measured in free-ranging juvenile Steller sea lions (N = 91) at three distinct geographical locations (Southeast Alaska, Prince William Sound, Central Aleutian Islands) using open-flow respirometry and deuterium isotope dilution, respectively. Average sea lion RMR ranged from 6.7 to 36.2 MJ d(-1) and was influenced by body mass, total body lipid, and to a lesser extent, ambient air temperature and age. Sea lion pups captured in the Aleutian Islands (region of decline) had significantly greater body mass and total body lipid stores when compared to pups from Prince William Sound (region of decline) and Southeast Alaska (stable region). Along with evidence of robust body condition in Aleutian Island pups, no definitive differences were detected in RMR between sea lions sampled between eastern and western populations that could not be accounted for by higher percent total body lipid content, suggesting that that at the time of this study, Steller sea lions were not experiencing metabolic depression in the locations studied.

  8. Benthic prey fish assessment, Lake Ontario 2013

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    The 2013 benthic fish assessment was delayed and shortened as a result of the U.S. Government shutdown, however the assessment collected 51 of the 62 planned bottom trawls. Over the past 34 years, Slimy Sculpin abundance in Lake Ontario has fluctuated, but ultimately decreased by two orders of magnitude, with a substantial decline occurring in the past 10 years. The 2013 Slimy Sculpin mean bottom trawl catch density (0.001 ind.·m-2, s.d.= 0.0017, n = 52) and mean biomass density (0.015 g·m-2 , s.d.= 0.038, n = 52) were the lowest recorded in the 27 years of sampling using the original bottom trawl design. From 2011-2013, the Slimy Sculpin density and biomass density has decreased by approximately 50% each year. Spring bottom trawl catches illustrate Slimy Sculpin and Round Goby Neogobius melanostoma winter habitat overlaps for as much as 7 months out of a year, providing opportunities for competition and predation. Invasive species, salmonid piscivory, and declines in native benthic invertebrates are likely all important drivers of Slimy Sculpin population dynamics in Lake Ontario. Deepwater Sculpin Myoxocephalus thompsonii, considered rare or absent from Lake Ontario for 30 years, have generally increased over the past eight years. For the first time since they were caught in this assessment, Deepwater Sculpin density and biomass density estimates declined from the previous year. The 2013 abundance and density estimates for trawls covering the standard depths from 60m to 150m was 0.0001 fish per square meter and 0.0028 grams per square meter. In 2013, very few small (< 80 mm) Deepwater Sculpin were caught and most sculpin were at sites of 150 meters or greater, which is in contrast to previous years when juvenile fish were caught around 80-100 meters. The reduced effort and late seasonal timing of the 2013 assessment make it difficult to have high confidence in declines observed in 2013, however observed Alewife Alosa psuedoharengus abundance increases and reduced juvenile Deepwater Sculpin catches are consistent with the hypothesis that Alewife negatively influence Deepwater Sculpin recruitment. Nonnative Round Gobies were first detected in the USGS/NYSDEC Lake Ontario spring Alewife assessment in 2002. Since that assessment, observations indicate their population has expanded and they are now found along the entire south shore of Lake Ontario, with the highest densities in U.S. waters just east of the Niagara River confluence. In the 2013 spring-based assessment, both the abundance and weight indices increased slightly as compared to 2012. The number index value of 16.6 was 30% of the maximum number observed in 2008 when the number index was 95.2. Round Goby density estimates from the 2013 fall benthic prey fish survey were 33 times greater than fall Slimy Sculpin density, indicating Round Goby are now the dominant Lake Ontario benthic prey fish.

  9. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    PubMed Central

    Azodi, Christina B.; Sheldon, Sallie P.; Trombulak, Stephen C.; Ardren, William R.

    2015-01-01

    The origin of sea lamprey (Petromyzon marinus) in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA) and mitochondrial DNA (mtDNA) markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp) and NCII (173 bp) all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events. PMID:26539334

  10. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.

    PubMed

    Schmitt, Russell J; Holbrook, Sally J

    1984-07-01

    Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.

  11. Effects of bottom trawling on fish foraging and feeding.

    PubMed

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-22

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.

  12. Effects of bottom trawling on fish foraging and feeding

    PubMed Central

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-01

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries. PMID:25621336

  13. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia.

    PubMed

    Gelin, Maria L; Branch, Lyn C; Thornton, Daniel H; Novaro, Andrés J; Gould, Matthew J; Caragiulo, Anthony

    2017-01-01

    Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark-resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates.

  14. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia

    PubMed Central

    Gelin, Maria L.; Thornton, Daniel H.; Novaro, Andrés J.; Gould, Matthew J.; Caragiulo, Anthony

    2017-01-01

    Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark–resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates. PMID:29211753

  15. Diet composition and provisioning rates of nestlings determine reproductive success in a subtropical seabird

    USGS Publications Warehouse

    Lamb, Juliet S.; Jodice, Patrick G. R.; Satgé, Yvan G.

    2017-01-01

    Understanding how both quality and quantity of prey affect the population dynamics of marine predators is a crucial step toward predicting the effects of environmental perturbations on population-level processes. The Junk Food Hypothesis, which posits that energetic content of prey species may influence reproductive capacity of marine top predators regardless of prey availability, has been proposed as a mechanism by which changes in prey populations could affect predator populations in high latitude systems; however, support for this hypothesis has been inconsistent across studies, and further data are needed to elucidate variation in the relative importance of prey quantity and quality, both among predator species and across ecological systems. We tested the relative importance of prey quantity and quality to nestling survival in the eastern brown pelican Pelecanus occidentalis carolinensis across 9 breeding colonies in the northern Gulf of Mexico that varied in underlying availability of a key prey resource, the Gulf menhaden Brevoortia patronus. Both feeding frequency and meal mass were significantly correlated to energy provisioning rates and nestling survival, while energy density of meals had little effect on either metric. Compared to previous results from cold-water systems, we found lower and less variable energy densities (4.4 kJ g-1, vs. 5.2 to 6.5 kJ g-1 in other studies) and lipid content (9% dry mass, vs. 16 to 23% in other studies) of common prey items. While Gulf menhaden was the most common prey species at all colonies, the proportion of menhaden fed to nestlings varied and was not strongly correlated to fledging success. We conclude that quantity rather than quality of prey, particularly small schooling fish, is the main driver of brown pelican reproductive success in this system, and that environmental perturbations affecting biomass, distribution, and abundance of forage fish could substantially affect brown pelican reproductive success.

  16. Introduced northern pike predation on salmonids in southcentral Alaska

    USGS Publications Warehouse

    Sepulveda, Adam J.; Rutz, David S.; Ivey, Sam S.; Dunker, Kristine J.; Gross, Jackson A.

    2013-01-01

    Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape-width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.

  17. Banning Fisheries Discards Abruptly Has a Negative Impact on the Population Dynamics of Charismatic Marine Megafauna.

    PubMed

    Fondo, Esther N; Chaloupka, Milani; Heymans, Johanna J; Skilleter, Greg A

    2015-01-01

    Food subsidies have the potential to modify ecosystems and affect the provision of goods and services. Predictable Anthropogenic Food Subsidies (PAFS) modify ecosystems by altering ecological processes and food webs. The global concern over the effects of PAFS in ecosystems has led to development of environmental policies aimed at curbing the production or ultimately banning of PAFS. However, the effects of reducing or banning PAFS are not known. We explore the consequences of PAFS removal in a marine ecosystem under two scenarios: 1) gradual reduction, or 2) an abrupt ban, using a mass balance model to test these hypotheses-The reduction or loss of PAFS will: i) modify trophic levels and food webs through effects on foraging by opportunistic species, ii) increase the resilience of opportunistic species to food shortages, and iii) modify predator-prey interactions through shifts in prey consumption. We found that PAFS lower the trophic levels of opportunistic scavengers and increase their food pathways. Scavengers are able to switch prey when PAFS are reduced gradually but they decline when PAFS are abruptly banned. PAFS reduction to a certain minimal level causes a drop in the ecosystem's stability. We recommend gradual reduction of PAFS to a minimal level that would maintain the ecosystem's stability and allow species exploiting PAFS to habituate to the food subsidy reduction.

  18. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    PubMed

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  19. Resource depletion through primate stone technology

    PubMed Central

    Tan, Amanda; Haslam, Michael; Kulik, Lars; Proffitt, Tomos; Malaivijitnond, Suchinda; Gumert, Michael

    2017-01-01

    Tool use has allowed humans to become one of the most successful species. However, tool-assisted foraging has also pushed many of our prey species to extinction or endangerment, a technology-driven process thought to be uniquely human. Here, we demonstrate that tool-assisted foraging on shellfish by long-tailed macaques (Macaca fascicularis) in Khao Sam Roi Yot National Park, Thailand, reduces prey size and prey abundance, with more pronounced effects where the macaque population size is larger. We compared availability, sizes and maturation stages of shellfish between two adjacent islands inhabited by different-sized macaque populations and demonstrate potential effects on the prey reproductive biology. We provide evidence that once technological macaques reach a large enough group size, they enter a feedback loop – driving shellfish prey size down with attendant changes in the tool sizes used by the monkeys. If this pattern continues, prey populations could be reduced to a point where tool-assisted foraging is no longer beneficial to the macaques, which in return may lessen or extinguish the remarkable foraging technology employed by these primates. PMID:28884681

  20. Top-down and bottom-up factors affecting seabird population trends in the California current system (1985-2006)

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; David Hyrenbach, K.

    2010-03-01

    To characterize the environmental factors affecting seabird population trends in the central portion of the California current system (CCS), we analyzed standardized vessel-based surveys collected during the late spring (May-June) upwelling season over 22 yr (1985-2006). We tested the working hypothesis that population trends are related to species-specific foraging ecology, and predicted that temporal variation in population size should be most extreme in diving species with higher energy expenditure during foraging. We related variation in individual species abundance (number km -2) to seasonally lagged (late winter, early spring, late spring) and concurrent ocean conditions, and to long-term trends (using a proxy variable: year) during a multi-decadal period of major fluctuations in the El Niño-Southern oscillation (ENSO) and the Pacific decadal oscillation (PDO). We considered both remote (Multivariate ENSO Index, PDO) and local (coastal upwelling indices and sea-surface temperature) environmental variables as proxies for ocean productivity and prey availability. We also related seabird trends to those of potentially major trophic competitors, humpback ( Megaptera novaeangliae) and blue ( Balaenoptera musculus) whales, which increased in number 4-5-fold midway during our study. Cyclical oscillations in seabird abundance were apparent in the black-footed albatross ( Phoebastria nigripes), and decreasing trends were documented for ashy storm-petrel ( Oceanodroma homochroa), pigeon guillemot ( Cepphus columbus), rhinoceros auklet ( Cerorhinca monocerata), Cassin’s auklet ( Ptychoramphus aleuticus), and western gull ( Larus occidentalis); the sooty shearwater ( Puffinus griseus), exhibited a marked decline before signs of recovery at the end of the study period. The abundance of nine other focal species varied with ocean conditions, but without decadal or long-term trends. Six of these species have the largest global populations in the CCS, and four are highly energetic, diving foragers. Furthermore, three of the diving species trends were negatively correlated with the abundance of humpback whales in the study area, a direct competitor for the same prey. Therefore, on the basis of literature reviewed, we hypothesize that the seabirds were affected by the decreasing carrying capacity of the CCS, over-exploitation of some prey stocks and interference competition from the previously exploited, but now increasing, baleen whale populations. Overall, our study highlights the complexity of the ecological factors driving seabird population trends in the highly variable and rapidly changing CCS ecosystem.

  1. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking intensity from year to year, and attempting to match stocking intensity with the abundance of prey species other than walleye may improve the walleye fishery in Spirit Lake.

  2. Linking killer whale survival and prey abundance: food limitation in the oceans' apex predator?

    PubMed Central

    Ford, John K. B.; Ellis, Graeme M.; Olesiuk, Peter F.; Balcomb, Kenneth C.

    2010-01-01

    Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world's oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability. PMID:19755531

  3. Linking killer whale survival and prey abundance: food limitation in the oceans' apex predator?

    PubMed

    Ford, John K B; Ellis, Graeme M; Olesiuk, Peter F; Balcomb, Kenneth C

    2010-02-23

    Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world's oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.

  4. Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system

    NASA Astrophysics Data System (ADS)

    Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit

    2018-01-01

    Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.

  5. Transient recovery dynamics of a predator-prey system under press and pulse disturbances.

    PubMed

    Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis

    2017-04-04

    Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.

  6. Impact of wild prey availability on livestock predation by snow leopards.

    PubMed

    Suryawanshi, Kulbhushansingh R; Redpath, Stephen M; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C; Mishra, Charudutt

    2017-06-01

    An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates-the preferred prey-and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores.

  7. The Nutritional Content of Prey Affects the Foraging of a Generalist Arthropod Predator

    PubMed Central

    Schmidt, Jason M.; Sebastian, Peter; Wilder, Shawn M.; Rypstra, Ann L.

    2012-01-01

    While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions. PMID:23145130

  8. Seasonal changes in infaunal community structure in a hypertrophic brackish canal: Effects of hypoxia, sulfide, and predator-prey interaction.

    PubMed

    Kanaya, Gen; Nakamura, Yasuo; Koizumi, Tomoyoshi; Yamada, Katsumasa

    2015-07-01

    We conducted a one-year survey of macrozoobenthic community structure at 5 stations in a eutrophic canal in inner Tokyo Bay, focusing on the impacts of hypoxia, sediment H2S, and species interaction in the littoral soft-bottom habitats. Complete defaunation or decreasing density of less-tolerant taxa occurred under hypoxia during warmer months, especially at subtidal or sulfidic stations; this was followed by rapid recolonization by opportunistic polychaetes in fall-winter. Sedimentary H2S increased the mortality of macroinvertebrates under hypoxia or delayed population recovery during recolonization. The density of several polychaetes (e.g., Pseudopolydora reticulata) declined in winter, coincident with immigration of the predator Armandia lanceolata. This suggests that absence of A. lanceolata under moderate hypoxia enabled the proliferation of prey taxa. We conclude that oxygen concentration, sediment H2S, and hypoxia-induced changes in species interactions are potential drivers for spatiotemporal changes in macrozoobenthic assemblage structure in hypoxia-prone soft-bottom communities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mesopredator trophodynamics on thermally stressed coral reefs

    NASA Astrophysics Data System (ADS)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  10. The Trophic Significance of the Indo-Pacific Humpback Dolphin, Sousa chinensis, in Western Taiwan.

    PubMed

    Pan, Ching-Wen; Chen, Meng-Hsien; Chou, Lien-Siang; Lin, Hsing-Juh

    2016-01-01

    Indo-Pacific humpback dolphins (Sousa chinensis) have attracted considerable attention due to their critically endangered status and related conservation issues, but their trophic relationships and ecological significance in coastal ecosystems are poorly understood. For instance, this species is noticeably more abundant in the Xin-Huwei River Estuary (Ex) of Western Taiwan than in the nearby Zhuoshui River Estuary (Ez), though it is unclear why the distribution shows such partitioning. To explore this topic, we conducted field surveys seasonally for two years from 2012 to 2013 and constructed Ecopath models of Ex, Ez, and an offshore site (Dm) to compare energy flow within the food webs. Model comparisons showed that the availability of food resources was the main factor influencing the biomass of Indo-Pacific humpback dolphins. Specifically, its more frequent occurrence in Ex can be attributed to greater phytoplankton production and greater biomasses of macroinvertebrates and prey fish than in the other two areas. An increase in fishing activity might decrease the food availability and, consequently, the biomass of the dolphins. Although the decline in the dolphin population would increase the biomass of some prey fish species, local fishermen might not necessarily benefit from the decline due to the concurrent decrease of highly valued crabs and shrimp. Collectively, our work suggests that the Indo-Pacific humpback dolphin is a keystone species in tropical coastal waters of Taiwan, and thereby exhibit a disproportional large ecological impact given their relatively low abundance.

  11. The Trophic Significance of the Indo-Pacific Humpback Dolphin, Sousa chinensis, in Western Taiwan

    PubMed Central

    Pan, Ching-Wen; Chen, Meng-Hsien; Chou, Lien-Siang; Lin, Hsing-Juh

    2016-01-01

    Indo-Pacific humpback dolphins (Sousa chinensis) have attracted considerable attention due to their critically endangered status and related conservation issues, but their trophic relationships and ecological significance in coastal ecosystems are poorly understood. For instance, this species is noticeably more abundant in the Xin-Huwei River Estuary (Ex) of Western Taiwan than in the nearby Zhuoshui River Estuary (Ez), though it is unclear why the distribution shows such partitioning. To explore this topic, we conducted field surveys seasonally for two years from 2012 to 2013 and constructed Ecopath models of Ex, Ez, and an offshore site (Dm) to compare energy flow within the food webs. Model comparisons showed that the availability of food resources was the main factor influencing the biomass of Indo-Pacific humpback dolphins. Specifically, its more frequent occurrence in Ex can be attributed to greater phytoplankton production and greater biomasses of macroinvertebrates and prey fish than in the other two areas. An increase in fishing activity might decrease the food availability and, consequently, the biomass of the dolphins. Although the decline in the dolphin population would increase the biomass of some prey fish species, local fishermen might not necessarily benefit from the decline due to the concurrent decrease of highly valued crabs and shrimp. Collectively, our work suggests that the Indo-Pacific humpback dolphin is a keystone species in tropical coastal waters of Taiwan, and thereby exhibit a disproportional large ecological impact given their relatively low abundance. PMID:27780252

  12. Predator-prey-subsidy population dynamics on stepping-stone domains.

    PubMed

    Shen, Lulan; Van Gorder, Robert A

    2017-05-07

    Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favourable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mortality of Amur tigers: The more things change, the more they stay the same.

    PubMed

    Robinson, Hugh S; Goodrich, John M; Miquelle, Dale G; Miller, Clayton S; Seryodkin, Ivan V

    2015-07-01

    Poaching as well as loss of habitat and prey are identified as causes of tiger population declines. Although some studies have examined habitat requirements and prey availability, few studies have quantified cause-specific mortality of tigers. We used cumulative incidence functions (CIFs) to quantify cause-specific mortality rates of tigers, expanding and refining earlier studies to assess the potential impact of a newly emerging disease. To quantify changes in tiger mortality over time, we re-examined data first collected by Goodrich et al. (; study period 1: 1992-2004) as well as new telemetry data collected since January 2005 (study period 2: 2005-2012) using a total of 57 tigers (27 males and 30 females) monitored for an average of 747 days (range 26-4718 days). Across the entire study period (1992 to 2012) we found an estimated average annual survival rate of 0.75 for all tigers combined. Poaching was the primary cause of mortality during both study periods, followed by suspected poaching, distemper and natural/unknown causes. Since 2005, poaching mortality has remained relatively constant and, if combined with suspected poaching, may account for a loss of 17-19% of the population each year. Canine distemper virus (CDV) may be an additive form of mortality to the population, currently accounting for an additional 5%. Despite this relatively new source of mortality, poaching remains the main threat to Amur tiger survival and, therefore, population growth. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  14. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  15. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    USGS Publications Warehouse

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in Lake Michigan. In general, trends in year-class strengths were less concordant across the basin and only coregonids showed statistical agreement across the upper Great Lakes. The appearance of strong and moderate year-classes of Bloater in Lake Huron in 2005- 2011 countered the trend of continuing weak year-classes of coregonids in Lakes Michigan and Superior. Not shown in our analysis is the appearance of the 2013 year-class of Bloater in Huron, the largest to date. There was no agreement in cross-basin trends in year-class strengths for Rainbow Smelt and Alewife, although there was agreement between pairs of lakes. Although there was statistical agreement in trends of age-0 and older Round Goby biomass among lakes where this species has successfully invaded (Michigan, Huron, Erie and Ontario), temporal patterns of biomass in each lake were different. Round Goby may be approaching equilibrium in Lake Erie, peaking in Lake Huron, and expanding in Lake Michigan. The trend in Lake Ontario remains unclear. Declining abundance in Lake Erie has corresponded with evidence that Round Goby have become increasingly incorporated into piscivore diets, e.g., Lake Trout, Walleye, Smallmouth Bass, Yellow Perch, and Burbot in Lakes Michigan, Huron, Erie, and Ontario. Round Goby continue to be absent from spring bottom trawl assessments in Lake Superior, but their presence in the harbors and embayments of Duluth and Thunder Bay (U.S. Geological Survey and Ontario Ministry of Natural Resources, unpublished data), suggests that there is potential for future colonization.

  16. Foraging theory predicts predator-prey energy fluxes.

    PubMed

    Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S

    2008-09-01

    1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.

  17. [Population growth rate of the depredating Podisus nigrispinus (Heteroptera: Pentatomidae) and of the Tuta absoluta (Leptoptera: gelechiidae) in wintering place].

    PubMed

    Vivan, Lúcia M; Torres, Jorge B; Barros, Reginaldo; Veiga, Antônio F S L

    2002-03-01

    The fertility life table of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) preying either on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) caterpillars or on alternative prey Tenebrio molitor L. (Coleoptera: Tenebrionidae) under greenhouse conditions (30 +/- 5 degrees C, 61 +/- 23% RH) were studied. The life table was also determined for the pest T. absoluta under the same conditions. The net reproductive rate (Ro) and the intrinsic rate of natural increase (rm) were higher 14.13 and 46.32 times for predators fed on T. molitor prey, however, the generation time (T) was similar between prey. The pest T. absoluta showed Ro and rm higher 2.15 and 32.10 times than those achieved for predators fed on this pest. However, females fed on a suitable prey T. molitor showed higher Ro and rm than those yielded for the pest. The survival curves were similar for P. nigrispinus females fed on both prey and classified as being type II by Weibull analysis. The results suggest that P. nigrispinus is able to maintain its population preying only on T. absoluta caterpillars; however, the life table parameters determined individually for both showed that the pest produces more generations per year and faster population natural growth than the predator.

  18. Ecology and control of an introduced population of Southern Watersnakes (Nerodia fasciata) in southern California

    USGS Publications Warehouse

    Reed, Robert; Todd, Brian D; Miano, Oliver J.; Canfield, Mark; Fisher, Robert N.; McMartin, Louanne

    2016-01-01

    Native to the southeastern United States, Southern Watersnakes (Nerodia fasciata) are known from two sites in California, but their ecological impacts are poorly understood. We investigated the ecology of Southern Watersnakes in Machado Lake, Harbor City, Los Angeles County, California, including an assessment of control opportunities. We captured 306 watersnakes as a result of aquatic trapping and hand captures. We captured snakes of all sizes (162–1063 mm snout–vent length [SVL], 3.5–873.3 g), demonstrating the existence of a well-established population. The smallest reproductive female was 490 mm SVL and females contained 12–46 postovulatory embryos (mean  =  21). Small watersnakes largely consumed introduced Western Mosquitofish (Gambusia affinis), while larger snakes specialized on larval and metamorph American Bullfrogs (Lithobates catesbeianus) and Green Sunfish (Lepomis cyanellus). Overall capture per unit effort (CPUE) in traps declined with time during an intensive 76-d trapping bout, but CPUE trends varied considerably among traplines and it is unlikely that the overall decline in CPUE represented a major decrease in the snake population size. Although we found no direct evidence that Southern Watersnakes are affecting native species in Machado Lake, this population may serve as a source for intentional or unintentional transportation of watersnakes to bodies of water containing imperiled native prey species or potential competitors.

  19. Prey Foraging Under Sublethal Lambda-Cyhalothrin Exposure on Pyrethroid-Susceptible and -Resistant Lady Beetles (Eriopis connexa (Coleoptera: Coccinelidae)).

    PubMed

    D'Ávila, V A; Reis, L C; Barbosa, W F; Cutler, G C; Torres, J B; Guedes, R N C

    2018-05-28

    Sublethal insecticide exposure may affect foraging of insects, including natural enemies, although the subject is usually neglected. The lady beetle Eriopis connexa (Germar, 1824) (Coleoptera: Coccinelidae) is an important predator of aphids with existing pyrethroid-resistant populations that are undergoing scrutiny for potential use in pest management systems characterized by frequent insecticide use. However, the potential effect of sublethal pyrethroid exposure on this predator's foraging activity has not yet been assessed and may compromise its use in biological control. Therefore, our objective was to assess the effect of sublethal lambda-cyhalothrin exposure on three components of the prey foraging activity (i.e., walking, and prey searching and handling), in both pyrethroid-susceptible and -resistant adults of E. connexa. Both lady beetle populations exhibited similar walking patterns without insecticide exposure in noncontaminated arenas, but in partially contaminated arenas walking differed between strains, such that the resistant insects exhibited greater walking activity. Behavioral avoidance expressed as repellence to lambda-cyhalothrin was not observed for either the susceptible or resistant populations of E. connexa, but the insecticide caused avoidance by means of inducing irritability in 40% of the individuals, irrespective of the strain. Insects remained in the insecticide-contaminated portion of the arena for extended periods resulting in greater exposure. Although lambda-cyhalothrin exposure did not affect prey searching by susceptible lady beetles, prey searching was extended for exposed resistant predators. In contrast, prey handling was not affected by population or by lambda-cyhalothrin exposure. Thus, sublethal exposure to the insecticide in conjunction with the insect resistance profile can affect prey foraging with pyrethroid-exposed resistant predators exhibiting longer prey searching time associated with higher walking activity reducing its predatory performance.

  20. On Non-Selective Harvesting of a Multispecies Fishery

    ERIC Educational Resources Information Center

    Kar, Tapan Kuman; Chaudhuri, K. S.

    2002-01-01

    The present paper deals with the problem of non-selective harvesting of a prey-predator system in which both the prey and the predator species obey the law of logistic growth and each predators functional response to the prey approaches a constant as the prey population increases. Boundedness of the exploited system is examined. The existence of…

  1. Modeling climate change impacts on overwintering bald eagles.

    PubMed

    Harvey, Chris J; Moriarty, Pamela E; Salathé, Eric P

    2012-03-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.

  2. Modeling climate change impacts on overwintering bald eagles

    PubMed Central

    Harvey, Chris J; Moriarty, Pamela E; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems. PMID:22822430

  3. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    PubMed

    Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P

    2015-07-01

    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts. © 2014 John Wiley & Sons Ltd.

  4. Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog.

    PubMed

    McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A

    2016-06-01

    Poison frogs sequester chemical defenses from arthropod prey, although the details of how arthropod diversity contributes to variation in poison frog toxins remains unclear. We characterized skin alkaloid profiles in the Little Devil poison frog, Oophaga sylvatica (Dendrobatidae), across three populations in northwestern Ecuador. Using gas chromatography/mass spectrometry, we identified histrionicotoxins, 3,5- and 5,8-disubstituted indolizidines, decahydroquinolines, and lehmizidines as the primary alkaloid toxins in these O. sylvatica populations. Frog skin alkaloid composition varied along a geographical gradient following population distribution in a principal component analysis. We also characterized diversity in arthropods isolated from frog stomach contents and confirmed that O. sylvatica specialize on ants and mites. To test the hypothesis that poison frog toxin variability reflects species and chemical diversity in arthropod prey, we (1) used sequencing of cytochrome oxidase 1 to identify individual prey specimens, and (2) used liquid chromatography/mass spectrometry to chemically profile consumed ants and mites. We identified 45 ants and 9 mites in frog stomachs, including several undescribed species. We also showed that chemical profiles of consumed ants and mites cluster by frog population, suggesting different frog populations have access to chemically distinct prey. Finally, by comparing chemical profiles of frog skin and isolated prey items, we traced the arthropod source of four poison frog alkaloids, including 3,5- and 5,8-disubstituted indolizidines and a lehmizidine alkaloid. Together, the data show that toxin variability in O. sylvatica reflects chemical diversity in arthropod prey.

  5. Effect of forest opening characteristics, prey abundance, and environmental factors on bat activity in the southern Appalachians

    Treesearch

    Jonathan D. Brooks; Susan C. Loeb; Patrick D. Gerard

    2017-01-01

    <>Early successional habitat (ESH) is important for many wildlife species. Over the past century, land use changes have caused ESH to decline in hardwood forests of the eastern United States. Because of the decline of ESH and ESH dependent wildlife, ESH has recently received increased attention from land managers and scientists. Bats, which...

  6. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    PubMed

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high removal rates maintain wolves at lower densities, limited inter-pack interactions may prevent density-dependent survival, consistent with our findings in the interior of the park. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  7. Predator interference and stability of predator-prey dynamics.

    PubMed

    Přibylová, Lenka; Berec, Luděk

    2015-08-01

    Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

  8. Traffic noise reduces foraging efficiency in wild owls

    NASA Astrophysics Data System (ADS)

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi

    2016-08-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  9. Traffic noise reduces foraging efficiency in wild owls.

    PubMed

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi

    2016-08-18

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  10. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana

    PubMed Central

    Winterbach, Christiaan W.; Boast, Lorraine K.; Klein, Rebecca; Somers, Michael J.

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs’ preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana’s agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana’s still large and contiguous cheetah population. PMID:26213646

  11. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana.

    PubMed

    Winterbach, Hanlie E K; Winterbach, Christiaan W; Boast, Lorraine K; Klein, Rebecca; Somers, Michael J

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs' preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana's agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana's still large and contiguous cheetah population.

  12. Prey life-history and bioenergetic responses across a predation gradient.

    PubMed

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  13. Optimal harvesting policy of predator-prey model with free fishing and reserve zones

    NASA Astrophysics Data System (ADS)

    Toaha, Syamsuddin; Rustam

    2017-03-01

    The present paper deals with an optimal harvesting of predator-prey model in an ecosystem that consists of two zones, namely the free fishing and prohibited zones. The dynamics of prey population in the ecosystem can migrate from the free fishing to the prohibited zone and vice versa. The predator and prey populations in the free fishing zone are then harvested with constant efforts. The existence of the interior equilibrium point is analyzed and its stability is determined using Routh-Hurwitz stability test. The stable interior equilibrium point is then related to the problem of maximum profit and the problem of present value of net revenue. We follow the Pontryagin's maximal principle to get the optimal harvesting policy of the present value of the net revenue. From the analysis, we found a critical point of the efforts that makes maximum profit. There also exists certain conditions of the efforts that makes the present value of net revenue becomes maximal. In addition, the interior equilibrium point is locally asymptotically stable which means that the optimal harvesting is reached and the unharvested prey, harvested prey, and harvested predator populations remain sustainable. Numerical examples are given to verify the analytical results.

  14. Rainbow smelt (Osmerus mordax) as predators on young bloaters (Coregonus hoyi) in Lake Michigan

    USGS Publications Warehouse

    Stedman, Ralph M.; Argyle, Ray L.

    1985-01-01

    Examination of the stomach contents of rainbow smelt caught in bottom trawls in Lake Michigan during mid October, 1982, revealed that of 267 rainbow smelt (Osmerus mordax) with food in their stomachs, 56% (150) had eaten young-of-the-year fish. Nearly 15% of the prey fish consumed were bloaters (Coregonus hoyi), 21 % were alewives(Alosa pseudoharengus), and the rest could not be positively identified but were probably bloaters and alewives. Although smelt predation did not appear to have affected bloater abundance, continued increases in smelt abundance and declines in alewife populations could lead to increased predator pressure on bloater stocks, which are in the process of rebuilding.

  15. A multispecies statistical age-structured model to assess predator-prey balance: application to an intensively managed Lake Michigan pelagic fish community

    USGS Publications Warehouse

    Tsehaye, Iyob; Jones, Michael L.; Bence, James R.; Brenden, Travis O.; Madenjian, Charles P.; Warner, David M.

    2014-01-01

    Using a Bayesian model fitting approach, we developed a multispecies statistical catch-at-age model to assess trade-offs between predatory demands and prey productivities, focusing on the Lake Michigan pelagic fish community. We assessed these trade-offs in terms of predation mortalities and productivities of alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) and functional responses of salmonines. Our predation mortality estimates suggest that salmonine consumption has been a major driver of historical fluctuations in prey abundance, with sharp declines in alewife abundance in the 1980s and 2000s coinciding with estimated increases in predation mortalities. While Chinook salmon (Oncorhynchus tshawytscha) were food limited during periods of low alewife abundance, other salmonines appeared to maintain a (near) maximum per-predator consumption across all observed prey densities, suggesting that feedback mechanisms are unlikely to help maintain a balance between predator consumption and prey productivity in Lake Michigan. This study demonstrates that a multispecies modeling approach that combines stock assessment methods with explicit consideration of predator–prey interactions could provide the basis for tactical decision-making from a broader ecosystem perspective.

  16. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  17. Shifts in the diet of Lake Ontario alewife in response to ecosystem change

    USGS Publications Warehouse

    Stewart, T.J.; Sprules, W.G.; O'Gorman, R.

    2009-01-01

    In the 1990s, the Lake Ontario ecosystem was dramatically altered due to continued invasions of exotic species including dreissenid mussels and predatory cladocerans. We describe the diet and biomass of prey in the stomachs of adult (≥ 109 mm TL) and sub-adult (Alosa pseudoharengus) in 2004 and 2005 across seasons and depths and compare our results to data from 1972 to 1988. During 2004 and 2005, adult alewife consumed primarily zooplankton prey at bottom depth zones Mysis at bottom depth zones > 70 m. Mysis dominated the diets of adult alewife in all seasons except during the summer of 2004 when zooplankton dominated. Mysis dominated the diets of sub-adult alewife during early and late spring and zooplankton dominated the diets in summer and fall. Bythotrephes and Cercopagis were observed in the diets of both sub-adult and adult alewife. Diporeia was observed only rarely in adult alewife diets. The biomass of prey in alewife stomachs varied seasonally and increased with bottom depth for adult alewife. Alewife diets in 2004–2005 differed from those in 1972 and 1988 with an increase in the prevalence of Mysis, and a decline in the prevalence of zooplankton. The biomass of prey in adult alewife stomachs declined in 2004 and 2005 compared to 1972 and 1988, at bottom depth zones 70 m suggesting reduced food availability closer to shore. We hypothesize that consumption levels at the shallower depth zones, as indicated by very low biomass of prey in alewife stomachs, may not be sufficient to sustain alewife growth. The increased prevalence of Mysis and common occurrence of predatory cladocerans in the diet of alewife means that alewife have shifted to a higher trophic position.

  18. Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics

    Treesearch

    Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant

    2011-01-01

    Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...

  19. Agriculture modifies the seasonal decline of breeding success in a tropical wild bird population

    PubMed Central

    Cartwright, Samantha J; Nicoll, Malcolm A C; Jones, Carl G; Tatayah, Vikash; Norris, Ken

    2014-01-01

    Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography, but the mechanisms have yet to be explored fully in wild populations. Here, we investigate the mechanisms linking agricultural land use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus, a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall) and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture, it would significantly under-estimate breeding success in dry (early) springs and over-estimate breeding success in wet (late) springs. Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations. PMID:25558086

  20. Dynamics of Predator-Prey Metapopulations with Allee Effects.

    PubMed

    Fan, Meng; Wu, Ping; Feng, Zhilan; Swihart, Robert K

    2016-08-01

    Allee effects increasingly are recognized as influential determinants of population dynamics, especially in disturbed landscapes. We developed a predator-prey metapopulation model to study the impact of an Allee effect on predator-prey. The model incorporates habitat destruction and predators with imperfect information about prey distribution. Criteria are established for the existence and stability of equilibria, and the possible existence of a limit cycle is discussed. Numerical bifurcation analysis of the model is carried out to examine the impact of Allee effects as well as other key processes on trophic dynamics. Inclusion of Allee effects produces a richer array of dynamics than earlier models in which it was absent. When prey interacts with generalist predators, Allee effects operate synergistically to depress prey populations. Allee effects are more likely to depress occupancy levels when destruction of habitat patches is moderate; at severe levels of destruction, Allee effects are swamped by demographic effects of habitat loss. Stronger Allee effects correspond to lower thresholds of predator colonization rates at which prey become extinct. We discuss implications of our model for conservation of rare species as well as pest management via biocontrol.

  1. The interaction between predator strategy and prey competition in a pair of multi-predator multi-prey lattices

    NASA Astrophysics Data System (ADS)

    Abernethy, Gavin M.; McCartney, Mark; Glass, David H.

    2018-03-01

    A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range of foraging behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighbours along the prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The significance of competition amongst the prey is investigated by testing a variety of distributions of the relative intraspecific and interspecific competition. We also study the influence this has on the survival and population size of predator phenotypes with a variety of foraging strategies. Our results indicate that the distribution of competition amongst prey is of little significance, provided that intraspecific is stronger than the interspecific, and that it is typically preferable for a predator to adopt a foraging strategy that scales linearly with prey population sizes if it is alone. In an environment of multiple predator phenotypes, the least or most-focused predators are most likely to persist, dependent on the feeding parameter.

  2. Demographics, diet, movements, and survival of an isolated, unmanaged raccoon Procyon lotor (Procyonidae, Carnivora) population on the Outer Banks of North Carolina

    USGS Publications Warehouse

    Parsons, Arielle Waldstein; Simons, Theodore R.; O'Connell, Allan F.; Stoskopf, Michael K.

    2012-01-01

    Raccoons (Procyon lotor) are highly adaptable meso-carnivores that inhabit many environments, including the Atlantic barrier islands, where their role as predators of declining, beach-nesting bird and turtle species is of particular interest. Population models that improve our understanding of predator-prey dynamics are receiving increasing attention in the literature; however, their effective application requires site-specific information on population parameters. We studied an unharvested raccoon population on the Outer Banks of North Carolina and evaluated spatial and seasonal differences in a number of population/demographic factors of raccoons inhabiting areas of high and low human activity. Raccoons denned and foraged primarily in salt marsh habitats but shifted their movements in response to changes in seasonal resource conditions. The population was skewed toward older animals and exhibited delayed breeding, typical of populations at high density with few sources of mortality. Diet and movement analysis indicated shorebird and turtle predation was attributed to a small number of individual raccoons. Although seasonal resources appeared adequate to sustain a high population density of raccoons, poor body condition and low recruitment suggested a population near carrying capacity.

  3. RELATIONSHIPS OF NATURAL ENEMIES AND NON-PREY FOODS

    USDA-ARS?s Scientific Manuscript database

    There are very few entomophagous species so maladapted as to rely on prey as their sole nutritional resource. Although a rich source of nutrients, prey/host availability to predators and parasitoids is restricted temporally by ephemeral population dynamics, spatial differences in microclimate, struc...

  4. No Evidence of Metabolic Depression in Western Alaskan Juvenile Steller Sea Lions (Eumetopias jubatus)

    PubMed Central

    Hoopes, Lisa A.; Rea, Lorrie D.; Christ, Aaron; Worthy, Graham A. J.

    2014-01-01

    Steller sea lion (Eumetopias jubatus) populations have undergone precipitous declines through their western Alaskan range over the last four decades with the leading hypothesis to explain this decline centering around changing prey quality, quantity, or availability for this species (i.e., nutritional stress hypothesis). Under chronic conditions of reduced food intake sea lions would conserve energy by limiting energy expenditures through lowering of metabolic rate known as metabolic depression. To examine the potential for nutritional stress, resting metabolic rate (RMR) and body composition were measured in free-ranging juvenile Steller sea lions (N = 91) at three distinct geographical locations (Southeast Alaska, Prince William Sound, Central Aleutian Islands) using open-flow respirometry and deuterium isotope dilution, respectively. Average sea lion RMR ranged from 6.7 to 36.2 MJ d−1 and was influenced by body mass, total body lipid, and to a lesser extent, ambient air temperature and age. Sea lion pups captured in the Aleutian Islands (region of decline) had significantly greater body mass and total body lipid stores when compared to pups from Prince William Sound (region of decline) and Southeast Alaska (stable region). Along with evidence of robust body condition in Aleutian Island pups, no definitive differences were detected in RMR between sea lions sampled between eastern and western populations that could not be accounted for by higher percent total body lipid content, suggesting that that at the time of this study, Steller sea lions were not experiencing metabolic depression in the locations studied. PMID:24416394

  5. Effects of beach replenishment on intertidal invertebrates: A 15-month, eight beach study.

    NASA Astrophysics Data System (ADS)

    Wooldridge, Tyler; Henter, Heather J.; Kohn, Joshua R.

    2016-06-01

    Beach replenishment is an increasingly popular means to remediate coastal erosion, but no consensus exists regarding how long replenishment affects sandy beach intertidal invertebrates, key components of beach ecosystems. We monitored the intertidal invertebrate community for fifteen months following a replenishment project at eight beaches, each with replenished and control sections, across San Diego County. Nearly all taxa showed major declines in abundance immediately following replenishment. Populations of talitrid amphipods and the bean clam Donax gouldii recovered within one year, sooner than in previous studies. On some beaches, populations of the mole crab Emerita analoga bloomed four months after replenishment and were more numerous on replenished portions of beaches at that time. Mole crab populations subsequently declined and no longer differed by treatment. The polychaete community, composed of Scolelepis sp. and several other numerically important taxa, showed a strong replenishment-induced reduction in abundance that persisted through the end of the study. The large negative effect of replenishment on polychaetes, coupled with their overall importance to the invertebrate community, resulted in a more than twofold reduction in overall invertebrate abundance on replenished beaches at 15 months. Such reductions may have far reaching consequences for sandy beach ecosystems, as community declines can reduce prey availability for shorebirds and fish. As this and other recent studies have revealed longer times for the recovery of intertidal invertebrates than previously observed, longer study periods and more cautious estimates regarding the magnitude, variability, and duration of impacts of beach replenishment for management decision-making are warranted.

  6. Acidic Depositions: Effects on Wildlife and Habitats

    USGS Publications Warehouse

    1993-01-01

    The phenomenon of 'acid rain' is not new; it was recognized in the mid-1800s in industrialized Europe. In the 1960s a synthesis of information about acidification began in Europe, along with predictions of ecological effects. In the U.S. studies of acidification began in the 1920s. By the late 1970s research efforts in the U.S. and Canada were better coordinated and in 1980 a 10-year research program was undertaken through the National Acid Precipitation Assessment Plan (NAPAP) to determine the causes and consequences of acidic depositions. Much of the bedrock in the northeastern U.S. and Canada contains total alkalinity of 20 kg/ha/yr of wet sulphate depositions and are vulnerable to acidifying processes. Acidic depositions contribute directly to acidifying processes of soil and soil water. Soils must have sufficient acid-neutralizing capacity or acidity of soil will increase. Natural soil-forming processes that lead to acidification can be accelerated by acidic depositions. Long-term effects of acidification are predicted, which will reduce soil productivity mainly through reduced availability of nutrients and mobilization of toxic metals. Severe effects may lead to major alteration of soil chemistry, soil biota, and even loss of vegetation. Several species of earthworms and several other taxa of soil-inhabiting invertebrates, which are important food of many vertebrate wildlife species, are affected by low pH in soil. Loss of canopy in declining sugar maples results in loss of insects fed on by certain neotropical migrant bird species. No definitive studies categorically link atmospheric acidic depositions with direct or indirect effects on wild mammals. Researchers have concentrated on vegetative and aquatic effects. Circumstantial evidence suggests that effects are probable for certain species of aquatic-dependent mammals (water shrew, mink, and otter) and that these species are at risk from the loss of foods or contamination of these foods by metals, especially methylmercury. Continued acidification of terrestrial habitats, to the extent that earthworm populations are broadly reduced, might expose some fossorial mammalian species to risk because of decline in their major prey species. Acidic deposition affects primarily aquatic habitats of avian species by disrupting food webs (ecological effects) and increasing amounts of available heavy metals (mercury, aluminum, cadmium) in prey of avian species (toxicological effects). The ecological effects of acidifying wetlands are to reduce acid-intolerant prey (invertebrates) and to change prey quality from high-calcium bearing prey to low-calcium bearing prey. The toxicological effects are to increase contamination by heavy metals, especially methylated mercury, in foods of breeding waterbirds. The combination of these 2 types of effects results in potentially lower survival of adults and reduced production, growth, or survival of young of many bird species. Effects of acidification on herpteofauna and their habitats are mainly reproductive failure of susceptible species and reduced or metal-contaminated foods for both amphibians and reptiles.

  7. Defining ecologically relevant scales for spatial protection with long-term data on an endangered seabird and local prey availability.

    PubMed

    Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R

    2017-12-01

    Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries. © 2017 Society for Conservation Biology.

  8. Reply to comments by Riley and Dunlop on He et al. (2015)

    USGS Publications Warehouse

    Bence, James R.; Madenjian, Charles P.; He, Ji X.; Fielder, David G.; Pothoven, Steven A.; Dobiesz, Norine E.; Johnson, James E.; Ebener, Mark P.; Cottrill, R. Adam; Mohr, Lloyd C.; Koproski, Scott R.

    2016-01-01

    He et al. (2015) described piscivory patterns in the main basin of Lake Huron 1984-2010, during which there was also a pattern of stepwise declines in the abundance of dominant prey fish species. The approach of He et al. (2015) was to couple age-structured stock assessment and fish bioenergetics models to estimate prey fish consumption, and to compare these patterns with prey fish biomass from a bottom trawl survey. Riley and Dunlop (2015) were highly critical of the methods and conclusions reached by He et al. (2015). They claimed that we incorrectly interpreted the bottom trawl survey data, and did not account for uncertainty. We respond to these and other criticisms below, which we find do not undermine our findings.

  9. Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Wang, Mingxin

    2018-06-01

    This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.

  10. Multi-Scale Effects of Nestling Diet on Breeding Performance in a Terrestrial Top Predator Inferred from Stable Isotope Analysis

    PubMed Central

    Resano-Mayor, Jaime; Hernández-Matías, Antonio; Real, Joan; Moleón, Marcos; Parés, Francesc; Inger, Richard; Bearhop, Stuart

    2014-01-01

    Inter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli’s eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species’ reproductive performance at two spatial scales: territories within populations and populations over a large geographic area. At the territory level, those breeding pairs whose nestlings consumed similar diets to the overall population (i.e. moderate consumption of preferred prey, but complemented by alternative prey categories) or those disproportionally consuming preferred prey were more likely to fledge two chicks. An increase in the diet diversity, however, related negatively with productivity. The age and replacements of breeding pair members had also an influence on productivity, with more fledglings associated to adult pairs with few replacements, as expected in long-lived species. At the population level, mean productivity was higher in those population-years with lower dietary breadth and higher diet similarity among territories, which was related to an overall higher consumption of preferred prey. Thus, we revealed a correspondence in diet-fitness relationships at two spatial scales: territories and populations. We suggest that stable isotope analyses may be a powerful tool to monitor the diet of terrestrial avian predators on large spatio-temporal scales, which could serve to detect potential changes in the availability of those prey on which predators depend for breeding. We encourage ecologists and evolutionary and conservation biologists concerned with the multi-scale fitness consequences of inter-individual variation in resource use to employ similar stable isotope-based approaches, which can be successfully applied to complex ecosystems such as the Mediterranean. PMID:24743233

  11. Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?

    USGS Publications Warehouse

    Springer, A.M.; Estes, J.A.; Van Vliet, Gus B.; Williams, T.M.; Doak, D.F.; Danner, E.M.; Forney, K.A.; Pfister, B.

    2003-01-01

    Populations of seals, sea lions, and sea otters have sequentially collapsed over large areas of the northern North Pacific Ocean and southern Bering Sea during the last several decades. A bottom-up nutritional limitation mechanism induced by physical oceanographic change or competition with fisheries was long thought to be largely responsible for these declines. The current weight of evidence is more consistent with top-down forcing. Increased predation by killer whales probably drove the sea otter collapse and may have been responsible for the earlier pinniped declines as well. We propose that decimation of the great whales by post-World War II industrial whaling caused the great whales' foremost natural predators, killer whales, to begin feeding more intensively on the smaller marine mammals, thus "fishing-down" this element of the marine food web. The timing of these events, information on the abundance, diet, and foraging behavior of both predators and prey, and feasibility analyses based on demographic and energetic modeling are all consistent with this hypothesis.

  12. Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?

    PubMed Central

    Springer, A. M.; Estes, J. A.; van Vliet, G. B.; Williams, T. M.; Doak, D. F.; Danner, E. M.; Forney, K. A.; Pfister, B.

    2003-01-01

    Populations of seals, sea lions, and sea otters have sequentially collapsed over large areas of the northern North Pacific Ocean and southern Bering Sea during the last several decades. A bottom-up nutritional limitation mechanism induced by physical oceanographic change or competition with fisheries was long thought to be largely responsible for these declines. The current weight of evidence is more consistent with top-down forcing. Increased predation by killer whales probably drove the sea otter collapse and may have been responsible for the earlier pinniped declines as well. We propose that decimation of the great whales by post-World War II industrial whaling caused the great whales' foremost natural predators, killer whales, to begin feeding more intensively on the smaller marine mammals, thus “fishing-down” this element of the marine food web. The timing of these events, information on the abundance, diet, and foraging behavior of both predators and prey, and feasibility analyses based on demographic and energetic modeling are all consistent with this hypothesis. PMID:14526101

  13. Nash Equilibria in Noncooperative Predator-Prey Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Angel Manuel; Roubicek, Tomas

    2007-09-15

    A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.

  14. Inducible defenses in Olympia oysters in response to an invasive predator.

    PubMed

    Bible, Jillian M; Griffith, Kaylee R; Sanford, Eric

    2017-03-01

    The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.

  15. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California.

    PubMed

    Newsome, Seth D; Collins, Paul W; Rick, Torben C; Guthrie, Daniel A; Erlandson, Jon M; Fogel, Marilyn L

    2010-05-18

    Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that now are living in relict populations. Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in the mid-20th century. Faunal and isotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles' local extirpation. In historic times (A.D. 1850-1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes.

  16. Reproductive responses of northern goshawks to variable prey populations

    Treesearch

    Susan R. Salafsky; Richard T. Reynolds; Barry R. Noon; John A. Wiens

    2007-01-01

    Developing comprehensive conservation strategies requires knowledge of factors influencing population growth and persistence. Although variable prey resources are often associated with fluctuations in raptor demographic parameters, the mechanisms of food limitation are poorly understood, especially for a generalist predator like the northern goshawk (Accipiter...

  17. Stranded dolphin stomach contents represent the free-ranging population's diet

    PubMed Central

    Dunshea, Glenn; Barros, Nélio B.; Berens McCabe, Elizabeth J.; Gales, Nicholas J.; Hindell, Mark A.; Jarman, Simon N.; Wells, Randall S.

    2013-01-01

    Diet is a fundamental aspect of animal ecology. Cetacean prey species are generally identified by examining stomach contents of stranded individuals. Critical uncertainty in these studies is whether samples from stranded animals are representative of the diet of free-ranging animals. Over two summers, we collected faecal and gastric samples from healthy free-ranging individuals of an extensively studied bottlenose dolphin population. These samples were analysed by molecular prey detection and these data compared with stomach contents data derived from stranded dolphins from the same population collected over 22 years. There was a remarkable consistency in the prey species composition and relative amounts between the two datasets. The conclusions of past stomach contents studies regarding dolphin habitat associations, prey selection and proposed foraging mechanisms are supported by molecular data from live animals and the combined dataset. This is the first explicit test of the validity of stomach contents analysis for accurate population-scale diet determination of an inshore cetacean. PMID:23637389

  18. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica

    PubMed Central

    Trivelpiece, Wayne Z.; Hinke, Jefferson T.; Miller, Aileen K.; Reiss, Christian S.; Trivelpiece, Susan G.

    2011-01-01

    The West Antarctic Peninsula (WAP) and adjacent Scotia Sea support abundant wildlife populations, many of which were nearly extirpated by humans. This region is also among the fastest-warming areas on the planet, with 5–6 °C increases in mean winter air temperatures and associated decreases in winter sea-ice cover. These biological and physical perturbations have affected the ecosystem profoundly. One hypothesis guiding ecological interpretations of changes in top predator populations in this region, the “sea-ice hypothesis,” proposes that reductions in winter sea ice have led directly to declines in “ice-loving” species by decreasing their winter habitat, while populations of “ice-avoiding” species have increased. However, 30 y of field studies and recent surveys of penguins throughout the WAP and Scotia Sea demonstrate this mechanism is not controlling penguin populations; populations of both ice-loving Adélie and ice-avoiding chinstrap penguins have declined significantly. We argue in favor of an alternative, more robust hypothesis that attributes both increases and decreases in penguin populations to changes in the abundance of their main prey, Antarctic krill. Unlike many other predators in this region, Adélie and chinstrap penguins were never directly harvested by man; thus, their population trajectories track the impacts of biological and environmental changes in this ecosystem. Linking trends in penguin abundance with trends in krill biomass explains why populations of Adélie and chinstrap penguins increased after competitors (fur seals, baleen whales, and some fishes) were nearly extirpated in the 19th to mid-20th centuries and currently are decreasing in response to climate change. PMID:21482793

  19. Species diversity and predation strategies in a multiple species predator-prey model

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Glass, David H.; McCartney, Mark

    2015-08-01

    A single predator, single prey ecological model, in which the behaviour of the populations relies upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. The diversity of the ecosystem that develops as the model runs is analysed by assessing how many predator or prey species survive. Predation strategies that dictate how the predators distribute their efforts across the prey are introduced in this multiple species model. The paper analyses various predation strategies and highlights their effect on the survival of the predators and prey species.

  20. Clam density and scaup feeding behavior in San Pablo Bay, California

    USGS Publications Warehouse

    Poulton, Victoria K.; Lovvorn, James R.; Takekawa, John Y.

    2002-01-01

    San Pablo Bay, in northern San Francisco Bay, California, is an important wintering area for Greater (Aythya marila) and Lesser Scaup (A. affinis). We investigated variation in foraging behavior of scaup among five sites in San Pablo Bay, and whether such variation was related to densities of their main potential prey, the clams Potamocorbula amurensis and Macoma balthica. Time-activity budgets showed that scaup spent most of their time sleeping at some sites, and both sleeping and feeding at other sites, with females feeding more than males. In the first half of the observation period (12 January–5 February 2000), percent time spent feeding increased with increasing density of P. amurensis, but decreased with increasing density of M. balthica (diet studies have shown that scaup ate mostly P. amurensis and little or no M. balthica). Densities of M. balthica stayed about the same between fall and spring benthic samples, while densities of P. amurensis declined dramatically at most sites. In the second half of the observation period (7 February–3 March 2000), percent time feeding was no longer strongly related to P. amurensis densities, and dive durations increased by 14%. These changes probably reflected declines of P. amurensis, perhaps as affected by scaup predation. The large area of potential feeding habitat, and alternative prey elsewhere in the estuary, might have resulted in the low correlations between scaup behavior and prey densities in San Pablo Bay. These low correlations made it difficult to identify specific areas of prey concentrations important to scaup.

  1. Analysis of pelagic species decline in the upper San Francisco Estuary using multivariate autoregressive modeling (MAR)

    USGS Publications Warehouse

    Mac Nally, Ralph; Thomson, James R.; Kimmerer, Wim J.; Feyrer, Frederick; Newman, Ken B.; Sih, Andy; Bennett, William A.; Brown, Larry; Fleishman, Erica; Culberson, Steven D.; Castillo, Gonzalo

    2010-01-01

    Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2‰ isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey). Our results were relatively robust with respect to the form of stock–recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state–space models that describe more fully the life-history dynamics of the declining species.

  2. Analysis of pelagic species decline in the upper San Francisco Estuary using multivariate autoregressive modeling (MAR).

    PubMed

    Mac Nally, Ralph; Thomson, James R; Kimmerer, Wim J; Feyrer, Frederick; Newman, Ken B; Sih, Andy; Bennett, William A; Brown, Larry; Fleishman, Erica; Culberson, Steven D; Castillo, Gonzalo

    2010-07-01

    Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2 per thousand isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey): Our results were relatively robust with respect to the form of stock-recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state-space models that describe more fully the life-history dynamics of the declining species.

  3. No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates.

    PubMed

    Simkins, Richard M; Belk, Mark C

    2017-08-01

    Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.

  4. Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen

    PubMed Central

    Kidd, Karen A.; Paterson, Michael J.; Rennie, Michael D.; Podemski, Cheryl L.; Findlay, Dave L.; Blanchfield, Paul J.; Liber, Karsten

    2014-01-01

    Endocrine-disrupting chemicals (EDCs) in municipal effluents directly affect the sexual development and reproductive success of fishes, but indirect effects on invertebrate prey or fish predators through reduced predation or prey availability, respectively, are unknown. At the Experimental Lakes Area in northwestern Ontario, Canada, a long-term, whole-lake experiment was conducted using a before-after-control-impact design to determine both direct and indirect effects of the synthetic oestrogen used in the birth control pill, 17α-ethynyloestradiol (EE2). Algal, microbial, zooplankton and benthic invertebrate communities showed no declines in abundance during three summers of EE2 additions (5–6 ng l−1), indicating no direct toxic effects. Recruitment of fathead minnow (Pimephales promelas) failed, leading to a near-extirpation of this species both 2 years during (young-of-year, YOY) and 2 years following (adults and YOY) EE2 additions. Body condition of male lake trout (Salvelinus namaycush) and male and female white sucker (Catostomus commersonii) declined before changes in prey abundance, suggesting direct effects of EE2 on this endpoint. Evidence of indirect effects of EE2 was also observed. Increases in zooplankton, Chaoborus, and emerging insects were observed after 2 or 3 years of EE2 additions, strongly suggesting indirect effects mediated through the reduced abundance of several small-bodied fishes. Biomass of top predator lake trout declined by 23–42% during and after EE2 additions, most probably an indirect effect from the loss of its prey species, the fathead minnow and slimy sculpin (Cottus cognatus). Our results demonstrate that small-scale studies focusing solely on direct effects are likely to underestimate the true environmental impacts of oestrogens in municipal wastewaters and provide further evidence of the value of whole-ecosystem experiments for understanding indirect effects of EDCs and other aquatic stressors. PMID:25405967

  5. Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people.

    PubMed

    Creel, Scott; Christianson, David; Schuette, Paul

    2013-01-01

    Large carnivore populations are in global decline, and conflicts between large carnivores and humans or their livestock contribute to low tolerance of large carnivores outside of protected areas. African lions (Panthera leo) are a conflict-prone species, and their continental range has declined by 75% in the face of human pressures. Nonetheless, large carnivore populations persist (or even grow) in some areas that are occupied by humans. Lions attain locally high density in the Olkiramatian and Shompole Group Ranches of Kenya's South Rift region, despite residence by pastoralist Maasai people and their sheep, goats, and cattle. We have previously found that these lions respond to seasonal movements of people by moving away from occupied settlements, shifting into denser habitats when people are nearby, and moving into a protected conservation area when people move into the adjacent buffer zone. Here, we examined lion stress responses to anthropogenic activities, using enzyme-linked immunoassay to measure the concentration of faecal glucocorticoid metabolites in 136 samples collected from five lion groups over 2 years. Faecal glucocorticoid metabolite concentrations were significantly lower for lions in the conservation area than for lions in the human-settled buffer zone, and decreased significantly with increasing distance to the nearest occupied human settlement. Faecal glucocorticoid metabolite concentrations were not detectably related to fine-scaled variation in prey or livestock density, and surprisingly, faecal glucocorticoid metabolite concentrations were higher in the wet season, when regional prey abundance was high. Lions coexist with people and livestock on this landscape by adjusting their movements, but they nonetheless mount an appreciable stress response when conditions do not allow them to maintain adequate separation. Thus, physiological data confirm inferences from prior data on lion movements and habitat use, showing that access to undisturbed and protected areas facilitates human-lion coexistence in a broader landscape that is used by people and livestock.

  6. Analysis of Prey-Predator Three Species Fishery Model with Harvesting Including Prey Refuge and Migration

    NASA Astrophysics Data System (ADS)

    Roy, Sankar Kumar; Roy, Banani

    In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.

  7. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  8. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence

    PubMed Central

    Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.

    2018-01-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663

  9. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence.

    PubMed

    Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C

    2018-04-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.

  10. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    USGS Publications Warehouse

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  11. Habitat degradation affects the summer activity of polar bears.

    PubMed

    Ware, Jasmine V; Rode, Karyn D; Bromaghin, Jeffrey F; Douglas, David C; Wilson, Ryan R; Regehr, Eric V; Amstrup, Steven C; Durner, George M; Pagano, Anthony M; Olson, Jay; Robbins, Charles T; Jansen, Heiko T

    2017-05-01

    Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

  12. Habitat degradation affects the summer activity of polar bears

    USGS Publications Warehouse

    Ware, Jasmine V.; Rode, Karyn D.; Bromaghin, Jeffrey F.; Douglas, David C.; Wilson, Ryan R.; Regehr, Eric V.; Amstrup, Steven C.; Durner, George M.; Pagano, Anthony M.; Olson, Jay; Robbins, Charles T.; Jansen, Heiko T

    2017-01-01

    Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species’ distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50–75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

  13. Local and landscape drivers of predation services in urban gardens.

    PubMed

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  14. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird

    PubMed Central

    van Gils, Jan A.; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J.; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis

    2013-01-01

    Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative. PMID:23740782

  15. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird.

    PubMed

    van Gils, Jan A; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis

    2013-07-22

    Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.

  16. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    USGS Publications Warehouse

    Forcada, J.; Malone, D.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90-125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12-16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the "escapement" due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management. ?? 2009 Elsevier B.V.

  17. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    USGS Publications Warehouse

    Forcada, J.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.

  18. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    USGS Publications Warehouse

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.

  19. Scaling the consequences of interactions between invaders from the individual to the population level.

    PubMed

    Griffen, Blaine D

    2016-03-01

    The impact of human-induced stressors, such as invasive species, is often measured at the organismal level, but is much less commonly scaled up to the population level. Interactions with invasive species represent an increasingly common source of stressor in many habitats. However, due to the increasing abundance of invasive species around the globe, invasive species now commonly cause stresses not only for native species in invaded areas, but also for other invasive species. I examine the European green crab Carcinus maenas, an invasive species along the northeast coast of North America, which is known to be negatively impacted in this invaded region by interactions with the invasive Asian shore crab Hemigrapsus sanguineus. Asian shore crabs are known to negatively impact green crabs via two mechanisms: by directly preying on green crab juveniles and by indirectly reducing green crab fecundity via interference (and potentially exploitative) competition that alters green crab diets. I used life-table analyses to scale these two mechanistic stressors up to the population level in order to examine their relative impacts on green crab populations. I demonstrate that lost fecundity has larger impacts on per capita population growth rates, but that both predation and lost fecundity are capable of reducing population growth sufficiently to produce the declines in green crab populations that have been observed in areas where these two species overlap. By scaling up the impacts of one invader on a second invader, I have demonstrated that multiple documented interactions between these species are capable of having population-level impacts and that both may be contributing to the decline of European green crabs in their invaded range on the east coast of North America.

  20. Yellowstone wolf (Canis lupus) denisty predicted by elk (Cervus elaphus) biomass

    USGS Publications Warehouse

    Mech, L. David; Barber-Meyer, Shannon

    2015-01-01

    The Northern Range (NR) of Yellowstone National Park (YNP) hosts a higher prey biomass density in the form of elk (Cervus elaphus L., 1758) than any other system of gray wolves (Canis lupus L., 1758) and prey reported. Therefore, it is important to determine whether that wolf–prey system fits a long-standing model relating wolf density to prey biomass. Using data from 2005 to 2012 after elk population fluctuations dampened 10 years subsequent to wolf reintroduction, we found that NR prey biomass predicted wolf density. This finding and the trajectory of the regression extend the validity of the model to prey densities 19% higher than previous data and suggest that the model would apply to wolf–prey systems of even higher prey biomass.

  1. Bats track and exploit changes in insect pest populations

    USDA-ARS?s Scientific Manuscript database

    The role of bats or any generalist predator in suppressing prey populations depends on the predator’s ability to exploit available prey in space and time. Using a qPCR faecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consumin...

  2. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  3. Impact of wild prey availability on livestock predation by snow leopards

    PubMed Central

    Redpath, Stephen M.; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C.; Mishra, Charudutt

    2017-01-01

    An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates—the preferred prey—and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores. PMID:28680665

  4. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey.

    PubMed

    Ruxton, Graeme D; Franks, Dan W; Balogh, Alexandra C V; Leimar, Olof

    2008-11-01

    Generalization is at the heart of many aspects of behavioral ecology; for foragers it can be seen as an essential feature of learning about potential prey, because natural populations of prey are unlikely to be perfectly homogenous. Aposematic signals are considered to aid predators in learning to avoid a class of defended prey. Predators do this by generalizing between the appearance of prey they have previously sampled and the appearance of prey they subsequently encounter. Mimicry arises when such generalization occurs between individuals of different species. Our aim here is to explore whether the specific shape of the generalization curve can be expected to be important for theoretical predictions relating to the evolution of aposematism and mimicry. We do this by a reanalysis and development of the models provided in two recent papers. We argue that the shape of the generalization curve, in combination with the nature of genetic and phenotypic variation in prey traits, can have evolutionary significance under certain delineated circumstances. We also demonstrate that the process of gradual evolution of Müllerian mimicry proposed by Fisher is particularly efficient in populations with a rich supply of standing genetic variation in mimetic traits.

  6. On the Gause predator-prey model with a refuge: a fresh look at the history.

    PubMed

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Density-Dependent Growth in Invasive Lionfish (Pterois volitans)

    PubMed Central

    Benkwitt, Cassandra E.

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604

  8. Density-dependent growth in invasive Lionfish (Pterois volitans).

    PubMed

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  9. Use of an Inverse Method for Time Series to Estimate the Dynamics of and Management Strategies for the Box Jellyfish Carybdea marsupialis.

    PubMed

    Bordehore, Cesar; Fuentes, Verónica L; Segarra, Jose G; Acevedo, Melisa; Canepa, Antonio; Raventós, Josep

    2015-01-01

    Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a "demographic inverse problem" and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.

  10. Regional and Seasonal Diet of the Western Burrowing Owl in South-Central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek B. Hall, Paul D. Greger, Jeffrey R. Rosier

    2009-04-01

    We examined diets of Western Burrowing Owls (Athene cunicularia hypugaea) based on contents of pellets and large prey remains collected year-round at burrows in each of the 3 regions in south central Nevada (Mojave Desert, Great Basin Desert, and Transition region). The most common prey items, based on percent frequency of occurrence, were crickets and grasshoppers, beetles, rodents, sun spiders, and scorpions. The most common vertebrate prey was kangaroo rats (Dipodomys spp.). True bugs (Hemiptera), scorpions, and western harvest mice (Reithrodontomys megalotis) occurred most frequently in pellets from the Great Basin Desert region. Kangaroo rats (Dipodomys spp.) and pocket micemore » (Perognathinae) were the most important vertebrate prey items in the Transition and Mojave Desert regions, respectively. Frequency of occurrence of any invertebrate prey was high (>80%) in samples year-round but dropped in winter samples, with scorpions and sun spiders exhibiting the steepest declines. Frequency of occurrence of any vertebrate prey peaked in spring samples, was intermediate for winter and summer samples, and was lowest in fall samples. With the possible exception of selecting for western harvest mice in the Great Basin Desert region, Western Burrowing Owls in our study appeared to be opportunistic foragers with a generalist feeding strategy.« less

  11. Effects of turbidity, light level, and cover on predation of white sturgeon larvae by prickly sculpins

    USGS Publications Warehouse

    Gadomski, D.M.; Parsley, M.J.

    2005-01-01

    White sturgeon Acipenser transmontanus occur in rivers of the western United States and southwestern Canada, but some populations are in decline because of recruitment failure. Many river systems in this area have been altered as a result of development that has caused major environmental changes. Our goal was to examine how three changes - lower turbidity levels, higher light levels, and altered substrates - might affect predation by prickly sculpin Cottus asper on white sturgeon larvae. We experimentally investigated predation at various turbidity levels and found that significantly more white sturgeon yolk sac larvae were eaten at lower turbidity levels. The effects of light level (1-4 and 7-15 1x), the presence or absence of rocks as cover, and prey size (14-17 mm and 20-24 mm total length) on the outcome of predator-prey interactions were also examined. Significantly fewer white sturgeon were eaten during trials that combined the lowest light level, cover, and the smallest larvae. Our results suggest that altered river conditions caused by impoundment and other factors have increased predation on white sturgeon larvae. ?? Copyright by the American Fisheries Society 2005.

  12. Status of rainbow smelt in the U.S. waters of Lake Ontario, 2013

    USGS Publications Warehouse

    Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Rainbow Smelt Osmerus mordax are the second most abundant pelagic prey fish in Lake Ontario after Alewife Alosa psuedoharengus. The 2013, USGS/NYSDEC bottom trawl assessment indicated the abundance of Lake Ontario age-1 and older Rainbow Smelt decreased by 69% relative to 2012. Length frequency-based age analysis indicated that age-1 Rainbow Smelt constituted approximately 50% of the population, which is similar to recent trends where the proportion of age-1 has ranged from 95% to 42% of the population. While they constituted approximately half of the catch, the overall abundance index for age 1 was one of the lowest observed in the time series, potentially a result of cannibalism from the previous year class. Combined data from all bottom trawl assessments along the southern shore and eastern basin indicate the proportion of the fish community that is Rainbow Smelt has declined over the past 30 years. In 2013 the proportion of the pelagic fish catch (only pelagic species) that was Rainbow Smelt was the second lowest in the time series at 3.1%. Community diversity indices, based on bottom trawl catches, indicate that Lake Ontario fish community diversity, as assessed by bottom trawls, has sharply declined over the past 36 years and in 2013 the index was the lowest value in the time series. Much of this community diversity decline is driven by changes in the pelagic fish community and dominance of Alewife.

  13. Bioenergetic relations in submerged aquatic vegetation: An experimental test of prey use by juvenile bluegills

    USGS Publications Warehouse

    Richardson, W.B.; Zigler, S.J.; Dewey, M.R.

    1998-01-01

    We experimentally tested the hypotheses that bluegills in vegetated habitats grow more rapidly than in nonvegetated habitats because (1) vegetated habitats contain a greater caloric density and (2) are less susceptible to energetic depletion. The 10-week experiment was conducted in enclosures containing factorial combinations of the presence or absence of Vallisneria americana and juvenile bluegills Lepomis macrochirus. After 6 weeks, Vallisneria-only treatments contained a mean of 1048 cal/m2 in the benthos, whereas treatments with both Vallisneria and bluegills contained 610 cal/m2. Hyalella azteca, a preferred prey of bluegill, were nearly depleted in nonvegetated enclosures, whereas Hyalella densities in enclosures with Vallisneria were much less effected by fish. Bluegill growth was significantly greater with Vallisneria than without but declining water temperatures after week 6 resulted in slower growth despite abundant prey. Ultimately, growth of bluegill resulted from an interaction between availability and ingestion of prey, and water temperature. ?? Munksgaard, 1998.

  14. Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin.

    PubMed

    Gillis, Michael K; Walsh, Matthew R

    2017-07-12

    Invasive species have extensive negative consequences for biodiversity and ecosystem health. Novel species also drive contemporary evolution in many native populations, which could mitigate or amplify their impacts on ecosystems. The predatory zooplankton Bythotrephes longimanus invaded lakes in Wisconsin, USA, in 2009. This invasion caused precipitous declines in zooplankton prey ( Daphnia pulicaria ), with cascading impacts on ecosystem services (water clarity). Here, we tested the link between Bythotrephes invasion, evolution in Daphnia and post-invasion ecological dynamics using 15 years of long-term data in conjunction with comparative experiments. Invasion by Bythotrephes is associated with rapid increases in the body size of Daphnia Laboratory experiments revealed that such shifts have a genetic component; third-generation laboratory-reared Daphnia from 'invaded' lakes are significantly larger and exhibit greater reproductive effort than individuals from 'uninvaded' lakes. This trajectory of evolution should accelerate Daphnia population growth and enhance population persistence. We tested this prediction by comparing analyses of long-term data with laboratory-based simulations, and show that rapid evolution in Daphnia is associated with increased population growth in invaded lakes. © 2017 The Authors.

  15. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    PubMed Central

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  16. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    PubMed

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  17. Alternative prey use affects helminth parasite infections in grey wolves.

    PubMed

    Friesen, Olwyn C; Roth, James D

    2016-09-01

    Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Rabbits killing birds revisited.

    PubMed

    Zhang, Jimin; Fan, Meng; Kuang, Yang

    2006-09-01

    We formulate and study a three-species population model consisting of an endemic prey (bird), an alien prey (rabbit) and an alien predator (cat). Our model overcomes several model construction problems in existing models. Moreover, our model generates richer, more reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rabbit or the cat when the bird is endangered. We confirm the existence of the hyperpredation phenomenon, which is a big potential threat to most endemic prey. Specifically, we show that, in an endemic prey-alien prey-alien predator system, eradication of introduced predators such as the cat alone is not always the best solution to protect endemic insular prey since predator control may fail to protect the indigenous prey when the control of the introduced prey is not carried out simultaneously.

  19. Allometric scaling enhances stability in complex food webs.

    PubMed

    Brose, Ulrich; Williams, Richard J; Martinez, Neo D

    2006-11-01

    Classic local stability theory predicts that complex ecological networks are unstable and are unlikely to persist despite empiricists' abundant documentation of such complexity in nature. This contradiction has puzzled biologists for decades. While some have explored how stability may be achieved in small modules of a few interacting species, rigorous demonstrations of how large complex and ecologically realistic networks dynamically persist remain scarce and inadequately understood. Here, we help fill this void by combining structural models of complex food webs with nonlinear bioenergetic models of population dynamics parameterized by biological rates that are allometrically scaled to populations' average body masses. Increasing predator-prey body mass ratios increase population persistence up to a saturation level that is reached by invertebrate and ectotherm vertebrate predators when being 10 or 100 times larger than their prey respectively. These values are corroborated by empirical predator-prey body mass ratios from a global data base. Moreover, negative effects of diversity (i.e. species richness) on stability (i.e. population persistence) become neutral or positive relationships at these empirical ratios. These results demonstrate that the predator-prey body mass ratios found in nature may be key to enabling persistence of populations in complex food webs and stabilizing the diversity of natural ecosystems.

  20. Trawl-based assessment of Lake Ontario pelagic prey fishes including Alewife and Rainbow Smelt

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.; Holden, Jeremy P.

    2017-01-01

    Managing Lake Ontario fisheries in an ecosystem-context, requires reliable data on the status and trends of prey fishes that support predator populations. We report on the community and population dynamics of Lake Ontario pelagic prey fishes, based on bottom trawl surveys. We emphasize information that supports the international Lake Ontario Committee’s Fish Community Objectives. In 2016, 142 bottom trawls were collected in U.S. waters, and for the first time 46 trawls were conducted in Canadian waters. A total of 420,386 fish from 24 species were captured. Alewife were 89% of the total fish catch and 93% of the pelagic prey fish catch. The Rainbow Smelt abundance index in U.S. waters increased slightly in 2016 relative to 2015. Interestingly, the Rainbow Smelt abundance index from tows in Canadian waters was 35% higher than the U.S. index. Abundances of Threespine Stickleback and Emerald Shiners in both U.S. and Canadian waters were low in 2016 relative to their peak abundances in the late 1990s, but Cisco abundance indices suggest a recent increase in their abundance. This year, the reported Alewife abundance time series was truncated to only include values since 1997, which were collected with the same trawl and eliminated the need to adjust values for different trawls. The 2016 adult Alewife abundance index was the second lowest abundance ever observed in the time series. This value was expected to decline from the 2015 value since the indices of juvenile Alewife were low in 2014 and the lowest ever observed in 2015. The fall condition index of adult Alewife increased in 2016 and is consistent with lower abundance and reduced competition for zooplankton resources. The 2016 Age-1 Alewife index increased relative to 2014 and 2015, and suggested lake conditions were favorable for Age-1 survival and growth during the summer of 2015 and the 2015-2016 winter. Interestingly, the catch of adult and Age1 Alewife was higher in trawls conducted in Canadian waters relative to U. S. waters. The larger trawl catches in Canadian waters suggest there may be important spatial differences in lake-wide distribution of prey fishes in April when trawling is conducted. Future surveys should to continue to sample at the whole-lake scale to understand the year to year variability in spatial distribution and the physical or biotic factors driving those distribution differences.

  1. Reproductive ecology of Vipera latastei, in the Iberian Peninsula: implications for the conservation of a Mediterranean viper.

    PubMed

    Pleguezuelos, Juan Manuel; Santos, Xavier; Brito, José Carlos; Parellada, Xavier; Llorente, Gustavo Adolfo; Fahd, Soumia

    2007-01-01

    Eurosiberian vipers have been considered model organisms, and studies on their reproductive ecology have afforded much of the current knowledge concerning viviparity in snakes. However, such studies are biased towards northern species and there is little information on Mediterranean species and/or populations. The reproductive ecology of Vipera latastei in the Iberian Peninsula was studied by analysing a large sample of specimens from collections, to better understand the conservation status of this Mediterranean viper. Males and females matured at small and similar body sizes (240 and 265 mm snout-vent length, respectively) and reproductive cycles in both sexes were seasonal. Spermatogenesis peaked in August, vitellogenesis developed in spring and the timing of the mating period was puzzling, with populations mating in autumn, spring, or in both seasons. The most striking finding was that adult females reproduced triennially on average. Lataste's viper is currently in continuous decline in the IP, and most of its populations are isolated in Mediterranean mountains. We hypothesize that prey scarcity and the brevity of the activity period in mountain habitats diminishes the ability of vipers to recover over the short term the energy expended in reproduction. The species needs 2 years for the acquisition and storage of energy ("capital breeder"), and a third year for the expenditure of this energy (in vitellogenesis and embryogenesis), a year during which females feed consistently ("income breeder"). Thus, this viper combines both strategies to supply the reproductive energy cost. Current decline in population and distribution, together with a poor capacity to renew populations, renders Lataste's viper vulnerable to environmental stochasticity.

  2. An Arctic predator-prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals.

    PubMed

    Hamilton, Charmain D; Kovacs, Kit M; Ims, Rolf A; Aars, Jon; Lydersen, Christian

    2017-09-01

    Climate change is impacting different species at different rates, leading to alterations in biological interactions with ramifications for wider ecosystem functioning. Understanding these alterations can help improve predictive capacity and inform management efforts designed to mitigate against negative impacts. We investigated how the movement and space use patterns of polar bears (Ursus maritimus) in coastal areas in Svalbard, Norway, have been altered by a sudden decline in sea ice that occurred in 2006. We also investigated whether the spatial overlap between polar bears and their traditionally most important prey, ringed seals (Pusa hispida), has been affected by the sea-ice decline, as polar bears are dependent on a sea-ice platform for hunting seals. We attached biotelemetry devices to ringed seals (n = 60, both sexes) and polar bears (n = 67, all females) before (2002-2004) and after (2010-2013) a sudden decline in sea ice in Svalbard. We used linear mixed-effects models to evaluate the association of these species to environmental features and an approach based on Time Spent in Area to investigate changes in spatial overlap between the two species. Following the sea-ice reduction, polar bears spent the same amount of time close to tidal glacier fronts in the spring but less time in these areas during the summer and autumn. However, ringed seals did not alter their association with glacier fronts during summer, leading to a major decrease in spatial overlap values between these species in Svalbard's coastal areas. Polar bears now move greater distances daily and spend more time close to ground-nesting bird colonies, where bear predation can have substantial local effects. Our results indicate that sea-ice declines have impacted the degree of spatial overlap and hence the strength of the predator-prey relationship between polar bears and ringed seals, with consequences for the wider Arctic marine and terrestrial ecosystems. Shifts in ecological interactions are likely to become more widespread in many ecosystems as both predators and prey respond to changing environmental conditions induced by global warming, highlighting the importance of multi-species studies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. Coevolution can reverse predator–prey cycles

    PubMed Central

    Cortez, Michael H.; Weitz, Joshua S.

    2014-01-01

    A hallmark of Lotka–Volterra models, and other ecological models of predator–prey interactions, is that in predator–prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator–prey coevolution can also drive population cycles where the opposite of canonical Lotka–Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage–cholera, mink–muskrat, and gyrfalcon–rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator–prey coevolution and reveal unique ways in which predator–prey coevolution can shape, and possibly reverse, community dynamics. PMID:24799689

  4. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  5. Population variance in prey, diets and their macronutrient composition in an endangered marine predator, the Franciscana dolphin

    NASA Astrophysics Data System (ADS)

    Denuncio, Pablo; Paso Viola, Maria N.; Machovsky-Capuska, Gabriel E.; Raubenheimer, David; Blasina, Gabriela; Machado, Rodrigo; Polizzi, Paula; Gerpe, Marcela; Cappozzo, Humberto L.; Rodriguez, Diego H.

    2017-11-01

    Disentangling the intricacies governing dietary breadth in wild predators is important for understanding their role in structuring ecological communities and provides critical information for the management and conservation of ecologically threatened species. Here we combined dietary analysis, nutritional composition analysis of prey, literature data and nutritional geometry (right-angled mixture triangle models -RMT-) to examine the diet of the most threatened small cetacean in the western South Atlantic Ocean, the Franciscana dolphin (Pontoporia blainvillei). We applied a recently developed extension of niche theory based on the RMT to help understand the dietary strategies of this species. Our results showed that across their range the Franciscanas consumed prey with variable protein-to-lipid energy ratios (LMM, p < 0.001). In an intensive study of one area, FMA IV, we found that dolphins sub-populations, which recent genetic evidence suggest should be differentiated into three management units, have diets with different protein energy and water mass compositions, but similar protein-to-lipid energy ratios. Furthermore, dolphins from the three areas mixed different combinations of prey in their diets to achieve the observed macronutrient ratios. These results suggest that the different habitats that each sub-population occupies (estuarine, north marine area and south marine) might be associated with different prey composition niches, but similar realized nutritional niches. Future priorities are to better comprehend possible geographical and long-term seasonal effects on prey consumption and dietary breadth of the different Franciscana populations to identify potential impacts (environmental and human-related), enhance the current management strategies to protect this endangered marine predator.

  6. Status and trends of prey fish populations in Lake Michigan, 2012

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Desorcie, Timothy J.; Kostich, Melissa Jean; Smith, Kelley R.; Adams, Jean V.

    2012-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2012. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2012 was estimated at 9 kilotonnes (kt, 1 kt = 1000 metric tonnes), which continues the trend of unusually low alewife biomass since 2004 but represented a 20% increase from the 2011 estimate. The age distribution of alewives larger than 100 mm was dominated (i.e., 84%) by age-2. Record low biomass was observed for several species, including bloater (0.4 kt), rainbow smelt (0.1 kt), deepwater sculpin (1.5 kt), and ninespine stickleback (0.01 kt). Slimy sculpin lake-wide biomass was 0.73 kt in 2012, which was the third consecutive year revealing a decline. Estimated biomass of round goby increased by 79% to 3 kt. Burbot lake-wide biomass (0.5 kt in 2012) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 2 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimates of dreissenid mussels have continued to increase from 2010, from 12 to 95 kt in 2012. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2012 was 15 kt, which represented the lowest total biomass of the time series.

  7. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited. ?? 2006 British Ecological Society.

  8. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  9. Status and trends of the Lake Huron deepwater demersal fish ommunity, 2008

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.; Riley, Stephen C.; Farha, Steve A.; French, John R.

    2009-01-01

    The U.S.Geological Survey Great Lakes Science Center has conducted trawl surveys to assess annual changes in the deepwater demersal fish community of Lake Huron since 1973. Since 1992, surveys have been carried out using a 21 m wing trawl towed on-contour at depths ranging from 9 to 110 m on fixed transects. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2008 fall bottom trawl survey was carried out between October 24 and November 20, 2008 and sampled only the three northern U.S. ports at DeTour, Hammond Bay, and Alpena due to mechanical problems with the research vessel and prolonged periods of bad weather. Therefore, all data presented for 2008 are based on samples collected from these ports. Compared to previous years, alewife populations in Lake Huron remain at low levels after collapsing in 2004. Age-0 alewife density and biomass appears to have increased slightly but overall levels remain near the nadir observed in 2004. Density and biomass of adult and juvenile rainbow smelt showed a decrease from 2007 despite record-high abundance of juveniles observed in 2005, suggesting recruitment was low. Numbers of adult and juvenile bloater were low despite recent high year-classes. Abundances for most other prey species were similar to the low levels observed in 2005 - 2007. We captured one wild juvenile lake trout in 2008 representing the fifth consecutive year that wild lake trout were captured in the survey. Based on pairwise graphical comparisons and nonparametric correlation analyses, dynamics of prey abundance at the three northern ports followed lakewide trends since 1992. Density of benthic macroinvertebrates was at an all-time low in 2008 since sampling began in 2001. The decline in abundance was due to decreases in all taxonomic groups and a large reduction in recruitment of quagga mussels. Density of Diporeia at northern ports in 2008 was the lowest observed. Diporeia were found only at 73-m sites of three ports sampled in northern Lake Huron. While no lakewide estimate of prey biomass was calculated due to the limited spatial scope of the 2008 survey, existing data suggest prey biomass remains depressed. Prey available to salmonids during 2009 will likely be small alewives, small rainbow smelt and small bloaters. Predators in Lake Huron will continue to face potential prey shortages.

  10. Behavioral and physiological responses to prey match-mismatch in larval herring

    NASA Astrophysics Data System (ADS)

    Illing, Björn; Moyano, Marta; Berg, Julia; Hufnagl, Marc; Peck, Myron A.

    2018-02-01

    The year-class success of Atlantic herring (Clupea harengus) spawning in the autumn/winter in the North Sea (NSAS stock) and in the spring in the western Baltic Sea (WBSS) appears driven by prey match-mismatch dynamics affecting the survival of larvae during the first weeks of life. To better understand and model the consequences of prey match-mismatch from an individual-based perspective, we measured aspects of the physiology and behavior of NSAS and WBSS herring larvae foraging in markedly different prey concentrations. When matched with prey (ad libitum concentrations of the copepod Acartia tonsa) larval growth, swimming activity, nutritional condition and metabolic rates were relatively high. When prey was absent (mismatch), swimming and feeding behavior rapidly declined within 2 and 4 days, for WBSS and NSAS larvae, respectively, concomitant with reductions in nutritional (RNA-DNA ratio) and somatic (weight-at-length) condition. After several days without prey, respiration measurements made on WBSS larvae suggested metabolic down-regulation (8-34%). An individual-based model depicting the time course of these Behavioral and physiological responses suggested that 25-mm larvae experiencing a mismatch would survive 25-33% (10, 7 °C) longer than 12-mm larvae. Warmer temperatures exacerbate starvation-induced decrements in performance. Without Behavioral and metabolic adjustments, survival of 25-mm larvae would be reduced from 8 to 6 days at 7 °C. Our findings highlight how adaptive Behavioral and physiological responses are tightly linked to prey match-mismatch dynamics in larval herring and how these responses can be included in models to better explore how bottom-up processes regulate larval fish growth and survival.

  11. Ancient fish and recent invaders: white sturgeon Acipenser transmontanus diet response to invasive-species-mediated changes in a benthic prey assemblage

    USGS Publications Warehouse

    Zeug, Steven C; Brodsky, Annie; Kogut, Nina; Stewart, Robin; Merz, Joe

    2014-01-01

    Invasive organisms can have significant impacts on native species, and the San Francisco Estuary (SFE), California, USA, is one of the world's most invaded estuaries. Decline of native white sturgeon Acipenser transmontanus abundance in the SFE has been acknowledged, but underlying mechanisms are poorly understood. Invasion by the overbite clam Potamocorbula amurensis has drastically altered the SFE benthic prey community, yet little is known about how this change has affected sturgeon diets. We investigated changes in the diet of white sturgeon following the overbite clam invasion and subsequent shift in the SFE benthic prey assemblage. Gut content analysis was used to compare white sturgeon prey composition and importance between the pre- and post-invasion periods. Additionally, stable isotope analysis was employed to estimate the assimilation of prey items to sturgeon biomass. Overbite clams dominated diets in the post-invasion period, accounting for 82 to 93% of total volume. Stable isotope analysis confirmed the importance of this prey item, although their assimilated contribution to sturgeon biomass was estimated to be less (70 to 83%) than gut contents indicated. The frequency of fish in white sturgeon guts increased in the post-invasion period, and isotope analysis indicated relatively large contributions of fish to sturgeon biomass (3.7 to 19%). The trophic adaptability of white sturgeon has allowed them to exploit this new prey source (overbite clam). Future conservation and restoration efforts must consider a potentially destabilized food web given the large importance of a single prey item.

  12. Decline of shortjaw cisco in Lake Superior: the role of overfishing and risk of extinction

    USGS Publications Warehouse

    Bronte, Charles R.; Hoff, Michael H.; Gorman, Owen T.; Thogmartin, Wayne E.; Schneeberger, Philip J.; Todd, Thomas N.

    2010-01-01

    Recent reviews have further documented the decline of the shortjaw cisco Coregonus zenithicus in Lake Superior. This fish was the most abundant deepwater cisco species in Lake Superior in the early 1920s but presently makes up less than 1% of all deepwater ciscoes (i.e., including shortjaw cisco, bloater C. hoyi, and kiyi C. kiyi) captured in biological surveys. Directed overfishing of deepwater cisco species during the 1930s and again during the mid-1960s and 1970s has been suggested as the cause of the shortjaw cisco's demise. In this paper, we re-examined the overfishing hypothesis by using historical and recent survey data to estimate the proportion of the historical commercial fishery landings that comprised shortjaw ciscoes. We developed time series of estimated harvest and relative abundance for all statistical districts in Michigan waters of Lake Superior during 1929–1996, for which aggregate catch and effort data were available but not previously examined. The spatial distribution of the fishery and the relationships of catch to fishing effort were examined for evidence of overfishing. Our analysis suggested that directed overfishing was probably not the cause of shortjaw cisco demise, as this species appeared to be declining in all statistical districts regardless of the intensity of the fishery. A count-based population viability analysis indicated that quasi-extinction of the shortjaw cisco is highly probable in the near future. We propose an alternative hypothesis based on the decline of Lake Superior's keystone predator, the lake trout Salvelinus namaycush, which resulted in an expansion of the population of its principal prey, the cisco C. artedi, due to release from predation pressure. Competitive or predation interactions between the cisco and shortjaw cisco may be more likely explanations for the demise of the latter species.

  13. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    PubMed

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. Dynamic patterns of overexploitation in fisheries.

    PubMed

    Perissi, Ilaria; Bardi, Ugo; El Asmar, Toufic; Lavacchi, Alessandro

    2017-09-10

    Understanding overfishing and regulating fishing quotas is a major global challenge for the 21st Century both in terms of providing food for humankind and to preserve the oceans' ecosystems. However, fishing is a complex economic activity, affected not just by overfishing but also by such factors as pollution, technology, financial factors and more. For this reason, it is often difficult to state with complete certainty that overfishing is the cause of the decline of a fishery. In this study, we developed a simple dynamic model specifically designed to isolate and to study the role of depletion on production. The model is based on the well-known Lotka-Volterra model, or Prey-Predator mechanism, assuming that the fish stock and the fishing industry are coupled variables that dynamically affect each other. In the model, the fishing industry acts as the "predator" and the fish stock as the "prey". If the model can fit historical data, in particular relative to the productive decline of specific fisheries, then we have a strong indication that the decline of the fish stock is driving the decline of the fishery production. The model doesn't pretend to be a general description of the fishing industry in all its varied forms; however, the data reported here show that the model can describe several historical cases of fisheries whose production decreased and collapsed, indicating that the overexploitation of the fish stocks is an important factor in the decline of fisheries.

  15. Faunal turnover in the Azraq Basin, eastern Jordan 28,000 to 9000 cal yr BP, signalling climate change and human impact

    NASA Astrophysics Data System (ADS)

    Martin, Louise; Edwards, Yvonne H.; Roe, Joe; Garrard, Andrew

    2016-09-01

    Recent zooarchaeological analyses of game exploitation in the Epipalaeolithic of the Southern Levant identify a decline in large game in the Natufian, with corresponding increase in small prey, interpreted as hunting pressure driven by population expansion. To date, studies focus on the Mediterranean zone. This paper adopts similar approaches to examine Epipalaeolithic to Neolithic faunal data from 16 sites in the steppic Jordanian Azraq Basin. Results here reveal very different trends. Large game, mainly equids, fluctuate throughout the Epipalaeolithic, due to climatic conditions and available water/vegetation. Cattle thrive in the Azraq oasis, showing no decline in the Late Epipalaeolithic. Gazelle exploitation is predominant and sustainable throughout the Epipalaeolithic, even at Kharaneh IV and Wadi Jilat 6 'megasites'. However, PPNB assemblages from the limestone steppe show intensive game exploitation resulting from longer-stay settlement. The focused gazelle-hunting camp at Dhuweila in the basalt desert also shows pressure from indiscriminate culling impacting herd demography, interpreted as providing meat for onwards exchange. Human impacts on steppe fauna appear both local and in many cases short-term, unlike the large-game suppression reported from west of the Rift Valley. Resource pressures and game over-kill, whether population-driven or otherwise, are not currently apparent east of the Jordan River.

  16. Evaluation of Dicyphus hersperus (Heteroptera: Miridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomato.

    PubMed

    Shipp, J L; Wang, K

    2006-04-01

    The effectiveness of inoculative releases of the mirid predator Dicyphus hesperus Knight for control of Frankliniella occidentalis (Pergande) on greenhouse tomatoes was evaluated in terms of suppression of the population densities of F. occidentalis and associated fruit damage in the presence of the predator over two seasonal trials. An inoculative release of one D. hesperus per plant (approximately 0.1:10 predator:prey ratio) at a high F. occidentalis population density (140 thrips per plant) suppressed the thrips population density to a significantly lower level, compared with the nonrelease greenhouse, but not below a thrips level that caused economic fruit damage. As the predator:prey ratio increased to approximately 0.5:10 D. hesperus:F. occidentalis, the mean percentage of the thrips-damaged fruit in the D. hesperus release greenhouse decreased to 1.6%. However, the amount of fruit feeding by D. hesperus was highly correlated to the availability of prey (or predator:prey ratio) under greenhouse conditions. D. hesperus-induced fruit damage occurred when the predator:prey ratio was >1:10 D. hesperus:F. occidentalis. Considering the potential risk of fruit damage by D. hesperus and the need for effective control of F. occidentalis, a 0.5-1:10 D. hesperus:F. occidentalis ratio is recommended when the thrips population density is in the range of 60-150 thrips per plant.

  17. Seasonal and among-stream variation in predator encounter rates for fish prey

    Treesearch

    Bret C. Harvey; Rodney J. Nakamoto

    2013-01-01

    Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predator–prey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...

  18. Seasonal and sexual differences in American marten diet in northeastern Oregon.

    Treesearch

    E.L. Bull

    2002-01-01

    Information on the diet of the American marten (Martes americana) is vital to understanding habitat requirements of populations of this species. The frequency of occurrence of prey items found in 1014 scat samples associated with 31 radiocollared American martens in northeastern Oregon included: 62.7% vole-sized prey, 28.2% squirrel-sized prey, 22....

  19. Effects of pesticides on owls in North America

    USGS Publications Warehouse

    Blus, L.J.

    1996-01-01

    A literature review of the effects of pesticides on owls in North America showed that relatively few studies have been undertaken. Owls used in experiments seem as sensitive to organochlorine pesticides (OCs) as other birds of prey, but wild owls experienced few serious problems, primarily because they were exposed to lower residues in their predominately mammalian or invertebrate prey. For example, the great horned owl ( Bubo virginianus ) and the common barn-owl ( Tyto alba ) neither experienced marked changes in mortality or recruitment rates nor was there any evidence of population decreases even during the maximum period of OC pesticide use. Also, eggshell thinning was not a widespread problem. There were adverse effects on individual owls including verified records of 74 owls of six species that died from secondary or tertiary poisoning related to strychnine, organochlorines, anticholinesterases (antiChEs) and anticoagulants in 16 states within the U.S. and one province in Canada. Most of the pesticide-related deaths occurred during the 1980s, although this probably does not represent a true temporal distribution. Verified mortalities of owls probably represent a small fraction of the actual number that died from pesticides. Incidence of mortality seems biased geographically toward areas such as New York that have active ecotoxicological programs. Burrowing owl ( Speotyto cunicularia ) populations currently are decreasing throughout much of the range in the U.S. and Canada. Studies in Canada indicate that antiChE pesticides, particularly carbofuran, were responsible for the declines there.

  20. Role of Alternative Food in Controlling Chaotic Dynamics in a Predator-Prey Model with Disease in the Predator

    NASA Astrophysics Data System (ADS)

    Das, Krishna Pada; Bairagi, Nandadulal; Sen, Prabir

    It is generally, but not always, accepted that alternative food plays a stabilizing role in predator-prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator-prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.

  1. Consumer co-evolution as an important component of the eco-evolutionary feedback.

    PubMed

    Hiltunen, Teppo; Becks, Lutz

    2014-10-22

    Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.

  2. Match or mismatch: the influence of phenology on size-dependent life history and divergence in population structure

    USGS Publications Warehouse

    Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.

    2010-01-01

    Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.

  3. Multiple dynamics in a single predator-prey system: experimental effects of food quality.

    PubMed Central

    Nelson, W A; McCauley, E; Wrona, F J

    2001-01-01

    Recent work with the freshwater zooplankton Daphnia has suggested that the quality of its algal prey can have a significant effect on its demographic rates and life-history patterns. Predator-prey theory linking food quantity and food quality predicts that a single system should be able to display two distinct patterns of population dynamics. One pattern is predicted to have high herbivore and low algal biomass dynamics (high HBD), whereas the other is predicted to have low herbivore and high algal biomass dynamics (low HBD). Despite these predictions and the stoichiometric evidence that many phytoplankton communities may have poor access to food of quality, there have been few tests of whether a dynamic predator-prey system can display both of these distinct patterns. Here we report, to the authors' knowledge, the first evidence for two dynamical patterns, as predicted by theory, in a single predator-prey system. We show that the high HBD is a result of food quantity effects and that the low HBD is a result of food quality effects, which are maintained by phosphorus limitation in the predator. These results provide an important link between the known effects of nutrient limitation in herbivores and the significance of prey quality in predator-prey population dynamics in natural zooplankton communities. PMID:11410147

  4. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  5. Relative importance of evolutionary dynamics depends on the composition of microbial predator–prey community

    PubMed Central

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-01-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities. PMID:26684728

  6. Avoidance response of juvenile Pacific treefrogs to chemical cues of introduced predatory bullfrogs.

    PubMed

    Chivers, D P; Wildy, E L; Kiesecker, J M; Blaustein, A R

    2001-08-01

    Bullfrogs (Rana catesbeiana), native to eastern North America, were introduced into Oregon in the 1930's. Bullfrogs are highly efficient predators that are known to eat a variety of prey including other amphibians. In laboratory experiments, we investigated whether juvenile Pacific treefrogs (Hyla regilla) recognize adult bullfrogs as a predatory threat. The ability of prey animals to acquire recognition of an introduced predator has important implications for survival of the prey. We found that treefrogs from a population that co-occurred with bullfrogs showed a strong avoidance of chemical cues of bullfrogs. In contrast, treefrogs from a population that did not co-occur with bullfrogs, did not respond to the bullfrog cues. Additional experiments showed that both populations of treefrogs use chemical cues to mediate predation risk. Treefrogs from both populations avoided chemical alarm cues from injured conspecifics.

  7. Adding constraints to predation through allometric relation of scats to consumption.

    PubMed

    Chakrabarti, Stotra; Jhala, Yadvendradev V; Dutta, Sutirtha; Qureshi, Qamar; Kadivar, Riaz F; Rana, Vishwadipsinh J

    2016-05-01

    A thorough understanding of mechanisms of prey consumption by carnivores and the constraints on predation help us in evaluating the role of carnivores in an ecosystem. This is crucial in developing appropriate management strategies for their conservation and mitigating human-carnivore conflict. Current models on optimal foraging suggest that mammalian carnivores would profit most from killing the largest prey that they can subdue with minimal risk of injury to themselves. Wild carnivore diets are primarily estimated through analysis of their scats. Using extensive feeding experiments (n = 68) on a wide size range (4·5-130 kg) of obligate carnivores - lion, leopard, jungle cat and domestic cat, we parameterize biomass models that best relate consumption to scat production. We evaluate additional constraints of gut fill, prey digestibility and carcass utilization on carnivory that were hereto not considered in optimal foraging studies. Our results show that patterns of consumption to scat production against prey size are similar and asymptotic, contrary to established linear models, across these carnivores after accounting for the effect of carnivore size. This asymptotic, allometric relationship allowed us to develop a generalized model: biomass consumed per collectable scat/predator weight = 0·033-0·025exp(-4·284(prey weight/predator weight)) , which is applicable to all obligate carnivores to compute prey biomass consumed from scats. Our results also depict a relationship for prey digestibility which saturates at about 90% for prey larger than predator size. Carcass utilization declines exponentially with prey size. These mechanisms result in digestible biomass saturating at prey weights approximately equal to predator weight. Published literature on consumption by tropical carnivores that has relied on linear biomass models is substantially biased. We demonstrate the nature of these biases by correcting diets of tiger, lion and leopard in recent publications. Our analysis suggests that consumption of medium-sized prey was significantly underestimated, while large prey consumption was grossly overestimated in large carnivore diets to date. We highlight that additional constraints of prey digestibility and utilization combined with escalating handling time and risks of killing large prey make prey larger than the predator size unprofitable for obligate carnivores. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  8. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  9. Status and trends of prey fish populations in Lake Michigan, 2013

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 1 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2013 was 43 kt, with alewives and round gobies constituting 92% of this total.

  10. Inducible defenses in prey intensify predator cannibalism.

    PubMed

    Kishida, Osamu; Trussell, Geoffrey C; Nishimura, Kinya; Ohgushi, Takayuki

    2009-11-01

    Trophic cascades are often a potent force in ecological communities, but abiotic and biotic heterogeneity can diffuse their influence. For example, inducible defenses in many species create variation in prey edibility, and size-structured interactions, such as cannibalism, can shift predator diets away from heterospecific prey. Although both factors diffuse cascade strength by adding heterogeneity to trophic interactions, the consequences of their interactioh remain poorly understood. We show that inducible defenses in tadpole prey greatly intensify cannibalism in predatory larval salamanders. The likelihood of cannibalism was also strongly influenced by asymmetries in salamander size that appear to be most important in the presence of defended prey. Hence, variation in prey edibility and the size structure of the predator may synergistically affect predator-prey population dynamics by reducing prey mortality and increasing predator mortality via cannibalism. We also suggest that the indirect effects of prey defenses may shape the evolution of predator traits that determine diet breadth and how trophic dynamics unfold in natural systems.

  11. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations

    USGS Publications Warehouse

    Tinker, M.T.; Mangel, M.; Estes, J.A.

    2009-01-01

    Question: How does the ability to improve foraging skills by learning, and to transfer that learned knowledge, affect the development of intra-population foraging specializations? Features of the model: We use both a state-dependent life-history model implemented by stochastic dynamic programming (SDPM) and an individual-based model (IBM) to capture the dynamic nature of behavioural preferences in feeding. Variables in the SDPM include energy reserves, skill levels, energy and handling time per single prey item, metabolic rate, the rates at which skills are learned and forgotten, the effect of skills on handling time, and the relationship between energy reserves and fitness. Additional variables in the IBM include the probability of successful weaning, the logistic dynamics of the prey species with stochastic recruitment, the intensity of top-down control of prey by predators, the mean and variance in skill levels of new recruits, and the extent to which learned Information can be transmitted via matrilineal social learning. Key range of variables: We explore the effects of approaching the time horizon in the SDPM, changing the extent to which skills can improve with experience, increasing the rates of learning or forgetting of skills, changing whether the learning curve is constant, accelerating (T-shaped) or decelerating ('r'-shaped), changing both mean and maximum possible energy reserves, changing metabolic costs of foraging, and changing the rate of encounter with prey. Conclusions: The model results show that the following factors increase the degree of prey specialization observed in a predator population: (1) Experience handling a prey type can substantially improve foraging skills for that prey. (2) There is limited ability to retain complex learned skills for multiple prey types. (3) The learning curve for acquiring new foraging skills is accelerating, or J-shaped. (4) The metabolic costs of foraging are high relative to available energy reserves. (5) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.

  12. Stability and bifurcation analysis of three-species predator-prey model with non-monotonic delayed predator response

    NASA Astrophysics Data System (ADS)

    Balilo, Aldrin T.; Collera, Juancho A.

    2018-03-01

    In this paper, we consider delayed three-species predator-prey model with non-monotonic functional response where two predator populations feed on a single prey population. Response function in both predator populations includes a time delay which represents the gestation period of the predator populations. We call a positive equlibrium solution of the form E*S=(x*,y*,y*) as a symmetric equilibrium. The goal of this paper is to determine the effect of the difference in gestation periods of predator populations to the local dynamics of symmetric equilibria. Our results include conditions on the existence of equilibrium solutions, and stability and bifurcations of symmetric equilibria as the gestation periods of predator populations are varied. A numerical bifurcation analysis tool is also used to illustrate our results. Stability switch occurs at a Hopf bifurcation. Moreover, a branch of stable periodic solutions, obtained using numerical continuation, emerges from the Hopf bifurcation. This shows that the predator population with longer gestation period oscillates higher than the predator population with shorter gestation period.

  13. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Croley, Thomas E.

    2006-01-01

    Long-term population trends are generally explained by factors extrinsic (e.g., climate, predation) rather than intrinsic (e.g., genetics, maternal effects) to the population. We sought to understand the long-term population dynamics of an important native Lake Michigan prey fish, the bloaterCoregonus hoyi. Over a 38-year time series, three 10- to 15-year phases occurred (poor, excellent, and then poor recruitment) without high interannual variability within a particular phase. We used dynamic linear models to determine whether extrinsic (winter and spring temperature, alewife predator densities) or intrinsic factors (population egg production, adult condition, adult sex ratio) explained variation in recruitment. Models that included population egg production, sex ratio, winter and spring temperature, and adult bloater condition explained the most variation. Of these variables, sex ratio, which ranged from 47% to 97% female across the time series, consistently had the greatest effect: recruitment declined with female predominance. Including biomass of adult alewife predators in the models did not explain additional variation. Overall our results indicated that bloater recruitment is linked to its sex ratio, but understanding the underlying mechanisms will require additional efforts.

  14. Eyrie enhancement measures to bolster Saker falcon populations in Mongolia

    USGS Publications Warehouse

    Ellis, D.H.; Tsengag, P.; Whitlock, P.L.

    1998-01-01

    Because the massive harvest of Saker Falcons (Falco cherrug) in Central Asia has already impacted local populations at least in Kazakhstan, because falcon smuggling has recently become rampant in China, and because a government-authorized harvest has begun in Mongolia, we sought measures to bolster numbers in Mongolia before the population can decline there. In three expeditions (1994, 1995, and 1997), we located over 120 Saker Falcon eyries in Mongolia. Over 20% of these were on man-made structures. Because so many falcons were already nesting on artificial supports, we decided that the creation of artificial eyries on man-made supports would be the most efficient means of expanding saker populations. Two other factors also recommended the creation of artificial eyries. First, most of Mongolia is open steppe with good prey populations but without trees or cliffs that might support falcon eyries. Second, in the open habitat, man-made supports are often available but nests are often absent. In 1997, we created 65 new nest sites and enlarged or modified another 15 previously used falcon eyries. This paper reports the extreme variety in sites used by Saker Falcons in Mongolia, and occupancy rates on artificial eyrie supports.

  15. Prey Distribution, Physical Habitat Features, and Guild Traits Interact to Produce Contrasting Shorebird Assemblages among Foraging Patches

    PubMed Central

    VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.

    2012-01-01

    Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats. PMID:23285153

  16. Pre-Partum Diet of Adult Female Bearded Seals in Years of Contrasting Ice Conditions

    PubMed Central

    Hindell, Mark A.; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M.

    2012-01-01

    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ13C and δ15N) measured in whiskers collected from their newborn pups. The δ15N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals. PMID:22693616

  17. Effect of dietary vitamin E and prey supplementation on semen quality in male black-footed ferrets (Mustela nigripes).

    PubMed

    Santymire, Rachel M; Lavin, Shana R; Branvold-Faber, Heather; Kreeger, Julie; Marinari, Paul

    2015-07-15

    Over the recent years, the captive population of the endangered black-footed ferret (Mustela nigripes; ferret) has experienced a decline in normal sperm (NS) morphology (from 50% to 16%), which may be linked to inbreeding depression or it may have been a dietary change. We examined the role of dietary vitamin E, selenium (SE), and vitamin A on serum levels of vitamin E, SE, and vitamin A and semen quality. Ferrets (n = 55 males) were randomly assigned to one of five diet treatments (n = 11 per treatment): (1) horsemeat diet (control); (2) horsemeat diet + vitamin E (400 IU/kg Dry Matter) daily; (3) horsemeat diet + whole prey; (4) horsemeat diet + vitamin E daily + whole prey; and (5) beef diet. Both blood (prediet and postdiet change) and diets were analyzed for vitamin E, vitamin A, and SE concentrations. Electroejaculates were collected monthly and evaluated for sperm concentration, sperm motility index (includes percent motile and forward progression), and percent NS. Results reveal that the beef and horsemeat diets had comparable (P = 0.05) vitamin E and SE concentrations and all diets met most nutrient requirements for small carnivores; however, the horsemeat diet was excessive in vitamin A and the beef diet was deficient in vitamin A. Vitamin E supplementation increased (χ1(2)=25.83; P < 0.001) serum vitamin E. Ferrets fed the beef diet or prey had improved (H4 = 15.596; P = 0.004) sperm motility index than the horsemeat control group, and ferrets fed the horsemeat diet supplemented with vitamin E had the lowest (H4 = 18.408; P = 0.001) NS. In conclusion, the high levels of vitamin A in the horsemeat diet could compete with vitamin E as evidence by serum levels, which may reduce reproductive success in this endangered species. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Pre-partum diet of adult female bearded seals in years of contrasting ice conditions.

    PubMed

    Hindell, Mark A; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M

    2012-01-01

    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13)C and δ(15)N) measured in whiskers collected from their newborn pups. The δ(15)N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.

  19. Evaluating and ranking threats to the long-term persistence of polar bears

    USGS Publications Warehouse

    Atwood, Todd C.; Marcot, Bruce G.; Douglas, David C.; Amstrup, Steven C.; Rode, Karyn D.; Durner, George M.; Bromaghin, Jeffrey F.

    2015-01-01

    The polar bear (Ursus maritimus) was listed as a globally threatened species under the U.S. Endangered Species Act (ESA) in 2008, mostly due to the significant threat to their future population viability from rapidly declining Arctic sea ice. A core mandate of the ESA is the development of a recovery plan that identifies steps to maintain viable populations of a listed species. A substantive evaluation of the relative influence of putative threats to population persistence is helpful to recovery planning. Because management actions must often be taken in the face of substantial information gaps, a formalized evaluation hypothesizing potential stressors and their relationships with population persistence can improve identification of relevant conservation actions. To this end, we updated a Bayesian network model previously used to forecast the future status of polar bears worldwide. We used new information on actual and predicted sea ice loss and polar bear responses to evaluate the relative influence of plausible threats and their mitigation through management actions on the persistence of polar bears in four ecoregions. We found that polar bear outcomes worsened over time through the end of the century under both stabilized and unabated greenhouse gas (GHG) emission pathways. Under the unabated pathway (i.e., RCP 8.5), the time it took for polar bear populations in two of four ecoregions to reach a dominant probability of greatly decreased was hastened by about 25 years. Under the stabilized GHG emission pathway (i.e., RCP 4.5), where GHG emissions peak around the year 2040, the polar bear population in the Archipelago Ecoregion of High Arctic Canada never reached a dominant probability of greatly decreased, reinforcing earlier suggestions of this ecoregion’s potential to serve as a long-term refugium. The most influential drivers of adverse polar bear outcomes were declines to overall sea ice conditions and to the marine prey base. Improved sea ice conditions substantively lowered the probability of a decreased or greatly decreased outcome, while an elevated marine prey base was slightly less influential in lowering the probability of a decreased or greatly decreased outcome. Stressors associated with in situ human activities exerted considerably less influence on population outcomes. Reduced mortality from hunting and defense of life and property interactions resulted inmodest declines in the probability of a decreased or greatly decreased population outcome. Minimizing other stressors such as trans-Arctic shipping, oil and gas exploration, and point-source pollution had negligible effects on polar bear outcomes, but that could be attributed to uncertainties in the ecological relevance of those specific stressors. Our findings suggest adverse consequences of loss of sea ice habitat become more pronounced as the summer ice-free period lengthens beyond 4 months, which could occur in portions of the Arctic by the middle of this century under the unabated pathway. The long-term persistence of polar bears may be achieved through ameliorating the loss of sea ice habitat, which will likely require stabilizing CO2emissions at or below the ceiling represented by RCP 4.5. Management of other stressors may serve to slow the transition of polar bear populations to progressively worsened outcomes, and improve the prospects of persistence, pending GHG mitigation.

  20. Fatty acid profiles of phyllosoma larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic eddies of the Leeuwin Current off Western Australia

    NASA Astrophysics Data System (ADS)

    Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.

    2014-03-01

    The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.

  1. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  2. The cobra's tongue: Rethinking the function of the "fishtail appendage" on the pitcher plant Darlingtonia californica.

    PubMed

    Armitage, David W

    2016-04-01

    Carnivorous pitcher plants employ a variety of putative adaptations for prey attraction and capture. One example is the peculiar forked "fishtail appendage", a foliar structure widely presumed to function as a prey attractant on adult leaves of Darlingtonia californica (Sarraceniaceae). This study tests the prediction that the presence of the appendage facilitates prey capture and can be considered an example of an adaptation to the carnivorous syndrome. In a field experiment following a cohort of Darlingtonia leaves over their growing season, before the pitcher traps opened, the fishtail appendages from half of the leaves were removed. Additionally, all appendages were removed from every plant at two small, isolated populations. After 54 and 104 d, prey items were collected to determine whether differences in prey composition and biomass existed between experimental and unmanipulated control leaves. Removal of the fishtail appendage did not reduce pitcher leaves' prey biomass nor alter their prey composition at either the level of individual leaves or entire populations. Fishtail appendages on plants growing in shaded habitats contained significantly greater chlorophyll concentrations than those on plants growing in full sun. These results call into question the longstanding assumption that the fishtail appendage on Darlingtonia is an adaptation critical for the attraction and capture of prey. I suggest alternative evolutionary explanations for the role of the fishtail structure and repropose a hypothesis on the mutualistic nature of pitcher plant-arthropod trophic interactions. © 2016 Botanical Society of America.

  3. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  4. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed Central

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity. PMID:27828993

  5. Ecology of Siberian Taimen Hucho taimen in the Lake Baikal Basin

    USGS Publications Warehouse

    Matveyev, Arcadi N.; Pronin, Nikolai M.; Samusenok, Vitali P.; Bronte, Charles R.

    1998-01-01

    Taimen Hucho taimen historically inhabited most tributaries and littoral areas of Lake Baikal, in south central Siberia, where they supported subsistence and commercial fisheries. Logging, pollution, and overfishing have caused dramatic population declines or local extinction of most stocks. Most of what is known about this species has been published in eastern journals and therefore is not readily available to western scientists. New data collected during the 1980s and 1990s have been combined with other reports to provide an overview of the biology and life history of this species. Taimen are long-lived fish and can reach ages of 29 years and sizes up to 60 kg. Populations can either be strictly riverine or anadromous. Adults from both life histories ascend rivers in spring to spawn and feed, and less extensive migrations occur in fall to prey on spawning omul (Coregonus autumnalis migratorius). Principal food items for age 1 and 2 taimen are macroinvertebrates, but young taimen quickly become piscivorous at age 2 when they consume mainly black Baikal grayling (Thymallus arcticus baicalensis), and sculpins (Taracottus kneri, Cottus kesslerij). Males reach sexual maturity at ages 7 to 8 and later for females at ages 8 to 9. Average egg production per female was about 22,000 eggs. Parasite burdens are heavy but composed of few species and mediated by prey items consumed. This fish is a highly-specialized predator and plays an indispensable role in the structure of fish communities in mountains and foothills. Taimen conservation in the Baikal region is impossible without adoption and implementation of a dedicated rehabilitation program that includes the protection of remaining populations and habitat, and possibly introduction of hatchery-reared fish in selected areas where habitat remains, but parental stocks are low.

  6. Status of important prey fishes in the U.S. waters of Lake Ontario, 2013: Introduction and methods, alewife, rainbow smelt, sculpins, and round goby

    USGS Publications Warehouse

    Walsh, Maureen; Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Lake Ontario has a mean depth of 86 m (282 ft) and a maximum depth of 244 m (801 ft) (Herdendorf 1982). The southern, New York portion of the lake has the deepest water (Figure 1). In New York waters, about 67% of the lake is <160 m (525 ft) deep and about 82% of the lake is <180 m (591 ft) deep. The U.S. Geological Survey (USGS) and New York State Department of Environmental Conservation (NYSDEC) have cooperatively assessed Lake Ontario prey fishes each year since 1978. Bottom trawl assessments were initially focused on Alewife Alosa pseudoharengus (April), Rainbow Smelt Osmerus mordax (June), and Slimy Sculpin Cottus cognatus (October). Seasonal survey timing corresponded to the peak catches in 1972 when collections were made every month May to October (Owens et al. 2003). Twelve transects were established at approximately 25-km intervals along the U.S. shoreline (Figure 2). Alewife assessment was conducted at all transects, Rainbow Smelt assessment at all transects except Fair Haven, and six transects representing eastern, southern, and western lake areas were sampled for Slimy Sculpin (Figure 2). Changes in the Lake Ontario ecosystem (species invasion, oligotrophication, native species rebound) require ongoing evaluation of current methods which sometimes necessitate redistribution of trawl effort, or changes in sampling designs and/or gear. For instance, the spring Alewife assessment is now used also to assess invasive Round Goby Neogobius melanostomus population dynamics. Likewise, the fall benthic fish assessment (formerly sculpin assessment) now also tracks dynamics of the rebounding native Deepwater Sculpin Myoxocephalus thompsonii population, the apparent declining population of Slimy Sculpin, and fall distribution of Round Goby.

  7. Laying the foundations for a human-predator conflict solution: assessing the impact of Bonelli's eagle on rabbits and partridges.

    PubMed

    Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Barea-Azcón, José M; Ballesteros-Duperón, Elena; Virgós, Emilio

    2011-01-01

    Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5%) for both prey and seasons. The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish) have a null theoretical basis in most of this area.

  8. Circulating fat-soluble vitamin concentrations and nutrient composition of aquatic prey eaten by American oystercatchers (Haematopus palliatus) in the southeastern United States

    USGS Publications Warehouse

    Carlson-Bremer, Daphne; Norton, Terry M.; Sanders, Felicia J.; Winn, Brad; Spinks, Mark D.; Glatt, Batsheva A.; Mazzaro, Lisa; Jodice, Patrick G.R.; Chen, Tai C.; Dierenfeld, Ellen S.

    2014-01-01

    The American oystercatcher (Haematopus palliatus palliatus) is currently listed as a species of high concern by the United States Shorebird Conservation Plan. Because nutritional status directly impacts overall health and reproduction of individuals and populations, adequate management of a wildlife population requires intimate knowledge of a species' diet and nutrient requirements. Fat-soluble vitamin concentrations in blood plasma obtained from American oystercatchers and proximate, vitamin, and mineral composition of various oystercatcher prey species were determined as baseline data to assess nutritional status and nutrient supply. Bird and prey species samples were collected from the Cape Romain region, South Carolina, USA, and the Altamaha River delta islands, Georgia, USA, where breeding populations appear relatively stable in recent years. Vitamin A levels in blood samples were higher than ranges reported as normal for domestic avian species, and vitamin D concentrations were lower than anticipated based on values observed in poultry. Vitamin E levels were within ranges previously reported for avian groups with broadly similar feeding niches such as herons, gulls, and terns (eg, aquatic/estuarine/marine). Prey species (oysters, mussels, clams, blood arks [Anadara ovalis], whelks [Busycon carica], false angel wings [Petricola pholadiformis]) were similar in water content to vertebrate prey, moderate to high in protein, and moderate to low in crude fat. Ash and macronutrient concentrations in prey species were high compared with requirements of carnivores or avian species. Prey items analyzed appear to meet nutritional requirements for oystercatchers, as estimated by extrapolation from domestic carnivores and poultry species; excesses, imbalances, and toxicities—particularly of minerals and fat-soluble vitamins—may warrant further investigation.

  9. Laying the Foundations for a Human-Predator Conflict Solution: Assessing the Impact of Bonelli's Eagle on Rabbits and Partridges

    PubMed Central

    Moleón, Marcos; Sánchez-Zapata, José A.; Gil-Sánchez, José M.; Barea-Azcón, José M.; Ballesteros-Duperón, Elena; Virgós, Emilio

    2011-01-01

    Background Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable –in conservation terms– Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. Methodology/Principal Findings We estimated the predation impact (‘kill rate’ and ‘predation rate’, i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3–2.5%) for both prey and seasons. Conclusions/Significance The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the ‘partridge-eating eagle’ in Spanish) have a null theoretical basis in most of this area. PMID:21818399

  10. Predator-induced synchrony in population oscillations of coexisting small mammal species.

    PubMed

    Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero

    2005-01-22

    Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.

  11. Long-distance swimming by polar bears (Ursus maritimus) of the southern Beaufort Sea during years of extensive open water

    USGS Publications Warehouse

    2014-01-01

    Polar bears (Ursus maritimus Phipps, 1774) depend on sea ice for catching marine mammal prey. Recent sea-ice declines have been linked to reductions in body condition, survival, and population size. Reduced foraging opportunity is hypothesized to be the primary cause of sea-ice-linked declines, but the costs of travel through a deteriorated sea-ice environment also may be a factor. We used movement data from 52 adult female polar bears wearing Global Positioning System (GPS) collars, including some with dependent young, to document long-distance swimming (>50 km) by polar bears in the southern Beaufort and Chukchi seas. During 6 years (2004-2009), we identified 50 long-distance swims by 20 bears. Swim duration and distance ranged from 0.7 to 9.7 days (mean = 3.4 days) and 53.7 to 687.1 km (mean = 154.2 km), respectively. Frequency of swimming appeared to increase over the course of the study. We show that adult female polar bears and their cubs are capable of swimming long distances during periods when extensive areas of open water are present. However, long-distance swimming appears to have higher energetic demands than moving over sea ice. Our observations suggest long-distance swimming is a behavioral response to declining summer sea-ice conditions.

  12. Low intensity, mixed livestock grazing improves the breeding abundance of a common insectivorous passerine.

    PubMed

    Evans, Darren M; Redpath, Stephen M; Evans, Sharon A; Elston, David A; Gardner, Charles J; Dennis, Peter; Pakeman, Robin J

    2006-12-22

    Livestock grazing is a major driver of ecosystem change and has been associated with significant declines in various bird species in Britain and worldwide. However, there is little experimental evidence to show how grazing affects bird populations. We manipulated livestock densities in a replicated field experiment and found that mixed sheep and cattle grazing, at low intensity, improved the breeding abundance of a common upland passerine, the meadow pipit Anthus pratensis, after two years. Plots stocked with sheep alone (at high or low density) or not stocked at all held fewer pipit territories. Despite a year-on-year decline in pairs of meadow pipits in intensively grazed plots, we found no effect of sheep number on breeding abundance. Our results support the hypothesis that mixed species of herbivores generate greater heterogeneity in vegetation structure, which modifies prey availability, resulting in a greater abundance of birds. The results of our study should inform the management of grassland areas and enhance the abundance of some bird species, particularly in areas that have seen significant shifts from mixed livestock grazing to grazing dominated by single species of animals.

  13. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape

    PubMed Central

    2017-01-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792

  14. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    PubMed

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological communities. Second, kill rate is the primary statistic for many traditional models of predation. However, our work suggests that kill rate and PR are similarly important for understanding why predation is such a complex process. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  15. A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon

    PubMed Central

    Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID:24686837

  16. Effects of the construction of Scroby Sands offshore wind farm on the prey base of Little tern Sternula albifrons at its most important UK colony.

    PubMed

    Perrow, Martin R; Gilroy, James J; Skeate, Eleanor R; Tomlinson, Mark L

    2011-08-01

    Despite widespread interest in the impacts of wind farms upon birds, few researchers have examined the potential for indirect or trophic (predator-prey) effects. Using surface trawls, we monitored prey abundance before and after construction of a 30 turbine offshore wind farm sited close to an internationally important colony of Little terns. Observations confirmed that young-of-the-year clupeids dominated chick diet, which trawl samples suggested were mainly herring. Multivariate modelling indicated a significant reduction in herring abundance from 2004 onwards that could not be explained by environmental factors. Intensely noisy monopile installation during the winter spawning period was suggested to be responsible. Reduced prey abundance corresponded with a significant decline in Little tern foraging success. Unprecedented egg abandonment and lack of chick hatching tentatively suggested a colony-scale response in some years. We urge a precautionary approach to the timing and duration of pile-driving activity supported with long-term targeted monitoring of sensitive receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Winter wolf predation in a multiple ungulate prey system, Gates of the Arctic National Park, Alaska

    USGS Publications Warehouse

    Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.

    1995-01-01

    We investigated patterns of winter wolf predation, including prey selection, prey switching, kill rates, carcass utilization, and consumption rates for four wolf packs during three different study periods (March 1989, March 1990, and November 1990) in Gates of the Arctic National Park and Preserve, Alaska. Wolves killed predominantly caribou (165 caribou, seven moose, and five Dall sheep) even when moose and sheep were more abundant. Prey selection varied between study periods. More moose were killed in march 1989, a particularly deep snow year, and more sheep were killed in November 1990 than during other periods. Overall kill rates ranged from 0-8 days/ungulate killed (x̅ = 2.0, SD = 1.6) and did not vary between study periods.  Pack size and species killed explained significant variation in the length of time intervals between kills. Although caribou density varied nearly 40-fold between pack territories, it had little influence on predation characteristics except at low densities, when kill rates may have declined. Caribou distribution had marked effects on wolf predation rate.

  18. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  19. Stable Isotopes of C and N Reveal Habitat Dependent Dietary Overlap between Native and Introduced Turtles Pseudemys rubriventris and Trachemys scripta

    PubMed Central

    Pearson, Steven H.; Avery, Harold W.; Kilham, Susan S.; Velinsky, David J.; Spotila, James R.

    2013-01-01

    Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans) and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris) at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species. PMID:23675437

  20. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    PubMed

    Pearson, Steven H; Avery, Harold W; Kilham, Susan S; Velinsky, David J; Spotila, James R

    2013-01-01

    Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans) and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris) at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  1. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous chimney swifts

    PubMed Central

    Nocera, Joseph J.; Blais, Jules M.; Beresford, David V.; Finity, Leah K.; Grooms, Christopher; Kimpe, Lynda E.; Kyser, Kurt; Michelutti, Neal; Reudink, Matthew W.; Smol, John P.

    2012-01-01

    Numerous environmental pressures have precipitated long-term population reductions of many insect species. Population declines in aerially foraging insectivorous birds have also been detected, but the cause remains unknown partly because of a dearth of long-term monitoring data on avian diets. Chimney swifts (Chaetura pelagica) are a model aerial insectivore to fill such information gaps because their roosting behaviour makes them easy to sample in large numbers over long time periods. We report a 48-year-long (1944–1992) dietary record for the chimney swift, determined from a well-preserved deposit of guano and egested insect remains in Ontario (Canada). This unique archive of palaeo-environmental data reflecting past chimney swift diets revealed a steep rise in dichlorodiphenyltrichloroethane (DDT) and metabolites, which were correlated with a decrease in Coleoptera remains and an increase in Hemiptera remains, indicating a significant change in chimney swift prey. We argue that DDT applications decimated Coleoptera populations and dramatically altered insect community structure by the 1960s, triggering nutritional consequences for swifts and other aerial insectivores. PMID:22513860

  2. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts.

    PubMed

    Saino, Nicola; Rubolini, Diego; Lehikoinen, Esa; Sokolov, Leonid V; Bonisoli-Alquati, Andrea; Ambrosini, Roberto; Boncoraglio, Giuseppe; Møller, Anders P

    2009-08-23

    Phenological responses to climate change vary among taxa and across trophic levels. This can lead to a mismatch between the life cycles of ecologically interrelated populations (e.g. predators and prey), with negative consequences for population dynamics of some of the interacting species. Here we provide, to our knowledge, the first evidence that climate change might disrupt the association between the life cycles of the common cuckoo (Cuculus canorus), a migratory brood parasitic bird, and its hosts. We investigated changes in timing of spring arrival of the cuckoo and its hosts throughout Europe over six decades, and found that short-distance, but not long-distance, migratory hosts have advanced their arrival more than the cuckoo. Hence, cuckoos may keep track of phenological changes of long-distance, but not short-distance migrant hosts, with potential consequences for breeding of both cuckoo and hosts. The mismatch to some of the important hosts may contribute to the decline of cuckoo populations and explain some of the observed local changes in parasitism rates of migratory hosts.

  3. Predator-Prey Dynamics Driven by Feedback between Functionally Diverse Trophic Levels

    PubMed Central

    Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits—prey edibility and predator food-selectivity—and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity. PMID:22096560

  4. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.

    PubMed

    Keogh, J Scott; Scott, Ian A W; Hayes, Christine

    2005-01-01

    It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.

  5. Landscape Suitability in Botswana for the Conservation of Its Six Large African Carnivores

    PubMed Central

    Winterbach, Hanlie E. K.; Winterbach, Christiaan W.; Somers, Michael J.

    2014-01-01

    Wide-ranging large carnivores often range beyond the boundaries of protected areas into human-dominated areas. Mapping out potentially suitable habitats on a country-wide scale and identifying areas with potentially high levels of threats to large carnivore survival is necessary to develop national conservation action plans. We used a novel approach to map and identify these areas in Botswana for its large carnivore guild consisting of lion (Panthera leo), leopard (Panthera pardus), spotted hyaena (Crocuta crocuta), brown hyaena (Hyaena brunnea), cheetah (Acinonyx jubatus) and African wild dog (Lycaon pictus). The habitat suitability for large carnivores depends primarily on prey availability, interspecific competition, and conflict with humans. Prey availability is most likely the strongest natural determinant. We used the distribution of biomass of typical wild ungulate species occurring in Botswana which is preyed upon by the six large carnivores to evaluate the potential suitability of the different management zones in the country to sustain large carnivore populations. In areas where a high biomass of large prey species occurred, we assumed interspecific competition between dominant and subordinated competitors to be high. This reduced the suitability of these areas for conservation of subordinate competitors, and vice versa. We used the percentage of prey biomass of the total prey and livestock biomass to identify areas with potentially high levels of conflict in agricultural areas. High to medium biomass of large prey was mostly confined to conservation zones, while small prey biomass was more evenly spread across large parts of the country. This necessitates different conservation strategies for carnivores with a preference for large prey, and those that can persist in the agricultural areas. To ensure connectivity between populations inside Botswana and also with its neighbours, a number of critical areas for priority management actions exist in the agricultural zones. PMID:24949735

  6. Landscape suitability in Botswana for the conservation of its six large African carnivores.

    PubMed

    Winterbach, Hanlie E K; Winterbach, Christiaan W; Somers, Michael J

    2014-01-01

    Wide-ranging large carnivores often range beyond the boundaries of protected areas into human-dominated areas. Mapping out potentially suitable habitats on a country-wide scale and identifying areas with potentially high levels of threats to large carnivore survival is necessary to develop national conservation action plans. We used a novel approach to map and identify these areas in Botswana for its large carnivore guild consisting of lion (Panthera leo), leopard (Panthera pardus), spotted hyaena (Crocuta crocuta), brown hyaena (Hyaena brunnea), cheetah (Acinonyx jubatus) and African wild dog (Lycaon pictus). The habitat suitability for large carnivores depends primarily on prey availability, interspecific competition, and conflict with humans. Prey availability is most likely the strongest natural determinant. We used the distribution of biomass of typical wild ungulate species occurring in Botswana which is preyed upon by the six large carnivores to evaluate the potential suitability of the different management zones in the country to sustain large carnivore populations. In areas where a high biomass of large prey species occurred, we assumed interspecific competition between dominant and subordinated competitors to be high. This reduced the suitability of these areas for conservation of subordinate competitors, and vice versa. We used the percentage of prey biomass of the total prey and livestock biomass to identify areas with potentially high levels of conflict in agricultural areas. High to medium biomass of large prey was mostly confined to conservation zones, while small prey biomass was more evenly spread across large parts of the country. This necessitates different conservation strategies for carnivores with a preference for large prey, and those that can persist in the agricultural areas. To ensure connectivity between populations inside Botswana and also with its neighbours, a number of critical areas for priority management actions exist in the agricultural zones.

  7. Comparative growth and development of spiders reared on live and dead prey.

    PubMed

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.

  8. Comparative Growth and Development of Spiders Reared on Live and Dead Prey

    PubMed Central

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C.

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific. PMID:24386248

  9. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska

    USGS Publications Warehouse

    Stewart, Nathan L.; Konar, Brenda; Tinker, M. Tim

    2015-01-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.

  10. Angler-caught piscivore diets reflect fish community changes in Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; Schaeffer, Jeff; Bright, Ethan; Fielder, David G.

    2014-01-01

    Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered theirdiets in response to unprecedented declines in Lake Huron's main-basin prey fish community.Diets varied by predator species, season, and location but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986) examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs, especially if prey fish remain at low levels.

  11. Testing the nutritional-limitation, predator-avoidance, and storm-avoidance hypotheses for restricted sea otter habitat use in the Aleutian Islands, Alaska.

    PubMed

    Stewart, Nathan L; Konar, Brenda; Tinker, M Tim

    2015-03-01

    Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.

  12. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities. Conservation Biology ©2010 Society for Conservation Biology. No claim to original US government works.

  13. Population ecology of polar bears in Davis Strait, Canada and Greenland

    USGS Publications Warehouse

    Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian

    2013-01-01

    Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.

  14. Chlorinated hydrocarbon contamination in osprey eggs and nestlings from the Canadian Great Lakes basin, 1991-1995.

    PubMed

    Martin, Pamela A; De Solla, Shane R; Ewins, Peter

    2003-01-01

    Populations of osprey (Pandion haliaetus) in the Great Lakes basin declined dramatically during the 1950s-1970s due largely to adverse effects of persistent chlorinated hydrocarbons, ingested in their fish prey, on eggshell thickness and adult survival. Nevertheless, these contaminants were not measured in osprey tissues during the decades of decline on the Canadian Great Lakes. Between 1991 and 1995, we monitored recovering osprey populations on the Great Lakes, including Georgian Bay and the St. Marys River area on Lake Huron and the St. Lawrence Islands National Park, as well as at two inland sites within the basin. Current OC levels, even from the most contaminated lakes, were typically lower than those associated with reproductive effects. DDE levels in fresh eggs averaged 1.2-2.9 microg/g, well below the 4.2 microg/g level associated with significant eggshell thinning and shell breakage. Nevertheless, a proportion of eggs from all study areas did exceed this level. PCB levels in eggs seldom exceeded 5 microg/g except in one lake of high breeding density in the Kawartha Lakes inland study area, where the mean sum PCB level was 7.1 microg/g and the maximum concentration measured was 26.5 microg/g. On average, mean reproductive output (0.78-2.75 young per occupied nest) of breeding populations in Great Lakes basin study areas exceeded the threshold of 0.8 young thought necessary to maintain stable populations. We concluded that, although eggs and especially nestling plasma, are useful in reflecting local contaminant levels, ospreys are relatively insensitive, at least at the population level, to health effects of current levels of chlorinated hydrocarbons on the Canadian Great Lakes.

  15. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.

    PubMed

    Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

    2014-06-01

    Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Concepts and practices: Estimating abundance of prey species using hierarchical model-based approaches

    USGS Publications Warehouse

    Dorazio, Robert; Kumar, N. Samba; Royle, Andy; Gopalaswamy, Arjun M.

    2017-01-01

    Tigers predominantly prey on large ungulate species, such as sambar (Cervus unicolor), red deer (Cervus elaphus), gaur (Bos gaurus), banteng (Bos javanicus), chital (Axis axis), muntjac (Muntiacus muntjak), wild pig (Sus scrofa), and bearded pig (Sus barbatus). The density of a tiger population is strongly correlated with the density of such prey species (Karanth et al. 2004). In the absence of direct hunting of tigers, abundance of prey in an area is the key determinant of the “carrying capacity” of that area for tigers (Chap. 2). Accurate estimates of prey abundance are often needed to assess the potential number of tigers a conservation area can support.

  17. Stochastic analysis of a pulse-type prey-predator model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  18. Stochastic analysis of a pulse-type prey-predator model.

    PubMed

    Wu, Y; Zhu, W Q

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  19. Geospatial Analysis of Grey Wolf Movement Patterns

    NASA Astrophysics Data System (ADS)

    Sur, D.

    2017-12-01

    The grey wolf is a top predator that lives across a diverse habitat, ranging from Europe to North America. They often hunt in packs, preferring caribou, deer and elk as prey. Currently, many gray wolves live in Denali National Park and Preserve. In this study, several wolf packs were studied in three distinct regions of Denali. The purpose of my research was to investigate the links between wolf habitat, movement patterns, and prey thresholds. These are needed for projecting future population, growth and distribution of wolves in the studied region. I also investigated the effect wolves have on the ecological structure of the communities they inhabit. In the study I carried out a quantitative analysis of wolf population trends and daily distance movement by utilizing an analysis of variance (ANOVA) in the program JmpPro12 (SAS Institute, Crary, NC) to assess regional differences in pack size, wolf density, average daily distance moved. I found a clear link between the wolf habitat and prey thresholds; the habitat directly influences the types of prey available. However there was no link between the daily distance movement, the wolf habitat and prey density.

  20. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.

    PubMed

    Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias

    2017-06-01

    The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to conventionally managed fields. Our study documents that predation by generalist predator communities on aphid pests increases with pest numbers independently of their generally widespread consumption of alternative, non-pest prey. Therefore, conservation strategies in agricultural fields could promote biological control services by promoting high levels of alternative non-pest prey for generalist predator communities. © 2017 by the Ecological Society of America.

  1. A generalized functional response for predators that switch between multiple prey species.

    PubMed

    van Leeuwen, E; Brännström, Å; Jansen, V A A; Dieckmann, U; Rossberg, A G

    2013-07-07

    We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Numerical and behavioral effects within a pulse-driven system: consequences for shared prey.

    PubMed

    Schmidt, Kenneth A; Ostfeld, Richard S

    2008-03-01

    Some of the clearest examples of the ramifying effects of resource pulses exist in deciduous forests dominated by mast-producing trees, such as oaks, beech, and hornbeam. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming small rodents numerically respond to seed production and tertiary pulses emerge as generalist predators numerically respond to rodents. Raptors may also respond behaviorally (i.e., diet shifts) to subsequent crashes in small rodents following the crash phase in seed production. In oak-dominated forest in the Hudson Valley, New York, these various pulse and crash phases act synergistically, although not simultaneously, to influence thrush population dynamics through predation on nests, juveniles, and adults. As a consequence, factors limiting population growth rate and their age-specific action vary as a function of past acorn production. We highlight these interactions based on our eight-year study of thrush demography, acorn production, and small mammal abundance coupled with information on regional adult thrush population trends from the Breeding Bird Survey. We use these data sets to demonstrate the sequence of primary to tertiary pulses and how they influence breeding thrush populations. To extend our discussion beyond masting phenomena in the eastern United States, we briefly review the literature of alternative avian prey within pulsed systems to show (1) numerical and behavioral responses by generalist predators are ubiquitous in pulsed systems, and this contributes to (2) variability in reproduction and survivorship of avian prey linked to the underlying dynamics of the pulse. We conclude by exploring the broad consequences of cascading resource pulses for alternative prey based upon the indirect interaction of apparent competition among shared prey and the nature of temporal variability on populations.

  3. The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it.

    PubMed

    Greenstone, Matthew H; Payton, Mark E; Weber, Donald C; Simmons, Alvin M

    2014-08-01

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Most assays produce only qualitative results, with each predator testing either positive or negative for target prey remains. Nevertheless, they have yielded important insights into community processes. For example, they have confirmed the long-hypothesized role of generalist predators in retarding early-season build-up of pest populations prior to the arrival of more specialized predators and parasitoids and documented the ubiquity of secondary and intraguild predation. However, raw qualitative gut-content data cannot be used to assess the relative impact of different predator taxa on prey population dynamics: they must first be weighted by the relative detectability periods for molecular prey remains for each predator-prey combination. If this is not carried out, interpretations of predator impact will be biased towards those with the longest detectabilities. We review the challenges in determining detectability half-lives, including unstated assumptions that have often been ignored in the performance of feeding trials. We also show how detectability half-lives can be used to properly weight assay data to rank predators by their importance in prey population suppression, and how sets of half-lives can be used to test hypotheses concerning predator ecology and physiology. We use data from 32 publications, comprising 97 half-lives, to generate and test hypotheses on taxonomic differences in detectability half-lives and discuss the possible role of the detectability half-life in interpreting qPCR and next-generation sequencing data. © 2013 John Wiley & Sons Ltd.

  4. Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts?

    USGS Publications Warehouse

    Marti, C.D.; Kochert, Michael N.

    1995-01-01

    Red-tailed Hawks (Buteo jamaicensis) and Great Homed Owls (Bubo virginianus)are common in North America where they occupy a wide range of habitats, often sympatrically. The two species are similar in size and have been portrayed as ecological counterparts, eating the same prey by day and night. We tested the trophic similarity of the two species by comparing published dietary data from across the United States. Both species ate primarily mammals and birds, and mean proportions of those two prey types did not differ significantly between diets of the two raptors. Red-tailed Hawks ate significantly more reptiles, and Great Homed Owls significantly more invertebrates. Dietary diversity was not significantly different at the level of prey taxonomic class, and diet overlap between the two species averaged 91%. At the prey species level, dietary overlap averaged only 50%, and at that level Red-tailed Hawk dietary diversity was significantly greater than that of Great Horned Owls. Mean prey mass of Red-tailed Hawks was significantly greater than that of Great Homed Owls. Populations of the two species in the western United States differed trophically more than did eastern populations. We conclude that, although the two species are generalist predators, they take largely different prey species in the same localities resulting in distinctive trophic characteristics.

  5. Impact of jaguar Panthera onca (Carnivora: Felidae) predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica.

    PubMed

    Arroyo-Arce, Stephanny; Salom-Pérez, Roberto

    2015-09-01

    Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriacea and Eretmochelys imbricata) that nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005) and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD = 45) and 2 (SD = 3) green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  6. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.

  7. Pasta Predation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  8. Predator-induced synchrony in population oscillations of coexisting small mammal species

    PubMed Central

    Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero

    2005-01-01

    Comprehensive analyses of long-term (1977–2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5–3 km2) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase. PMID:15695211

  9. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    USGS Publications Warehouse

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  10. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters.

    PubMed

    Yoo, Yeong Du; Seong, Kyeong Ah; Jeong, Hae Jin; Yih, Wonho; Rho, Jung-Rae; Nam, Seung Won; Kim, Hyung Seop

    2017-09-01

    Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×10 6 cells ml -1 , but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator -1  h -1 , respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator -1 h -1 and 0.012-0.033d -1 , respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The filter-feeding ciliates Colpidium striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence of mixed, equally-sized, bacterial prey.

    PubMed

    Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna

    2010-10-01

    This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Assessing the sustainability of African lion trophy hunting, with recommendations for policy.

    PubMed

    Creel, Scott; M'soka, Jassiel; Dröge, Egil; Rosenblatt, Eli; Becker, Matthew S; Matandiko, Wigganson; Simpamba, Twakundine

    2016-10-01

    While trophy hunting provides revenue for conservation, it must be carefully managed to avoid negative population impacts, particularly for long-lived species with low natural mortality rates. Trophy hunting has had negative effects on lion populations throughout Africa, and the species serves as an important case study to consider the balance of costs and benefits, and to consider the effectiveness of alternative strategies to conserve exploited species. Age-restricted harvesting is widely recommended to mitigate negative effects of lion hunting, but this recommendation was based on a population model parameterized with data from a well-protected and growing lion population. Here, we used demographic data from lions subject to more typical conditions, including source-sink dynamics between a protected National Park and adjacent hunting areas in Zambia's Luangwa Valley, to develop a stochastic population projection model and evaluate alternative harvest scenarios. Hunting resulted in population declines over a 25-yr period for all continuous harvest strategies, with large declines for quotas >1 lion/concession (~0.5 lion/1,000 km 2 ) and hunting of males younger than seven years. A strategy that combined periods of recovery, an age limit of ≥7 yr, and a maximum quota of ~0.5 lions shot/1,000 km 2 yielded a risk of extirpation <10%. Our analysis incorporated the effects of human encroachment, poaching, and prey depletion on survival, but assumed that these problems will not increase, which is unlikely. These results suggest conservative management of lion trophy hunting with a combination of regulations. To implement sustainable trophy hunting while maintaining revenue for conservation of hunting areas, our results suggest that hunting fees must increase as a consequence of diminished supply. These findings are broadly applicable to hunted lion populations throughout Africa and to inform global efforts to conserve exploited carnivore populations. © 2016 by the Ecological Society of America.

  13. Assessing predation risk to threatened fauna from their prevalence in predator scats: dingoes and rodents in arid Australia.

    PubMed

    Allen, Benjamin L; Leung, Luke K-P

    2012-01-01

    The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions.

  14. Long-term impacts of invasive species on a native top predator in a large lake system

    USGS Publications Warehouse

    Rush, Scott A.; Paterson, Gordon; Johnson, Tim B.; Drouillard, Ken G.; Haffner, Gordon D.; Hebert, Craig E.; Arts, Michael T.; McGoldrick, Daryl J.; Backus, Sean M.; Lantry, Brian F.; Lantry, Jana R.; Schaner, Ted; Fisk, Aaron T.

    2012-01-01

    1. Declining abundances of forage fish and the introduction and establishment of non-indigenous species have the potential to substantially alter resource and habitat exploitation by top predators in large lakes. 2. We measured stable isotopes of carbon (δ13C) and nitrogen (δ15N) in field-collected and archived samples of Lake Ontario lake trout (Salvelinus namaycush) and five species of prey fish and compared current trophic relationships of this top predator with historical samples. 3. Relationships between δ15N and lake trout age were temporally consistent throughout Lake Ontario and confirmed the role of lake trout as a top predator in this food web. However, δ13C values for age classes of lake trout collected in 2008 ranged from 1.0 to 3.9‰ higher than those reported for the population sampled in 1992. 4. Isotope mixing models predicted that these changes in resource assimilation were owing to the replacement of rainbow smelt (Osmerus mordax) by round goby (Neogobius melanostomus) in lake trout diet and increased reliance on carbon resources derived from nearshore production. This contrasts with the historical situation in Lake Ontario where δ13C values of the lake trout population were dominated by a reliance on offshore carbon production. 5. These results indicate a reduced capacity of the Lake Ontario offshore food web to support the energetic requirements of lake trout and that this top predator has become increasingly reliant on prey resources that are derived from nearshore carbon pathways.

  15. Beneficial Insect Borders Provide Northern Bobwhite Brood Habitat

    PubMed Central

    Moorman, Christopher E.; Plush, Charles J.; Orr, David B.; Reberg-Horton, Chris

    2013-01-01

    Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds. PMID:24376759

  16. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    PubMed

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.

  17. Evaluating the effect of predators on white-tailed deer: Movement and diet of coyotes

    USGS Publications Warehouse

    Turner, M.M.; Rockhill, A.P.; Deperno, C.S.; Jenks, J.A.; Klaver, R.W.; Jarding, A.R.; Grovenburg, T.W.; Pollock, K.H.

    2011-01-01

    Coyotes (Canis latrans) may affect adult and neonate white-tailed deer (Odocoileus virginianus) survival and have been implicated as a contributor to the decline of deer populations. Additionally, coyote diet composition is influenced by prey availability, season, and region. Because coyote movement and diet vary by region, local data are important to understand coyote population dynamics and their impact on prey species. In southeast Minnesota, we investigated the effect of coyotes on white-tailed deer populations by documenting movement rates, distances moved, and habitats searched by coyotes during fawning and nonfawning periods. Additionally, we determined survival, cause-specific mortality, and seasonal diet composition of coyotes. From 2001 to 2003, we captured and radiocollared 30 coyotes. Per-hour rate of movement averaged 0.87 km and was greater (P = 0.046) during the fawning (1.07 km) than the nonfawning period (0.80 km); areas searched were similar (P = 0.175) between seasons. Coyote habitat use differed during both seasons; habitats were not used in proportion to their availability (P < 0.001). Croplands were used more (P < 0.001) than their proportional availability during both seasons. Use of grasslands was greater during the fawning period (P = 0.030), whereas use of cropland was greater in the nonfawning period (P < 0.001). We collected 66 fecal samples during the nonfawning period; coyote diets were primarily composed of Microtus spp. (65.2%), and consumption of deer was 9.1%. During the study, 19 coyotes died; annual survival rate range was 0.33–0.41, which was low compared with other studies. Consumption of deer was low and coyotes searched open areas (i.e., cropland) more than fawning areas with dense cover. These factors in addition to high coyote mortality suggested that coyote predation was not likely limiting white-tailed deer populations in southeast Minnesota.

  18. Cormorant predation and the population dynamics of walleye and yellow perch in Oneida Lake

    USGS Publications Warehouse

    Rudstam, L. G.; VanDeValk, A.J.; Adams, C.M.; Coleman, J.T.H.; Forney, J.L.; Richmond, M.E.

    2004-01-01

    Double-crested Cormorants (Phalacrocorax auritus) increased dramatically in North America during the 1990s, providing the opportunity to study the effects of an increase of a top predator on an existing predator-prey system. In Oneida Lake, New York, USA, Double-crested Cormorants were first observed nesting in 1984 and had increased to over 360 nesting pairs by 2000. Concomitant with this increase in piscivorous birds was a decrease in the adult walleye (Stizostedion vitreum) and yellow perch (Perca flavescens) populations. Analysis of a 40-yr data series shows higher mortality of subadults (age 1-2 yr perch and age 1-3 yr walleye) for both species in the 1990s compared to the previous three decades. Cormorant diet was investigated from 1995 to 2000 using a combination of cast pellets, regurgitants, and stomach analysis. Walleye and yellow perch were a major portion of the cormorant diet during these years (40-82% by number). The number of subadult walleye and yellow perch consumed by cormorants suggests that the increase in subadult mortality can be explained by predation from cormorants. Mean mortality rates of adult percids attributed to cormorant predation were 1.1% per year for walleye and 7.7% per year for yellow perch. Our analysis suggests that predation by cormorants on subadult percids is a major factor contributing to the decline in both the walleye and the yellow perch populations in Oneida Lake. Other ecosystem changes (zebra mussels, lower nutrient loading, decrease in alternate prey) are not likely explanations because the potential mechanisms involved are not consistent with auxiliary data from the lake and would not affect subadult mortality. The likely impact of bird predation on percid populations in Oneida Lake occurs because cormorants feed on larger fish that are beyond the size range where compensatory mechanisms are important.

  19. Ecology of the Lake Huron fish community, 1970-1999

    USGS Publications Warehouse

    Dobiesz, Norine E.; McLeish, David A.; Eshenroder, Randy L.; Bence, James R.; Mohr, Lloyd C.; Ebener, Mark P.; Nalepa, Thomas F.; Woldt, Aaron P.; Johnson, James E.; Argyle, Ray L.; Makarewicz, Joseph C.

    2005-01-01

    We review the status of the Lake Huron fish community between 1970 and 1999 and explore the effects of key stressors. Offshore waters changed little in terms of nutrient enrichment, while phosphorus levels declined in inner Saginaw Bay. Introduced mussels (Dreissena spp.) proliferated and may have caused a decline in Diporeia spp. This introduction could have caused a decline in lake whitefish (Coregonus clupeaformis) growth and condition, with serious repercussions for commercial fisheries. Bythotrephes, an exotic predatory cladoceran, and other new exotics may be influencing the fish community. Sea lampreys (Petromyzon marinus) remained prevalent, but intensive control efforts on the St. Mary's River may reduce their predation on salmonines. Overfishing was less of a problem than in the past, although fishing continued to reduce the amount of lake trout (Salvelinus namaycush) spawning biomass resulting from hatchery-reared fish planted to rehabilitate this species. Massive stocking programs have increased the abundance of top predators, but lake trout were rehabilitated in only one area. Successful lake trout rehabilitation may require lower densities of introduced pelagic prey fish than were seen in the 1990s, along with continued stocking of hatchery-reared lake trout and control of sea lamprey. Such reductions in prey fish could limit Pacific salmon (Oncorhynchus spp.) fisheries.

  20. Let's go beyond taxonomy in diet description: testing a trait-based approach to prey-predator relationships.

    PubMed

    Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik

    2014-09-01

    Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  1. Amphibian decline and extinction: what we know and what we need to learn.

    PubMed

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity loss and its consequences.

  2. Recruitment Variability in North Atlantic Cod and Match-Mismatch Dynamics

    PubMed Central

    Kristiansen, Trond; Drinkwater, Kenneth F.; Lough, R. Gregory; Sundby, Svein

    2011-01-01

    Background Fisheries exploitation, habitat destruction, and climate are important drivers of variability in recruitment success. Understanding variability in recruitment can reveal mechanisms behind widespread decline in the abundance of key species in marine and terrestrial ecosystems. For fish populations, the match-mismatch theory hypothesizes that successful recruitment is a function of the timing and duration of larval fish abundance and prey availability. However, the underlying mechanisms of match-mismatch dynamics and the factors driving spatial differences between high and low recruitment remain poorly understood. Methodology/Principal Findings We used empirical observations of larval fish abundance, a mechanistic individual-based model, and a reanalysis of ocean temperature data from 1960 to 2002 to estimate the survival of larval cod (Gadus morhua). From the model, we quantified how survival rates changed during the warmest and coldest years at four important cod spawning sites in the North Atlantic. The modeled difference in survival probability was not large for any given month between cold or warm years. However, the cumulative effect of higher growth rates and survival through the entire spawning season in warm years was substantial with 308%, 385%, 154%, and 175% increases in survival for Georges Bank, Iceland, North Sea, and Lofoten cod stocks, respectively. We also found that the importance of match-mismatch dynamics generally increased with latitude. Conclusions/Significance Our analyses indicate that a key factor for enhancing survival is the duration of the overlap between larval and prey abundance and not the actual timing of the peak abundance. During warm years, the duration of the overlap between larval fish and their prey is prolonged due to an early onset of the spring bloom. This prolonged season enhances cumulative growth and survival, leading to a greater number of large individuals with enhanced potential for survival to recruitment. PMID:21408215

  3. Non-stationary recruitment dynamics of rainbow smelt: the influence of environmental variables and variation in size structure and length-at-maturation

    USGS Publications Warehouse

    Feiner, Zachary S.; Bunnell, David B.; Hook, Tomas O.; Madenjian, Charles P.; Warner, David M.; Collingsworth, Paris D.

    2015-01-01

    Fish stock-recruitment dynamics may be difficult to elucidate because of nonstationary relationships resulting from shifting environmental conditions and fluctuations in important vital rates such as individual growth or maturation. The Great Lakes have experienced environmental stressors that may have changed population demographics and stock-recruitment relationships while causing the declines of several prey fish species, including rainbow smelt (Osmerus mordax). We investigated changes in the size and maturation of rainbow smelt in Lake Michigan and Lake Huron and recruitment dynamics of the Lake Michigan stock over the past four decades. Mean lengths and length-at-maturation of rainbow smelt generally declined over time in both lakes. To evaluate recruitment, we used both a Ricker model and a Kalman filter-random walk (KF-RW) model which incorporated nonstationarity in stock productivity by allowing the productivity term to vary over time. The KF-RW model explained nearly four times more variation in recruitment than the Ricker model, indicating the productivity of the Lake Michigan stock has increased. By accounting for this nonstationarity, we were able identify significant variations in stock productivity, evaluate its importance to rainbow smelt recruitment, and speculate on potential environmental causes for the shift. Our results suggest that investigating mechanisms driving nonstationary shifts in stock-recruit relationships can provide valuable insights into temporal variation in fish population dynamics.

  4. Sumatran tiger (Panthera tigris sumatrae): a review of conservation status.

    PubMed

    Wibisono, Hariyo T; Pusparini, Wulan

    2010-12-01

    The majority of wild Sumatran tigers are believed to live in 12 Tiger Conservation Landscapes covering approximately 88,000 km(2) . However, the actual distribution of tigers across Sumatra has never been accurately mapped. Over the past 20 years, conservation efforts focused on the Sumatran tigers have increased, but the population continues to decline as a result of several key threats. To identify the status of the Sumatran tiger distribution across the island, an island-wide questionnaire survey comprised of 35 respondents from various backgrounds was conducted between May and June 2010. The survey found that Sumatran tigers are positively present in 27 habitat patches larger than 250 km(2) and possibly present in another 2. In addition, a review on major published studies on the Sumatran tiger was conducted to identify the current conservation status of the Sumatran tiger. Collectively, these studies have identified several key factors that have contributed to the decline of Sumatran tiger populations, including: forest habitat fragmentation and loss, direct killing of tigers and their prey, and the retaliatory killing of tigers due to conflict with villagers. The present paper provides management authorities and the international community with a recent assessment and a base map of the actual distribution of Sumatran tigers as well as a general overview on the current status and possible future conservation challenges of Sumatran tiger management. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  5. Climate change and control of the southeastern Bering Sea pelagic ecosystem

    NASA Astrophysics Data System (ADS)

    Hunt, George L., Jr.; Stabeno, Phyllis; Walters, Gary; Sinclair, Elizabeth; Brodeur, Richard D.; Napp, Jeffery M.; Bond, Nicholas A.

    2002-12-01

    We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock ( Theragra chalcogramma), Pacific cod ( Gadus macrocephalus) and arrowtooth flounder ( Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin ( Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes. The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [ Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals ( Callorhinus ursinus) and seabirds such as kittiwakes ( Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.

  6. Residue levels of organochlorines and mercury in Cattle Egret, Bubulcus ibis, eggs from the Faiyum Oasis, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullie, W.C.; Massi, A.; Focardi, S.

    1992-05-01

    In Egypt, the Cattle Egret Bubulcus ibis is a common resident bird of the Nile Valley, the southern part of the Nile Delta, and the Suez Canal area. In the 1970s it disappeared as a breeding bird from the greater part of the Nile Delta, as did several other bird species, notably birds of prey. Only in recent years some of the species that had declined are markedly recovering, such as the Black-shouldered Kite Elanus caeruleus and the Cattle Egret. There is circumstancial evidence that these birds declined - at least partially - as a result of pesticide use inmore » the main cotton growing areas, but this has never been substantiated. The recent recovery of some bird populations, commencing in the 1980s, coincides with a general shift from the use of organochlorines (except for endrin and HCH which are still in use) towards synthetic pyrethroids, organophosphates and carbamates in Egyptian agriculture: 30 million kg of formulated product annually, of which 70% are applied to cotton. The number of breeding pairs of Cattle Egrets in a well-known colony at Giza (30[degrees].01'N 31[degrees].13'E) steadily declined from 2500 in 1977 to 1100 in 1984. Therefore, it was decided to collect some eggs for residue analysis. Cattle Egrets are not piscivores, such as most other egrets, but mainly insectivores. They feed in agricultural areas and likely are good indicators for pesticide use in these habitats. Based on gizzard contents analysis, Kirkpatrick (1925) concluded that Cattle Egrets in Egypt only occasionally take (semi) aquatic prey, such as toads, and further predominantly Orthoptera and Diptera on arable land. Various studies have been published with respect to pesticides or heavy metals in the Egyptian environment but, surprisingly, birds have been almost completely ignored. The data presented are the first residue analyses of bird eggs from an agricultural area in Egypt, and as such they can be considered as baseline data for future research. 36 refs., 2 tabs.« less

  7. Ecosystem variability in the offshore northeastern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.

    2017-12-01

    Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to predicting the future state of both the Chukchi and other arctic systems.

  8. Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats

    PubMed Central

    Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches. PMID:24358158

  9. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    PubMed

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  10. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant.

    PubMed

    Bertol, Nils; Paniw, Maria; Ojeda, Fernando

    2015-05-01

    Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low-nutrient environments. Disparate mechanisms have been suggested as luring traits to attract prey insects into their deadly leaves, ranging from very elaborate to none at all. Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves or they act just as passive traps. We compared prey capture between live, potted plants and Drosophyllum-shaped artificial mimics coated with odorless glue. Since this species is insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by quantifying the similarity between the pollination and prey guilds in a natural population. All experiments were done in southern Spain. The sticky leaves of Drosophyllum captured significantly more prey than mimics, particularly small dipterans. Prey attraction, likely exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as inferred from the low similarity between pollinator and prey insect faunas found in this species. Our results illustrate the effectiveness of this carnivorous species at attracting insects to their flypaper-trap leaves. © 2015 Botanical Society of America, Inc.

  11. Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

    PubMed

    Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A

    2015-10-01

    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.

  12. Raptors of the Hanford Site and nearby areas of southcentral Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of howmore » the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.« less

  13. Importance of the predator's ecological neighborhood in modeling predation on migrating prey

    USGS Publications Warehouse

    DeAngelis, Donald L.; Petersen, James H.

    2001-01-01

    Most mathematical descriptions of predator-prey interactions fail to take into account the spatio-temporal structures of the populations, which can lead to errors or misinterpretations. For example, a compact pulse of prey migrating through a field of quasi-stationary predators may not be well described by standard predator-prey models, because the predators and prey are unlikely to be well mixed; that is, the prey may be exposed to only a fraction of the predator population at a time. This underscores the importance of properly accounting for the ecological neighborhood, or effective feeding range, of predators in models. We illustrate this situation with a series of models of salmon smolts migrating through a reservoir arrayed with predators. The reservoir is divided into a number of longitudinal compartments or spatial cells, the length of each cell representing the upstream-downstream range over which predators can forage. In this series of models a 100-km-long reservoir is divided, successively into 2, 5, 10, 25, 50, 100, 200, and 400 cells, with respective cell lengths of 50, 20, 10, 4, 2, 1, 0.5, and 0.25 km. We used a detailed individual-based simulation model at first, but to ensure robustness of results we supplemented this with a simple analytic model. Both models showed sharp differences in the predicted mortality to a compact pulse of smolt prey moving through the reservoir, depending on the number of spatial cells in the model. In particular, models with fewer than about 10 cells vastly overpredicted the amount of mortality due to predators with activity ranges of not more than a few kilometers. These results corroborate recent theoretical and simulation studies on the importance of spatial scale and behavior in modeling predator-prey dynamics.

  14. Seabird population trends along the west coast of North America: causes and the extent of regional concordance

    USGS Publications Warehouse

    Ainley, D.G.; Sydeman, W.J.; Hatch, Shyla A.; Wilson, U.W.

    1994-01-01

    We compared trends in breeding population size among cormorants, gulls, alcids, and others, among the Farallon Islands, and sites in northern California and Washington, Gulf of Alaska, and Bering Sea, but in most cases only during the last two decades. For a given species, trends were usually concordant within the same oceanographic domain, except for Rhinoceros Auklet, which increased across all domains in its northeastern Pacific range. Overall, humans and their domestic animals have had severe negative impacts to individual islands, but recent restoration efforts have had spectacular results. On the other hand, the California Current and the eastern Bering Sea now seem unable to support historic populations of natural, top-trophic predators. The major factor responsible appears to be overfishing by humans of important seabird prey, especially, in a period when climate has been unstable. Notable trends indicating these general patterns were as follows: 1) The Ashy Storm-Petrel on the Farallon Islands, where 80% of this species breeds, may have decreased in response to the increase of gulls in the storm-petrel breeding habitat. 2) Brandt's and Pelagic cormorants in the central California Current declined radically owing to El Nino and antropogenic factors in the early 1980s, and have since failed to recover, contrary to trends in the 1970s; farther north, populations fluctuated slightly but at low levels during this period. 3) Large Larus gulls have increased. 4) Common Murres in the central and northern portions of the California Current exhibited a marked decline during the early 1980s and have since failed to recover. 5) Most Common Murre populations in the Gulf of Alaska appear to be stable; whereas those in the eastern Bering Sea are decreasing. 6) Rhinoceros Auklet has increased throughout its range and has (re-)colonized new sites in the southern portion of it. 7) Tufted Puffin has ceased recovery in the California Current, but in Alaska it has continued to recover from former anthropogenic impacts. 8) Cassin's Auklet has declined in the central California Current region.

  15. An eco-epidemiological system with infected prey and predator subject to the weak Allee effect.

    PubMed

    Sasmal, Sourav Kumar; Chattopadhyay, Joydev

    2013-12-01

    In this article, we propose a general prey–predator model with disease in prey and predator subject to the weak Allee effects. We make the following assumptions: (i) infected prey competes for resources but does not contribute to reproduction; and (ii) in comparison to the consumption of the susceptible prey, consumption of infected prey would contribute less or negatively to the growth of predator. Based on these assumptions, we provide basic dynamic properties for the full model and corresponding submodels with and without the Allee effects. By comparing the disease free submodels (susceptible prey–predator model) with and without the Allee effects, we conclude that the Allee effects can create or destroy the interior attractors. This enables us to obtain the complete dynamics of the full model and conclude that the model has only one attractor (only susceptible prey survives or susceptible-infected coexist), or two attractors (bi-stability with only susceptible prey and susceptible prey–predator coexist or susceptible prey-infected prey coexists and susceptible prey–predator coexist). This model does not support the coexistence of susceptible-infected-predator, which is caused by the assumption that infected population contributes less or are harmful to the growth of predator in comparison to the consumption of susceptible prey.

  16. Lake Ontario benthic prey fish assessment, 2015

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single juvenile Bloater Coregonus hoyi, was captured during the spring bottom trawl survey at 95m (312 ft) near Oswego, NY. This native, deep-water prey fish, last captured in Lake Ontario survey trawls in 1983, is part of an international, collaborative coregonid restoration effort in the Great Lakes.

  17. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  18. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  19. Quantifying fear effects on prey demography in nature.

    PubMed

    Peers, Michael J L; Majchrzak, Yasmine N; Neilson, Eric; Lamb, Clayton T; Hämäläinen, Anni; Haines, Jessica A; Garland, Laura; Doran-Myers, Darcy; Broadley, Kate; Boonstra, Rudy; Boutin, Stan

    2018-06-13

    In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities. © 2018 by the Ecological Society of America.

  20. Graptemys pulchra Baur 1893: Alabama Map Turtle

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Godwin, James C.; McCoy, C.J.; Rhodin, A. G. J.; Pritchard, P. C. H.; van Dijk, P. P.; Saumure, Raymond A.; Buhlmann, K.A.; Iverson, J.B.; Mittermeier, R.A.

    2014-01-01

    The Alabama Map Turtle, Graptemys pulchra (Family Emydidae), is a moderately large riverine species endemic to the Mobile Bay drainage system of Alabama, Georgia, and Mississippi. Sexual size dimorphism is pronounced, with adult females (carapace length [CL] to 273 mm) attaining more than twice the size of adult males (CL to 117 mm). The species is an inhabitant of relatively large, swift creeks and rivers, often with wide sandbars. Stream sections open to the sun and with abundant basking sites in the form of logs and brush are preferred. Six to seven clutches of 4–7 eggs are laid each year on river sandbars. Although the species is locally abundant, populations are threatened by habitat destruction, declines in their prey base, commercial collection, and vandalism. It is listed as a Species of Special Concern in Alabama.

  1. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    NASA Astrophysics Data System (ADS)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  2. Stochastic eco-evolutionary model of a prey-predator community.

    PubMed

    Costa, Manon; Hauzy, Céline; Loeuille, Nicolas; Méléard, Sylvie

    2016-02-01

    We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.

  3. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    NASA Astrophysics Data System (ADS)

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  4. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population.

    PubMed

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-27

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  5. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    PubMed Central

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation. PMID:28128348

  6. Pythons metabolize prey to fuel the response to feeding.

    PubMed Central

    Starck, J. Matthias; Moser, Patrick; Werner, Roland A.; Linke, Petra

    2004-01-01

    We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion. PMID:15255044

  7. [Diet composition and ontogenetic variation in feeding habits of Cleithenes herzensteini in central Yellow Sea].

    PubMed

    Zhang, Bo

    2007-08-01

    In the bottom trawl surveys in central Yellow Sea from January 2004 to October 2005, 622 samples of plaice Cleithenes herzensteini were collected, and their stomach contents were analyzed. The results indicated that the prey items of the plaice included 11 groups or 38 prey species, but only Crustacea and Lamellibranchia were the most important prey groups, accounting for 99% of the total food composition by percentage of index of relative importance. Euphausia pacific, Crangon affinis and Tellinidae were the dominant prey species. Comparing with the 1980s, the feeding activity of plaice declined significantly, and the diet composition changed. Fishes were no longer the dominant prey, and the proportion of anchovy in the diet decreased. Cluster analysis and two-way contingency table analysis were used to study the ontogenetic variations in the feeding habits of plaice, and the results showed that the feeding activity of plaice did not vary significantly among 7 size classes within the size between 51 mm and 370 mm, but ontogenetic variations were found in the diet composition. In the size class < 119 mm, the diet mainly included Euphausiacea and Decapoda. In the diets of fish with the size between 120 mm and 199 mm, the proportion of Lamellibranchia and fishes increased markedly. In the size class > 200 mm, plaice mainly fed on Decapoda and fishes.

  8. Phenotypic plasticity in age at first reproduction of female northern sea otters (Enhydra lutris kenyoni)

    USGS Publications Warehouse

    Von Biela, V.R.; Gill, V.A.; Bodkin, James L.; Burns, Jennifer M.

    2009-01-01

    Life-history theory predicts that within a species, reproduction and survival rates will differ among populations that differ in resource availability or predation rates through phenotypic plasticity. When populations are near carrying capacity (K) or when they are declining due to reduced prey resources, the average age at 1st reproduction (average AFR) is predicted to be older than in populations below K. Differences between the trajectories of northern sea otter (Enhydra lutris kenyoni) populations in Alaska provides an opportunity to examine phenotypic plasticity. Using premolar teeth or reproductive tracts, we estimated average AFR from demographically distinct populations of sea otters in Alaska. We obtained samples from 2 populations near K, Prince William Sound (PWS) and the Aleutian Archipelago (archived samples), and from 2populations below K, the Kodiak Archipelago and Sitka. The average AFR was lower in populations below K (3.60 years ??0.16 SD)compared to those near K (4.21 ?? 0.13 years, P <0.001), and differed among all populations, with the Aleutian population possessing the oldest average AFR (4.29 ?? 0.09 years) followed by PWS (4.05 ?? 0.24 years), Sitka (3.80 ?? 0.21 years), and Kodiak (3.19 ?? 0.37 years). The difference in average AFR among populations supports life-history theory and provides evidence of phenotypic plasticity in sea otters. Our findings highlight the value of using average AFR as a tool for monitoring mammalian populations. ?? 2009 American Society of Mammalogists.

  9. Inorganic and organic contaminants in Alaskan shorebird eggs.

    PubMed

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are relatively free of most contaminants and that contaminant concentrations are below levels (except potentially strontium) that would likely affect the survival of individuals and consequently regulate the species at the population level.

  10. Linking Deep-Waer Prey Fields with Odontocete Population Structure and Behavior

    DTIC Science & Technology

    2015-09-30

    potentially mitigate beaked whale responses to disturbance, providing direct input data to PCOD models for beaked whales • Leverage previous...principles of cetacean foraging ecology and responses to disturbance • Identify key prey metrics for future analyses and incorporation into PCOD

  11. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    USDA-ARS?s Scientific Manuscript database

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  12. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).

  13. Lotka-Volterra system in a random environment.

    PubMed

    Dimentberg, Mikhail F

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  14. Lotka-Volterra system in a random environment

    NASA Astrophysics Data System (ADS)

    Dimentberg, Mikhail F.

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  15. Seabirds as indicators of marine food supplies: Cairns revisited

    USGS Publications Warehouse

    Piatt, John F.; Harding, Ann M.A.; Shultz, Michael T.; Speckman, Suzann G.; van Pelt, Thomas I.; Drew, Gary S.; Kettle, Arthur B.

    2007-01-01

    In his seminal paper about using seabirds as indicators of marine food supplies, Cairns (1987, Biol Oceanogr 5:261–271) predicted that (1) parameters of seabird biology and behavior would vary in curvilinear fashion with changes in food supply, (2) the threshold of prey density over which birds responded would be different for each parameter, and (3) different seabird species would respond differently to variation in food availability depending on foraging behavior and ability to adjust time budgets. We tested these predictions using data collected at colonies of common murre Uria aalge and black-legged kittiwake Rissa tridactyla in Cook Inlet, Alaska. (1) Of 22 seabird responses fitted with linear and non-linear functions, 16 responses exhibited significant curvilinear shapes, and Akaike’s information criterion (AIC) analysis indicated that curvilinear functions provided the best-fitting model for 12 of those. (2) However, there were few differences among parameters in their threshold to prey density, presumably because most responses ultimately depend upon a single threshold for prey acquisition at sea. (3) There were similarities and some differences in how species responded to variability in prey density. Both murres and kittiwakes minimized variability (CV < 15%) in their own body condition and growth of chicks in the face of high annual variability (CV = 69%) in local prey density. Whereas kittiwake breeding success (CV = 63%, r2 = 0.89) reflected prey variability, murre breeding success did not (CV = 29%, r2< 0.00). It appears that murres were able to buffer breeding success by reallocating discretionary ‘loafing’ time to foraging effort in response (r2 = 0.64) to declining prey density. Kittiwakes had little or no discretionary time, so fledging success was a more direct function of local prey density. Implications of these results for using ‘seabirds as indicators’ are discussed.

  16. How Mathematics Describes Life

    NASA Astrophysics Data System (ADS)

    Teklu, Abraham

    2017-01-01

    The circle of life is something we have all heard of from somewhere, but we don't usually try to calculate it. For some time we have been working on analyzing a predator-prey model to better understand how mathematics can describe life, in particular the interaction between two different species. The model we are analyzing is called the Holling-Tanner model, and it cannot be solved analytically. The Holling-Tanner model is a very common model in population dynamics because it is a simple descriptor of how predators and prey interact. The model is a system of two differential equations. The model is not specific to any particular set of species and so it can describe predator-prey species ranging from lions and zebras to white blood cells and infections. One thing all these systems have in common are critical points. A critical point is a value for both populations that keeps both populations constant. It is important because at this point the differential equations are equal to zero. For this model there are two critical points, a predator free critical point and a coexistence critical point. Most of the analysis we did is on the coexistence critical point because the predator free critical point is always unstable and frankly less interesting than the coexistence critical point. What we did is consider two regimes for the differential equations, large B and small B. B, A, and C are parameters in the differential equations that control the system where B measures how responsive the predators are to change in the population, A represents predation of the prey, and C represents the satiation point of the prey population. For the large B case we were able to approximate the system of differential equations by a single scalar equation. For the small B case we were able to predict the limit cycle. The limit cycle is a process of the predator and prey populations growing and shrinking periodically. This model has a limit cycle in the regime of small B, that we solved for numerically. With some assumptions to reduce the differential equations we were able to create a system of equations and unknowns to predict the behavior of the limit cycle for small B.

  17. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    PubMed

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  18. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin ( Progne subis ). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  19. INFECTIOUS DISEASE AND TOXICOLOGICAL MONITORING OF STRANDED PACIFIC HARBOR SEALS (PHOCA VITULINA RICHARDSI) IN COOK INLET AS SURROGATES FOR MONITORING ENDANGERED BELUGAS (DELPHINAPTERUS LEUCAS).

    PubMed

    Bauer, Kendra L; Goertz, Caroline E C; Belovarac, Jane A; Walton, Robert W; Dunn, J Lawrence; Tuomi, Pamela

    2016-09-01

      Pacific harbor seals ( Phoca vitulina richardsi) and belugas ( Delphinapterus leucas ) eat many of the same prey species, occupy the same geographic area, and demonstrate site fidelity in Cook Inlet, Alaska. Although most direct research involving the critically endangered belugas is currently prohibited, studying harbor seals may provide important information about this beluga population. In recent years, harbor seal populations in Alaska have declined for unknown reasons. As part of its stranding program, the Alaska SeaLife Center (ASLC) managed 59 cases of live and dead stranded harbor seals from Cook Inlet between 1997 and 2011. Animals were screened for a variety of diseases and contaminants of concern. Animals were negative by serology to the following diseases: avian influenza, canine distemper virus, dolphin morbillivirus, porpoise morbillivirus, Leptospira canicola, L. grippotyphosa, L. pomona, Neospora caninum , Sarcocystis neurona , and Toxoplasma gondii . Positive titers were found against Brucella spp., phocine distemper virus, seal herpesvirus-1, L. bratislava, L. hardjo, and L. icterohemorrhagiae. All titers were stable or declining except in one animal with an increasing titer for seal herpesvirus-1. Fecal pathogen screenings identified normal flora as well as stable or declining low levels of potentially pathogenic and opportunistic bacteria, though most were of little concern for seal health. In most animals, toxicology screening showed that the majority of tested contaminants were below detectable limits. The level of evidence of exposure to pathogens of concern was low in harbor seals. Although the infectious disease burden and contaminant levels in belugas in Cook Inlet cannot be definitively determined without direct testing, pathogen and contaminant exposure is expected to be similar to that found in harbor seals in this region, as the harbor seals and belugas share the habitat and food resources.

  20. Status of alewife and rainbow smelt in U.S. waters of Lake Ontario, 2015

    USGS Publications Warehouse

    Walsh, Maureen; Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy P.

    2016-01-01

    In 2015 the joint USGS and NYSDEC surveys for Alewife and Rainbow Smelt were combined for the first time into a comprehensive spring pelagic prey fish survey. The adult Alewife abundance and weight indices in 2015 increased slightly from 2014 levels, and adult Alewife abundance has remained relatively stable for the past five years. Adult Alewife condition in both spring and fall increased from 2014 values and was above long-term means. Yearling Alewife abundance was the lowest observed in the 38-year time series. Alewife year class strength at age 1 is related to the number of spawning adults and summer temperatures and winter duration in the first year after hatching. Moderate year classes were produced during 2009-2011, and 2012 was the largest year class in the time series. However, severe winters in 2013-2014 and 2014-2015 contributed to two successive very small year classes for the first time in the time series. We expect adult Alewife abundance and biomass to decline in 2016 as older and larger fish decline in the population. The number of spawning adults increased in 2015, summer temperatures were slightly below average, and the anticipated winter duration is below average (i.e., milder winter) for 2015-2016, so these conditions will likely produce a low to moderate year class. A third successive weak year class could be problematic for the Lake Ontario Alewife population and may be of concern to binational lake managers. Rainbow Smelt were also assessed and the population continues to persist at a low and stable level.

Top