Sample records for decomposition svd algorithm

  1. A Survey of Singular Value Decomposition Methods and Performance Comparison of Some Available Serial Codes

    NASA Technical Reports Server (NTRS)

    Plassman, Gerald E.

    2005-01-01

    This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition (SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms. The report also presents a survey of alternative algorithms, including partial SVD's special case SVD's, and others developed for concurrent processing systems.

  2. Singular value decomposition for collaborative filtering on a GPU

    NASA Astrophysics Data System (ADS)

    Kato, Kimikazu; Hosino, Tikara

    2010-06-01

    A collaborative filtering predicts customers' unknown preferences from known preferences. In a computation of the collaborative filtering, a singular value decomposition (SVD) is needed to reduce the size of a large scale matrix so that the burden for the next phase computation will be decreased. In this application, SVD means a roughly approximated factorization of a given matrix into smaller sized matrices. Webb (a.k.a. Simon Funk) showed an effective algorithm to compute SVD toward a solution of an open competition called "Netflix Prize". The algorithm utilizes an iterative method so that the error of approximation improves in each step of the iteration. We give a GPU version of Webb's algorithm. Our algorithm is implemented in the CUDA and it is shown to be efficient by an experiment.

  3. Reduced Order Model Basis Vector Generation: Generates Basis Vectors fro ROMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrighi, Bill

    2016-03-03

    libROM is a library that implements order reduction via singular value decomposition (SVD) of sampled state vectors. It implements 2 parallel, incremental SVD algorithms and one serial, non-incremental algorithm. It also provides a mechanism for adaptive sampling of basis vectors.

  4. Application of higher order SVD to vibration-based system identification and damage detection

    NASA Astrophysics Data System (ADS)

    Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang

    2012-04-01

    Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.

  5. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  6. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  7. Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study.

    PubMed

    Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio

    2017-01-10

    The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.

  8. Infrared dim-small target tracking via singular value decomposition and improved Kernelized correlation filter

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong

    2017-05-01

    Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.

  9. Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization

    NASA Astrophysics Data System (ADS)

    Jia, Zhongxiao; Yang, Yanfei

    2018-05-01

    In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).

  10. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    PubMed

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Application of a sparse representation method using K-SVD to data compression of experimental ambient vibration data for SHM

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Kiremidjian, Anne S.

    2011-04-01

    This paper introduces a data compression method using the K-SVD algorithm and its application to experimental ambient vibration data for structural health monitoring purposes. Because many damage diagnosis algorithms that use system identification require vibration measurements of multiple locations, it is necessary to transmit long threads of data. In wireless sensor networks for structural health monitoring, however, data transmission is often a major source of battery consumption. Therefore, reducing the amount of data to transmit can significantly lengthen the battery life and reduce maintenance cost. The K-SVD algorithm was originally developed in information theory for sparse signal representation. This algorithm creates an optimal over-complete set of bases, referred to as a dictionary, using singular value decomposition (SVD) and represents the data as sparse linear combinations of these bases using the orthogonal matching pursuit (OMP) algorithm. Since ambient vibration data are stationary, we can segment them and represent each segment sparsely. Then only the dictionary and the sparse vectors of the coefficients need to be transmitted wirelessly for restoration of the original data. We applied this method to ambient vibration data measured from a four-story steel moment resisting frame. The results show that the method can compress the data efficiently and restore the data with very little error.

  12. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  13. A novel image watermarking method based on singular value decomposition and digital holography

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan

    2016-10-01

    According to the information optics theory, a novel watermarking method based on Fourier-transformed digital holography and singular value decomposition (SVD) is proposed in this paper. First of all, a watermark image is converted to a digital hologram using the Fourier transform. After that, the original image is divided into many non-overlapping blocks. All the blocks and the hologram are decomposed using SVD. The singular value components of the hologram are then embedded into the singular value components of each block using an addition principle. Finally, SVD inverse transformation is carried out on the blocks and hologram to generate the watermarked image. The watermark information embedded in each block is extracted at first when the watermark is extracted. After that, an averaging operation is carried out on the extracted information to generate the final watermark information. Finally, the algorithm is simulated. Furthermore, to test the encrypted image's resistance performance against attacks, various attack tests are carried out. The results show that the proposed algorithm has very good robustness against noise interference, image cut, compression, brightness stretching, etc. In particular, when the image is rotated by a large angle, the watermark information can still be extracted correctly.

  14. Asymmetric color image encryption based on singular value decomposition

    NASA Astrophysics Data System (ADS)

    Yao, Lili; Yuan, Caojin; Qiang, Junjie; Feng, Shaotong; Nie, Shouping

    2017-02-01

    A novel asymmetric color image encryption approach by using singular value decomposition (SVD) is proposed. The original color image is encrypted into a ciphertext shown as an indexed image by using the proposed method. The red, green and blue components of the color image are subsequently encoded into a complex function which is then separated into U, S and V parts by SVD. The data matrix of the ciphertext is obtained by multiplying orthogonal matrices U and V while implementing phase-truncation. Diagonal entries of the three diagonal matrices of the SVD results are abstracted and scrambling combined to construct the colormap of the ciphertext. Thus, the encrypted indexed image covers less space than the original image. For decryption, the original color image cannot be recovered without private keys which are obtained from phase-truncation and the orthogonality of V. Computer simulations are presented to evaluate the performance of the proposed algorithm. We also analyze the security of the proposed system.

  15. RF tomography of metallic objects in free space: preliminary results

    NASA Astrophysics Data System (ADS)

    Li, Jia; Ewing, Robert L.; Berdanier, Charles; Baker, Christopher

    2015-05-01

    RF tomography has great potential in defense and homeland security applications. A distributed sensing research facility is under development at Air Force Research Lab. To develop a RF tomographic imaging system for the facility, preliminary experiments have been performed in an indoor range with 12 radar sensors distributed on a circle of 3m radius. Ultra-wideband pulses are used to illuminate single and multiple metallic targets. The echoes received by distributed sensors were processed and combined for tomography reconstruction. Traditional matched filter algorithm and truncated singular value decomposition (SVD) algorithm are compared in terms of their complexity, accuracy, and suitability for distributed processing. A new algorithm is proposed for shape reconstruction, which jointly estimates the object boundary and scatter points on the waveform's propagation path. The results show that the new algorithm allows accurate reconstruction of object shape, which is not available through the matched filter and truncated SVD algorithms.

  16. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  17. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  18. Convergence analysis of the alternating RGLS algorithm for the identification of the reduced complexity Volterra model.

    PubMed

    Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani

    2015-03-01

    In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    NASA Astrophysics Data System (ADS)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a condensed cluster around the main shock. We used this hour of events to fine-tune the automatic SVD detection, association and location of the real-time system, reaching a 37% automatic identification and location of events, with a minimum of 10 stations per event, all events fall within the same condensed cluster and there are no false events or large offsets of their locations. An ordinary SNR detector did not exceed the 11% success with a minimum of 8 stations per event, 2 false events and a wider spread of events (not within the reviewed cluster). One of the main advantages of the SVD detectors for real-time operations is the actual separation between the P and S components, by that significantly reducing the noise of picks detected by ordinary SNR detectors. The new method has been applied for a significant amount of events within the SJFZ in the past 8 years, and is now in the final stage of real-time implementation in UCSD for the ANZA and SJFZ networks, tuned for automatic detection and location of local events.

  20. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  1. Evaluation of glioblastomas and lymphomas with whole-brain CT perfusion: Comparison between a delay-invariant singular-value decomposition algorithm and a Patlak plot.

    PubMed

    Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Kikuchi, Kazufumi; Yoshimoto, Koji; Mizoguchi, Masahiro; Suzuki, Satoshi O; Yoshiura, Takashi; Honda, Hiroshi

    2016-07-01

    Correction of contrast leakage is recommended when enhancing lesions during perfusion analysis. The purpose of this study was to assess the diagnostic performance of computed tomography perfusion (CTP) with a delay-invariant singular-value decomposition algorithm (SVD+) and a Patlak plot in differentiating glioblastomas from lymphomas. This prospective study included 17 adult patients (12 men and 5 women) with pathologically proven glioblastomas (n=10) and lymphomas (n=7). CTP data were analyzed using SVD+ and a Patlak plot. The relative tumor blood volume and flow compared to contralateral normal-appearing gray matter (rCBV and rCBF derived from SVD+, and rBV and rFlow derived from the Patlak plot) were used to differentiate between glioblastomas and lymphomas. The Mann-Whitney U test and receiver operating characteristic (ROC) analyses were used for statistical analysis. Glioblastomas showed significantly higher rFlow (3.05±0.49, mean±standard deviation) than lymphomas (1.56±0.53; P<0.05). There were no statistically significant differences between glioblastomas and lymphomas in rBV (2.52±1.57 vs. 1.03±0.51; P>0.05), rCBF (1.38±0.41 vs. 1.29±0.47; P>0.05), or rCBV (1.78±0.47 vs. 1.87±0.66; P>0.05). ROC analysis showed the best diagnostic performance with rFlow (Az=0.871), followed by rBV (Az=0.771), rCBF (Az=0.614), and rCBV (Az=0.529). CTP analysis with a Patlak plot was helpful in differentiating between glioblastomas and lymphomas, but CTP analysis with SVD+ was not. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Face recognition using tridiagonal matrix enhanced multivariance products representation

    NASA Astrophysics Data System (ADS)

    Ã-zay, Evrim Korkmaz

    2017-01-01

    This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.

  3. Singular value decomposition utilizing parallel algorithms on graphical processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, Charlotte W; Barhen, Jacob

    2011-01-01

    One of the current challenges in underwater acoustic array signal processing is the detection of quiet targets in the presence of noise. In order to enable robust detection, one of the key processing steps requires data and replica whitening. This, in turn, involves the eigen-decomposition of the sample spectral matrix, Cx = 1/K xKX(k)XH(k) where X(k) denotes a single frequency snapshot with an element for each element of the array. By employing the singular value decomposition (SVD) method, the eigenvectors and eigenvalues can be determined directly from the data without computing the sample covariance matrix, reducing the computational requirements formore » a given level of accuracy (van Trees, Optimum Array Processing). (Recall that the SVD of a complex matrix A involves determining V, , and U such that A = U VH where U and V are orthonormal and is a positive, real, diagonal matrix containing the singular values of A. U and V are the eigenvectors of AAH and AHA, respectively, while the singular values are the square roots of the eigenvalues of AAH.) Because it is desirable to be able to compute these quantities in real time, an efficient technique for computing the SVD is vital. In addition, emerging multicore processors like graphical processing units (GPUs) are bringing parallel processing capabilities to an ever increasing number of users. Since the computational tasks involved in array signal processing are well suited for parallelization, it is expected that these computations will be implemented using GPUs as soon as users have the necessary computational tools available to them. Thus, it is important to have an SVD algorithm that is suitable for these processors. This work explores the effectiveness of two different parallel SVD implementations on an NVIDIA Tesla C2050 GPU (14 multiprocessors, 32 cores per multiprocessor, 1.15 GHz clock - peed). The first algorithm is based on a two-step algorithm which bidiagonalizes the matrix using Householder transformations, and then diagonalizes the intermediate bidiagonal matrix through implicit QR shifts. This is similar to that implemented for real matrices by Lahabar and Narayanan ("Singular Value Decomposition on GPU using CUDA", IEEE International Parallel Distributed Processing Symposium 2009). The implementation is done in a hybrid manner, with the bidiagonalization stage done using the GPU while the diagonalization stage is done using the CPU, with the GPU used to update the U and V matrices. The second algorithm is based on a one-sided Jacobi scheme utilizing a sequence of pair-wise column orthogonalizations such that A is replaced by AV until the resulting matrix is sufficiently orthogonal (that is, equal to U ). V is obtained from the sequence of orthogonalizations, while can be found from the square root of the diagonal elements of AH A and, once is known, U can be found from column scaling the resulting matrix. These implementations utilize CUDA Fortran and NVIDIA's CUB LAS library. The primary goal of this study is to quantify the comparative performance of these two techniques against themselves and other standard implementations (for example, MATLAB). Considering that there is significant overhead associated with transferring data to the GPU and with synchronization between the GPU and the host CPU, it is also important to understand when it is worthwhile to use the GPU in terms of the matrix size and number of concurrent SVDs to be calculated.« less

  4. SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain

    PubMed Central

    McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.

    2016-01-01

    Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380

  5. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  6. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  7. Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.

    PubMed

    Liu, Jing; Zhou, Weidong; Juwono, Filbert H

    2017-05-08

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

  8. On the use of the singular value decomposition for text retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husbands, P.; Simon, H.D.; Ding, C.

    2000-12-04

    The use of the Singular Value Decomposition (SVD) has been proposed for text retrieval in several recent works. This technique uses the SVD to project very high dimensional document and query vectors into a low dimensional space. In this new space it is hoped that the underlying structure of the collection is revealed thus enhancing retrieval performance. Theoretical results have provided some evidence for this claim and to some extent experiments have confirmed this. However, these studies have mostly used small test collections and simplified document models. In this work we investigate the use of the SVD on large documentmore » collections. We show that, if interpreted as a mechanism for representing the terms of the collection, this technique alone is insufficient for dealing with the variability in term occurrence. Section 2 introduces the text retrieval concepts necessary for our work. A short description of our experimental architecture is presented in Section 3. Section 4 describes how term occurrence variability affects the SVD and then shows how the decomposition influences retrieval performance. A possible way of improving SVD-based techniques is presented in Section 5 and concluded in Section 6.« less

  9. Matrix Methods for Estimating the Coherence Functions from Estimates of the Cross-Spectral Density Matrix

    DOE PAGES

    Smallwood, D. O.

    1996-01-01

    It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.

  10. A singular value decomposition approach for improved taxonomic classification of biological sequences

    PubMed Central

    2011-01-01

    Background Singular value decomposition (SVD) is a powerful technique for information retrieval; it helps uncover relationships between elements that are not prima facie related. SVD was initially developed to reduce the time needed for information retrieval and analysis of very large data sets in the complex internet environment. Since information retrieval from large-scale genome and proteome data sets has a similar level of complexity, SVD-based methods could also facilitate data analysis in this research area. Results We found that SVD applied to amino acid sequences demonstrates relationships and provides a basis for producing clusters and cladograms, demonstrating evolutionary relatedness of species that correlates well with Linnaean taxonomy. The choice of a reasonable number of singular values is crucial for SVD-based studies. We found that fewer singular values are needed to produce biologically significant clusters when SVD is employed. Subsequently, we developed a method to determine the lowest number of singular values and fewest clusters needed to guarantee biological significance; this system was developed and validated by comparison with Linnaean taxonomic classification. Conclusions By using SVD, we can reduce uncertainty concerning the appropriate rank value necessary to perform accurate information retrieval analyses. In tests, clusters that we developed with SVD perfectly matched what was expected based on Linnaean taxonomy. PMID:22369633

  11. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  12. Crystal Identification in Dual-Layer-Offset DOI-PET Detectors Using Stratified Peak Tracking Based on SVD and Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Liu, Yaqiang; Gu, Yu

    2016-10-01

    An Anger-logic based pixelated PET detector block requires a crystal position map (CPM) to assign the position of each detected event to a most probable crystal index. Accurate assignments are crucial to PET imaging performance. In this paper, we present a novel automatic approach to generate the CPMs for dual-layer offset (DLO) PET detectors using a stratified peak tracking method. In which, the top and bottom layers are distinguished by their intensity difference and the peaks of the top and bottom layers are tracked based on a singular value decomposition (SVD) and mean-shift algorithm in succession. The CPM is created by classifying each pixel to its nearest peak and assigning the pixel with the crystal index of that peak. A Matlab-based graphical user interface program was developed including the automatic algorithm and a manual interaction procedure. The algorithm was tested for three DLO PET detector blocks. Results show that the proposed method exhibits good performance as well as robustness for all the three blocks. Compared to the existing methods, our approach can directly distinguish the layer and crystal indices using the information of intensity and offset grid pattern.

  13. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    DTIC Science & Technology

    2016-09-01

    Six methods: Single value decomposition (SVD), wavelet, sliding window, sliding window with Gaussian weighting, spline and spectral improvements...comparison of a range of different denoising methods for dynamic MRS. Six denoising methods were considered: Single value decomposition (SVD), wavelet...project by improving the software required for the data analysis by developing six different denoising methods. He also assisted with the testing

  14. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  15. Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.

    NASA Astrophysics Data System (ADS)

    Le, Loc Xuan

    1987-09-01

    A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.

  16. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).

    PubMed

    Bermúdez Ordoñez, Juan Carlos; Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-05-16

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.

  17. Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)

    PubMed Central

    Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando

    2018-01-01

    A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain. PMID:29772731

  18. Image compression using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Swathi, H. R.; Sohini, Shah; Surbhi; Gopichand, G.

    2017-11-01

    We often need to transmit and store the images in many applications. Smaller the image, less is the cost associated with transmission and storage. So we often need to apply data compression techniques to reduce the storage space consumed by the image. One approach is to apply Singular Value Decomposition (SVD) on the image matrix. In this method, digital image is given to SVD. SVD refactors the given digital image into three matrices. Singular values are used to refactor the image and at the end of this process, image is represented with smaller set of values, hence reducing the storage space required by the image. Goal here is to achieve the image compression while preserving the important features which describe the original image. SVD can be adapted to any arbitrary, square, reversible and non-reversible matrix of m × n size. Compression ratio and Mean Square Error is used as performance metrics.

  19. Rapid determination of particle velocity from space-time images using the Radon transform

    PubMed Central

    Drew, Patrick J.; Blinder, Pablo; Cauwenberghs, Gert; Shih, Andy Y.; Kleinfeld, David

    2016-01-01

    Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise. PMID:19459038

  20. Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Weinstein, Marvin; Chandra, Ravi; Auerbach, Assa

    2012-02-01

    We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements. In contrast to variational approaches and most implementations of DMRG, Lanczos rotations towards the ground state do not involve incremental minimizations, (e.g. sweeping procedures) which may get stuck in false local minima. The lattice of size N is partitioned into two subclusters. At each iteration the rotating Lanczos vector is compressed into two sets of nsvd small subcluster vectors using singular value decomposition. For low entanglement entropy See, (satisfied by short range Hamiltonians), the truncation error is bounded by (-nsvd^1/See). Convergence is tested for the Heisenberg model on Kagom'e clusters of 24, 30 and 36 sites, with no lattice symmetries exploited, using less than 15GB of dynamical memory. Generalization of the Lanczos-SVD algorithm to multiple partitioning is discussed, and comparisons to other techniques are given. Reference: arXiv:1105.0007

  1. Weak characteristic information extraction from early fault of wind turbine generator gearbox

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoli; Liu, Xiuli

    2017-09-01

    Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

  2. Two Dimensional Finite Element Based Magnetotelluric Inversion using Singular Value Decomposition Method on Transverse Electric Mode

    NASA Astrophysics Data System (ADS)

    Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy

    2018-04-01

    In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.

  3. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.

    PubMed

    Meuwissen, Theo H E; Indahl, Ulf G; Ødegård, Jørgen

    2017-12-27

    Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genotype matrix can facilitate genomic prediction in large datasets, and can be used to estimate marker effects and their prediction error variances (PEV) in a computationally efficient manner. Here, we developed, implemented, and evaluated a direct, non-iterative method for the estimation of marker effects for the BayesC genomic prediction model. The BayesC model assumes a priori that markers have normally distributed effects with probability [Formula: see text] and no effect with probability (1 - [Formula: see text]). Marker effects and their PEV are estimated by using SVD and the posterior probability of the marker having a non-zero effect is calculated. These posterior probabilities are used to obtain marker-specific effect variances, which are subsequently used to approximate BayesC estimates of marker effects in a linear model. A computer simulation study was conducted to compare alternative genomic prediction methods, where a single reference generation was used to estimate marker effects, which were subsequently used for 10 generations of forward prediction, for which accuracies were evaluated. SVD-based posterior probabilities of markers having non-zero effects were generally lower than MCMC-based posterior probabilities, but for some regions the opposite occurred, resulting in clear signals for QTL-rich regions. The accuracies of breeding values estimated using SVD- and MCMC-based BayesC analyses were similar across the 10 generations of forward prediction. For an intermediate number of generations (2 to 5) of forward prediction, accuracies obtained with the BayesC model tended to be slightly higher than accuracies obtained using the best linear unbiased prediction of SNP effects (SNP-BLUP model). When reducing marker density from WGS data to 30 K, SNP-BLUP tended to yield the highest accuracies, at least in the short term. Based on SVD of the genotype matrix, we developed a direct method for the calculation of BayesC estimates of marker effects. Although SVD- and MCMC-based marker effects differed slightly, their prediction accuracies were similar. Assuming that the SVD of the marker genotype matrix is already performed for other reasons (e.g. for SNP-BLUP), computation times for the BayesC predictions were comparable to those of SNP-BLUP.

  4. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.

    PubMed

    Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Zhu, Dongxiao; Zhang, Kun

    2010-06-22

    Comparative analysis of gene expression profiling of multiple biological categories, such as different species of organisms or different kinds of tissue, promises to enhance the fundamental understanding of the universality as well as the specialization of mechanisms and related biological themes. Grouping genes with a similar expression pattern or exhibiting co-expression together is a starting point in understanding and analyzing gene expression data. In recent literature, gene module level analysis is advocated in order to understand biological network design and system behaviors in disease and life processes; however, practical difficulties often lie in the implementation of existing methods. Using the singular value decomposition (SVD) technique, we developed a new computational tool, named svdPPCS (SVD-based Pattern Pairing and Chart Splitting), to identify conserved and divergent co-expression modules of two sets of microarray experiments. In the proposed methods, gene modules are identified by splitting the two-way chart coordinated with a pair of left singular vectors factorized from the gene expression matrices of the two biological categories. Importantly, the cutoffs are determined by a data-driven algorithm using the well-defined statistic, SVD-p. The implementation was illustrated on two time series microarray data sets generated from the samples of accessory gland (ACG) and malpighian tubule (MT) tissues of the line W118 of M. drosophila. Two conserved modules and six divergent modules, each of which has a unique characteristic profile across tissue kinds and aging processes, were identified. The number of genes contained in these models ranged from five to a few hundred. Three to over a hundred GO terms were over-represented in individual modules with FDR < 0.1. One divergent module suggested the tissue-specific relationship between the expressions of mitochondrion-related genes and the aging process. This finding, together with others, may be of biological significance. The validity of the proposed SVD-based method was further verified by a simulation study, as well as the comparisons with regression analysis and cubic spline regression analysis plus PAM based clustering. svdPPCS is a novel computational tool for the comparative analysis of transcriptional profiling. It especially fits the comparison of time series data of related organisms or different tissues of the same organism under equivalent or similar experimental conditions. The general scheme can be directly extended to the comparisons of multiple data sets. It also can be applied to the integration of data sets from different platforms and of different sources.

  5. Time evolution of two holes in t - J chains with anisotropic couplings

    NASA Astrophysics Data System (ADS)

    Manmana, Salvatore R.; Thyen, Holger; Köhler, Thomas; Kramer, Stephan C.

    Using time-dependent Matrix Product State (MPS) methods we study the real-time evolution of hole-excitations in t-J chains close to filling n = 1 . The dynamics in 'standard' t - J chains with SU(2) invariant spin couplings is compared to the one when introducing anisotropic, XXZ-type spin interactions as realizable, e.g., by ultracold polar molecules on optical lattices. The simulations are performed with MPS implementations based on the usual singular value decompositions (SVD) as well as ones using the adaptive cross approximation (ACA) instead. The ACA can be seen as an iterative approach to SVD which is often used, e.g., in the context of finite-element-methods, leading to a substantial speedup. A comparison of the performance of both algorithms in the MPS context is discussed. Financial support via DFG through CRC 1073 (''Atomic scale control of energy conversion''), project B03 is gratefully acknowledged.

  6. Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners.

    PubMed

    Hendler, R W; Shrager, R I

    1994-01-01

    Singular value decomposition (SVD) is deeply rooted in the theory of linear algebra, and because of this is not readily understood by a large group of researchers who could profit from its application. In this paper, we discuss the subject on a level that should be understandable to scientists who are not well versed in linear algebra. However, because it is necessary that certain key concepts in linear algebra be appreciated in order to comprehend what is accomplished by SVD, we present the section, 'Bare basics of linear algebra'. This is followed by a discussion of the theory of SVD. Next we present step-by-step examples to illustrate how SVD is applied to deconvolute a titration involving a mixture of three pH indicators. One noiseless case is presented as well as two cases where either a fixed or varying noise level is present. Finally, we discuss additional deconvolutions of mixed spectra based on the use of the pseudoinverse.

  7. Learning overcomplete representations from distributed data: a brief review

    NASA Astrophysics Data System (ADS)

    Raja, Haroon; Bajwa, Waheed U.

    2016-05-01

    Most of the research on dictionary learning has focused on developing algorithms under the assumption that data is available at a centralized location. But often the data is not available at a centralized location due to practical constraints like data aggregation costs, privacy concerns, etc. Using centralized dictionary learning algorithms may not be the optimal choice in such settings. This motivates the design of dictionary learning algorithms that consider distributed nature of data as one of the problem variables. Just like centralized settings, distributed dictionary learning problem can be posed in more than one way depending on the problem setup. Most notable distinguishing features are the online versus batch nature of data and the representative versus discriminative nature of the dictionaries. In this paper, several distributed dictionary learning algorithms that are designed to tackle different problem setups are reviewed. One of these algorithms is cloud K-SVD, which solves the dictionary learning problem for batch data in distributed settings. One distinguishing feature of cloud K-SVD is that it has been shown to converge to its centralized counterpart, namely, the K-SVD solution. On the other hand, no such guarantees are provided for other distributed dictionary learning algorithms. Convergence of cloud K-SVD to the centralized K-SVD solution means problems that are solvable by K-SVD in centralized settings can now be solved in distributed settings with similar performance. Finally, cloud K-SVD is used as an example to show the advantages that are attainable by deploying distributed dictionary algorithms for real world distributed datasets.

  8. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  9. Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen

    2016-07-27

    Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.

  10. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  11. Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure.

    PubMed

    Zhang, Wen; Xiao, Fan; Li, Bin; Zhang, Siguang

    2016-01-01

    Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods.

  12. Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure

    PubMed Central

    Xiao, Fan; Li, Bin; Zhang, Siguang

    2016-01-01

    Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods. PMID:27579031

  13. A hybrid linear/nonlinear training algorithm for feedforward neural networks.

    PubMed

    McLoone, S; Brown, M D; Irwin, G; Lightbody, A

    1998-01-01

    This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.

  14. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu; Hulsart, R.; Mernick, K.

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  15. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE PAGES

    Liu, Chuyu; Hulsart, R.; Mernick, K.; ...

    2018-05-08

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  16. SVD analysis of Aura TES spectral residuals

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  17. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  18. Background recovery via motion-based robust principal component analysis with matrix factorization

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wang, Yongli; Zhou, Mingyuan; Sun, Zhipeng; He, Guoping

    2018-03-01

    Background recovery is a key technique in video analysis, but it still suffers from many challenges, such as camouflage, lighting changes, and diverse types of image noise. Robust principal component analysis (RPCA), which aims to recover a low-rank matrix and a sparse matrix, is a general framework for background recovery. The nuclear norm is widely used as a convex surrogate for the rank function in RPCA, which requires computing the singular value decomposition (SVD), a task that is increasingly costly as matrix sizes and ranks increase. However, matrix factorization greatly reduces the dimension of the matrix for which the SVD must be computed. Motion information has been shown to improve low-rank matrix recovery in RPCA, but this method still finds it difficult to handle original video data sets because of its batch-mode formulation and implementation. Hence, in this paper, we propose a motion-assisted RPCA model with matrix factorization (FM-RPCA) for background recovery. Moreover, an efficient linear alternating direction method of multipliers with a matrix factorization (FL-ADM) algorithm is designed for solving the proposed FM-RPCA model. Experimental results illustrate that the method provides stable results and is more efficient than the current state-of-the-art algorithms.

  19. A general approach to regularizing inverse problems with regional data using Slepian wavelets

    NASA Astrophysics Data System (ADS)

    Michel, Volker; Simons, Frederik J.

    2017-12-01

    Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.

  20. Rapid surface defect detection based on singular value decomposition using steel strips as an example

    NASA Astrophysics Data System (ADS)

    Sun, Qianlai; Wang, Yin; Sun, Zhiyi

    2018-05-01

    For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.

  1. Prediction of monthly-seasonal precipitation using coupled SVD patterns between soil moisture and subsequent precipitation

    Treesearch

    Yongqiang Liu

    2003-01-01

    It was suggested in a recent statistical correlation analysis that predictability of monthly-seasonal precipitation could be improved by using coupled singular value decomposition (SVD) pattems between soil moisture and precipitation instead of their values at individual locations. This study provides predictive evidence for this suggestion by comparing skills of two...

  2. Spatial patterns of soil moisture connected to monthly-seasonal precipitation variability in a monsoon region

    Treesearch

    Yongqiang Liu

    2003-01-01

    The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...

  3. Tensor Factorization for Low-Rank Tensor Completion.

    PubMed

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  4. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles.

    PubMed

    Wang, Wei; Chen, Xiyuan

    2018-02-23

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.

  5. Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.

    PubMed

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-03-22

    Sequential dictionary learning via the K-SVD algorithm has been revealed as a successful alternative to conventional data driven methods such as independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data analysis. fMRI datasets are however structured data matrices with notions of spatio-temporal correlation and temporal smoothness. This prior information has not been included in the K-SVD algorithm when applied to fMRI data analysis. In this paper we propose three variants of the K-SVD algorithm dedicated to fMRI data analysis by accounting for this prior information. The proposed algorithms differ from the K-SVD in their sparse coding and dictionary update stages. The first two algorithms account for the known correlation structure in the fMRI data by using the squared Q, R-norm instead of the Frobenius norm for matrix approximation. The third and last algorithm account for both the known correlation structure in the fMRI data and the temporal smoothness. The temporal smoothness is incorporated in the dictionary update stage via regularization of the dictionary atoms obtained with penalization. The performance of the proposed dictionary learning algorithms are illustrated through simulations and applications on real fMRI data.

  6. Statistical Feature Extraction for Artifact Removal from Concurrent fMRI-EEG Recordings

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; van Gelderen, Peter; Kuo, Li-Wei; Duyn, Jeff H.

    2011-01-01

    We propose a set of algorithms for sequentially removing artifacts related to MRI gradient switching and cardiac pulsations from electroencephalography (EEG) data recorded during functional magnetic resonance imaging (fMRI). Special emphases are directed upon the use of statistical metrics and methods for the extraction and selection of features that characterize gradient and pulse artifacts. To remove gradient artifacts, we use a channel-wise filtering based on singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into temporally independent components and then select a compact cluster of components that possess sustained high mutual information with the electrocardiogram (ECG). After the removal of these components, the time courses of remaining components are filtered by SVD to remove the temporal patterns phase-locked to the cardiac markers derived from the ECG. The filtered component time courses are then inversely transformed into multi-channel EEG time series free of pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data quality and robust performance attainable by the proposed methods. These algorithms have been implemented as a Matlab-based toolbox made freely available for public access and research use. PMID:22036675

  7. Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings.

    PubMed

    Liu, Zhongming; de Zwart, Jacco A; van Gelderen, Peter; Kuo, Li-Wei; Duyn, Jeff H

    2012-02-01

    We propose a set of algorithms for sequentially removing artifacts related to MRI gradient switching and cardiac pulsations from electroencephalography (EEG) data recorded during functional magnetic resonance imaging (fMRI). Special emphasis is directed upon the use of statistical metrics and methods for the extraction and selection of features that characterize gradient and pulse artifacts. To remove gradient artifacts, we use channel-wise filtering based on singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into temporally independent components and then select a compact cluster of components that possess sustained high mutual information with the electrocardiogram (ECG). After the removal of these components, the time courses of remaining components are filtered by SVD to remove the temporal patterns phase-locked to the cardiac timing markers derived from the ECG. The filtered component time courses are then inversely transformed into multi-channel EEG time series free of pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data quality and robust performance attainable with the proposed methods. These algorithms have been implemented as a Matlab-based toolbox made freely available for public access and research use. Published by Elsevier Inc.

  8. Hybrid method based on singular value decomposition and embedded zero tree wavelet technique for ECG signal compression.

    PubMed

    Kumar, Ranjeet; Kumar, A; Singh, G K

    2016-06-01

    In the field of biomedical, it becomes necessary to reduce data quantity due to the limitation of storage in real-time ambulatory system and telemedicine system. Research has been underway since very beginning for the development of an efficient and simple technique for longer term benefits. This paper, presents an algorithm based on singular value decomposition (SVD), and embedded zero tree wavelet (EZW) techniques for ECG signal compression which deals with the huge data of ambulatory system. The proposed method utilizes the low rank matrix for initial compression on two dimensional (2-D) ECG data array using SVD, and then EZW is initiated for final compression. Initially, 2-D array construction has key issue for the proposed technique in pre-processing. Here, three different beat segmentation approaches have been exploited for 2-D array construction using segmented beat alignment with exploitation of beat correlation. The proposed algorithm has been tested on MIT-BIH arrhythmia record, and it was found that it is very efficient in compression of different types of ECG signal with lower signal distortion based on different fidelity assessments. The evaluation results illustrate that the proposed algorithm has achieved the compression ratio of 24.25:1 with excellent quality of signal reconstruction in terms of percentage-root-mean square difference (PRD) as 1.89% for ECG signal Rec. 100 and consumes only 162bps data instead of 3960bps uncompressed data. The proposed method is efficient and flexible with different types of ECG signal for compression, and controls quality of reconstruction. Simulated results are clearly illustrate the proposed method can play a big role to save the memory space of health data centres as well as save the bandwidth in telemedicine based healthcare systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    PubMed

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  10. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles

    PubMed Central

    Wang, Wei; Chen, Xiyuan

    2018-01-01

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm. PMID:29473912

  11. Operational modal analysis using SVD of power spectral density transmissibility matrices

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Laier, Jose Elias

    2014-05-01

    This paper proposes the singular value decomposition of power spectrum density transmissibility matrices with different references, (PSDTM-SVD), as an identification method of natural frequencies and mode shapes of a dynamic system subjected to excitations under operational conditions. At the system poles, the rows of the proposed transmissibility matrix converge to the same ratio of amplitudes of vibration modes. As a result, the matrices are linearly dependent on the columns, and their singular values converge to zero. Singular values are used to determine the natural frequencies, and the first left singular vectors are used to estimate mode shapes. A numerical example of the finite element model of a beam subjected to colored noise excitation is analyzed to illustrate the accuracy of the proposed method. Results of the PSDTM-SVD method in the numerical example are compared with obtained using frequency domain decomposition (FDD) and power spectrum density transmissibility (PSDT). It is demonstrated that the proposed method does not depend on the excitation characteristics contrary to the FDD method that assumes white noise excitation, and further reduces the risk to identify extra non-physical poles in comparison to the PSDT method. Furthermore, a case study is performed using data from an operational vibration test of a bridge with a simply supported beam system. The real application of a full-sized bridge has shown that the proposed PSDTM-SVD method is able to identify the operational modal parameter. Operational modal parameters identified by the PSDTM-SVD in the real application agree well those identified by the FDD and PSDT methods.

  12. An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.

    PubMed

    Zhang, Ye; Yu, Tenglong; Wang, Wenwu

    2014-01-01

    Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  13. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  14. Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2011-05-10

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  15. Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2011-01-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly. PMID:21552350

  16. A novel key-frame extraction approach for both video summary and video index.

    PubMed

    Lei, Shaoshuai; Xie, Gang; Yan, Gaowei

    2014-01-01

    Existing key-frame extraction methods are basically video summary oriented; yet the index task of key-frames is ignored. This paper presents a novel key-frame extraction approach which can be available for both video summary and video index. First a dynamic distance separability algorithm is advanced to divide a shot into subshots based on semantic structure, and then appropriate key-frames are extracted in each subshot by SVD decomposition. Finally, three evaluation indicators are proposed to evaluate the performance of the new approach. Experimental results show that the proposed approach achieves good semantic structure for semantics-based video index and meanwhile produces video summary consistent with human perception.

  17. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  18. Variability common to global sea surface temperatures and runoff in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2014-01-01

    Singular value decomposition (SVD) is used to identify the variability common to global sea surface temperatures (SSTs) and water-balance-modeled water-year (WY) runoff in the conterminous United States (CONUS) for the 1900–2012 period. Two modes were identified from the SVD analysis; the two modes explain 25% of the variability in WY runoff and 33% of the variability in WY SSTs. The first SVD mode reflects the variability of the El Niño–Southern Oscillation (ENSO) in the SST data and the hydroclimatic effects of ENSO on WY runoff in the CONUS. The second SVD mode is related to variability of the Atlantic multidecadal oscillation (AMO). An interesting aspect of these results is that both ENSO and AMO appear to have nearly equivalent effects on runoff variability in the CONUS. However, the relatively small amount of variance explained by the SVD analysis indicates that there is little covariation between runoff and SSTs, suggesting that SSTs may not be a viable predictor of runoff variability for most of the conterminous United States.

  19. SVD compression for magnetic resonance fingerprinting in the time domain.

    PubMed

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  20. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Jia, Xiaodong

    2017-09-01

    Singular value decomposition (SVD), as an effective signal denoising tool, has been attracting considerable attention in recent years. The basic idea behind SVD denoising is to preserve the singular components (SCs) with significant singular values. However, it is shown that the singular values mainly reflect the energy of decomposed SCs, therefore traditional SVD denoising approaches are essentially energy-based, which tend to highlight the high-energy regular components in the measured signal, while ignoring the weak feature caused by early fault. To overcome this issue, a reweighted singular value decomposition (RSVD) strategy is proposed for signal denoising and weak feature enhancement. In this work, a novel information index called periodic modulation intensity is introduced to quantify the diagnostic information in a mechanical signal. With this index, the decomposed SCs can be evaluated and sorted according to their information levels, rather than energy. Based on that, a truncated linear weighting function is proposed to control the contribution of each SC in the reconstruction of the denoised signal. In this way, some weak but informative SCs could be highlighted effectively. The advantages of RSVD over traditional approaches are demonstrated by both simulated signals and real vibration/acoustic data from a two-stage gearbox as well as train bearings. The results demonstrate that the proposed method can successfully extract the weak fault feature even in the presence of heavy noise and ambient interferences.

  1. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Romppanen, Sari; Häkkänen, Heikki; Kaski, Saara

    2017-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples.

  2. Numerical Analysis and Improved Algorithms for Lyapunov-Exponent Calculation of Discrete-Time Chaotic Systems

    NASA Astrophysics Data System (ADS)

    He, Jianbin; Yu, Simin; Cai, Jianping

    2016-12-01

    Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.

  3. Note: Sound recovery from video using SVD-based information extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Chang'an

    2016-08-01

    This note reports an efficient singular value decomposition (SVD)-based vibration extraction approach that recovers sound information in silent high-speed video. A high-speed camera of which frame rates are in the range of 2 kHz-10 kHz is applied to film the vibrating objects. Sub-images cut from video frames are transformed into column vectors and then reconstructed to a new matrix. The SVD of the new matrix produces orthonormal image bases (OIBs) and image projections onto specific OIB can be recovered as understandable acoustical signals. Standard frequencies of 256 Hz and 512 Hz tuning forks are extracted offline from their vibrating surfaces and a 3.35 s speech signal is recovered online from a piece of paper that is stimulated by sound waves within 1 min.

  4. Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles

    NASA Technical Reports Server (NTRS)

    Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.

    1989-01-01

    The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.

  5. Sparse representation of multi parametric DCE-MRI features using K-SVD for classifying gene expression based breast cancer recurrence risk

    NASA Astrophysics Data System (ADS)

    Mahrooghy, Majid; Ashraf, Ahmed B.; Daye, Dania; Mies, Carolyn; Rosen, Mark; Feldman, Michael; Kontos, Despina

    2014-03-01

    We evaluate the prognostic value of sparse representation-based features by applying the K-SVD algorithm on multiparametric kinetic, textural, and morphologic features in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). K-SVD is an iterative dimensionality reduction method that optimally reduces the initial feature space by updating the dictionary columns jointly with the sparse representation coefficients. Therefore, by using K-SVD, we not only provide sparse representation of the features and condense the information in a few coefficients but also we reduce the dimensionality. The extracted K-SVD features are evaluated by a machine learning algorithm including a logistic regression classifier for the task of classifying high versus low breast cancer recurrence risk as determined by a validated gene expression assay. The features are evaluated using ROC curve analysis and leave one-out cross validation for different sparse representation and dimensionality reduction numbers. Optimal sparse representation is obtained when the number of dictionary elements is 4 (K=4) and maximum non-zero coefficients is 2 (L=2). We compare K-SVD with ANOVA based feature selection for the same prognostic features. The ROC results show that the AUC of the K-SVD based (K=4, L=2), the ANOVA based, and the original features (i.e., no dimensionality reduction) are 0.78, 0.71. and 0.68, respectively. From the results, it can be inferred that by using sparse representation of the originally extracted multi-parametric, high-dimensional data, we can condense the information on a few coefficients with the highest predictive value. In addition, the dimensionality reduction introduced by K-SVD can prevent models from over-fitting.

  6. Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition.

    PubMed

    Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui

    2017-03-27

    Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.

  7. Explosion Source Similarity Analysis via SVD

    NASA Astrophysics Data System (ADS)

    Yedlin, Matthew; Ben Horin, Yochai; Margrave, Gary

    2016-04-01

    An important seismological ingredient for establishing a regional seismic nuclear discriminant is the similarity analysis of a sequence of explosion sources. To investigate source similarity, we are fortunate to have access to a sequence of 1805 three-component recordings of quarry blasts, shot from March 2002 to January 2015. The centroid of these blasts has an estimated location 36.3E and 29.9N. All blasts were detonated by JPMC (Jordan Phosphate Mines Co.) All data were recorded at the Israeli NDC, HFRI, located at 30.03N and 35.03E. Data were first winnowed based on the distribution of maximum amplitudes in the neighborhood of the P-wave arrival. The winnowed data were then detrended using the algorithm of Cleveland et al (1990). The detrended data were bandpass filtered between .1 to 12 Hz using an eighth order Butterworth filter. Finally, data were sorted based on maximum trace amplitude. Two similarity analysis approaches were used. First, for each component, the entire suite of traces was decomposed into its eigenvector representation, by employing singular-valued decomposition (SVD). The data were then reconstructed using 10 percent of the singular values, with the resulting enhancement of the S-wave and surface wave arrivals. The results of this first method are then compared to the second analysis method based on the eigenface decomposition analysis of Turk and Pentland (1991). While both methods yield similar results in enhancement of data arrivals and reduction of data redundancy, more analysis is required to calibrate the recorded data to charge size, a quantity that was not available for the current study. References Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I., Stl: A seasonal-trend decomposition procedure based on loess, Journal of Official Statistics, 6, No. 1, 3-73, 1990. Turk, M. and Pentland, A., Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1), 71-86, 1991.

  8. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    PubMed

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  9. Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking

    NASA Astrophysics Data System (ADS)

    Hu, Hwai-Tsu; Chou, Hsien-Hsin; Yu, Chu; Hsu, Ling-Yuan

    2014-12-01

    This paper presents a novel approach for blind audio watermarking. The proposed scheme utilizes the flexibility of discrete wavelet packet transformation (DWPT) to approximate the critical bands and adaptively determines suitable embedding strengths for carrying out quantization index modulation (QIM). The singular value decomposition (SVD) is employed to analyze the matrix formed by the DWPT coefficients and embed watermark bits by manipulating singular values subject to perceptual criteria. To achieve even better performance, two auxiliary enhancement measures are attached to the developed scheme. Performance evaluation and comparison are demonstrated with the presence of common digital signal processing attacks. Experimental results confirm that the combination of the DWPT, SVD, and adaptive QIM achieves imperceptible data hiding with satisfying robustness and payload capacity. Moreover, the inclusion of self-synchronization capability allows the developed watermarking system to withstand time-shifting and cropping attacks.

  10. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance.

    PubMed

    Srivastava, Madhur; Freed, Jack H

    2017-11-16

    Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.

  11. Glove-based approach to online signature verification.

    PubMed

    Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A

    2008-06-01

    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.

  12. Image fusion via nonlocal sparse K-SVD dictionary learning.

    PubMed

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  13. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation

    NASA Astrophysics Data System (ADS)

    Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer

    2018-01-01

    Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their preferential driving influence on fibrillatory modes.

  14. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation.

    PubMed

    Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD's robustness and wide applicability.

  15. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  16. Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method

    NASA Astrophysics Data System (ADS)

    Skokos, C.; Bountis, T.; Antonopoulos, C.

    2008-12-01

    The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi-dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long-time behavior in the case of regular orbits lying on low-dimensional tori. The GALIk indices are applied to rapidly detect chaotic oscillations, identify low-dimensional tori of Fermi-Pasta-Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.

  17. Qualitatively Assessing Randomness in SVD Results

    NASA Astrophysics Data System (ADS)

    Lamb, K. W.; Miller, W. P.; Kalra, A.; Anderson, S.; Rodriguez, A.

    2012-12-01

    Singular Value Decomposition (SVD) is a powerful tool for identifying regions of significant co-variability between two spatially distributed datasets. SVD has been widely used in atmospheric research to define relationships between sea surface temperatures, geopotential height, wind, precipitation and streamflow data for myriad regions across the globe. A typical application for SVD is to identify leading climate drivers (as observed in the wind or pressure data) for a particular hydrologic response variable such as precipitation, streamflow, or soil moisture. One can also investigate the lagged relationship between a climate variable and the hydrologic response variable using SVD. When performing these studies it is important to limit the spatial bounds of the climate variable to reduce the chance of random co-variance relationships being identified. On the other hand, a climate region that is too small may ignore climate signals which have more than a statistical relationship to a hydrologic response variable. The proposed research seeks to identify a qualitative method of identifying random co-variability relationships between two data sets. The research identifies the heterogeneous correlation maps from several past results and compares these results with correlation maps produced using purely random and quasi-random climate data. The comparison identifies a methodology to determine if a particular region on a correlation map may be explained by a physical mechanism or is simply statistical chance.

  18. Robust image watermarking using DWT and SVD for copyright protection

    NASA Astrophysics Data System (ADS)

    Harjito, Bambang; Suryani, Esti

    2017-02-01

    The Objective of this paper is proposed a robust combined Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). The RGB image is called a cover medium, and watermark image is converted into gray scale. Then, they are transformed using DWT so that they can be split into several subbands, namely sub-band LL2, LH2, HL2. The watermark image embeds into the cover medium on sub-band LL2. This scheme aims to obtain the higher robustness level than the previous method which performs of SVD matrix factorization image for copyright protection. The experiment results show that the proposed method has robustness against several image processing attacks such as Gaussian, Poisson and Salt and Pepper Noise. In these attacks, noise has average Normalized Correlation (NC) values of 0.574863 0.889784, 0.889782 respectively. The watermark image can be detected and extracted.

  19. Utilizing the Structure and Content Information for XML Document Clustering

    NASA Astrophysics Data System (ADS)

    Tran, Tien; Kutty, Sangeetha; Nayak, Richi

    This paper reports on the experiments and results of a clustering approach used in the INEX 2008 document mining challenge. The clustering approach utilizes both the structure and content information of the Wikipedia XML document collection. A latent semantic kernel (LSK) is used to measure the semantic similarity between XML documents based on their content features. The construction of a latent semantic kernel involves the computing of singular vector decomposition (SVD). On a large feature space matrix, the computation of SVD is very expensive in terms of time and memory requirements. Thus in this clustering approach, the dimension of the document space of a term-document matrix is reduced before performing SVD. The document space reduction is based on the common structural information of the Wikipedia XML document collection. The proposed clustering approach has shown to be effective on the Wikipedia collection in the INEX 2008 document mining challenge.

  20. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  1. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  2. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    NASA Astrophysics Data System (ADS)

    Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo

    2006-12-01

    As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  3. Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition

    PubMed Central

    Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui

    2017-01-01

    Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385

  4. Singular value decomposition based feature extraction technique for physiological signal analysis.

    PubMed

    Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C

    2012-06-01

    Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.

  5. Sliding window denoising K-Singular Value Decomposition and its application on rolling bearing impact fault diagnosis

    NASA Astrophysics Data System (ADS)

    Yang, Honggang; Lin, Huibin; Ding, Kang

    2018-05-01

    The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.

  6. Using dynamic mode decomposition for real-time background/foreground separation in video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  7. Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.

    PubMed

    Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K

    2016-08-01

    The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.

  8. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  9. Effect of background correction on peak detection and quantification in online comprehensive two-dimensional liquid chromatography using diode array detection.

    PubMed

    Allen, Robert C; John, Mallory G; Rutan, Sarah C; Filgueira, Marcelo R; Carr, Peter W

    2012-09-07

    A singular value decomposition-based background correction (SVD-BC) technique is proposed for the reduction of background contributions in online comprehensive two-dimensional liquid chromatography (LC×LC) data. The SVD-BC technique was compared to simply subtracting a blank chromatogram from a sample chromatogram and to a previously reported background correction technique for one dimensional chromatography, which uses an asymmetric weighted least squares (AWLS) approach. AWLS was the only background correction technique to completely remove the background artifacts from the samples as evaluated by visual inspection. However, the SVD-BC technique greatly reduced or eliminated the background artifacts as well and preserved the peak intensity better than AWLS. The loss in peak intensity by AWLS resulted in lower peak counts at the detection thresholds established using standards samples. However, the SVD-BC technique was found to introduce noise which led to detection of false peaks at the lower detection thresholds. As a result, the AWLS technique gave more precise peak counts than the SVD-BC technique, particularly at the lower detection thresholds. While the AWLS technique resulted in more consistent percent residual standard deviation values, a statistical improvement in peak quantification after background correction was not found regardless of the background correction technique used. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    PubMed

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  11. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  12. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.

    PubMed

    Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong

    2018-05-11

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.

  13. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN

    PubMed Central

    Cheng, Gang; Chen, Xihui

    2018-01-01

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671

  14. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  15. Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD.

    PubMed

    Bullinaria, John A; Levy, Joseph P

    2012-09-01

    In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.

  16. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-01-01

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313

  17. A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-02-25

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  18. Constraint elimination in dynamical systems

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  19. Comparison of two SVD-based color image compression schemes.

    PubMed

    Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli

    2017-01-01

    Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR.

  20. Comparison of two SVD-based color image compression schemes

    PubMed Central

    Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli

    2017-01-01

    Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR. PMID:28257451

  1. Stabilizing bidirectional associative memory with Principles in Independent Component Analysis and Null Space (PICANS)

    NASA Astrophysics Data System (ADS)

    LaRue, James P.; Luzanov, Yuriy

    2013-05-01

    A new extension to the way in which the Bidirectional Associative Memory (BAM) algorithms are implemented is presented here. We will show that by utilizing the singular value decomposition (SVD) and integrating principles of independent component analysis (ICA) into the nullspace (NS) we have created a novel approach to mitigating spurious attractors. We demonstrate this with two applications. The first application utilizes a one-layer association while the second application is modeled after the several hierarchal associations of ventral pathways. The first application will detail the way in which we manage the associations in terms of matrices. The second application will take what we have learned from the first example and apply it to a cascade of a convolutional neural network (CNN) and perceptron this being our signal processing model of the ventral pathways, i.e., visual systems.

  2. In-flight alignment using H ∞ filter for strapdown INS on aircraft.

    PubMed

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.

  3. Sparse Bayesian learning for DOA estimation with mutual coupling.

    PubMed

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  4. SandiaMRCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-05

    SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less

  5. Using DEDICOM for completely unsupervised part-of-speech tagging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Peter A.; Bader, Brett William; Rozovskaya, Alla

    A standard and widespread approach to part-of-speech tagging is based on Hidden Markov Models (HMMs). An alternative approach, pioneered by Schuetze (1993), induces parts of speech from scratch using singular value decomposition (SVD). We introduce DEDICOM as an alternative to SVD for part-of-speech induction. DEDICOM retains the advantages of SVD in that it is completely unsupervised: no prior knowledge is required to induce either the tagset or the associations of terms with tags. However, unlike SVD, it is also fully compatible with the HMM framework, in that it can be used to estimate emission- and transition-probability matrices which can thenmore » be used as the input for an HMM. We apply the DEDICOM method to the CONLL corpus (CONLL 2000) and compare the output of DEDICOM to the part-of-speech tags given in the corpus, and find that the correlation (almost 0.5) is quite high. Using DEDICOM, we also estimate part-of-speech ambiguity for each term, and find that these estimates correlate highly with part-of-speech ambiguity as measured in the original corpus (around 0.88). Finally, we show how the output of DEDICOM can be evaluated and compared against the more familiar output of supervised HMM-based tagging.« less

  6. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  7. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  8. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation

    PubMed Central

    Grossi, Giuliano; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283

  9. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.

    PubMed

    Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M

    2016-04-01

    To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.

  10. Video quality assesment using M-SVD

    NASA Astrophysics Data System (ADS)

    Tao, Peining; Eskicioglu, Ahmet M.

    2007-01-01

    Objective video quality measurement is a challenging problem in a variety of video processing application ranging from lossy compression to printing. An ideal video quality measure should be able to mimic the human observer. We present a new video quality measure, M-SVD, to evaluate distorted video sequences based on singular value decomposition. A computationally efficient approach is developed for full-reference (FR) video quality assessment. This measure is tested on the Video Quality Experts Group (VQEG) phase I FR-TV test data set. Our experiments show the graphical measure displays the amount of distortion as well as the distribution of error in all frames of the video sequence while the numerical measure has a good correlation with perceived video quality outperforms PSNR and other objective measures by a clear margin.

  11. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2017-09-01

    High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.

  12. The comparison between SVD-DCT and SVD-DWT digital image watermarking

    NASA Astrophysics Data System (ADS)

    Wira Handito, Kurniawan; Fauzi, Zulfikar; Aminy Ma’ruf, Firda; Widyaningrum, Tanti; Muslim Lhaksmana, Kemas

    2018-03-01

    With internet, anyone can publish their creation into digital data simply, inexpensively, and absolutely easy to be accessed by everyone. However, the problem appears when anyone else claims that the creation is their property or modifies some part of that creation. It causes necessary protection of copyrights; one of the examples is with watermarking method in digital image. The application of watermarking technique on digital data, especially on image, enables total invisibility if inserted in carrier image. Carrier image will not undergo any decrease of quality and also the inserted image will not be affected by attack. In this paper, watermarking will be implemented on digital image using Singular Value Decomposition based on Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) by expectation in good performance of watermarking result. In this case, trade-off happen between invisibility and robustness of image watermarking. In embedding process, image watermarking has a good quality for scaling factor < 0.1. The quality of image watermarking in decomposition level 3 is better than level 2 and level 1. Embedding watermark in low-frequency is robust to Gaussian blur attack, rescale, and JPEG compression, but in high-frequency is robust to Gaussian noise.

  13. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    PubMed

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. An R-peak detection method that uses an SVD filter and a search back system.

    PubMed

    Jung, Woo-Hyuk; Lee, Sang-Goog

    2012-12-01

    In this paper, we present a method for detecting the R-peak of an ECG signal by using an singular value decomposition (SVD) filter and a search back system. The ECG signal was detected in two phases: the pre-processing phase and the decision phase. The pre-processing phase consisted of the stages for the SVD filter, Butterworth High Pass Filter (HPF), moving average (MA), and squaring, whereas the decision phase consisted of a single stage that detected the R-peak. In the pre-processing phase, the SVD filter removed noise while the Butterworth HPF eliminated baseline wander. The MA removed the remaining noise of the signal that had gone through the SVD filter to make the signal smooth, and squaring played a role in strengthening the signal. In the decision phase, the threshold was used to set the interval before detecting the R-peak. When the latest R-R interval (RRI), suggested by Hamilton et al., was greater than 150% of the previous RRI, the method of detecting the R-peak in such an interval was modified to be 150% or greater than the smallest interval of the two most latest RRIs. When the modified search back system was used, the error rate of the peak detection decreased to 0.29%, compared to 1.34% when the modified search back system was not used. Consequently, the sensitivity was 99.47%, the positive predictivity was 99.47%, and the detection error was 1.05%. Furthermore, the quality of the signal in data with a substantial amount of noise was improved, and thus, the R-peak was detected effectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsieh, Shih-Fu

    1990-01-01

    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.

  16. In-Flight Alignment Using H ∞ Filter for Strapdown INS on Aircraft

    PubMed Central

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300

  17. East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River

    NASA Technical Reports Server (NTRS)

    Weng, H.-Y.; Lau, K.-M.

    1999-01-01

    One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.

  18. Local sensitivity analysis for inverse problems solved by singular value decomposition

    USGS Publications Warehouse

    Hill, M.C.; Nolan, B.T.

    2010-01-01

    Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.

  19. Spectral Regularization Algorithms for Learning Large Incomplete Matrices.

    PubMed

    Mazumder, Rahul; Hastie, Trevor; Tibshirani, Robert

    2010-03-01

    We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 10(6) × 10(6) incomplete matrix with 10(5) observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques.

  20. Spectral Regularization Algorithms for Learning Large Incomplete Matrices

    PubMed Central

    Mazumder, Rahul; Hastie, Trevor; Tibshirani, Robert

    2010-01-01

    We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 106 × 106 incomplete matrix with 105 observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques. PMID:21552465

  1. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  2. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    PubMed

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  3. A Feasibility Study on a Parallel Mechanism for Examining the Space Shuttle Orbiter Payload Bay Radiators

    NASA Technical Reports Server (NTRS)

    Roberts, Rodney G.; LopezdelCastillo, Eduardo

    1996-01-01

    The goal of the project was to develop the necessary analysis tools for a feasibility study of a cable suspended robot system for examining the space shuttle orbiter payload bay radiators These tools were developed to address design issues such as workspace size, tension requirements on the cable, the necessary accuracy and resolution requirements and the stiffness and movement requirements of the system. This report describes the mathematical models for studying the inverse kinematics, statics, and stiffness of the robot. Each model is described by a matrix. The manipulator Jacobian was also related to the stiffness matrix, which characterized the stiffness of the system. Analysis tools were then developed based on the singular value decomposition (SVD) of the corresponding matrices. It was demonstrated how the SVD can be used to quantify the robot's performance and to provide insight into different design issues.

  4. Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture

    NASA Technical Reports Server (NTRS)

    Gloersen, Per (Inventor)

    2004-01-01

    An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.

  5. Spreading Sequence System for Full Connectivity Relay Network

    NASA Technical Reports Server (NTRS)

    Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)

    2018-01-01

    Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.

  6. Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value Decomposition (SVD)

    DTIC Science & Technology

    2017-09-27

    ARL-TR-8161•SEP 2017 US Army Research Laboratory Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value...originator. ARL-TR-8161•SEP 2017 US Army Research Laboratory Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value...unlimited. October 2015–January 2016 US Army Research Laboratory ATTN: RDRL-CIH-C Aberdeen Proving Ground, MD 21005-5066 primary author’s email

  7. Fiber optic sensor for continuous health monitoring in CFRP composite materials

    NASA Astrophysics Data System (ADS)

    Rippert, Laurent; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2002-07-01

    An intensity modulated sensor, based on the microbending concept, has been incorporated in laminates produced from a C/epoxy prepreg. Pencil lead break tests (Hsu-Neilsen sources) and tensile tests have been performed on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust piezoelectric transducers used for Acoustic Emission (AE) monitoring. The main emphasis has been put on the use of advanced signal processing techniques based on time-frequency analysis. The signal Short Time Fourier Transform (STFT) has been computed and several robust noise reduction algorithms, such as Wiener adaptive filtering, improved spectral subtraction filtering, and Singular Value Decomposition (SVD) -based filtering, have been applied. An energy and frequency -based detection criterion is put forward to detect transient signals that can be correlated with Modal Acoustic Emission (MAE) results and thus damage in the composite material. There is a strong indication that time-frequency analysis and the Hankel Total Least Squares (HTLS) method can also be used for damage characterization. This study shows that the signal from a quite simple microbend optical sensor contains information on the elastic energy released whenever damage is being introduced in the host material by mechanical loading. Robust algorithms can be used to retrieve and analyze this information.

  8. Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting

    NASA Astrophysics Data System (ADS)

    Yan, Y. T.; Cai, Y.

    2006-03-01

    A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.

  9. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    PubMed

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.

  10. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  11. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  12. Application of Extended Kalman Filter in Persistant Scatterer Interferometry to Enhace the Accuracy of Unwrapping Process

    NASA Astrophysics Data System (ADS)

    Tavakkoli Estahbanat, A.; Dehghani, M.

    2017-09-01

    In interferometry technique, phases have been modulated between 0-2π. Finding the number of integer phases missed when they were wrapped is the main goal of unwrapping algorithms. Although the density of points in conventional interferometry is high, this is not effective in some cases such as large temporal baselines or noisy interferograms. Due to existing noisy pixels, not only it does not improve results, but also it leads to some unwrapping errors during interferogram unwrapping. In PS technique, because of the sparse PS pixels, scientists are confronted with a problem to unwrap phases. Due to the irregular data separation, conventional methods are sterile. Unwrapping techniques are divided in to path-independent and path-dependent in the case of unwrapping paths. A region-growing method which is a path-dependent technique has been used to unwrap PS data. In this paper an idea of EKF has been generalized on PS data. This algorithm is applied to consider the nonlinearity of PS unwrapping problem as well as conventional unwrapping problem. A pulse-pair method enhanced with singular value decomposition (SVD) has been used to estimate spectral shift from interferometric power spectral density in 7*7 local windows. Furthermore, a hybrid cost-map is used to manage the unwrapping path. This algorithm has been implemented on simulated PS data. To form a sparse dataset, A few points from regular grid are randomly selected and the RMSE of results and true unambiguous phases in presented to validate presented approach. The results of this algorithm and true unwrapped phases were completely identical.

  13. Invariant object recognition based on the generalized discrete radon transform

    NASA Astrophysics Data System (ADS)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  14. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis

    PubMed Central

    Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin

    2016-01-01

    The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques. PMID:27589760

  15. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis.

    PubMed

    Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin

    2016-08-31

    The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.

  16. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  17. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  18. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  19. An advanced algorithm for deformation estimation in non-urban areas

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-09-01

    This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.

  20. A New Adaptive Framework for Collaborative Filtering Prediction

    PubMed Central

    Almosallam, Ibrahim A.; Shang, Yi

    2010-01-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix’s system. PMID:21572924

  1. A New Adaptive Framework for Collaborative Filtering Prediction.

    PubMed

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.

  2. AOFlagger: RFI Software

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.

    2010-10-01

    The RFI software presented here can automatically flag data and can be used to analyze the data in a measurement. The purpose of flagging is to mark samples that are affected by interfering sources such as radio stations, airplanes, electrical fences or other transmitting interferers. The tools in the package are meant for offline use. The software package contains a graphical interface ("rfigui") that can be used to visualize a measurement set and analyze mitigation techniques. It also contains a console flagger ("rficonsole") that can execute a script of mitigation functions without the overhead of a graphical environment. All tools were written in C++. The software has been tested extensively on low radio frequencies (150 MHz or lower) produced by the WSRT and LOFAR telescopes. LOFAR is the Low Frequency Array that is built in and around the Netherlands. Higher frequencies should work as well. Some of the methods implemented are the SumThreshold, the VarThreshold and the singular value decomposition (SVD) method. Included also are several surface fitting algorithms. The software is published under the GNU General Public License version 3.

  3. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    PubMed

    Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

  4. Efficient 3D Watermarked Video Communication with Chaotic Interleaving, Convolution Coding, and LMMSE Equalization

    NASA Astrophysics Data System (ADS)

    El-Shafai, W.; El-Bakary, E. M.; El-Rabaie, S.; Zahran, O.; El-Halawany, M.; Abd El-Samie, F. E.

    2017-06-01

    Three-Dimensional Multi-View Video (3D-MVV) transmission over wireless networks suffers from Macro-Blocks losses due to either packet dropping or fading-motivated bit errors. Thus, the robust performance of 3D-MVV transmission schemes over wireless channels becomes a recent considerable hot research issue due to the restricted resources and the presence of severe channel errors. The 3D-MVV is composed of multiple video streams shot by several cameras around a single object, simultaneously. Therefore, it is an urgent task to achieve high compression ratios to meet future bandwidth constraints. Unfortunately, the highly-compressed 3D-MVV data becomes more sensitive and vulnerable to packet losses, especially in the case of heavy channel faults. Thus, in this paper, we suggest the application of a chaotic Baker interleaving approach with equalization and convolution coding for efficient Singular Value Decomposition (SVD) watermarked 3D-MVV transmission over an Orthogonal Frequency Division Multiplexing wireless system. Rayleigh fading and Additive White Gaussian Noise are considered in the real scenario of 3D-MVV transmission. The SVD watermarked 3D-MVV frames are primarily converted to their luminance and chrominance components, which are then converted to binary data format. After that, chaotic interleaving is applied prior to the modulation process. It is used to reduce the channel effects on the transmitted bit streams and it also adds a degree of encryption to the transmitted 3D-MVV frames. To test the performance of the proposed framework; several simulation experiments on different SVD watermarked 3D-MVV frames have been executed. The experimental results show that the received SVD watermarked 3D-MVV frames still have high Peak Signal-to-Noise Ratios and watermark extraction is possible in the proposed framework.

  5. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis

    PubMed Central

    Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653

  6. [Surface electromyography signal classification using gray system theory].

    PubMed

    Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai

    2004-12-01

    A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.

  7. A tripolar pattern as an internal mode of the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Hirota, Nagio; Takahashi, Masaaki

    2012-11-01

    A tripolar anomaly pattern with centers located around the Philippines, China/Japan, and East Siberia dominantly appears in climate variations of the East Asian summer monsoon. In this study, we extracted this pattern as the first mode of a singular value decomposition (SVD1) over East Asia. The squared covariance fraction of SVD1 was 59 %, indicating that this pattern can be considered a dominant pattern of climate variations. Moreover, the results of numerical experiments suggested that the structure is also a dominant pattern of linear responses, even if external forcing is distributed homogeneously over the Northern Hemisphere. Thus, the tripolar pattern can be considered an internal mode that is characterized by the internal atmospheric processes. In this pattern, the moist processes strengthen the circulation anomalies, the dynamical energy conversion supplies energy to the anomalies, and the Rossby waves propagate northward in the lower troposphere and southeastward in the upper troposphere. These processes are favorable for the pattern to have large amplitude and to influence a large area.

  8. Feedback process responsible for intermodel diversity of ENSO variability

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae

    2017-05-01

    The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.

  9. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults

    NASA Astrophysics Data System (ADS)

    Golafshan, Reza; Yuce Sanliturk, Kenan

    2016-03-01

    Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.

  10. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease.

    PubMed

    Lambert, Christian; Sam Narean, Janakan; Benjamin, Philip; Zeestraten, Eva; Barrick, Thomas R; Markus, Hugh S

    2015-01-01

    Cerebral small vessel disease (SVD) is a heterogeneous group of pathological disorders that affect the small vessels of the brain and are an important cause of cognitive impairment. The ischaemic consequences of this disease can be detected using MRI, and include white matter hyperintensities (WMH), lacunar infarcts and microhaemorrhages. The relationship between SVD disease severity, as defined by WMH volume, in sporadic age-related SVD and cortical thickness has not been well defined. However, regional cortical thickness change would be expected due to associated phenomena such as underlying ischaemic white matter damage, and the observation that widespread cortical thinning is observed in the related genetic condition CADASIL (Righart et al., 2013). Using MRI data, we have developed a semi-automated processing pipeline for the anatomical analysis of individuals with cerebral small vessel disease and applied it cross-sectionally to 121 subjects diagnosed with this condition. Using a novel combined automated white matter lesion segmentation algorithm and lesion repair step, highly accurate warping to a group average template was achieved. The volume of white matter affected by WMH was calculated, and used as a covariate of interest in a voxel-based morphometry and voxel-based cortical thickness analysis. Additionally, Gaussian Process Regression (GPR) was used to assess if the severity of SVD, measured by WMH volume, could be predicted from the morphometry and cortical thickness measures. We found significant (Family Wise Error corrected p < 0.05) volumetric decline with increasing lesion load predominately in the parietal lobes, anterior insula and caudate nuclei bilaterally. Widespread significant cortical thinning was found bilaterally in the dorsolateral prefrontal, parietal and posterio-superior temporal cortices. These represent distinctive patterns of cortical thinning and volumetric reduction compared to ageing effects in the same cohort, which exhibited greater changes in the occipital and sensorimotor cortices. Using GPR, the absolute WMH volume could be significantly estimated from the grey matter density and cortical thickness maps (Pearson's coefficients 0.80 and 0.75 respectively). We demonstrate that SVD severity is associated with regional cortical thinning. Furthermore a quantitative measure of SVD severity (WMH volume) can be predicted from grey matter measures, supporting an association between white and grey matter damage. The pattern of cortical thinning and volumetric decline is distinctive for SVD severity compared to ageing. These results, taken together, suggest that there is a phenotypic pattern of atrophy associated with SVD severity.

  11. A non-linear regression method for CT brain perfusion analysis

    NASA Astrophysics Data System (ADS)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  12. A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain.

    PubMed

    Barba, Lida; Rodríguez, Nibaldo

    2017-01-01

    Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT.

  13. A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain

    PubMed Central

    Rodríguez, Nibaldo

    2017-01-01

    Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT. PMID:28261267

  14. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    PubMed Central

    Maadooliat, Mehdi; Huang, Jianhua Z.

    2013-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence–structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu.edu/∼madoliat/LagSVD) that can be used to produce informative animations. PMID:22926831

  15. Watermarking scheme based on singular value decomposition and homomorphic transform

    NASA Astrophysics Data System (ADS)

    Verma, Deval; Aggarwal, A. K.; Agarwal, Himanshu

    2017-10-01

    A semi-blind watermarking scheme based on singular-value-decomposition (SVD) and homomorphic transform is pro-posed. This scheme ensures the digital security of an eight bit gray scale image by inserting an invisible eight bit gray scale wa-termark into it. The key approach of the scheme is to apply the homomorphic transform on the host image to obtain its reflectance component. The watermark is embedded into the singular values that are obtained by applying the singular value decomposition on the reflectance component. Peak-signal-to-noise-ratio (PSNR), normalized-correlation-coefficient (NCC) and mean-structural-similarity-index-measure (MSSIM) are used to evaluate the performance of the scheme. Invisibility of watermark is ensured by visual inspection and high value of PSNR of watermarked images. Presence of watermark is ensured by visual inspection and high values of NCC and MSSIM of extracted watermarks. Robustness of the scheme is verified by high values of NCC and MSSIM for attacked watermarked images.

  16. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  17. A collaborative filtering-based approach to biomedical knowledge discovery.

    PubMed

    Lever, Jake; Gakkhar, Sitanshu; Gottlieb, Michael; Rashnavadi, Tahereh; Lin, Santina; Siu, Celia; Smith, Maia; Jones, Martin R; Krzywinski, Martin; Jones, Steven J M; Wren, Jonathan

    2018-02-15

    The increase in publication rates makes it challenging for an individual researcher to stay abreast of all relevant research in order to find novel research hypotheses. Literature-based discovery methods make use of knowledge graphs built using text mining and can infer future associations between biomedical concepts that will likely occur in new publications. These predictions are a valuable resource for researchers to explore a research topic. Current methods for prediction are based on the local structure of the knowledge graph. A method that uses global knowledge from across the knowledge graph needs to be developed in order to make knowledge discovery a frequently used tool by researchers. We propose an approach based on the singular value decomposition (SVD) that is able to combine data from across the knowledge graph through a reduced representation. Using cooccurrence data extracted from published literature, we show that SVD performs better than the leading methods for scoring discoveries. We also show the diminishing predictive power of knowledge discovery as we compare our predictions with real associations that appear further into the future. Finally, we examine the strengths and weaknesses of the SVD approach against another well-performing system using several predicted associations. All code and results files for this analysis can be accessed at https://github.com/jakelever/knowledgediscovery. sjones@bcgsc.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  19. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  20. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

    NASA Astrophysics Data System (ADS)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen

    2018-01-01

    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  1. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.

    2004-09-01

    The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.

  2. Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies.

    PubMed

    Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K

    2011-08-01

    Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.

  3. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with [Formula: see text] mm size can be detected up to a 3.5 cm depth.

  4. SVD/MCMC Data Analysis Pipeline for Global Redshifted 21-cm Spectrum Observations of the Cosmic Dawn and Dark Ages

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Tauscher, Keith; Rapetti, David; Mirocha, Jordan; Switzer, Eric

    2018-01-01

    We have designed a complete data analysis pipeline for constraining Cosmic Dawn physics using sky-averaged spectra in the VHF range (40-200 MHz) obtained either from the ground (e.g., the Experiment to Detect Global Epoch of Reionization Signal, EDGES; and the Cosmic Twilight Polarimeter, CTP) or from orbit above the lunar farside (e.g., the Dark Ages Radio Explorer, DARE). In the case of DARE, we avoid Earth-based RFI, ionospheric effects, and radio solar emissions (when observing at night). To extract the 21-cm spectrum, we parametrize the cosmological signal and systematics with two separate sets of modes defined through Singular Value Decomposition (SVD) of training set curves. The training set for the 21-cm spin-flip brightness temperatures is composed of theoretical models of the first stars, galaxies and black holes created by varying physical parameters within the ares code. The systematics training set is created using sky and beam data to model the beam-weighted foregrounds (which are about four orders of magnitude larger than the signal) as well as expected lab data to model receiver systematics. To constrain physical parameters determining the 21-cm spectrum, we apply to the extracted signal a series of consecutive fitting techniques including two usages of a Markov Chain Monte Carlo (MCMC) algorithm. Importantly, our pipeline efficiently utilizes the significant differences between the foreground and the 21-cm signal in spatial and spectral variations. In addition, it incorporates for the first time polarization data, dramatically improving the constraining power. We are currently validating this end-to-end pipeline using detailed simulations of the signal, foregrounds and instruments. This work was directly supported by the NASA Solar System Exploration Research Virtual Institute cooperative agreement number 80ARC017M0006 and funding from the NASA Ames Research Center cooperative agreement NNX16AF59G.

  5. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.

  6. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with 5~\\text{mm}× 5 mm size can be detected up to a 3.5 cm depth.

  7. Conception of discrete systems decomposition algorithm using p-invariants and hypergraphs

    NASA Astrophysics Data System (ADS)

    Stefanowicz, Ł.

    2016-09-01

    In the article author presents an idea of decomposition algorithm of discrete systems described by Petri Nets using pinvariants. Decomposition process is significant from the point of view of discrete systems design, because it allows separation of the smaller sequential parts. Proposed algorithm uses modified Martinez-Silva method as well as author's selection algorithm. The developed method is a good complement of classical decomposition algorithms using graphs and hypergraphs.

  8. Muscle and eye movement artifact removal prior to EEG source localization.

    PubMed

    Hallez, Hans; Vergult, Anneleen; Phlypo, Ronald; Van Hese, Peter; De Clercq, Wim; D'Asseler, Yves; Van de Walle, Rik; Vanrumste, Bart; Van Paesschen, Wim; Van Huffel, Sabine; Lemahieu, Ignace

    2006-01-01

    Muscle and eye movement artifacts are very prominent in the ictal EEG of patients suffering from epilepsy, thus making the dipole localization of ictal activity very unreliable. Recently, two techniques (BSS-CCA and pSVD) were developed to remove those artifacts. The purpose of this study is to assess whether the removal of muscle and eye movement artifacts improves the EEG dipole source localization. We used a total of 8 EEG fragments, each from another patient, first unfiltered, then filtered by the BSS-CCA and pSVD. In both the filtered and unfiltered EEG fragments we estimated multiple dipoles using RAP-MUSIC. The resulting dipoles were subjected to a K-means clustering algorithm, to extract the most prominent cluster. We found that the removal of muscle and eye artifact results to tighter and more clear dipole clusters. Furthermore, we found that localization of the filtered EEG corresponded with the localization derived from the ictal SPECT in 7 of the 8 patients. Therefore, we can conclude that the BSS-CCA and pSVD improve localization of ictal activity, thus making the localization more reliable for the presurgical evaluation of the patient.

  9. A Framework for Propagation of Uncertainties in the Kepler Data Analysis Pipeline

    NASA Technical Reports Server (NTRS)

    Clarke, Bruce D.; Allen, Christopher; Bryson, Stephen T.; Caldwell, Douglas A.; Chandrasekaran, Hema; Cote, Miles T.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; hide

    2010-01-01

    The Kepler space telescope is designed to detect Earth-like planets around Sun-like stars using transit photometry by simultaneously observing 100,000 stellar targets nearly continuously over a three and a half year period. The 96-megapixel focal plane consists of 42 charge-coupled devices (CCD) each containing two 1024 x 1100 pixel arrays. Cross-correlations between calibrated pixels are introduced by common calibrations performed on each CCD requiring downstream data products access to the calibrated pixel covariance matrix in order to properly estimate uncertainties. The prohibitively large covariance matrices corresponding to the 75,000 calibrated pixels per CCD preclude calculating and storing the covariance in standard lock-step fashion. We present a novel framework used to implement standard propagation of uncertainties (POU) in the Kepler Science Operations Center (SOC) data processing pipeline. The POU framework captures the variance of the raw pixel data and the kernel of each subsequent calibration transformation allowing the full covariance matrix of any subset of calibrated pixels to be recalled on-the-fly at any step in the calibration process. Singular value decomposition (SVD) is used to compress and low-pass filter the raw uncertainty data as well as any data dependent kernels. The combination of POU framework and SVD compression provide downstream consumers of the calibrated pixel data access to the full covariance matrix of any subset of the calibrated pixels traceable to pixel level measurement uncertainties without having to store, retrieve and operate on prohibitively large covariance matrices. We describe the POU Framework and SVD compression scheme and its implementation in the Kepler SOC pipeline.

  10. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  11. Evaluation of the 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) mediated photodynamic therapy by macroscopic singlet oxygen modeling [J. Biophotonics 9, No. 11-12, 1344-1354 (2016)].

    PubMed

    Penjweini, Rozhin; Kim, Michele M; Liu, Baochang; Zhu, Timothy C

    2017-03-01

    In the article by R. Penjweini, M. M. Kim et al. (doi: 10.1002/jbio.201600121), published in J. Biophotonics 9, 1344-1354 (2016), the constants C 01 , C 02 , b 1 , and b 2 determined from fitting the fluorescence single value decomposition (SVD) for phantoms with different optical properties and the corresponding Figure 2(a) are not correct. This erratum is published to correct the Section 2.3 and Figure 2(a). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  13. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  14. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Johnson, Marty E.; Lalime, Aimee L.; Grosveld, Ferdinand W.; Rizzi, Stephen A.; Sullivan, Brenda M.

    2003-01-01

    Applying binaural simulation techniques to structural acoustic data can be very computationally intensive as the number of discrete noise sources can be very large. Typically, Head Related Transfer Functions (HRTFs) are used to individually filter the signals from each of the sources in the acoustic field. Therefore, creating a binaural simulation implies the use of potentially hundreds of real time filters. This paper details two methods of reducing the number of real-time computations required by: (i) using the singular value decomposition (SVD) to reduce the complexity of the HRTFs by breaking them into dominant singular values and vectors and (ii) by using equivalent source reduction (ESR) to reduce the number of sources to be analyzed in real-time by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and SVD reduction methods can be combined to provide an estimated computation time reduction of 99.4% for the structural acoustic data tested. In addition, preliminary tests have shown that there is a 97% correlation between the results of the combined reduction methods and the results found with the current binaural simulation techniques

  15. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition ofmore » the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.« less

  16. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations.

    PubMed

    Peng, Bo; Kowalski, Karol

    2017-09-12

    The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, N b , ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C 60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10 -4 to 10 -3 to give acceptable compromise between efficiency and accuracy.

  17. Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.

    PubMed

    Xu, J

    2001-01-01

    In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.

  18. Speckle Noise Reduction in Optical Coherence Tomography Using Two-dimensional Curvelet-based Dictionary Learning.

    PubMed

    Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra

    2017-01-01

    The process of interpretation of high-speed optical coherence tomography (OCT) images is restricted due to the large speckle noise. To address this problem, this paper proposes a new method using two-dimensional (2D) curvelet-based K-SVD algorithm for speckle noise reduction and contrast enhancement of intra-retinal layers of 2D spectral-domain OCT images. For this purpose, we take curvelet transform of the noisy image. In the next step, noisy sub-bands of different scales and rotations are separately thresholded with an adaptive data-driven thresholding method, then, each thresholded sub-band is denoised based on K-SVD dictionary learning with a variable size initial dictionary dependent on the size of curvelet coefficients' matrix in each sub-band. We also modify each coefficient matrix to enhance intra-retinal layers, with noise suppression at the same time. We demonstrate the ability of the proposed algorithm in speckle noise reduction of 100 publically available OCT B-scans with and without non-neovascular age-related macular degeneration (AMD), and improvement of contrast-to-noise ratio from 1.27 to 5.12 and mean-to-standard deviation ratio from 3.20 to 14.41 are obtained.

  19. Sparse representations via learned dictionaries for x-ray angiogram image denoising

    NASA Astrophysics Data System (ADS)

    Shang, Jingfan; Huang, Zhenghua; Li, Qian; Zhang, Tianxu

    2018-03-01

    X-ray angiogram image denoising is always an active research topic in the field of computer vision. In particular, the denoising performance of many existing methods had been greatly improved by the widely use of nonlocal similar patches. However, the only nonlocal self-similar (NSS) patch-based methods can be still be improved and extended. In this paper, we propose an image denoising model based on the sparsity of the NSS patches to obtain high denoising performance and high-quality image. In order to represent the sparsely NSS patches in every location of the image well and solve the image denoising model more efficiently, we obtain dictionaries as a global image prior by the K-SVD algorithm over the processing image; Then the single and effectively alternating directions method of multipliers (ADMM) method is used to solve the image denoising model. The results of widely synthetic experiments demonstrate that, owing to learned dictionaries by K-SVD algorithm, a sparsely augmented lagrangian image denoising (SALID) model, which perform effectively, obtains a state-of-the-art denoising performance and better high-quality images. Moreover, we also give some denoising results of clinical X-ray angiogram images.

  20. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  1. Depression in small-vessel disease relates to white matter ultrastructural damage, not disability.

    PubMed

    Brookes, Rebecca L; Herbert, Vanessa; Lawrence, Andrew J; Morris, Robin G; Markus, Hugh S

    2014-10-14

    To determine whether cerebral small-vessel disease (SVD) is a specific risk factor for depression, whether any association is mediated via white matter damage, and to study the role of depressive symptoms and disability on quality of life (QoL) in this patient group. Using path analyses in cross-sectional data, we modeled the relationships among depression, disability, and QoL in patients with SVD presenting with radiologically confirmed lacunar stroke (n = 100), and replicated results in a second SVD cohort (n = 100). We then compared the same model in a non-SVD stroke cohort (n = 50) and healthy older adults (n = 203). In a further study, to determine the role of white matter damage in mediating the association with depression, a subgroup of patients with SVD (n = 101) underwent diffusion tensor imaging (DTI). Reduced QoL was associated with depression in patients with SVD, but this association was not mediated by disability or cognition; very similar results were found in the replication SVD cohort. In contrast, the non-SVD stroke group and the healthy older adult group showed a direct relationship between disability and depression. The DTI study showed that fractional anisotropy, a marker of white matter damage, was related to depressive symptoms in patients with SVD. These results suggest that in stroke patients without SVD, disability is an important causal factor for depression, whereas in SVD stroke, other factors specific to this stroke subtype have a causal role. White matter damage detected on DTI is one factor that mediates the association between SVD and depression. © 2014 American Academy of Neurology.

  2. Online Low-Rank Representation Learning for Joint Multi-subspace Recovery and Clustering.

    PubMed

    Li, Bo; Liu, Risheng; Cao, Junjie; Zhang, Jie; Lai, Yu-Kun; Liua, Xiuping

    2017-10-06

    Benefiting from global rank constraints, the lowrank representation (LRR) method has been shown to be an effective solution to subspace learning. However, the global mechanism also means that the LRR model is not suitable for handling large-scale data or dynamic data. For large-scale data, the LRR method suffers from high time complexity, and for dynamic data, it has to recompute a complex rank minimization for the entire data set whenever new samples are dynamically added, making it prohibitively expensive. Existing attempts to online LRR either take a stochastic approach or build the representation purely based on a small sample set and treat new input as out-of-sample data. The former often requires multiple runs for good performance and thus takes longer time to run, and the latter formulates online LRR as an out-ofsample classification problem and is less robust to noise. In this paper, a novel online low-rank representation subspace learning method is proposed for both large-scale and dynamic data. The proposed algorithm is composed of two stages: static learning and dynamic updating. In the first stage, the subspace structure is learned from a small number of data samples. In the second stage, the intrinsic principal components of the entire data set are computed incrementally by utilizing the learned subspace structure, and the low-rank representation matrix can also be incrementally solved by an efficient online singular value decomposition (SVD) algorithm. The time complexity is reduced dramatically for large-scale data, and repeated computation is avoided for dynamic problems. We further perform theoretical analysis comparing the proposed online algorithm with the batch LRR method. Finally, experimental results on typical tasks of subspace recovery and subspace clustering show that the proposed algorithm performs comparably or better than batch methods including the batch LRR, and significantly outperforms state-of-the-art online methods.

  3. Automated detection of microaneurysms using robust blob descriptors

    NASA Astrophysics Data System (ADS)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  4. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar

    2018-06-01

    In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.

  5. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.

    PubMed

    Johnston, P R; Walker, S J; Hyttinen, J A; Kilpatrick, D

    1994-04-01

    The inverse problem of electrocardiography, the computation of epicardial potentials from body surface potentials, is influenced by the desired resolution on the epicardium, the number of recording points on the body surface, and the method of limiting the inversion process. To examine the role of these variables in the computation of the inverse transform, Tikhonov's zero-order regularization and singular value decomposition (SVD) have been used to invert the forward transfer matrix. The inverses have been compared in a data-independent manner using the resolution and the noise amplification as endpoints. Sets of 32, 50, 192, and 384 leads were chosen as sets of body surface data, and 26, 50, 74, and 98 regions were chosen to represent the epicardium. The resolution and noise were both improved by using a greater number of electrodes on the body surface. When 60% of the singular values are retained, the results show a trade-off between noise and resolution, with typical maximal epicardial noise levels of less than 0.5% of maximum epicardial potentials for 26 epicardial regions, 2.5% for 50 epicardial regions, 7.5% for 74 epicardial regions, and 50% for 98 epicardial regions. As the number of epicardial regions is increased, the regularization technique effectively fixes the noise amplification but markedly decreases the resolution, whereas SVD results in an increase in noise and a moderate decrease in resolution. Overall the regularization technique performs slightly better than SVD in the noise-resolution relationship. There is a region at the posterior of the heart that was poorly resolved regardless of the number of regions chosen. The variance of the resolution was such as to suggest the use of variable-size epicardial regions based on the resolution.

  7. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2004-05-05

    Constraint-based metabolic modeling has been used to capture the genome-scale, systems properties of an organism's metabolism. The first generation of these models has been built on annotated gene sequence. To further this field, we now need to develop methods to incorporate additional "omic" data types including transcriptomics, metabolomics, and fluxomics to further facilitate the construction, validation, and predictive capabilities of these models. The work herein combines metabolic flux data with an in silico model of central metabolism of Escherichia coli for model centric integration of the flux data. The extreme pathways for this network, which define the allowable solution space for all possible flux distributions, are analyzed using the alpha-spectrum. The alpha-spectrum determines which extreme pathways can and cannot contribute to the metabolic flux distribution for a given condition and gives the allowable range of weightings on each extreme pathway that can contribute. Since many extreme pathways cannot be used under certain conditions, the result is a "condition-specific" solution space that is a subset of the original solution space. The alpha-spectrum results are used to create a "condition-specific" extreme pathway matrix that can be analyzed using singular value decomposition (SVD). The first mode of the SVD analysis characterizes the solution space for a given condition. We show that SVD analysis of the alpha-spectrum extreme pathway matrix that incorporates measured uptake and byproduct secretion rates, can predict internal flux trends for different experimental conditions. These predicted internal flux trends are, in general, consistent with the flux trends measured using experimental metabolic flux analysis techniques. Copyright 2004 Wiley Periodicals, Inc.

  8. Baroclinic stabilization effect of the Atlantic-Arctic water exchange simulated by the eddy-permitting ocean model and global atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Moshonkin, Sergey; Bagno, Alexey; Gritsun, Andrey; Gusev, Anatoly

    2017-04-01

    Numerical experiments were performed with the global atmosphere-ocean model INMCM5 (for version of the international project CMIP6, resolution for atmosphere is 2°x1.5°, 21 level) and with the three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM). Spatial resolution of the INMCM5 oceanic component is 0.5°x0.25°. Both models have 40 s-levels in ocean. Previously, the simulations were carried out for INMCM5 to generate climatic system stable state. Then model was run for 180 years. In the experiment with INMOM, CORE-II data for 1948-2009 were used. As the goal for comparing results of two these numerical models, we selected evolution of the density and velocity anomalies in the 0-300m active ocean layer near Fram Strait in the Greenland Sea, where oceanic cyclonic circulation influences Atlantic-Arctic water exchange. Anomalies were count without climatic seasonal cycle for time scales smaller than 30 years. We use Singular Value Decomposition analysis (SVD) for density-velocity anomalies with time lag from minus one to six months. Both models perform identical stable physical result. They reveal that changes of heat and salt transports by West Spitsbergen and East Greenland currents, caused by atmospheric forcing, produce the baroclinic modes of velocity anomalies in 0-300m layer, thereby stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between the North Atlantic and Arctic Ocean at the certain climatological level. The first SVD-mode of density-velocity anomalies is responsible for the cyclonic circulation variability. The second and third SVD-modes stabilize existing ocean circulation by the anticyclonic vorticity generation. The second and third SVD-modes give 35% of the input to the total dispersion of density anomalies and 16-18% of the input to the total dispersion of velocity anomalies for numerical results as in INMCM5 so in INMOM models. Input to the total dispersion of velocity anomalies for the first SVD-mode is equal to 50% for INMCM5 and only 19% for INMOM. The research was done in the INM RAS. The model INMOM was supported by Russian Foundation for Basic Research (grant №16-05-00534), and the model INMCM was supported by the Russian Scientific Foundation (grant №14-27-00126).

  9. A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-08-01

    In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.

  10. An NN-Based SRD Decomposition Algorithm and Its Application in Nonlinear Compensation

    PubMed Central

    Yan, Honghang; Deng, Fang; Sun, Jian; Chen, Jie

    2014-01-01

    In this study, a neural network-based square root of descending (SRD) order decomposition algorithm for compensating for nonlinear data generated by sensors is presented. The study aims at exploring the optimized decomposition of data 1.00,0.00,0.00 and minimizing the computational complexity and memory space of the training process. A linear decomposition algorithm, which automatically finds the optimal decomposition of N subparts and reduces the training time to 1N and memory cost to 1N, has been implemented on nonlinear data obtained from an encoder. Particular focus is given to the theoretical access of estimating the numbers of hidden nodes and the precision of varying the decomposition method. Numerical experiments are designed to evaluate the effect of this algorithm. Moreover, a designed device for angular sensor calibration is presented. We conduct an experiment that samples the data of an encoder and compensates for the nonlinearity of the encoder to testify this novel algorithm. PMID:25232912

  11. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  12. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  13. Lifestyle-related disease in Crohn’s disease: Relapse prevention by a semi-vegetarian diet

    PubMed Central

    Chiba, Mitsuro; Abe, Toru; Tsuda, Hidehiko; Sugawara, Takeshi; Tsuda, Satoko; Tozawa, Haruhiko; Fujiwara, Katsuhiko; Imai, Hideo

    2010-01-01

    AIM: To investigate whether semi-vegetarian diet (SVD) has a preventive effect against relapse of Crohn’s disease (CD) in patients who have achieved remission, who are a high-risk group for relapse. METHODS: A prospective, single center, 2-year clinical trial was conducted. Twenty-two adult CD patients who achieved clinical remission either medically (n = 17) or surgically (n = 5) and consumed an SVD during hospitalization were advised to continue with an SVD and avoid known high-risk foods for inflammatory bowel disease. The primary endpoint was clinical relapse defined as the appearance of active symptoms of CD. Kaplan-Meier survival analysis was used to calculate the cumulative proportion of patients who had a relapse. A 2-year analysis of relapse rates of patients who followed an SVD and those who did not (an omnivorous diet group) was undertaken. RESULTS: SVD was continued by 16 patients (compliance 73%). Remission was maintained in 15 of 16 patients (94%) in the SVD group vs two of six (33%) in the omnivorous group. Remission rate with SVD was 100% at 1 year and 92% at 2 years. SVD showed significant prevention in the time to relapse compared to that in the omnivorous group (P = 0.0003, log rank test). The concentration of C-reactive protein was normal at the final visit in more than half of the patients in remission who were taking an SVD, who maintained remission during the study (9/15; 60%), who terminated follow-up (8/12; 67%), and who completed 2 years follow-up (7/10; 70%). There was no untoward effect of SVD. CONCLUSION: SVD was highly effective in preventing relapse in CD. PMID:20503448

  14. A parameterization method and application in breast tomosynthesis dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized usingmore » a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA protocol and in the UK, European, and IAEA dosimetry protocols. Microsoft Excel™ spreadsheets are provided for the convenience of readers.« less

  15. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  16. Masterless Distributed Computing Over Mobile Devices

    DTIC Science & Technology

    2012-09-01

    Matrix Computations,” Handbooks in OR & MS, vol. 3, pp. 247–321, 1990. [18] R. Barrett et al ., Templates for the Solution of Linear Systems: Building...the truncated SVD of a matrix. The algorithm used in this thesis was developed by Halko , Martinsson, and Tropp in their journal article, Finding...experiments,” dodbuzz.com, 2011 . [Online]. Available: http://www.dodbuzz.com/ 2011 /06/06/army-begins-mobile- phone-experiments/. [Accessed: 15-Feb

  17. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    scheme in which 2-D image was created via adding voltages with the appropriate time offset. Simulation results show that our DCT-based scheme works...using RSNs in terms of the probability of miss detection PMD and the root mean square error (RMSE). Simulation results showed that multi-target detection... Simulation results are presented to evaluate the feasibility and effectiveness of the proposed JMIC algorithm in a query surveillance region. 5 SVD-QR and

  18. Comment on “Two statistics for evaluating parameter identifiability and error reduction” by John Doherty and Randall J. Hunt

    USGS Publications Warehouse

    Hill, Mary C.

    2010-01-01

    Doherty and Hunt (2009) present important ideas for first-order-second moment sensitivity analysis, but five issues are discussed in this comment. First, considering the composite-scaled sensitivity (CSS) jointly with parameter correlation coefficients (PCC) in a CSS/PCC analysis addresses the difficulties with CSS mentioned in the introduction. Second, their new parameter identifiability statistic actually is likely to do a poor job of parameter identifiability in common situations. The statistic instead performs the very useful role of showing how model parameters are included in the estimated singular value decomposition (SVD) parameters. Its close relation to CSS is shown. Third, the idea from p. 125 that a suitable truncation point for SVD parameters can be identified using the prediction variance is challenged using results from Moore and Doherty (2005). Fourth, the relative error reduction statistic of Doherty and Hunt is shown to belong to an emerging set of statistics here named perturbed calculated variance statistics. Finally, the perturbed calculated variance statistics OPR and PPR mentioned on p. 121 are shown to explicitly include the parameter null-space component of uncertainty. Indeed, OPR and PPR results that account for null-space uncertainty have appeared in the literature since 2000.

  19. Spectral and entropic characterizations of Wigner functions: applications to model vibrational systems.

    PubMed

    Luzanov, A V

    2008-09-07

    The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.

  20. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    PubMed Central

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  1. Spectral biclustering of microarray data: coclustering genes and conditions.

    PubMed

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T; Gerstein, Mark

    2003-04-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).

  2. Deciphering life history transcriptomes in different environments

    PubMed Central

    Etges, William J.; Trotter, Meredith V.; de Oliveira, Cássia C.; Rajpurohit, Subhash; Gibbs, Allen G.; Tuljapurkar, Shripad

    2014-01-01

    We compared whole transcriptome variation in six preadult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants in order to understand how differences in gene expression influence standing life history variation. We used Singular Value Decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pair-wise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and aging. Host cactus effects on female gene expression revealed population and stage specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behavior gene expression levels. In 3 - 6 day old virgin females, significant up-regulation of genes associated with meiosis and oogenesis was accompanied by down-regulation of genes associated with somatic maintenance, evidence for a life history tradeoff. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome wide influences on life history variation in natural populations. PMID:25442828

  3. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  4. Frequency, Risk Factors, and Outcome of Coexistent Small Vessel Disease and Intracranial Arterial Stenosis: Results From the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) Trial.

    PubMed

    Kwon, Hyung-Min; Lynn, Michael J; Turan, Tanya N; Derdeyn, Colin P; Fiorella, David; Lane, Bethany F; Montgomery, Jean; Janis, L Scott; Rumboldt, Zoran; Chimowitz, Marc I

    2016-01-01

    Intracranial arterial stenosis (ICAS) and small vessel disease (SVD) may coexist. There are limited data on the frequency and risk factors for coexistent SVD and the effect of SVD on stroke recurrence in patients receiving medical treatment for ICAS. To investigate the frequency and risk factors for SVD and the effect of SVD on stroke recurrence in patients with ICAS. A post hoc analysis of the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) study, a prospective, multicenter clinical trial. Among 451 participants, 313 (69.4%) had baseline brain magnetic resonance imaging scans read centrally for SVD that was defined by any of the following: old lacunar infarction, grade 2 to 3 on the Fazekas scale (for high-grade white matter hyperintensities), or microbleeds. Patient enrollment in SAMMPRIS began November 25, 2008, and follow-up ended on April 30, 2013. Data analysis for the present study was performed from May 13, 2014, to July 29, 2015. Risk factors in patients with vs without SVD and the association between SVD and other baseline risk factors with any ischemic stroke and ischemic stroke in the territory of the stenotic artery determined using proportional hazards regression. Of 313 patients, 155 individuals (49.5%) had SVD noted on baseline magnetic resonance imaging. Variables that were significantly higher in patients with SVD, reported as mean (SD), included age, 63.5 (10.5) years (P < .001), systolic blood pressure, 149 (22) mm Hg (P < .001), glucose level, 130 (50) mg/dL (P = .03), and lower Montreal Cognitive Assessment scores (median, ≥24 [interquartile range, 20-26]; P = .02).Other significant variables were the number of patients with diabetes mellitus (88 of 155 [56.8%]; P = .003), coronary artery disease (46 [29.7%]; P = .004), stroke before the qualifying event (59 [38.1%]; P < .001), old infarct in the territory of the stenotic intracranial artery (88 [56.8%]; P < .001), and receiving antithrombotic therapy at the time of the qualifying event (109 [70.3%]; P = .005). The association between SVD and any ischemic stroke was nearly significant in the direction of a higher risk (18 [23.7%]); P = .07) for patients with SVD. On bivariate analysis, SVD was not associated with an increased risk on multivariable analyses (hazard ratio, 1.7 [95% CI, 0.8-3.8]; P = .20). In addition, SVD was not associated with an increased risk of stroke in the territory on either bivariate or multivariable analyses. Although SVD is common in patients with ICAS, the presence of SVD on baseline magnetic resonance imaging is not independently associated with an increased risk of stroke in patients with ICAS. clinicaltrials.gov Identifier: NCT00576693.

  5. Predicting responses from Rasch measures.

    PubMed

    Linacre, John M

    2010-01-01

    There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.

  6. Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging

    PubMed Central

    Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.

    2017-01-01

    Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169

  7. Clinical characteristics and outcomes with rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation but underlying native mitral and aortic valve disease participating in the ROCKET AF trial.

    PubMed

    Breithardt, Günter; Baumgartner, Helmut; Berkowitz, Scott D; Hellkamp, Anne S; Piccini, Jonathan P; Stevens, Susanna R; Lokhnygina, Yuliya; Patel, Manesh R; Halperin, Jonathan L; Singer, Daniel E; Hankey, Graeme J; Hacke, Werner; Becker, Richard C; Nessel, Christopher C; Mahaffey, Kenneth W; Fox, Keith A A; Califf, Robert M

    2014-12-14

    We investigated clinical characteristics and outcomes of patients with significant valvular disease (SVD) in the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) trial. ROCKET AF excluded patients with mitral stenosis or artificial valve prostheses. We used Cox regression to adjust comparisons for potential confounders. Among 14 171 patients, 2003 (14.1%) had SVD; they were older and had more comorbidities than patients without SVD. The rate of stroke or systemic embolism with rivaroxaban vs. warfarin was consistent among patients with SVD [2.01 vs. 2.43%; hazard ratio (HR) 0.83, 95% confidence interval (CI) 0.55-1.27] and without SVD (1.96 vs. 2.22%; HR 0.89, 95% CI 0.75-1.07; interaction P = 0.76). However, rates of major and non-major clinically relevant bleeding with rivaroxaban vs. warfarin were higher in patients with SVD (19.8% rivaroxaban vs. 16.8% warfarin; HR 1.25, 95% CI 1.05-1.49) vs. those without (14.2% rivaroxaban vs. 14.1% warfarin; HR 1.01, 95% CI 0.94-1.10; interaction P = 0.034), even when controlling for risk factors and potential confounders. In intracranial haemorrhage, there was no interaction between patients with and without SVD where the overall rate was lower among those randomized to rivaroxaban. Many patients with 'non-valvular atrial fibrillation' have significant valve lesions. Their risk of stroke is similar to that of patients without SVD after controlling for stroke risk factors. Efficacy of rivaroxaban vs. warfarin was similar in patients with and without SVD; however, the observed risk of bleeding was higher with rivaroxaban in patients with SVD but was the same among those without SVD. Atrial fibrillation patients with and without SVD experience the same stroke-preventive benefit of oral anticoagulants. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

  8. Clinical characteristics and outcomes with rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation but underlying native mitral and aortic valve disease participating in the ROCKET AF trial

    PubMed Central

    Breithardt, Günter; Baumgartner, Helmut; Berkowitz, Scott D.; Hellkamp, Anne S.; Piccini, Jonathan P.; Stevens, Susanna R.; Lokhnygina, Yuliya; Patel, Manesh R.; Halperin, Jonathan L.; Singer, Daniel E.; Hankey, Graeme J.; Hacke, Werner; Becker, Richard C.; Nessel, Christopher C.; Mahaffey, Kenneth W.; Fox, Keith A. A.; Califf, Robert M.

    2014-01-01

    Aims We investigated clinical characteristics and outcomes of patients with significant valvular disease (SVD) in the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) trial. Methods and results ROCKET AF excluded patients with mitral stenosis or artificial valve prostheses. We used Cox regression to adjust comparisons for potential confounders. Among 14 171 patients, 2003 (14.1%) had SVD; they were older and had more comorbidities than patients without SVD. The rate of stroke or systemic embolism with rivaroxaban vs. warfarin was consistent among patients with SVD [2.01 vs. 2.43%; hazard ratio (HR) 0.83, 95% confidence interval (CI) 0.55–1.27] and without SVD (1.96 vs. 2.22%; HR 0.89, 95% CI 0.75–1.07; interaction P = 0.76). However, rates of major and non-major clinically relevant bleeding with rivaroxaban vs. warfarin were higher in patients with SVD (19.8% rivaroxaban vs. 16.8% warfarin; HR 1.25, 95% CI 1.05–1.49) vs. those without (14.2% rivaroxaban vs. 14.1% warfarin; HR 1.01, 95% CI 0.94–1.10; interaction P = 0.034), even when controlling for risk factors and potential confounders. In intracranial haemorrhage, there was no interaction between patients with and without SVD where the overall rate was lower among those randomized to rivaroxaban. Conclusions Many patients with ‘non-valvular atrial fibrillation’ have significant valve lesions. Their risk of stroke is similar to that of patients without SVD after controlling for stroke risk factors. Efficacy of rivaroxaban vs. warfarin was similar in patients with and without SVD; however, the observed risk of bleeding was higher with rivaroxaban in patients with SVD but was the same among those without SVD. Atrial fibrillation patients with and without SVD experience the same stroke-preventive benefit of oral anticoagulants. PMID:25148838

  9. Adaptive fault feature extraction from wayside acoustic signals from train bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Entezami, Mani; Stewart, Edward; Roberts, Clive; Yu, Dejie

    2018-07-01

    Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.

  10. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  11. Sparse Representations for Limited Data Tomography (PREPRINT)

    DTIC Science & Technology

    2007-11-01

    predefined (such as wavelets ) or learned (e.g., by the K-SVD algorithm [8]), as in this work. Due to its highly effectiveness for tasks such as image...from den- tal data produced by the Focus intraoral X-ray source and the Sigma intraoral sensor (Instrumentarium Dental ; courtesy of Maaria Rantala...proposed method (right column). a functional, encouraging a sparse representation of the im- age patches while keeping the data constraints provided by

  12. Ensemble Feature Learning of Genomic Data Using Support Vector Machine

    PubMed Central

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923

  13. Genetic algorithm and graph theory based matrix factorization method for online friend recommendation.

    PubMed

    Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning

    2014-01-01

    Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.

  14. Free water determines diffusion alterations and clinical status in cerebral small vessel disease.

    PubMed

    Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin

    2018-06-01

    Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  15. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  16. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  17. Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark S.; Wang, Tseng-Chan

    1991-01-01

    An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.

  18. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  19. Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.

  20. Total MRI Small Vessel Disease Burden Correlates with Cognitive Performance, Cortical Atrophy, and Network Measures in a Memory Clinic Population.

    PubMed

    Banerjee, Gargi; Jang, Hyemin; Kim, Hee Jin; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Na, Duk L; Seo, Sang Won; Werring, David John

    2018-01-01

    Recent evidence suggests that combining individual imaging markers of cerebral small vessel disease (SVD) may more accurately reflect its overall burden and better correlate with clinical measures. We wished to establish the clinical relevance of the total SVD score in a memory clinic population by investigating the association with SVD score and cognitive performance, cortical atrophy, and structural network measures, after adjusting for amyloid-β burden. We included 243 patients with amnestic mild cognitive impairment (MCI), Alzheimer's disease dementia, subcortical vascular MCI, or subcortical vascular dementia. All underwent MR and [11C] PiB-PET scanning and had standardized cognitive testing. Multiple linear regression was used to evaluate the relationships between SVD score and cognition, cortical thickness, and structural network measures. Path analyses were performed to evaluate whether network disruption mediates the effects of SVD score on cortical thickness and cognition. Total SVD score was associated with the performance of frontal (β - 4.31, SE 2.09, p = 0.040) and visuospatial (β - 0.95, SE 0.44, p = 0.032) tasks, and with reduced cortical thickness in widespread brain regions. Total SVD score was negatively correlated with nodal efficiency, as well as changes in brain network organization, with evidence of reduced integration and increasing segregation. Path analyses showed that the associations between SVD score and frontal and visuospatial scores were partially mediated by decreases in their corresponding nodal efficiency and cortical thickness. Total SVD burden has clinical relevance in a memory clinic population and correlates with cognition, and cortical atrophy, as well as structural network disruption.

  1. Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data

    NASA Astrophysics Data System (ADS)

    Gioia, Christopher J.

    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft's attitude is unknown. In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm. A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry Pi computer. It was mounted on a tripod, used to target stars with the scope and measure the rotation between them using the IMU. The raw measurements were then post-processed using the MOAR algorithm, and attitude estimates were determined. Two different constellations---the Big Dipper and Orion---were used for experimental data collection. The results suggest that the novel method of estimating gyro bias independently from attitude in this document is credible for use onboard a spacecraft.

  2. A Comprehensive Two-Dimensional Retention Time Alignment Algorithm To Enhance Chemometric Analysis of Comprehensive Two-Dimensional Separation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Karisa M.; Wood, Lianna F.; Wright, Bob W.

    2005-12-01

    A comprehensive two-dimensional (2D) retention time alignment algorithm was developed using a novel indexing scheme. The algorithm is termed comprehensive because it functions to correct the entire chromatogram in both dimensions and it preserves the separation information in both dimensions. Although the algorithm is demonstrated by correcting comprehensive two-dimensional gas chromatography (GC x GC) data, the algorithm is designed to correct shifting in all forms of 2D separations, such as LC x LC, LC x CE, CE x CE, and LC x GC. This 2D alignment algorithm was applied to three different data sets composed of replicate GC x GCmore » separations of (1) three 22-component control mixtures, (2) three gasoline samples, and (3) three diesel samples. The three data sets were collected using slightly different temperature or pressure programs to engender significant retention time shifting in the raw data and then demonstrate subsequent corrections of that shifting upon comprehensive 2D alignment of the data sets. Thirty 12-min GC x GC separations from three 22-component control mixtures were used to evaluate the 2D alignment performance (10 runs/mixture). The average standard deviation of the first column retention time improved 5-fold from 0.020 min (before alignment) to 0.004 min (after alignment). Concurrently, the average standard deviation of second column retention time improved 4-fold from 3.5 ms (before alignment) to 0.8 ms (after alignment). Alignment of the 30 control mixture chromatograms took 20 min. The quantitative integrity of the GC x GC data following 2D alignment was also investigated. The mean integrated signal was determined for all components in the three 22-component mixtures for all 30 replicates. The average percent difference in the integrated signal for each component before and after alignment was 2.6%. Singular value decomposition (SVD) was applied to the 22-component control mixture data before and after alignment to show the restoration of trilinearity to the data, since trilinearity benefits chemometric analysis. By applying comprehensive 2D retention time alignment to all three data sets (control mixtures, gasoline samples, and diesel samples), classification by principal component analysis (PCA) substantially improved, resulting in 100% accurate scores clustering.« less

  3. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  4. On a concurrent element-by-element preconditioned conjugate gradient algorithm for multiple load cases

    NASA Technical Reports Server (NTRS)

    Watson, Brian; Kamat, M. P.

    1990-01-01

    Element-by-element preconditioned conjugate gradient (EBE-PCG) algorithms have been advocated for use in parallel/vector processing environments as being superior to the conventional LDL(exp T) decomposition algorithm for single load cases. Although there may be some advantages in using such algorithms for a single load case, when it comes to situations involving multiple load cases, the LDL(exp T) decomposition algorithm would appear to be decidedly more cost-effective. The authors have outlined an EBE-PCG algorithm suitable for multiple load cases and compared its effectiveness to the highly efficient LDL(exp T) decomposition scheme. The proposed algorithm offers almost no advantages over the LDL(exp T) algorithm for the linear problems investigated on the Alliant FX/8. However, there may be some merit in the algorithm in solving nonlinear problems with load incrementation, but that remains to be investigated.

  5. Methods, Software and Tools for Three Numerical Applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. R. Jessup

    2000-03-01

    This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).

  6. Randomized Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan

    2017-11-01

    The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.

  7. Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staschus, K.

    1985-01-01

    In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less

  8. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2007-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  9. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  10. Crypto-Watermarking of Transmitted Medical Images.

    PubMed

    Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'

    2017-02-01

    Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.

  11. Characterizing the 21-cm absorption trough with pattern recognition and a numerical sampler

    NASA Astrophysics Data System (ADS)

    Tauscher, Keith A.; Rapetti, David; Burns, Jack O.; Monsalve, Raul A.; Bowman, Judd D.

    2018-06-01

    The highly redshifted sky-averaged 21-cm spectrum from neutral hydrogen is a key probe to a period of the Universe never before studied. Recent experimental advances have led to increasingly tightened constraints and the Experiment to Detect the Global Eor Signal (EDGES) has presented evidence for a detection of this global signal. In order to glean scientifically valuable information from these new measurements in a consistent manner, sophisticated fitting procedures must be applied. Here, I present a pipeline known as pylinex which takes advantage of Singular Value Decomposition (SVD), a pattern recognition tool, to leverage structure in the data induced by the design of an experiment to fit for signals in the experiment's data in the presence of large systematics (such as the beam-weighted foregrounds), especially those without parametric forms. This method requires training sets for each component of the data. Once the desired signal is extracted in SVD eigenmode coefficient space, the posterior distribution must be consistently transformed into a physical parameter space. This is done with the combination of a numerical least squares fitter and a Markov Chain Monte Carlo (MCMC) distribution sampler. After describing the pipeline's procedures and techniques, I present preliminary results of applying it to the EDGES low-band data used for their detection. The results include estimates of the signal in frequency space with errors and relevant parameter distributions.

  12. Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health

    PubMed Central

    Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S. Stanley

    2016-01-01

    Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability. PMID:27213413

  13. Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health.

    PubMed

    Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S Stanley

    2016-05-18

    Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability.

  14. PICKY: a novel SVD-based NMR spectra peak picking method.

    PubMed

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-06-15

    Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 A. PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking.

  15. Geometry of the 1954 Fairview Peak-Dixie Valley earthquake sequence from a joint inversion of leveling and triangulation data

    USGS Publications Warehouse

    Hodgkinson, K.M.; Stein, R.S.; Marshall, G.

    1996-01-01

    In 1954, four earthquakes greater than Ms=6.0 occurred within a 30-km radius and in a period of 6 months. Elevation and angle changes calculated from repeated leveling and triangulation surveys which span the coseismic period provide constraints on the fault geometries and coseismic slip of the faults which were activated. The quality of the coseismic geodetic data is assessed. Corrections are applied to the leveling data for subsidence due to groundwater withdrawal in the Fallon area, and a rod miscalibration error of 150??30 ppm is isolated in leveling surveys made in 1967. The leveling and triangulation observations are then simultaneously inverted using the single value decomposition (SVD) inversion method to determine fault geometries and coseismic slip. Using SVD, it is possible to determine on which faults slip is resolvable given the data distribution. The faults are found to dip between 50?? and 80?? and extend to depths of 5 to 14 km. The geodetically derived slip values are generally equal to, or greater than, the maximum observed displacement along the surface scarps. Where slip is resolvable the geodetic data indicates the 1954 sequence contained a significant component of right-lateral slip. This is consistent with the N15??W trending shear zone which geodetic surveys have detected in western Nevada. Copyright 1996 by the American Geophysical Union.

  16. Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions

    PubMed Central

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T.; Gerstein, Mark

    2003-01-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find “marker genes” that are differentially expressed in particular sets of “conditions.” We have developed a method that simultaneously clusters genes and conditions, finding distinctive “checkerboard” patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data). PMID:12671006

  17. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    DOE PAGES

    Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...

    2016-07-26

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less

  18. Relating ocean-atmospheric climate indices with Australian river streamflow

    NASA Astrophysics Data System (ADS)

    Shams, Md Shamim; Faisal Anwar, A. H. M.; Lamb, Kenneth W.; Bari, Mohammed

    2018-01-01

    The relationship between climate indices with Australian river streamflow (ASF) may provide valuable information for long-lead streamflow forecasting for Australian rivers. The current study examines the correlations between three climate indices (SST, 500 mb meridional wind -U500 and 500 mb geopotential height-Z500) and 135 unimpaired ASF gauges for 1971-2011 using the singular value decomposition (SVD) method. First, SVD method was applied to check the SST-ASF correlated regions of influence and then extended SST-ASF variabilities were used to determine the correlated regions within Z500 and U500 fields. Based on the teleconnection, the most correlated region (150°E to 105°W and 35°S to 5°N) was identified and its persistency was checked by lag analysis up to 2 years from seasonal to yearly time-scale. The results displayed positive correlation for the south and south-eastern part of Australia while negative correlation prevails in the north-eastern region (at 95% significance level). The most correlated region was found situated along the South Pacific Convergence Zone (SPCZ) axis which may be considered as a probable climate driver for ASF. The persistency of this region was checked by a separate climate indicator (mean vertical velocity-500 mb) and found prominent in dry period than the wet period. This persistent teleconnected region may be potentially useful for long-lead forecasting of ASF.

  19. Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization

    DTIC Science & Technology

    2010-03-31

    optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested

  20. Data Unfolding with Wiener-SVD Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, W.; Li, X.; Qian, X.

    Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.

  1. Data Unfolding with Wiener-SVD Method

    DOE PAGES

    Tang, W.; Li, X.; Qian, X.; ...

    2017-10-04

    Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.

  2. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study.

    PubMed

    Molad, Jeremy; Kliper, Efrat; Korczyn, Amos D; Ben Assayag, Einor; Ben Bashat, Dafna; Shenhar-Tsarfaty, Shani; Aizenstein, Orna; Shopin, Ludmila; Bornstein, Natan M; Auriel, Eitan

    2017-01-01

    White matter hyperintensities (WMH) were shown to predict cognitive decline following stroke or transient ischemic attack (TIA). However, WMH are only one among other radiological markers of cerebral small vessel disease (SVD). The aim of this study was to determine whether adding other SVD markers to WMH improves prediction of post-stroke cognitive performances. Consecutive first-ever stroke or TIA patients (n = 266) from the Tel Aviv Acute Brain Stroke Cohort (TABASCO) study were enrolled. MRI scans were performed within seven days of stroke onset. We evaluated the relationship between cognitive performances one year following stroke, and previously suggested total SVD burden score including WMH, lacunes, cerebral microbleeds (CMB), and perivascular spaces (PVS). Significant negative associations were found between WMH and cognition (p < 0.05). Adding other SVD markers (lacunes, CMB, PVS) to WMH did not improve predication of post-stroke cognitive performances. Negative correlations between SVD burden score and cognitive scores were observed for global cognitive, memory, and visual spatial scores (all p < 0.05). However, following an adjustment for confounders, no associations remained significant. WMH score was associated with poor post-stroke cognitive performance. Adding other SVD markers or SVD burden score, however, did not improve prediction.

  3. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    NASA Astrophysics Data System (ADS)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  4. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  5. Genetic overlap between diagnostic subtypes of ischemic stroke.

    PubMed

    Holliday, Elizabeth G; Traylor, Matthew; Malik, Rainer; Bevan, Steve; Falcone, Guido; Hopewell, Jemma C; Cheng, Yu-Ching; Cotlarciuc, Ioana; Bis, Joshua C; Boerwinkle, Eric; Boncoraglio, Giorgio B; Clarke, Robert; Cole, John W; Fornage, Myriam; Furie, Karen L; Ikram, M Arfan; Jannes, Jim; Kittner, Steven J; Lincz, Lisa F; Maguire, Jane M; Meschia, James F; Mosley, Thomas H; Nalls, Mike A; Oldmeadow, Christopher; Parati, Eugenio A; Psaty, Bruce M; Rothwell, Peter M; Seshadri, Sudha; Scott, Rodney J; Sharma, Pankaj; Sudlow, Cathie; Wiggins, Kerri L; Worrall, Bradford B; Rosand, Jonathan; Mitchell, Braxton D; Dichgans, Martin; Markus, Hugh S; Levi, Christopher; Attia, John; Wray, Naomi R

    2015-03-01

    Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10(-4)) and profile scores (rg=0.72; 95% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene. Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes. © 2015 American Heart Association, Inc.

  6. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    PubMed Central

    Wardlaw, Joanna M; Smith, Eric E; Biessels, Geert J; Cordonnier, Charlotte; Fazekas, Franz; Frayne, Richard; Lindley, Richard I; O'Brien, John T; Barkhof, Frederik; Benavente, Oscar R; Black, Sandra E; Brayne, Carol; Breteler, Monique; Chabriat, Hugues; DeCarli, Charles; de Leeuw, Frank-Erik; Doubal, Fergus; Duering, Marco; Fox, Nick C; Greenberg, Steven; Hachinski, Vladimir; Kilimann, Ingo; Mok, Vincent; Oostenbrugge, Robert van; Pantoni, Leonardo; Speck, Oliver; Stephan, Blossom C M; Teipel, Stefan; Viswanathan, Anand; Werring, David; Chen, Christopher; Smith, Colin; van Buchem, Mark; Norrving, Bo; Gorelick, Philip B; Dichgans, Martin

    2013-01-01

    Summary Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE). PMID:23867200

  7. Depressive symptoms as a predictor of quality of life in cerebral small vessel disease, acting independently of disability; a study in both sporadic SVD and CADASIL

    PubMed Central

    Brookes, Rebecca L; Willis, Thomas A; Patel, Bhavini; Morris, Robin G; Markus, Hugh S

    2013-01-01

    Background Cerebral small vessel disease (SVD) causes lacunar stroke, and more recently has been implicated as a cause of depression. Factors causing reduced quality of life (QoL) in SVD, including the relative contributions of disability and depressive symptoms, remain uncertain. Hypothesis Depressive symptoms are a major predictor of reduced QoL in SVD, acting independently of disability. Methods The Stroke-Specific QoL scale was completed by 100 patients with SVD (lacunar stroke with MRI lacunar infarct) and 55 controls. We repeated the protocol in 40 patients with the young onset genetic form of SVD, CADASIL, and 35 controls. Disability (modified Rankin Scale), [instrumental] activities of daily living (IADL, ADL), cognition (Mini Mental State Examination) and depressive symptoms (Geriatric Depression Scale, Montgomery-Åsberg Depression Rating Scale) were measured. Results QoL was significantly lower in SVD than controls: mean (SD), 196.8 (35.2) versus 226.8(15.3), p<.0001. Depressive symptoms were the major predictor of QoL, accounting for 52.9% of variance. The only other independent predictor of QoL was disability, accounting for an additional 18.4%. A similar pattern was found in CADASIL with reduced QoL (202.0(29.7) versus controls (228.6 (13.1); p<.0001), and depressive symptoms accounting for 42.2% of variance. Disability accounted for an additional 17.6%. Relationships between depression and QoL, and disability and QoL, were independent of one another. Conclusions Depressive symptoms, often unrecognized, are a major determinant of reduced QoL in SVD. They account for greater reduction than disability, and the association is independent of disability. This relationship may reflect the proposed causal association between white matter disease and depression. Treatment of depressive symptoms might significantly improve QoL in SVD. PMID:22364606

  8. Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-09-01

    For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.

  9. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  10. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke.

    PubMed

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm; Rothwell, Peter M

    2018-04-01

    It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m 2 ) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69-2.75; P <0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69-9.32; P =0.002; 60-79 years: OR, 1.01; 95% CI, 0.72-1.41; P =0.963; ≥80 years: OR, 0.95; 95% CI, 0.59-1.54; P =0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56-1.02; P =0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21-7.98; P =0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but were strongest for cerebral microbleeds (OR, 5.84; 95% CI, 1.45-23.53; P =0.013) and moderate-severe periventricular white matter hyperintensities (OR, 6.28; 95% CI, 1.54-25.63; P =0.010). The association of renal impairment and cerebral SVD was attenuated with adjustment for shared risk factors at older ages, but remained at younger ages, consistent with a shared susceptibility to premature disease. © 2018 The Authors.

  11. Brain atrophy and cerebral small vessel disease: a prospective follow-up study.

    PubMed

    Nitkunan, Arani; Lanfranconi, Silvia; Charlton, Rebecca A; Barrick, Thomas R; Markus, Hugh S

    2011-01-01

    cerebral small vessel disease (SVD) is the most common cause of vascular dementia. Interest in the use of surrogate markers is increasing. The aims of this study were to determine if brain volume was different between patients with SVD and control subjects, whether it correlated with cognition in SVD, and whether changes in brain volume could be detected during prospective follow-up. thirty-five patients (mean age, 68.8 years) who had a lacunar stroke and radiological evidence of confluent leukoaraiosis and 70 age- and gender-matched control subjects were recruited. Whole-brain T1-weighted imaging and neuropsychological testing were performed after 1 year on all patients and after 2 years for the control subjects. Fully automated software was used to determine brain volume and percentage brain volume change. An executive function score was derived. there was a significant difference in brain volume between the patients with SVD and control subjects (mean ± SD [mL] 1529 ± 84 versus 1573 ± 69, P=0.019). In the patients with SVD, there was a significant association between brain volume and executive function (r=0.501, P<0.05). The mean ± SD yearly brain atrophy rate for patients with SVD and control subjects was significantly different (-0.914% ± 0.8% versus -0.498% ± 0.4%, respectively, P=0.017). No change in executive function score was detected over this period. brain volume is reduced in SVD and a decline is detectable prospectively. The correlation with executive function at a cross-sectional level and the change in brain volume with time are both promising for the use of brain atrophy as a surrogate marker of SVD progression.

  12. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack.

    PubMed

    Arba, F; Quinn, T; Hankey, G J; Ali, M; Lees, K R; Inzitari, D

    2017-02-01

    Small vessel disease (SVD) and Alzheimer's disease (AD) are two common causes of cognitive impairment and dementia, traditionally considered as distinct processes. The relationship between radiological features suggestive of AD and SVD was explored, and the association of each of these features with cognitive status at 1 year was investigated in patients with stroke or transient ischaemic attack. Anonymized data were accessed from the Virtual International Stroke Trials Archive (VISTA). Medial temporal lobe atrophy (MTA; a marker of AD) and markers of SVD were rated using validated ordinal visual scales. Cognitive status was evaluated with the Mini Mental State Examination (MMSE) 1 year after the index stroke. Logistic regression models were used to investigate independent associations between (i) baseline SVD features and MTA and (ii) all baseline neuroimaging features and cognitive status 1 year post-stroke. In all, 234 patients were included, mean (±SD) age 65.7 ± 13.1 years, 145 (62%) male. Moderate to severe MTA was present in 104 (44%) patients. SVD features were independently associated with MTA (P < 0.001). After adjusting for age, sex, disability after stroke, hypertension and diabetes mellitus, MTA was the only radiological feature independently associated with cognitive impairment, defined using thresholds of MMSE ≤ 26 (odds ratio 1.94; 95% confidence interval 1.28-2.94) and MMSE ≤ 23 (odds ratio 2.31; 95% confidence interval 1.48-3.62). In patients with ischaemic cerebrovascular disease, SVD features are associated with MTA, which is a common finding in stroke survivors. SVD and AD type neurodegeneration coexist, but the AD marker MTA, rather than SVD markers, is associated with post-stroke cognitive impairment. © 2016 EAN.

  13. [Serological examinations for swine vesicular disease (SVD) in a closed pig breeding herd using ELISA].

    PubMed

    Pannwitz, Gunter; Haas, Bernd; Hoffmann, Bernd; Fischer, Sebastian

    2009-01-01

    In a closed pig establishment housing about 18,000 pigs, 2895 gilts were tested pre-export for SVD (swine vesicular disease) antibodies using Ceditest/PrioCHECK SVDV-AB ELISA. 130 gilts (4.5%) tested positive. In addition, 561 animals of this farm were sampled per random for SVD serology. One in 241 weaners (0.4%), eight in 150 gilts (5.3%) and 18 in 170 (10.6%) pregnant sows tested ELISA SVD-antibody positive. Of the ELISA positive samples, 23 tested positive in VNT (virus neutralization test). Of these, 20 VNT-positive animals were re-sampled two weeks later and re-tested via ELISA and VNT in different laboratories, displaying falling titres with one to two animals remaining VNT-positive. Epidemiological investigations and clinical examinations on site did not yield any evidence for SVD. 745 faecal samples taken from individual pigs and collected from pens tested negative in SVDV-RNA-PCR. 40 of these samples tested negative in virus isolation on cell culture. Pathological examinations on fallen pigs did not reveal any evidence for SVD either. After comparing our ELISA results with data recorded in the ELISA validation by Chenard et al. (1998), we propose that the published test performance is perhaps not currently applicable for the commercial test. Provided that SVD-antibody negative pigs were tested, a specificity of 99.6% in weaners, 95.5% in gilts and 89.4% in pregnant sows would appear to be more appropriate for the Ceditest/PrioCHECK SVDV-AB ELISA. Details are provided for all examined pigs regarding husbandry, breed, age, weeks pregnant and previous vaccinations. The results of other serological tests on the same sera are given. Possible clusterings of false-positive SVD-ELISA results are discussed.

  14. [Management of cerebral small vessel disease for the diagnosis and treatment of dementia].

    PubMed

    Ihara, Masafumi

    2013-07-01

    With the demographic shift in life expectancy inexorably increasing in developed countries, dementia is set to become one of the most important health problems worldwide. In recent years, cerebral small vessel disease (SVD) has received much attention as an important cause of dementia. The reason for this is twofold: firstly, arteriosclerosis (type 1 SVD) is the leading cause of vascular cognitive impairment, and secondly, cerebral amyloid angiopathy (CAA; type 2 SVD) is an almost invariable accompaniment of Alzheimer's disease. SVD is known to induce a variety of pathological changes; for example, type 1 SVD results in lacunar infarction, deep microbleeds, and white matter damage, while type 2 SVD leads to cortical microinfarcts, lobar microbleeds, and white matter damage. SVD is considered a spectrum of abnormalities, with the majority of patients experiencing symptoms from both type 1 and type 2 SVD as the disease progresses. The discouraging results of immunotherapy clinical trials for Alzheimer's disease have shifted the scientific attention from the classical neuron-centric approach towards a novel neurovascular approach. As arteries stiffen with age or with other co-morbid factors such as life-related diseases, amyloid β (Aβ) synthesis becomes upregulated, resulting in the deposition of insoluble Aβ not only in the parenchyma as senile plaques but also in the perivascular drainage pathways as CAA. Therefore, therapeutic strategies such as vasoactive drugs that enhance the patency of this Aβ drainage pathway may facilitate Aβ removal and help prevent cognitive decline in the elderly. Based on this emerging paradigm, clinical trials are warranted to investigate whether a neurovascular therapeutic approach can effectively halt cognitive decline and act as a preemptive medicine for patients at risk of dementia.

  15. Belle II SVD ladder assembly procedure and electrical qualification

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration

    2016-07-01

    The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.

  16. About decomposition approach for solving the classification problem

    NASA Astrophysics Data System (ADS)

    Andrianova, A. A.

    2016-11-01

    This article describes the features of the application of an algorithm with using of decomposition methods for solving the binary classification problem of constructing a linear classifier based on Support Vector Machine method. Application of decomposition reduces the volume of calculations, in particular, due to the emerging possibilities to build parallel versions of the algorithm, which is a very important advantage for the solution of problems with big data. The analysis of the results of computational experiments conducted using the decomposition approach. The experiment use known data set for binary classification problem.

  17. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  18. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  19. Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)

    NASA Astrophysics Data System (ADS)

    Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.

    2007-11-01

    Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.

  20. An Integrated Centroid Finding and Particle Overlap Decomposition Algorithm for Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.

  1. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  2. Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data

    PubMed Central

    Clark, Darin P.; Badea, Cristian T.

    2014-01-01

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173

  3. Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.

    PubMed

    Clark, Darin P; Badea, Cristian T

    2014-11-07

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.

  4. Incremental k-core decomposition: Algorithms and evaluation

    DOE PAGES

    Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...

    2016-02-01

    A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less

  5. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  6. Apathy, but not depression, is associated with executive dysfunction in cerebral small vessel disease

    PubMed Central

    Hollocks, Matthew J.; Morris, Robin G.; Markus, Hugh S.

    2017-01-01

    Objective To determine the prevalence of apathy and depression in cerebral small vessel disease (SVD), and the relationships between both apathy and depression with cognition. To examine whether apathy is specifically related to impairment in executive functioning and processing speed. Methods 196 patients with a clinical lacunar stroke and an anatomically corresponding lacunar infarct on MRI were compared to 300 stroke-free controls. Apathy and depression were measured using the Geriatric Depression Scale, and cognitive functioning was assessed using an SVD cognitive screening tool, the Brief Memory and Executive Test, which measures executive functioning/processing speed and memory/orientation. Path analysis and binary logistic regression were used to assess the relation between apathy, depression and cognitive impairment. Results 31 participants with SVD (15.8%) met criteria for apathy only, 23 (11.8%) for both apathy and depression, and 2 (1.0%) for depression only. In the SVD group the presence of apathy was related to global cognition, and specifically to impaired executive functioning/processing speed, but not memory/orientation. The presence of depression was not related to global cognition, impaired executive functioning/processing speed or memory/orientation. Conclusions Apathy is a common feature of SVD and is associated with impaired executive functioning/processing speed suggesting the two may share biological mechanisms. Screening for apathy should be considered in SVD, and further work is required to develop and evaluate effective apathy treatment or management in SVD. PMID:28493898

  7. High amount of dietary fiber not harmful but favorable for Crohn disease.

    PubMed

    Chiba, Mitsuro; Tsuji, Tsuyotoshi; Nakane, Kunio; Komatsu, Masafumi

    2015-01-01

    Current chronic diseases are a reflection of the westernized diet that features a decreased consumption of dietary fiber. Indigestible dietary fiber is metabolized by gut bacteria, including Faecalibacterium prausnitzii, to butyrate, which has a critical role in colonic homeostasis owing to a variety of functions. Dietary fiber intake has been significantly inversely associated with the risk of chronic diseases. Crohn disease (CD) is not an exception. However, even authors who reported the inverse association between dietary fiber and a risk of CD made no recommendation of dietary fiber intake to CD patients. Some correspondence was against advocating high fiber intake in CD. We initiated a semivegetarian diet (SVD), namely a lacto-ovo-vegetarian diet, for patients with inflammatory bowel disease. Our SVD contains 32.4 g of dietary fiber in 2000 kcal. There was no untoward effect of the SVD. The remission rate with combined infliximab and SVD for newly diagnosed CD patients was 100%. Maintenance of remission on SVD without scheduled maintenance therapy with biologic drugs was 92% at 2 years. These excellent short- and long-term results can be explained partly by SVD. The fecal bacterial count of F prausnitzii in patients with CD is significantly lower than in healthy controls. Diet reviews recommend plant-based diets to treat and to prevent a variety of chronic diseases. SVD belongs to plant-based diets that inevitably contain considerable amounts of dietary fiber. Our clinical experience and available data provide a rationale to recommend a high fiber intake to treat CD.

  8. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  9. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  10. Multidecadal climate variability of global lands and oceans

    USGS Publications Warehouse

    McCabe, G.J.; Palecki, M.A.

    2006-01-01

    Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.

  11. PICKY: a novel SVD-based NMR spectra peak picking method

    PubMed Central

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-01-01

    Motivation: Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. Results: We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 Å. Availability: PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking. Contact: mli@uwaterloo.ca PMID:19477998

  12. Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    NASA Astrophysics Data System (ADS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.

    2017-02-01

    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.

  13. Can sun-induced chlorophyll fluorescence track diurnal variations of GPP in an evergreen needle leaf forest?

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ryu, Y.; Dechant, B.; Cho, S.; Kim, H. S.; Yang, K.

    2017-12-01

    The emerging technique of remotely sensed sun-induced fluorescence (SIF) has advanced our ability to estimate plant photosynthetic activity at regional and global scales. Continuous observations of SIF and gross primary productivity (GPP) at the canopy scale in evergreen needleleaf forests, however, have not yet been presented in the literature so far. Here, we report a time series of near-surface measurements of canopy-scale SIF, hyperspectral reflectance and GPP during the senescence period in an evergreen needleleaf forest in South Korea. Mean canopy height was 30 m and a hyperspectrometer connected with a single fiber and rotating prism, which measures bi-hemispheric irradiance, was installed 20 m above the canopy. SIF was retrieved in the spectral range 740-790 nm at a temporal resolution of 1 min. We tested different SIF retrieval methods, such as Fraunhofer line depth (FLD), spectral fitting method (SFM) and singular vector decomposition (SVD) against GPP estimated by eddy covariance and absorbed photosynthetically active radiation (APAR). We found that the SVD-retrieved SIF signal shows linear relationships with GPP (R2 = 0.63) and APAR (R2 = 0.52) while SFM- and FLD-retrieved SIF performed poorly. We suspect the larger influence of atmospheric oxygen absorption between the sensor and canopy might explain why SFM and FLD methods showed poor results. Data collection will continue and the relationships between SIF, GPP and APAR will be studied during the senescence period.

  14. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m < R < 0 . 348 m and -0.05 < Z < 0.05 m) with 3.0 T strength and a slightly negative BR (magnetic field radial component) at Z > 0.0 m) for the spiral muon injection from the iron yoke at top.

  15. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  16. Parallel CE/SE Computations via Domain Decomposition

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung

    2000-01-01

    This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.

  17. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke

    PubMed Central

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm

    2018-01-01

    Background and Purpose— It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. Methods— In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Results— Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69–2.75; P<0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69–9.32; P=0.002; 60–79 years: OR, 1.01; 95% CI, 0.72–1.41; P=0.963; ≥80 years: OR, 0.95; 95% CI, 0.59–1.54; P=0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56–1.02; P=0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21–7.98; P=0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but were strongest for cerebral microbleeds (OR, 5.84; 95% CI, 1.45–23.53; P=0.013) and moderate–severe periventricular white matter hyperintensities (OR, 6.28; 95% CI, 1.54–25.63; P=0.010). Conclusions— The association of renal impairment and cerebral SVD was attenuated with adjustment for shared risk factors at older ages, but remained at younger ages, consistent with a shared susceptibility to premature disease. PMID:29523652

  18. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    PubMed

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.

  20. Fast algorithm of adaptive Fourier series

    NASA Astrophysics Data System (ADS)

    Gao, You; Ku, Min; Qian, Tao

    2018-05-01

    Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.

  1. Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.

    PubMed

    Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E

    2017-07-01

    Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  2. Gene expression suggests spontaneously hypertensive rats may have altered metabolism and reduced hypoxic tolerance.

    PubMed

    Ritz, Marie-Françoise; Grond-Ginsbach, Caspar; Engelter, Stefan; Lyrer, Philippe

    2012-02-01

    Cerebral small vessel disease (SVD) is an important cause of stroke, cognitive decline and vascular dementia (VaD). It is associated with diffuse white matter abnormalities and small deep cerebral ischemic infarcts. The molecular mechanisms involved in the development and progression of SVD are unclear. As hypertension is a major risk factor for developing SVD, Spontaneously Hypertensive Rats (SHR) are considered an appropriate experimental model for SVD. Prior work suggested an imbalance between the number of blood microvessels and astrocytes at the level of the neurovascular unit in 2-month-old SHR, leading to neuronal hypoxia in the brain of 9-month-old animals. To identify genes and pathways involved in the development of SVD, we compared the gene expression profile in the cortex of 2 and 9-month-old of SHR with age-matched normotensive Wistar Kyoto (WKY) rats using microarray-based technology. The results revealed significant differences in expression of genes involved in energy and lipid metabolisms, mitochondrial functions, oxidative stress and ischemic responses between both groups. These results strongly suggest that SHR suffer from chronic hypoxia, and therefore are unable to tolerate ischemia-like conditions, and are more vulnerable to high-energy needs than WKY. This molecular analysis gives new insights about pathways accounting for the development of SVD.

  3. Pistachio (Pistacia vera L.) is a new natural host of Hop stunt viroid.

    PubMed

    Elleuch, Amine; Hamdi, Imen; Ellouze, Olfa; Ghrab, Mohamed; Fkahfakh, Hatem; Drira, Noureddine

    2013-10-01

    Besides hop, Hop stunt viroid (HpSVd) infects many woody species including grapevine, citrus, peach, plum, apricot, almond, pomegranate, mulberry and jujube. Here, we report the first detection of HpSVd in pistachio (Pistacia vera L.). Samples corresponding to 16 pistachio cultivars were obtained from a nearby almond collection. From these samples, low molecular weight RNAs were extracted for double polyacrylamide gel electrophoresis, northern-blot analysis and reverse transcription polymerase chain reaction assays. HpSVd was detected in 4 of the 16 pistachio cultivars in the first year and in 6 in the second, being also detected in the almond collection. Examination of the nucleotide sequences of pistachio and almond isolates revealed 13 new sequence variants. Sequences from pistachio shared 92-96 % similarity with the first reported HpSVd sequence (GenBank X00009), and multiple alignment and phylogenetic analyses showed that one pistachio isolate (HpSVdPis67Jabari) clustered with the plum group, whereas all the others clustered with the hop, and the recombinants plum-citrus and plum-Hop/cit3 groups. By identifying pistachio as a new natural host, we confirm that HpSVd is an ubiquitous and genetically variable viroid that infects many different fruit trees cultivated worldwide.

  4. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    PubMed Central

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  5. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness.

    PubMed

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V ), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles.

  6. Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.

    ERIC Educational Resources Information Center

    Alexopoulos, John; Abraham, Paul

    2001-01-01

    Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…

  7. Optimization by nonhierarchical asynchronous decomposition

    NASA Technical Reports Server (NTRS)

    Shankar, Jayashree; Ribbens, Calvin J.; Haftka, Raphael T.; Watson, Layne T.

    1992-01-01

    Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness.

  8. Research on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient.

    PubMed

    Li, Yuxing; Li, Yaan; Chen, Xiao; Yu, Jing

    2017-12-26

    As the sound signal of ships obtained by sensors contains other many significant characteristics of ships and called ship-radiated noise (SN), research into a denoising algorithm and its application has obtained great significance. Using the advantage of variational mode decomposition (VMD) combined with the correlation coefficient for denoising, a hybrid secondary denoising algorithm is proposed using secondary VMD combined with a correlation coefficient (CC). First, different kinds of simulation signals are decomposed into several bandwidth-limited intrinsic mode functions (IMFs) using VMD, where the decomposition number by VMD is equal to the number by empirical mode decomposition (EMD); then, the CCs between the IMFs and the simulation signal are calculated respectively. The noise IMFs are identified by the CC threshold and the rest of the IMFs are reconstructed in order to realize the first denoising process. Finally, secondary denoising of the simulation signal can be accomplished by repeating the above steps of decomposition, screening and reconstruction. The final denoising result is determined according to the CC threshold. The denoising effect is compared under the different signal-to-noise ratio and the time of decomposition by VMD. Experimental results show the validity of the proposed denoising algorithm using secondary VMD (2VMD) combined with CC compared to EMD denoising, ensemble EMD (EEMD) denoising, VMD denoising and cubic VMD (3VMD) denoising, as well as two denoising algorithms presented recently. The proposed denoising algorithm is applied to feature extraction and classification for SN signals, which can effectively improve the recognition rate of different kinds of ships.

  9. High Amount of Dietary Fiber Not Harmful But Favorable for Crohn Disease

    PubMed Central

    Chiba, Mitsuro; Tsuji, Tsuyotoshi; Nakane, Kunio; Komatsu, Masafumi

    2015-01-01

    Current chronic diseases are a reflection of the westernized diet that features a decreased consumption of dietary fiber. Indigestible dietary fiber is metabolized by gut bacteria, including Faecalibacterium prausnitzii, to butyrate, which has a critical role in colonic homeostasis owing to a variety of functions. Dietary fiber intake has been significantly inversely associated with the risk of chronic diseases. Crohn disease (CD) is not an exception. However, even authors who reported the inverse association between dietary fiber and a risk of CD made no recommendation of dietary fiber intake to CD patients. Some correspondence was against advocating high fiber intake in CD. We initiated a semivegetarian diet (SVD), namely a lacto-ovo-vegetarian diet, for patients with inflammatory bowel disease. Our SVD contains 32.4 g of dietary fiber in 2000 kcal. There was no untoward effect of the SVD. The remission rate with combined infliximab and SVD for newly diagnosed CD patients was 100%. Maintenance of remission on SVD without scheduled maintenance therapy with biologic drugs was 92% at 2 years. These excellent short- and long-term results can be explained partly by SVD. The fecal bacterial count of F prausnitzii in patients with CD is significantly lower than in healthy controls. Diet reviews recommend plant-based diets to treat and to prevent a variety of chronic diseases. SVD belongs to plant-based diets that inevitably contain considerable amounts of dietary fiber. Our clinical experience and available data provide a rationale to recommend a high fiber intake to treat CD. PMID:25663207

  10. Video Shot Boundary Detection Using QR-Decomposition and Gaussian Transition Detection

    NASA Astrophysics Data System (ADS)

    Amiri, Ali; Fathy, Mahmood

    2010-12-01

    This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID 2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the proposed algorithm.

  11. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.

  12. Cross-language information retrieval using PARAFAC2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Brett William; Chew, Peter; Abdelali, Ahmed

    A standard approach to cross-language information retrieval (CLIR) uses Latent Semantic Analysis (LSA) in conjunction with a multilingual parallel aligned corpus. This approach has been shown to be successful in identifying similar documents across languages - or more precisely, retrieving the most similar document in one language to a query in another language. However, the approach has severe drawbacks when applied to a related task, that of clustering documents 'language-independently', so that documents about similar topics end up closest to one another in the semantic space regardless of their language. The problem is that documents are generally more similar tomore » other documents in the same language than they are to documents in a different language, but on the same topic. As a result, when using multilingual LSA, documents will in practice cluster by language, not by topic. We propose a novel application of PARAFAC2 (which is a variant of PARAFAC, a multi-way generalization of the singular value decomposition [SVD]) to overcome this problem. Instead of forming a single multilingual term-by-document matrix which, under LSA, is subjected to SVD, we form an irregular three-way array, each slice of which is a separate term-by-document matrix for a single language in the parallel corpus. The goal is to compute an SVD for each language such that V (the matrix of right singular vectors) is the same across all languages. Effectively, PARAFAC2 imposes the constraint, not present in standard LSA, that the 'concepts' in all documents in the parallel corpus are the same regardless of language. Intuitively, this constraint makes sense, since the whole purpose of using a parallel corpus is that exactly the same concepts are expressed in the translations. We tested this approach by comparing the performance of PARAFAC2 with standard LSA in solving a particular CLIR problem. From our results, we conclude that PARAFAC2 offers a very promising alternative to LSA not only for multilingual document clustering, but also for solving other problems in cross-language information retrieval.« less

  13. Basis Expansion Approaches for Regularized Sequential Dictionary Learning Algorithms With Enforced Sparsity for fMRI Data Analysis.

    PubMed

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-09-01

    Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.

  14. Domain decomposition: A bridge between nature and parallel computers

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1992-01-01

    Domain decomposition is an intuitive organizing principle for a partial differential equation (PDE) computation, both physically and architecturally. However, its significance extends beyond the readily apparent issues of geometry and discretization, on one hand, and of modular software and distributed hardware, on the other. Engineering and computer science aspects are bridged by an old but recently enriched mathematical theory that offers the subject not only unity, but also tools for analysis and generalization. Domain decomposition induces function-space and operator decompositions with valuable properties. Function-space bases and operator splittings that are not derived from domain decompositions generally lack one or more of these properties. The evolution of domain decomposition methods for elliptically dominated problems has linked two major algorithmic developments of the last 15 years: multilevel and Krylov methods. Domain decomposition methods may be considered descendants of both classes with an inheritance from each: they are nearly optimal and at the same time efficiently parallelizable. Many computationally driven application areas are ripe for these developments. A progression is made from a mathematically informal motivation for domain decomposition methods to a specific focus on fluid dynamics applications. To be introductory rather than comprehensive, simple examples are provided while convergence proofs and algorithmic details are left to the original references; however, an attempt is made to convey their most salient features, especially where this leads to algorithmic insight.

  15. Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam

    2017-04-01

    The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.

  16. Primary decomposition of zero-dimensional ideals over finite fields

    NASA Astrophysics Data System (ADS)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  17. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    PubMed

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  18. Spatial-spectral preprocessing for endmember extraction on GPU's

    NASA Astrophysics Data System (ADS)

    Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun

    2016-10-01

    Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.

  19. Low Dimensional Analysis of Wing Surface Morphology in Hummingbird Free Flight

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Ren, Yan; Liu, Geng; Dong, Haibo; Tobalske, Bret

    2015-11-01

    Surface morphing in flapping wings is a hallmark of bird flight. In current work, the role of dynamic wing morphing of a free flying hummingbird is studied in detail. A 3D image-based surface reconstruction method is used to obtain the kinematics and deformation of hummingbird wings from high-quality high-speed videos. The observed wing surface morphing is highly complex and a number of modeling methods including singular value decomposition (SVD) are used to obtain the fundamental kinematical modes with distinct motion features. Their aerodynamic roles are investigated by conducting immersed-boundary-method based flow simulations. The results show that the chord-wise deformation modes play key roles in the attachment of leading-edge vortex, thus improve the performance of the flapping wings. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  20. Using linear algebra for protein structural comparison and classification

    PubMed Central

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532

  1. Using linear algebra for protein structural comparison and classification.

    PubMed

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  2. Joint inversion of fundamental and higher mode Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.

    2008-01-01

    In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.

  3. Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change.

    PubMed

    Williams, Owen A; Zeestraten, Eva A; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew J; Mackinnon, Andrew D; Morris, Robin G; Markus, Hugh S; Charlton, Rebecca A; Barrick, Thomas R

    2017-01-01

    Cerebral small vessel disease (SVD) is the primary cause of vascular cognitive impairment and is associated with decline in executive function (EF) and information processing speed (IPS). Imaging biomarkers are needed that can monitor and identify individuals at risk of severe cognitive decline. Recently there has been interest in combining several magnetic resonance imaging (MRI) markers of SVD into a unitary score to describe disease severity. Here we apply a diffusion tensor image (DTI) segmentation technique (DSEG) to describe SVD related changes in a single unitary score across the whole cerebrum, to investigate its relationship with cognitive change over a three-year period. 98 patients (aged 43-89) with SVD underwent annual MRI scanning and cognitive testing for up to three years. DSEG provides a vector of 16 discrete segments describing brain microstructure of healthy and/or damaged tissue. By calculating the scalar product of each DSEG vector in reference to that of a healthy ageing control we generate an angular measure (DSEG θ ) describing the patients' brain tissue microstructural similarity to a disease free model of a healthy ageing brain. Conventional MRI markers of SVD brain change were also assessed including white matter hyperintensities, cerebral atrophy, incident lacunes, cerebral-microbleeds, and white matter microstructural damage measured by DTI histogram parameters. The impact of brain change on cognition was explored using linear mixed-effects models. Post-hoc sample size analysis was used to assess the viability of DSEG θ as a tool for clinical trials. Changes in brain structure described by DSEG θ were related to change in EF and IPS ( p  < 0.001) and remained significant in multivariate models including other MRI markers of SVD as well as age, gender and premorbid IQ. Of the conventional markers, presence of new lacunes was the only marker to remain a significant predictor of change in EF and IPS in the multivariate models ( p  = 0.002). Change in DSEG θ was also related to change in all other MRI markers ( p  < 0.017), suggesting it may be used as a surrogate marker of SVD damage across the cerebrum. Sample size estimates indicated that fewer patients would be required to detect treatment effects using DSEG θ compared to conventional MRI and DTI markers of SVD severity. DSEG θ is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG θ has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs).

  4. Small vessel disease burden in cerebral amyloid angiopathy without symptomatic hemorrhage

    PubMed Central

    Charidimou, Andreas; Jessel, Michael J.; Xiong, Li; Roongpiboonsopit, Duangnapa; Fotiadis, Panagiotis; Pasi, Marco; Ayres, Alison; Merrill, M. Emily; Schwab, Kristin M.; Rosand, Jonathan; Gurol, M. Edip; Greenberg, Steven M.; Viswanathan, Anand

    2017-01-01

    Objective: Cerebral amyloid angiopathy (CAA) is a common age-related small vessel disease (SVD). Patients without intracerebral hemorrhage (ICH) typically present with transient focal neurologic episodes (TFNEs) or cognitive symptoms. We sought to determine if SVD lesion burden differed between patients with CAA first presenting with TFNEs vs cognitive symptoms. Methods: A total of 647 patients presenting either to a stroke department (n = 205) or an outpatient memory clinic (n = 442) were screened for eligibility. Patients meeting modified Boston criteria for probable CAA were included and markers of SVD were quantified, including cerebral microbleeds (CMBs), perivascular spaces, cortical superficial siderosis (cSS), and white matter hyperintensities (WMHs). Patients were classified according to presentation symptoms (TFNEs vs cognitive). Total CAA-SVD burden was assessed using a validated summary score. Individual neuroimaging markers and total SVD burden were compared between groups using univariable and multivariable models. Results: There were 261 patients with probable CAA included. After adjustment for confounders, patients first seen for TFNEs (n = 97) demonstrated a higher prevalence of cSS (p < 0.0001), higher WMH volumes (p = 0.03), and a trend toward higher CMB counts (p = 0.09). The total SVD summary score was higher in patients seen for TFNEs (adjusted odds ratio per additional score point 1.46, 95% confidence interval 1.16–1.84, p = 0.013). Conclusions: Patients with probable CAA without ICH first evaluated for TFNEs bear a higher burden of structural MRI SVD-related damage compared to those first seen for cognitive symptoms. This study sheds light on neuroimaging profile differences across clinical phenotypes of patients with CAA without ICH. PMID:28130469

  5. Long-Term Durability of Bioprosthetic Aortic Valves: Implications From 12,569 Implants

    PubMed Central

    Johnston, Douglas R.; Soltesz, Edward G.; Vakil, Nakul; Rajeswaran, Jeevanantham; Roselli, Eric E.; Sabik, Joseph F.; Smedira, Nicholas G.; Svensson, Lars G.; Lytle, Bruce W.; Blackstone, Eugene H.

    2016-01-01

    Background Increased life expectancy and younger patients’ desire to avoid lifelong anticoagulation requires a better understanding of bioprosthetic valve failure. This study evaluates risk factors associated with explantation for structural valve deterioration (SVD) in a long-term series of Carpentier-Edwards PERIMOUNT aortic valves (AV). Methods From June 1982 to January 2011, 12,569 patients underwent AV replacement with Edwards Lifesciences Carpentier-Edwards PERIMOUNT stented bovine pericardial prostheses, models 2700PM (n = 310) or 2700 (n = 12,259). Mean age was 71 ± 11 years (range, 18 to 98 years). 93% had native AV disease, 48% underwent concomitant coronary artery bypass grafting, and 26% had additional valve surgery. There were 81,706 patient-years of systematic follow-up data available for analysis. Demographics, intraoperative variables, and 27,386 echocardiographic records were used to identify risks for explant for SVD and assess longitudinal changes in transprosthesis gradients using time-varying covariable analyses. Results Three hundred fifty-four explants were performed, with 41% related to endocarditis and 44% to SVD. Actuarial estimates of explant for SVD at 10 and 20 years were 1.9% and 15% overall, respectively, and in patients younger than 60 years, 5.6% and 46%, respectively. Younger age (p < 0.0001), lipid-lowering drugs (p = 0.002), prosthesis–patient mismatch (p = 0.001), and higher postoperative peak and mean AV gradients were associated with explant for SVD (p < 0.0001). The effect of gradient on SVD was greatest in patients younger than 60 years. Conclusions Durability of the Carpentier-Edwards PERIMOUNT aortic valve is excellent even in younger patients. Explant for SVD is related to gradient at implantation, especially in younger patients. Strategies to reduce early postoperative AV gradients, such as root enlargement or more efficient prostheses, should be considered. PMID:25662439

  6. Association of postural instability with asymptomatic cerebrovascular damage and cognitive decline: the Japan Shimanami health promoting program study.

    PubMed

    Tabara, Yasuharu; Okada, Yoko; Ohara, Maya; Uetani, Eri; Kido, Tomoko; Ochi, Namiko; Nagai, Tokihisa; Igase, Michiya; Miki, Tetsuro; Matsuda, Fumihiko; Kohara, Katsuhiko

    2015-01-01

    Asymptomatic cerebral small-vessel disease (cSVD) in elderly individuals are potent risk factors for stroke. In addition to common clinical risk factors, postural instability has been postulated to be associated with cSVD in older frail patients. Here, we conducted a cross-sectional study to understand the possible link between postural instability and asymptomatic cSVD further, namely periventricular hyperintensity, lacunar infarction, and microbleeds, as well as cognitive function, in a middle-aged to elderly general population (n=1387). Postural instability was assessed based on one-leg standing time (OLST) and posturography findings. cSVD was evaluated by brain MRI. Mild cognitive impairment was assessed using a computer-based questionnaire, and carotid intima-media thickness as an index of atherosclerosis was measured via ultrasonography. Frequency of short OLST, in particular <20 s, increased linearly with severity of cSVD (lacunar infarction lesion: none, 9.7%; 1, 16.0%; >2, 34.5%; microbleeds lesion: none, 10.1%; 1, 15.3%; >2, 30.0%; periventricular hyperintensity grade: 0, 5.7%; 1, 11.5%; >2, 23.7%). The association of short OLST with lacunar infarction and microbleeds but not periventricular hyperintensity remained significant even after adjustment for possible covariates (lacunar infarction, P=0.009; microbleeds, P=0.003; periventricular hyperintensity, P=0.601). In contrast, no significant association was found between posturographic parameters and cSVD, whereas these parameters were linearly associated with OLST. Short OLST was also significantly associated with reduced cognitive function independent of covariates, including cSVD (P=0.002). Postural instability was found to be associated with early pathological changes in the brain and functional decline, even in apparently healthy subjects. © 2014 American Heart Association, Inc.

  7. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease.

    PubMed

    Lee, Yi-Chung; Chung, Chih-Ping; Chao, Nai-Chen; Fuh, Jong-Ling; Chang, Feng-Chi; Soong, Bing-Wing; Liao, Yi-Chu

    2018-07-01

    Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene ( HTRA1 ) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1 -related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD. © 2018 American Heart Association, Inc.

  8. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less

  9. UTM TCL 2.0 Software Version Description (SVD) Document

    NASA Technical Reports Server (NTRS)

    Mcguirk, Patrick

    2017-01-01

    This is the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Technical Capability Level(TCL) 2.0 Software Version Description (SVD) document. This UTM TCL 2.0 SVD describes the following four topics: 1. Software Release Contents: A listing of the files comprising this release 2. Installation Instructions: How to install the release and get it running 3. Changes Since Previous Release: General updates since the previous UTM release 4. Known Issues: Known issues and limitations in this release

  10. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  11. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  12. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline

    PubMed Central

    Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W

    2015-01-01

    Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176

  13. A Parallel Algorithm for Contact in a Finite Element Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Timothy G.

    A parallel algorithm is developed for contact/impact of multiple three dimensional bodies undergoing large deformation. As time progresses the relative positions of contact between the multiple bodies changes as collision and sliding occurs. The parallel algorithm is capable of tracking these changes and enforcing an impenetrability constraint and momentum transfer across the surfaces in contact. Portions of the various surfaces of the bodies are assigned to the processors of a distributed-memory parallel machine in an arbitrary fashion, known as the primary decomposition. A secondary, dynamic decomposition is utilized to bring opposing sections of the contacting surfaces together on the samemore » processors, so that opposing forces may be balanced and the resultant deformation of the bodies calculated. The secondary decomposition is accomplished and updated using only local communication with a limited subset of neighbor processors. Each processor represents both a domain of the primary decomposition and a domain of the secondary, or contact, decomposition. Thus each processor has four sets of neighbor processors: (a) those processors which represent regions adjacent to it in the primary decomposition, (b) those processors which represent regions adjacent to it in the contact decomposition, (c) those processors which send it the data from which it constructs its contact domain, and (d) those processors to which it sends its primary domain data, from which they construct their contact domains. The latter three of these neighbor sets change dynamically as the simulation progresses. By constraining all communication to these sets of neighbors, all global communication, with its attendant nonscalable performance, is avoided. A set of tests are provided to measure the degree of scalability achieved by this algorithm on up to 1024 processors. Issues related to the operating system of the test platform which lead to some degradation of the results are analyzed. This algorithm has been implemented as the contact capability of the ALE3D multiphysics code, and is currently in production use.« less

  14. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the standard algorithm. When the utmost accuracy must be achieved, the modified algorithm extracts atoms more conservatively but still exhibits computational gains over classical MPD. The MPD++ algorithm was demonstrated using an over-complete dictionary on real life data. Computational times were reduced by factors of 1.9 and 44 for the emphases of accuracy and performance, respectively. The modified algorithm extracted similar amounts of energy compared to classical MPD. The degree of the improvement in computational time depends on the complexity of the data, the initialization parameters, and the breadth of the dictionary. The results of the research confirm that the three modifications successfully improved the scalability and computational efficiency of the MPD algorithm. Correlation Thresholding decreased the time complexity by reducing the dictionary size. Multiple Atom Extraction also reduced the time complexity by decreasing the number of iterations required for a stopping criterion to be reached. The Course-Fine Grids technique enabled complicated atoms with numerous variable parameters to be effectively represented in the dictionary. Due to the nature of the three proposed modifications, they are capable of being stacked and have cumulative effects on the reduction of the time complexity.

  15. Solar variability datalogger

    DOE PAGES

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understandingmore » of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.« less

  16. Mnemonic function in small vessel disease and associations with white matter tract microstructure.

    PubMed

    Metoki, Athanasia; Brookes, Rebecca L; Zeestraten, Eva; Lawrence, Andrew J; Morris, Robin G; Barrick, Thomas R; Markus, Hugh S; Charlton, Rebecca A

    2017-09-01

    Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. CP decomposition approach to blind separation for DS-CDMA system using a new performance index

    NASA Astrophysics Data System (ADS)

    Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss

    2014-12-01

    In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.

  18. Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers.

    PubMed

    Boulouis, Gregoire; Charidimou, Andreas; Pasi, Marco; Roongpiboonsopit, Duangnapa; Xiong, Li; Auriel, Eitan; van Etten, Ellis S; Martinez-Ramirez, Sergi; Ayres, Alison; Vashkevich, Anastasia; Schwab, Kristin M; Rosand, Jonathan; Goldstein, Joshua N; Gurol, M Edip; Greenberg, Steven M; Viswanathan, Anand

    2017-09-15

    An MRI-based score of total small vessel disease burden (CAA-SVD-Score) in cerebral amyloid angiopathy (CAA) has been demonstrated to correlate with severity of pathologic changes. Evidence suggests that CAA-related intracerebral hemorrhage (ICH) recurrence risk is associated with specific disease imaging manifestations rather than overall severity. We compared the correlation between the CAA-SVD-Score with the risk of recurrent CAA-related lobar ICH versus the predictive role of each of its components. Consecutive patients with CAA-related ICH from a single-center prospective cohort were analyzed. Radiological markers of CAA related SVD damage were quantified and categorized according to the CAA-SVD-Score (0-6 points). Subjects were followed prospectively for recurrent symptomatic ICH. Adjusted Cox proportional hazards models were used to investigate associations between the CAA-SVD-Score as well as each of the individual MRI signatures of CAA and the risk of recurrent ICH. In 229 CAA patients with ICH, a total of 56 recurrent ICH events occurred during a median follow-up of 2.8years [IQR 0.9-5.4years, 781 person-years). Higher CAA-SVD-Score (HR=1.26 per additional point, 95%CI [1.04-1.52], p=0.015) and older age were independently associated with higher ICH recurrence risk. Analysis of individual markers of CAA showed that CAA-SVD-Score findings were due to the independent effect of disseminated superficial siderosis (HR for disseminated cSS vs none: 2.89, 95%CI [1.47-5.5], p=0.002) and high degree of perivascular spaces enlargement (RR=3.50-95%CI [1.04-21], p=0.042). In lobar CAA-ICH patients, higher CAA-SVD-Score does predict recurrent ICH. Amongst individual elements of the score, superficial siderosis and dilated perivascular spaces are the only markers independently associated with ICH recurrence, contributing to the evidence for distinct CAA phenotypes singled out by neuro-imaging manifestations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Attenuation of Lg waves in the New Madrid seismic zone of the central United States using the coda normalization method

    NASA Astrophysics Data System (ADS)

    Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad

    2017-08-01

    Unique properties of coda waves are employed to evaluate the frequency dependent quality factor of Lg waves using the coda normalization method in the New Madrid seismic zone of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface wave contamination, site effects, or even a change in coda wave scattering regime which can exacerbate the scatter of the data.

  20. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  1. Polar decomposition for attitude determination from vector observations

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1993-01-01

    This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.

  2. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  3. A novel iterative scheme and its application to differential equations.

    PubMed

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.

  4. Dual energy computed tomography for the head.

    PubMed

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  5. Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques.

    PubMed

    van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin

    2009-09-21

    Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.

  6. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    PubMed Central

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  7. Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data

    NASA Technical Reports Server (NTRS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; hide

    2016-01-01

    We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.

  8. A Graph Based Backtracking Algorithm for Solving General CSPs

    NASA Technical Reports Server (NTRS)

    Pang, Wanlin; Goodwin, Scott D.

    2003-01-01

    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.

  9. Linear optics measurements and corrections using an AC dipole in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.; Bai, M.; Yang, L.

    2010-05-23

    We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.

  10. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  11. Bioprosthetic Aortic Valve Durability: A Meta-Regression of Published Studies.

    PubMed

    Wang, Mansen; Furnary, Anthony P; Li, Hsin-Fang; Grunkemeier, Gary L

    2017-09-01

    To compare structural valve deterioration (SVD) among bioprosthetic aortic valve types, a PubMed search found 54 papers containing SVD-free curves extending to at least 10 years. The curves were digitized and fit to Weibull distributions, and the mean times to valve failure (MTTF) were calculated. Twelve valve models were collapsed into four valve types: Medtronic (Medtronic, Minneapolis, MN) and Edwards (Edwards Lifesciences, Irvine, CA) porcine; and Sorin (Sorin Group [now LivaNova], London, United Kingdom) and Edwards pericardial. Meta-regression found MTTF was associated with the patient's age, publication year, SVD definition, and valve type. Sorin pericardial valves had significantly lower risk-adjusted MTTF (higher SVD risk), and there were no significant differences in MTTF among the other three valve types. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    PubMed

    Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R

    2014-07-22

    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.

  13. Structural network efficiency is associated with cognitive impairment in small-vessel disease

    PubMed Central

    Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.

    2014-01-01

    Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, T; Dong, X; Petrongolo, M

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less

  15. SOI layout decomposition for double patterning lithography on high-performance computer platforms

    NASA Astrophysics Data System (ADS)

    Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir

    2014-12-01

    In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.

  16. Implementing dense linear algebra algorithms using multitasking on the CRAY X-MP-4 (or approaching the gigaflop)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Hewitt, T.

    1985-08-01

    This note describes some experiments on simple, dense linear algebra algorithms. These experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard implementations of LU and Cholesky decomposition. The implementation described here provides the ''fastest'' execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.

  17. Eigenspace-based fuzzy c-means for sensing trending topics in Twitter

    NASA Astrophysics Data System (ADS)

    Muliawati, T.; Murfi, H.

    2017-07-01

    As the information and communication technology are developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggered fast and large data flow, thus making the manual analysis is difficult or even impossible. An automated methods for data analysis is needed, one of which is the topic detection and tracking. An alternative method other than latent Dirichlet allocation (LDA) is a soft clustering approach using Fuzzy C-Means (FCM). FCM meets the assumption that a document may consist of several topics. However, FCM works well in low-dimensional data but fails in high-dimensional data. Therefore, we propose an approach where FCM works on low-dimensional data by reducing the data using singular value decomposition (SVD). Our simulations show that this approach gives better accuracies in term of topic recall than LDA for sensing trending topic in Twitter about an event.

  18. Validation of PEP-II Resonantly Excited Turn-by-Turn BPM Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yiton T.; Cai, Yunhai; Colocho, William.

    2007-06-28

    For optics measurement and modeling of the PEP-II electron (HER) and position (LER) storage rings, we have been doing well with MIA [1] which requires analyzing turn-by-turn Beam Position Monitor (BPM) data that are resonantly excited at the horizontal, vertical, and longitudinal tunes. However, in anticipation that certain BPM buttons and even pins in the PEP-II IR region would be missing for the run starting in January 2007, we had been developing a data validation process to reduce the effect due to the reduced BPM data accuracy on PEP-II optics measurement and modeling. Besides the routine process for ranking BPMmore » noise level through data correlation among BPMs with a singular-value decomposition (SVD), we could also check BPM data symplecticity by comparing the invariant ratios. Results from PEP-II measurement will be presented.« less

  19. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  20. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan

    Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less

  1. The stratospheric QBO signal in the NCEP reanalysis, 1958-2001

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Gallego, David; Peña-Ortiz, Cristina; Gimeno, Luis; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Calvo, Natalia

    2003-07-01

    The spatiotemporal evolution of the zonal wind in the stratosphere is analyzed based on the use of the NCEP reanalysis (1958-2001). MultiTaper Method-Singular Value Decomposition (MTM-SVD), a frequency-domain analysis method, is applied to isolate significant spatially-coherent variability with narrowband oscillatory character. A quasibiennial oscillation is detected as the most intense coherent signal in the stratosphere, the signal being less intense in the lower levels. There is a clear downward propagation of the signal with time at low latitudes, not evident at mid and high latitudes. There are differences in the behavior of the signal over both hemispheres, being much weaker over the SH. In the NH an anomaly in the zonal wind field, in phase with the equatorial signal, is detected at approximately 60°N. Two different areas at subtropical latitudes are detected to be characterized by wind anomalies opposed to that of the equator.

  2. A nonlinear quality-related fault detection approach based on modified kernel partial least squares.

    PubMed

    Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen

    2017-01-01

    In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol.

    PubMed

    van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik

    2011-02-28

    Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism.

  4. Texture Analysis of T1-Weighted and Fluid-Attenuated Inversion Recovery Images Detects Abnormalities That Correlate With Cognitive Decline in Small Vessel Disease.

    PubMed

    Tozer, Daniel J; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S

    2018-06-04

    Magnetic resonance imaging may be useful to assess disease severity in cerebral small vessel disease (SVD), identify those individuals who are most likely to progress to dementia, monitor disease progression, and act as surrogate markers to test new therapies. Texture analysis extracts information on the relationship between signal intensities of neighboring voxels. A potential advantage over techniques, such as diffusion tensor imaging, is that it can be used on clinically obtained magnetic resonance sequences. We determined whether texture parameters (TP) were abnormal in SVD, correlated with cognitive impairment, predicted cognitive decline, or conversion to dementia. In the prospective SCANS study (St George's Cognition and Neuroimaging in Stroke), we assessed TP in 121 individuals with symptomatic SVD at baseline, 99 of whom attended annual cognitive testing for 5 years. Conversion to dementia was recorded for all subjects during the 5-year period. Texture analysis was performed on fluid-attenuated inversion recovery and T1-weighted images. The TP obtained from the SVD cohort were cross-sectionally compared with 54 age-matched controls scanned on the same magnetic resonance imaging system. There were highly significant differences in several TP between SVD cases and controls. Within the SVD population, TP were highly correlated to other magnetic resonance imaging parameters (brain volume, white matter lesion volume, lacune count). TP correlated with executive function and global function at baseline and predicted conversion to dementia, after controlling for age, sex, premorbid intelligence quotient, and magnetic resonance parameters. TP, which can be obtained from routine clinical images, are abnormal in SVD, and the degree of abnormality correlates with executive dysfunction and global cognition at baseline and decline during 5 years. TP may be useful to assess disease severity in clinically collected data. This needs testing in data clinically acquired across multiple sites. © 2018 The Authors.

  5. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms wemore » have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.« less

  6. xEMD procedures as a data - Assisted filtering method

    NASA Astrophysics Data System (ADS)

    Machrowska, Anna; Jonak, Józef

    2018-01-01

    The article presents the possibility of using Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Improved Complete Ensemble Empirical Mode Decomposition (ICEEMD) algorithms for mechanical system condition monitoring applications. There were presented the results of the xEMD procedures used for vibration signals of system in different states of wear.

  7. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  8. Hyperhomocysteinemia Associates with Small Vessel Disease More Closely Than Large Vessel Disease

    PubMed Central

    Feng, Chao; Bai, Xue; Xu, Yu; Hua, Ting; Huang, Jing; Liu, Xue-Yuan

    2013-01-01

    Background: Hyperhomocysteinemia was believed to be an independent risk factor for stroke and associate with small vessel disease (SVD) related stroke and large vessel disease (LVD) related stroke differently. However it's still unclear which type of stroke associated with homocysteine (HCY) more strongly because the conclusions of previous studies were contradictory. In this study we focused on the subclinical angiopathies of stroke, i.e., SVD and LVD instead of stroke subtypes and sought to compare the associations between HCY level and different angiopathies. Methods: 324 non-stroke patients were enrolled. Sex, age, HCY level and other vascular risk factors were collected. MRI and angiographies were used to determine the type of angiopathies and their severity, i.e., the scores of leukoaraiosis (LA), plaques and numbers of silent brain infarctions (SBI). LVD was defined as the presence of atherosclerotic plaques of cerebral arteries. SVD was defined as the presence of either LA or SBI. 230 patients were deemed to have LVD; 180 patients were deemed to have SVD. Spearman's correlation test and logistic regression were used to analyze the association between HCY level and different angiopathies. Results: The correlation between HCY level and scores of plaques was weaker than that of the scores of LA and numbers of SBI. Hyperhomocysteinemia was an independent risk factor for SVD (OR = 1.315, P <0.001), whereas the association between HCY level and LVD was not that significant (OR = 1.058, P = 0.075). Conclusion: HCY level associated with SVD more strongly than LVD. PMID:23471237

  9. Application of Texture Analysis to Study Small Vessel Disease and Blood-Brain Barrier Integrity.

    PubMed

    Valdés Hernández, Maria Del C; González-Castro, Victor; Chappell, Francesca M; Sakka, Eleni; Makin, Stephen; Armitage, Paul A; Nailon, William H; Wardlaw, Joanna M

    2017-01-01

    We evaluate the alternative use of texture analysis for evaluating the role of blood-brain barrier (BBB) in small vessel disease (SVD). We used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH) and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal-Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with Fazekas scores. Textural "homogeneity" increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural "homogeneity" increased with age, basal ganglia perivascular spaces scores ( p  < 0.01) and SVD scores ( p  < 0.05) and was significantly higher in hypertensive patients ( p  < 0.002) and lacunar stroke ( p  = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean = 65.6 years, SD = 11.3) predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast. A consistent general pattern of increasing textural "homogeneity" with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.

  10. A Benders based rolling horizon algorithm for a dynamic facility location problem

    DOE PAGES

    Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.

    2016-06-28

    This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less

  11. Rank-based decompositions of morphological templates.

    PubMed

    Sussner, P; Ritter, G X

    2000-01-01

    Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.

  12. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  13. Adaptive truncation of matrix decompositions and efficient estimation of NMR relaxation distributions

    NASA Astrophysics Data System (ADS)

    Teal, Paul D.; Eccles, Craig

    2015-04-01

    The two most successful methods of estimating the distribution of nuclear magnetic resonance relaxation times from two dimensional data are data compression followed by application of the Butler-Reeds-Dawson algorithm, and a primal-dual interior point method using preconditioned conjugate gradient. Both of these methods have previously been presented using a truncated singular value decomposition of matrices representing the exponential kernel. In this paper it is shown that other matrix factorizations are applicable to each of these algorithms, and that these illustrate the different fundamental principles behind the operation of the algorithms. These are the rank-revealing QR (RRQR) factorization and the LDL factorization with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorization. It is shown that both algorithms can be improved by adaptation of the truncation as the optimization process progresses, improving the accuracy as the optimal value is approached. A variation on the interior method viz, the use of barrier function instead of the primal-dual approach, is found to offer considerable improvement in terms of speed and reliability. A third type of algorithm, related to the algorithm known as Fast iterative shrinkage-thresholding algorithm, is applied to the problem. This method can be efficiently formulated without the use of a matrix decomposition.

  14. Dictionary-Based Tensor Canonical Polyadic Decomposition

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  15. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Lau, K.-M.

    2004-01-01

    Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend of springtime precipitation over southeastern China and downward trend of summertime precipitation over northern China are attributable to the warming trend of the ENSO-like mode. The recent frequent summertime floods over central eastern China are linked to the warming trend of SSTs over the warm pool and Indian Ocean.

  16. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    NASA Astrophysics Data System (ADS)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of these two sets of states. Mapping genome-scale protein binding data using pseudoinverse projection onto patterns of RNA expression data that had been extracted by SVD and GSVD, a novel correlation between DNA replication initiation and RNA transcription during the cell cycle in yeast, that might be due to a previously unknown mechanism of regulation, is predicted. (1) Alter & Golub, Proc. Natl. Acad. Sci. USA 101, 16577 (2004). (2) Alter, Golub, Brown & Botstein, Miami Nat. Biotechnol. Winter Symp. 2004 (www.med.miami.edu/mnbws/alter-.pdf)

  17. Spatial-frequency variability of the eddy kinetic energy in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cecilio, C. M.; Gherardi, D. F.; Souza, R.; Correa-Ramirez, M.

    2013-05-01

    In the South Atlantic Ocean (SAO) part of the inter-oceanic flow is accomplished through the issuance of anticyclonic eddies by the Agulhas Retroflection. This region, known as Agulhas Leakage (AL), is responsible by the intermittent shedding of eddies in the SAO. The propagation of these eddies into the SAO induces wave processes that allows the interaction between modes of variability of different basins, ranging from high to low frequency. Modelling studies suggests that the Indian-Atlantic inter-ocean exchange is strongly related to the structure of the wind field, in particular with the position of the maximum Southern Hemisphere westerly winds. This study aims to investigate the variations of the large-scale and regional mesoscale eddy field over the SAO using a frequency domain technique, Multiple Taper Method with Singular Value Decomposition (MTM-SVD). The MTM-SVD approach is applied to examine the individual and joint spatiotemporal variability modes of eddy kinetic energy (EKE) and winds stress. The EKE is estimated from geostrophic velocity anomalies data distributed by Aviso and winds stress from winds dataset of Cross-Calibrated Multi-Platform (CCMP) project from PO.DAAC. The impact of the AL in the SAO, was assessed first for the entire region and subsequently applied in the regions of higher mesoscale activity, which are the Brazil-Malvinas Confluence (BMC), the AL, and the Brazilian Current (BC) region. The results of local fractional variance (LFV) of EKE obtained by the MTM-SVD method show a strong significant annual variability in SAO and BC region while in BMC and in AL this frequency is weaker. In the most energetic mesoscale activity regions (BMC and AL) the pattern of variability is distinct. In the BMC region the interannual variability is dominated while in the AL region the most part of variability is associated by high frequency. The joint LFV spectrum of wind and EKE show an out-of-phase relationship between the AL region and BMC region in the interannual frequencies (3 to 5 years). The dominant frequencies can be seen in 1,5 to 3 years period band and in the intrasazonal frequencies, 0,3 to 0,5 years. The results suggests that the EKE variability patterns are different in the SAO wich might be related to the influence of eddies from AL.

  18. Decomposition of timed automata for solving scheduling problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Wakatake, Masato

    2014-03-01

    A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.

  19. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical propertiesmore » of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.« less

  20. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    PubMed Central

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-01-01

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870

  1. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    PubMed

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.

  2. Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.

    PubMed

    Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews

    2015-03-01

    This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.

  3. Understanding the role of the perivascular space in cerebral small vessel disease.

    PubMed

    Brown, Rosalind; Benveniste, Helene; Black, Sandra E; Charpak, Serge; Dichgans, Martin; Joutel, Anne; Nedergaard, Maiken; Smith, Kenneth J; Zlokovic, Berislav V; Wardlaw, Joanna M

    2018-05-02

    Small vessel diseases are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood.Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS, and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier (BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.

  4. Increased Burden of Cerebral Small Vessel Disease in Patients With Type 2 Diabetes and Retinopathy.

    PubMed

    Sanahuja, Jordi; Alonso, Núria; Diez, Javier; Ortega, Emilio; Rubinat, Esther; Traveset, Alícia; Alcubierre, Núria; Betriu, Àngels; Castelblanco, Esmeralda; Hernández, Marta; Purroy, Francisco; Arcidiacono, Maria Vittoria; Jurjo, Carmen; Fernández, Elvira; Puig-Domingo, Manuel; Groop, Per-Henrik; Mauricio, Dídac

    2016-09-01

    We sought to examine the presence and severity of brain small vessel disease (SVD) in patients with type 2 diabetes and diabetic retinopathy (DR) compared with those without DR. We evaluated 312 patients with type 2 diabetes without previous cardiovascular disease (men 51%; mean age 57 years; age range 40-75 years); 153 patients (49%) had DR. MRI was performed to evaluate the presence and severity (age-related white matter changes scale) of white matter lesions (WMLs) and lacunes, and transcranial Doppler ultrasound was used to measure the Gosling pulsatility index (PI) of the middle cerebral artery (MCA). The prevalence of lesions of cerebral SVD (WML and/or lacunes) was higher in patients with DR (40.2% vs. 30.1% without DR, P = 0.04). Age (P < 0.01) and systolic blood pressure (P = 0.02) were associated with the presence of SVD. The severity of SVD was associated with age and the presence of DR (P < 0.01 and P = 0.01, respectively). Patients with DR showed a higher MCA PI compared with those without DR (P < 0.01). Age, systolic and diastolic blood pressure, and retinopathy and its severity were associated with an increased MCA PI (P < 0.01 for all variables). A positive correlation was found between MCA PI values and the presence and severity of SVD (P < 0.01 for both variables). Patients with type 2 diabetes who have DR have an increased burden of cerebral SVD compared with those without DR. Our findings suggest that the brain is a target organ for microangiopathy, similar to other classic target organs, like the retina. © 2016 by the American Diabetes Association.

  5. Distinctive Resting State Network Disruptions Among Alzheimer's Disease, Subcortical Vascular Dementia, and Mixed Dementia Patients.

    PubMed

    Kim, Hee Jin; Cha, Jungho; Lee, Jong-Min; Shin, Ji Soo; Jung, Na-Yeon; Kim, Yeo Jin; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won

    2016-01-01

    Recent advances in resting-state functional MRI have revealed altered functional networks in Alzheimer's disease (AD), especially those of the default mode network (DMN) and central executive network (CEN). However, few studies have evaluated whether small vessel disease (SVD) or combined amyloid and SVD burdens affect the DMN or CEN. The aim of this study was to evaluate whether SVD or combined amyloid and SVD burdens affect the DMN or CEN. In this cross-sectional study, we investigated the resting-state functional connectivity within DMN and CEN in 37 Pittsburgh compound-B (PiB)(+) AD, 37 PiB(-) subcortical vascular dementia (SVaD), 13 mixed dementia patients, and 65 normal controls. When the resting-state DMN of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(+) AD patients displayed lower functional connectivity in the inferior parietal lobule while the PiB(-) SVaD patients displayed lower functional connectivity in the medial frontal and superior frontal gyri. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the DMN in the posterior cingulate gyrus. When the resting-state CEN connectivity of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(-) SVaD patients displayed lower functional connectivity in the anterior insular region. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the CEN in the inferior frontal gyrus. Our findings suggest that in PiB(+) AD and PiB(-) SVaD, there is divergent disruptions in resting-state DMN and CEN. Furthermore, patients with combined amyloid and SVD burdens exhibited more disrupted resting-state DMN and CEN than patients with only amyloid or SVD burden.

  6. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities.

    PubMed

    Umemura, Toshitaka; Kawamura, Takahiko; Hotta, Nigishi

    2017-03-01

    Diabetes patients have more than double the risk of ischemic stroke compared with non-diabetic individuals, and its neuroimaging characteristics have important clinical implications. To understand the pathophysiology of ischemic stroke in diabetes, it is important to focus not only on the stroke subtype, but also on the size and location of the occlusive vessels. Specifically, ischemic stroke in diabetes patients might be attributed to both large and small vessels, and intracranial internal carotid artery disease and small infarcts of the posterior circulation often occur. An additional feature is that asymptomatic lacunar infarctions are often seen in the basal ganglia and brain stem on brain magnetic resonance imaging. In particular, cerebral small vessel disease (SVD), including lacunar infarctions, white matter lesions and cerebral microbleeds, has been shown to be associated not only with stroke incidence, but also with the development and progression of dementia and diabetic microangiopathy. However, the pathogenesis of cerebral SVD is not fully understood. In addition, data on the association between neuroimaging findings of the cerebral SVD and diabetes are limited. Recently, the clinical importance of the link between cerebral SVD and retinal microvascular abnormalities has been a topic of considerable interest. Several clinical studies have shown that retinal microvascular abnormalities are closely related to cerebral SVD, suggesting that retinal microvascular abnormalities might be pathophysiologically linked to ischemic cerebral SVD. We review the literature relating to the pathophysiology and neuroimaging of cerebrovascular disease in diabetes, and discuss the problems based on the concept of cerebral large and small vessel disease. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  7. Is Dynamic Cerebral Autoregulation Bilaterally Impaired after Unilateral Acute Ischemic Stroke?

    PubMed

    Xiong, Li; Tian, Ge; Lin, Wenhua; Wang, Wei; Wang, Lijuan; Leung, Thomas; Mok, Vincent; Liu, Jia; Chen, Xiangyan; Wong, Ka Sing

    2017-05-01

    Whether dynamic cerebral autoregulation (dCA) is impaired focally in the affected hemisphere or bilaterally in both the affected and nonaffected hemispheres after ischemic stroke remains controversial. We therefore investigated the pattern of dCA in acute ischemic stroke patients with different subtypes. Sixty acute ischemic stroke patients with unilateral anterior circulation infarct [30 with large artery atherosclerosis (LAA), 13 with small vessel disease (SVD), and 17 with coexisting LAA and SVD] and 16 healthy controls were enrolled. Spontaneous arterial blood pressure and cerebral blood flow velocity fluctuations in both bilateral middle cerebral arteries using transcranial Doppler were recorded over 10 minutes. Transfer function analysis was applied to obtain autoregulatory parameters, autoregulation index (ARI), phase difference (PD), and gain. PD was significantly lower on both the ipsilateral and contralateral sides in the LAA group (ipsilateral, 30.74 degrees; contralateral, 29.17 degrees) and the coexisting LAA and SVD group (20.23 degrees; 13.10 degrees) than that in healthy controls (left side, 51.66 degrees; right side, 58.48 degrees) (all P < .05), but there were no significant differences between the 2 sides when compared with each other in all groups. However, in the coexisting LAA and SVD group, phase on both sides was significantly lower when compared with that in the LAA and SVD groups, respectively. The results of ARI were consistent with the findings in PD. The results indicate that dCA is bilaterally impaired in acute ischemic patients with LAA, and the coexisting SVD may aggravate the bilateral impairment of dCA. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Generic construction of efficient matrix product operators

    NASA Astrophysics Data System (ADS)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  9. Phase unwrapping with graph cuts optimization and dual decomposition acceleration for 3D high-resolution MRI data.

    PubMed

    Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi

    2017-03-01

    Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Investigating the Differences in the Total and Active Microbial Community of Mid-Atlantic Ridge Sediments

    NASA Astrophysics Data System (ADS)

    Sobol, M. S.; Zinke, L. A.; Orcutt, B.; Mills, H. J.; Edwards, K. J.; Girguis, P. R.; Reese, B. K.

    2016-02-01

    Microbes in the marine deep subsurface are key mediators of many geochemical cycles. It is important to understand how microbial communities and the diversity of those communities impacts geochemical cycling. Sediment cores were collected from IODP (Integrated Ocean Drilling Program) Expedition 336 to the western flank of the mid-Atlantic ridge also referred to as North Pond. The dissolved oxygen concentration decreased with depth for 60-70 mbsf, followed by a sharp increase in oxygen until it terminated at the basement. The 16S rRNA genes (DNA) and transcripts (RNA) were extracted simultaneously using a method designed by Reese et al. (2013) to differentiate between the total and active microbial community structures, respectively, as well as correlate the putative metabolism with the geochemistry. We observed many differences between the active and total communities. Sequences most closely related to Cyanobacteria were found to dominate the total community at both sites, but were found in small numbers in the active community. The most abundant phyla in the active community were Alphaproteobacteria, which suggests that they may have high activity even though the abundance was not as great in the total community. This suggests that, even in small numbers, bacteria are capable of contributing greatly to their environment. Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) showed that iron-reducing bacteria in the active (RNA) community correlated strongly with solid phase iron oxides. SVD also showed that the putative nitrate reducers in the active community were found in greater abundance where porewater NO3- and NO2- total concentrations were elevated. Overall, the active (RNA) community correlated significantly with the geochemistry whereas the total (DNA) community did not. Therefore, RNA analysis yields a more accurate representation of how microbial communities impact geochemical cycling.

  11. Assessment of the Performance of a Scanning Wind Doppler Lidar at an Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, S. W.

    2017-12-01

    Winds in the planetary boundary layer (PBL) are important factors for accurate modelling of air quality, numerical weather prediction and conversion of satellite measurements to near-surface air quality information (Seibert et al., AE, 2000; Emeis et al., Meteorol. Z., 2008). In this study, we (1) evaluate wind speed (WS) and direction (WD) retrieved from Wind Doppler Lidar (WDL) measurements by two methods [so called, `sine-fitting (SF) method' and `singular value decomposition (SVD) method'] and (2) analyze the WDL data at Seoul National University (SNU), Seoul, to investigate the diurnal evolution of winds and aerosol characteristics in PBL. Evaluation of the two methods used in retrieving wind from radial velocity was done through comparison with radiosonde soundings from the same site. Winds retrieved using the SVD method from mean radial velocity of 15 minutes showed good agreement with radiosonde profiles (i.e., bias of 0.03 m s-1 and root mean square of 1.70 m s-1 in WS). However, the WDL was found to have difficulty retrieving signals under clean conditions (i.e., too small signal to noise ratio) or under the presence of near-surface optically-thick aerosol/cloud layer (i.e., strong signal attenuation). Despite this shortcoming, the WDL was able to successfully capture the diurnal variation of PBL wind. Two major wind patterns were observed at SNU; first of all, when convective boundary layer was strongly developed, thermally induced winds with large variation of vertical WS in the afternoon and a diurnal variation in WD showing characteristics of mountain and valley winds were observed. Secondly, small variation in WS and WD throughout the day was a major characteristic of cases when wind was largely influenced by the synoptic weather pattern.

  12. Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo; Rivadossi, Luca; Janbozorgi, Mohammad

    2018-04-01

    Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides acceptable accuracies with much fewer differential equations than for the fully Detailed Kinetic Model (DKM). Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automatable, systematic procedure to identify the constraints that most effectively warrant a desired level of approximation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identification has been recently proposed. Given a DKM with S species, E elements, and R reactions, the procedure starts by running a probe DKM simulation to compute an S-vector that we call overall degree of disequilibrium (ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichiometric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD traces obtained from the probe DKM numerical simulation and compute its singular value decomposition (SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we obtain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE approximate model reduces the number of independent differential equations related to species, mass, and energy balances from S+2 to C+E+2, with substantial computational savings when C ≪ S-E.

  13. Objective Assessment and Design Improvement of a Staring, Sparse Transducer Array by the Spatial Crosstalk Matrix for 3D Photoacoustic Tomography

    PubMed Central

    Kosik, Ivan; Raess, Avery

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177

  14. Forcing mechanism of the seasonally asymmetric quasi-biennial oscillation secondary circulation in ERA-40 and MAECHAM5

    NASA Astrophysics Data System (ADS)

    Peña-Ortiz, C.; Ribera, P.; García-Herrera, R.; Giorgetta, M. A.; García, R. R.

    2008-08-01

    The seasonality of the quasi-biennial oscillation (QBO) and its secondary circulation is analyzed in the European Reanalysis (ERA-40) and Middle Atmosphere European Centre Hamburg Model (MAECHAM5) general circulation model data sets through the multitaper method-singular value decomposition (MTM-SVD). In agreement with previous studies, the results reveal a strong seasonal dependence of the QBO secondary circulation. This is characterized by a two-cell structure symmetric about the equator during autumn and spring. However, anomalies strongly weaken in the summer hemisphere and strengthen in the winter hemisphere, leading to an asymmetric QBO secondary circulation characterized by a single-cell structure displaced into the winter hemisphere during the solstices. In ERA-40, this asymmetry is more pronounced during the northern than during the southern winter. These results provide the first observation of the QBO secondary circulation asymmetries in the ERA-40 reanalysis data set across the full stratosphere and the lower mesosphere, up to 0.1 hPa. The MTM-SVD reconstruction of the seasonal QBO signals in the residual circulation and the QBO signals in Eliassen Palm (EP) flux divergences suggest a particular mechanism for the seasonal asymmetries of the QBO secondary circulation and its extension across the midlatitudes. The analysis shows that the QBO modulates the EP flux in the winter hemispheric surf zone poleward of the QBO jets. The zonal wind forcing by EP flux divergence is transformed by the Coriolis effect into a meridional wind signal. The seasonality in the stratospheric EP flux and the hemispheric differences in planetary wave forcing cause the observed seasonality in the QBO secondary circulation and its hemispheric differences.

  15. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  16. Combinatorial algorithms for design of DNA arrays.

    PubMed

    Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A

    2002-01-01

    Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.

  17. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.

  18. Regularization of nonlinear decomposition of spectral x-ray projection images.

    PubMed

    Ducros, Nicolas; Abascal, Juan Felipe Perez-Juste; Sixou, Bruno; Rit, Simon; Peyrin, Françoise

    2017-09-01

    Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem. Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied. We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 10 5 and when the marker concentration was equal or larger than 0.03 g·cm -3 . The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel. © 2017 American Association of Physicists in Medicine.

  19. a Novel Two-Component Decomposition for Co-Polar Channels of GF-3 Quad-Pol Data

    NASA Astrophysics Data System (ADS)

    Kwok, E.; Li, C. H.; Zhao, Q. H.; Li, Y.

    2018-04-01

    Polarimetric target decomposition theory is the most dynamic and exploratory research area in the field of PolSAR. But most methods of target decomposition are based on fully polarized data (quad pol) and seldom utilize dual-polar data for target decomposition. Given this, we proposed a novel two-component decomposition method for co-polar channels of GF-3 quad-pol data. This method decomposes the data into two scattering contributions: surface, double bounce in dual co-polar channels. To save this underdetermined problem, a criterion for determining the model is proposed. The criterion can be named as second-order averaged scattering angle, which originates from the H/α decomposition. and we also put forward an alternative parameter of it. To validate the effectiveness of proposed decomposition, Liaodong Bay is selected as research area. The area is located in northeastern China, where it grows various wetland resources and appears sea ice phenomenon in winter. and we use the GF-3 quad-pol data as study data, which which is China's first C-band polarimetric synthetic aperture radar (PolSAR) satellite. The dependencies between the features of proposed algorithm and comparison decompositions (Pauli decomposition, An&Yang decomposition, Yamaguchi S4R decomposition) were investigated in the study. Though several aspects of the experimental discussion, we can draw the conclusion: the proposed algorithm may be suitable for special scenes with low vegetation coverage or low vegetation in the non-growing season; proposed decomposition features only using co-polar data are highly correlated with the corresponding comparison decomposition features under quad-polarization data. Moreover, it would be become input of the subsequent classification or parameter inversion.

  20. A fast new algorithm for a robot neurocontroller using inverse QR decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A.S.; Khemaissia, S.

    2000-01-01

    A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less

  1. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  2. Using a high-dimensional graph of semantic space to model relationships among words

    PubMed Central

    Jackson, Alice F.; Bolger, Donald J.

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525

  3. Using a high-dimensional graph of semantic space to model relationships among words.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  4. Point-cloud-to-point-cloud technique on tool calibration for dental implant surgical path tracking

    NASA Astrophysics Data System (ADS)

    Lorsakul, Auranuch; Suthakorn, Jackrit; Sinthanayothin, Chanjira

    2008-03-01

    Dental implant is one of the most popular methods of tooth root replacement used in prosthetic dentistry. Computerize navigation system on a pre-surgical plan is offered to minimize potential risk of damage to critical anatomic structures of patients. Dental tool tip calibrating is basically an important procedure of intraoperative surgery to determine the relation between the hand-piece tool tip and hand-piece's markers. With the transferring coordinates from preoperative CT data to reality, this parameter is a part of components in typical registration problem. It is a part of navigation system which will be developed for further integration. A high accuracy is required, and this relation is arranged by point-cloud-to-point-cloud rigid transformations and singular value decomposition (SVD) for minimizing rigid registration errors. In earlier studies, commercial surgical navigation systems from, such as, BrainLAB and Materialize, have flexibility problem on tool tip calibration. Their systems either require a special tool tip calibration device or are unable to change the different tool. The proposed procedure is to use the pointing device or hand-piece to touch on the pivot and the transformation matrix. This matrix is calculated every time when it moves to the new position while the tool tip stays at the same point. The experiment acquired on the information of tracking device, image acquisition and image processing algorithms. The key success is that point-to-point-cloud requires only 3 post images of tool to be able to converge to the minimum errors 0.77%, and the obtained result is correct in using the tool holder to track the path simulation line displayed in graphic animation.

  5. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    PubMed

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  6. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online

    PubMed Central

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-01-01

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively. PMID:24871988

  7. Sparse representation for infrared Dim target detection via a discriminative over-complete dictionary learned online.

    PubMed

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-05-27

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  8. Distributed-Memory Breadth-First Search on Massive Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluc, Aydin; Beamer, Scott; Madduri, Kamesh

    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.

  9. Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning

    DTIC Science & Technology

    1989-09-01

    Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist

  10. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    PubMed

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.

  11. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  12. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  13. Multilevel decomposition of complete vehicle configuration in a parallel computing environment

    NASA Technical Reports Server (NTRS)

    Bhatt, Vinay; Ragsdell, K. M.

    1989-01-01

    This research summarizes various approaches to multilevel decomposition to solve large structural problems. A linear decomposition scheme based on the Sobieski algorithm is selected as a vehicle for automated synthesis of a complete vehicle configuration in a parallel processing environment. The research is in a developmental state. Preliminary numerical results are presented for several example problems.

  14. Waveform LiDAR processing: comparison of classic approaches and optimized Gold deconvolution to characterize vegetation structure and terrain elevation

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2016-12-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.

  15. Sampling considerations for modal analysis with damping

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Wakin, Michael B.; Gilbert, Anna C.

    2015-03-01

    Structural health monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges) in a cost-effective manner. Wireless sensor networks that sample vibration data over time are particularly appealing for SHM applications due to their flexibility and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount of vibration data these sensors must collect and transmit. In recent work, we have studied the performance of the Singular Value Decomposition (SVD) applied to the collection of data and provided new finite sample analysis characterizing conditions under which this simple technique{also known as the Proper Orthogonal Decomposition (POD){can correctly estimate the mode shapes of the structure. Specifically, we provided theoretical guarantees on the number and duration of samples required in order to estimate a structure's mode shapes to a desired level of accuracy. In that previous work, however, we considered simplified Multiple-Degree-Of-Freedom (MDOF) systems with no damping. In this paper we consider MDOF systems with proportional damping and show that, with sufficiently light damping, the POD can continue to provide accurate estimates of a structure's mode shapes. We support our discussion with new analytical insight and experimental demonstrations. In particular, we study the tradeoffs between the level of damping, the sampling rate and duration, and the accuracy to which the structure's mode shapes can be estimated.

  16. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions.

    PubMed

    Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A

    2018-02-15

    In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.

  17. Randomized interpolative decomposition of separated representations

    NASA Astrophysics Data System (ADS)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  18. The anticipation of death by violence: a psychological profile.

    PubMed

    Mahoney, J; Kyle, D; Katz, G

    1975-01-01

    College students (n = 172) completed Cattell's personality factor questionnaire, Rotter's locus of control scale, Speilberger's trait anxiety measure, and Sabatini and Kastenbaum's self-completed death certificate. Comparison of profiles for subjects anticipating sudden violent death (SVD, n = 59) with those anticipating natural death (ND, n = 113) disclosed that the SVD group was characteristically more anxious and socially isolated. A sex-by-type of death interaction occurred for locus of control, with SVD females being the most external, suggesting that this group was more likely to "give up" in response to stress. The data support Shneidman's concept of subintentioned death in disclosing that several personality factors may be associated with violent death.

  19. Integrand-level reduction of loop amplitudes by computational algebraic geometry methods

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2012-09-01

    We present an algorithm for the integrand-level reduction of multi-loop amplitudes of renormalizable field theories, based on computational algebraic geometry. This algorithm uses (1) the Gröbner basis method to determine the basis for integrand-level reduction, (2) the primary decomposition of an ideal to classify all inequivalent solutions of unitarity cuts. The resulting basis and cut solutions can be used to reconstruct the integrand from unitarity cuts, via polynomial fitting techniques. The basis determination part of the algorithm has been implemented in the Mathematica package, BasisDet. The primary decomposition part can be readily carried out by algebraic geometry softwares, with the output of the package BasisDet. The algorithm works in both D = 4 and D = 4 - 2 ɛ dimensions, and we present some two and three-loop examples of applications of this algorithm.

  20. Data decomposition method for parallel polygon rasterization considering load balancing

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Chen, Zhenjie; Liu, Yongxue; Li, Feixue; Cheng, Liang; Zhu, A.-xing; Li, Manchun

    2015-12-01

    It is essential to adopt parallel computing technology to rapidly rasterize massive polygon data. In parallel rasterization, it is difficult to design an effective data decomposition method. Conventional methods ignore load balancing of polygon complexity in parallel rasterization and thus fail to achieve high parallel efficiency. In this paper, a novel data decomposition method based on polygon complexity (DMPC) is proposed. First, four factors that possibly affect the rasterization efficiency were investigated. Then, a metric represented by the boundary number and raster pixel number in the minimum bounding rectangle was developed to calculate the complexity of each polygon. Using this metric, polygons were rationally allocated according to the polygon complexity, and each process could achieve balanced loads of polygon complexity. To validate the efficiency of DMPC, it was used to parallelize different polygon rasterization algorithms and tested on different datasets. Experimental results showed that DMPC could effectively parallelize polygon rasterization algorithms. Furthermore, the implemented parallel algorithms with DMPC could achieve good speedup ratios of at least 15.69 and generally outperformed conventional decomposition methods in terms of parallel efficiency and load balancing. In addition, the results showed that DMPC exhibited consistently better performance for different spatial distributions of polygons.

  1. Domain Decomposition Algorithms for First-Order System Least Squares Methods

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.

  2. Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Bagherzadeh, Seyed Amin; Asadi, Davood

    2017-05-01

    In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.

  3. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease

    PubMed Central

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982

  4. Longitudinal decline in structural networks predicts dementia in cerebral small vessel disease

    PubMed Central

    Lawrence, Andrew J.; Zeestraten, Eva A.; Benjamin, Philip; Lambert, Christian P.; Morris, Robin G.; Barrick, Thomas R.

    2018-01-01

    Objective To determine whether longitudinal change in white matter structural network integrity predicts dementia and future cognitive decline in cerebral small vessel disease (SVD). To investigate whether network disruption has a causal role in cognitive decline and mediates the association between conventional MRI markers of SVD with both cognitive decline and dementia. Methods In the prospective longitudinal SCANS (St George's Cognition and Neuroimaging in Stroke) Study, 97 dementia-free individuals with symptomatic lacunar stroke were followed with annual MRI for 3 years and annual cognitive assessment for 5 years. Conversion to dementia was recorded. Structural networks were constructed from diffusion tractography using a longitudinal registration pipeline, and network global efficiency was calculated. Linear mixed-effects regression was used to assess change over time. Results Seventeen individuals (17.5%) converted to dementia, and significant decline in global cognition occurred (p = 0.0016). Structural network measures declined over the 3-year MRI follow-up, but the degree of change varied markedly between individuals. The degree of reductions in network global efficiency was associated with conversion to dementia (B = −2.35, odds ratio = 0.095, p = 0.00056). Change in network global efficiency mediated much of the association of conventional MRI markers of SVD with cognitive decline and progression to dementia. Conclusions Network disruption has a central role in the pathogenesis of cognitive decline and dementia in SVD. It may be a useful disease marker to identify that subgroup of patients with SVD who progress to dementia. PMID:29695593

  5. Lesion location and cognitive impact of cerebral small vessel disease.

    PubMed

    Biesbroek, J Matthijs; Weaver, Nick A; Biessels, Geert Jan

    2017-04-25

    Cerebral small vessel disease (SVD) is an important cause of cognitive impairment. Important MRI manifestations of SVD include white matter hyperintensities (WMH) and lacunes. This narrative review addresses the role of anatomical lesion location in the impact of SVD on cognition, integrating findings from early autopsy studies with emerging findings from recent studies with advanced image analysis techniques. Early autopsy and imaging studies of small case series indicate that single lacunar infarcts in, for example the thalamus, caudate nucleus or internal capsule can cause marked cognitive impairment. However, the findings of such case studies may not be generalizable. Emerging location-based image analysis approaches are now being applied to large cohorts. Recent studies show that WMH burden in strategic white matter tracts, such as the forceps minor or anterior thalamic radiation (ATR), is more relevant in explaining variance in cognitive functioning than global WMH volume. These findings suggest that the future diagnostic work-up of memory clinic patients could potentially be improved by shifting from a global assessment of WMH and lacune burden towards a quantitative assessment of lesion volumes within strategic brain regions. In this review, a summary of currently known strategic regions for SVD-related cognitive impairment is provided, highlighting recent technical developments in SVD research. The potential and challenges of location-based approaches for diagnostic purposes in clinical practice are discussed, along with their potential prognostic and therapeutic applications. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Effects of amyloid and small vessel disease on white matter network disruption.

    PubMed

    Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won

    2015-01-01

    There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.

  7. Enhancement of snow cover change detection with sparse representation and dictionary learning

    NASA Astrophysics Data System (ADS)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  8. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer's disease.

    PubMed

    Ortner, Marion; Kurz, Alexander; Alexopoulos, Panagiotis; Auer, Florian; Diehl-Schmid, Janine; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Perneczky, Robert; Sorg, Christian; Yousefi, Behrooz H; Grimmer, Timo

    2015-04-15

    There is controversy concerning whether Alzheimer's disease (AD) with early onset is distinct from AD with late onset with regard to amyloid pathology and neuronal metabolic deficit. We hypothesized that compared with patients with early-onset AD, patients with late-onset AD have more comorbid small vessel disease (SVD) contributing to clinical severity, whereas there are no differences in amyloid pathology and neuronal metabolic deficit. The study included two groups of patients with probable AD dementia with evidence of the AD pathophysiologic process: 24 patients with age at onset <60 years old and 36 patients with age at onset >70 years old. Amyloid deposition was assessed using carbon-11-labeled Pittsburgh compound B positron emission tomography, comorbid SVD was assessed using magnetic resonance imaging, and neuronal metabolic deficit was assessed using fluorodeoxyglucose positron emission tomography. Group differences of global and regional distribution of pathology were explored using region of interest and voxel-based analyses, respectively, carefully controlling for the influence of dementia severity, apolipoprotein E genotype, and in particular SVD. The pattern of cognitive impairment was determined using z scores of the subtests of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery. Patients with late-onset AD showed a significantly greater amount of SVD. No statistically significant differences in global or regional amyloid deposition or neuronal metabolic deficit between the two groups were revealed. However, when not controlling for SVD, subtle differences in fluorodeoxyglucose uptake between early-onset AD and late-onset AD groups were detectable. There were no significant differences regarding cognitive functioning. Age at onset does not influence amyloid deposition or neuronal metabolic deficit in AD. The greater extent of SVD in late-onset AD influences the association between neuronal metabolic deficit and clinical symptoms. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. The Roadmaker's algorithm for the discrete pulse transform.

    PubMed

    Laurie, Dirk P

    2011-02-01

    The discrete pulse transform (DPT) is a decomposition of an observed signal into a sum of pulses, i.e., signals that are constant on a connected set and zero elsewhere. Originally developed for 1-D signal processing, the DPT has recently been generalized to more dimensions. Applications in image processing are currently being investigated. The time required to compute the DPT as originally defined via the successive application of LULU operators (members of a class of minimax filters studied by Rohwer) has been a severe drawback to its applicability. This paper introduces a fast method for obtaining such a decomposition, called the Roadmaker's algorithm because it involves filling pits and razing bumps. It acts selectively only on those features actually present in the signal, flattening them in order of increasing size by subtracing an appropriate positive or negative pulse, which is then appended to the decomposition. The implementation described here covers 1-D signal as well as two and 3-D image processing in a single framework. This is achieved by considering the signal or image as a function defined on a graph, with the geometry specified by the edges of the graph. Whenever a feature is flattened, nodes in the graph are merged, until eventually only one node remains. At that stage, a new set of edges for the same nodes as the graph, forming a tree structure, defines the obtained decomposition. The Roadmaker's algorithm is shown to be equivalent to the DPT in the sense of obtaining the same decomposition. However, its simpler operators are not in general equivalent to the LULU operators in situations where those operators are not applied successively. A by-product of the Roadmaker's algorithm is that it yields a proof of the so-called Highlight Conjecture, stated as an open problem in 2006. We pay particular attention to algorithmic details and complexity, including a demonstration that in the 1-D case, and also in the case of a complete graph, the Roadmaker's algorithm has optimal complexity: it runs in time O(m), where m is the number of arcs in the graph.

  10. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  11. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.

  12. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    PubMed Central

    Jia, Chaolong; Wei, Lili; Wang, Hanning; Yang, Jiulin

    2014-01-01

    Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described. PMID:25435869

  13. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGES

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  14. Gold - A novel deconvolution algorithm with optimization for waveform LiDAR processing

    NASA Astrophysics Data System (ADS)

    Zhou, Tan; Popescu, Sorin C.; Krause, Keith; Sheridan, Ryan D.; Putman, Eric

    2017-07-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from the corresponding reference data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, <0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (<1.01 m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high vegetation. This study provides an alternative and innovative approach for waveform processing that will benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.

  15. Parallelization of PANDA discrete ordinates code using spatial decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.

    2006-07-01

    We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less

  16. Matching pursuit parallel decomposition of seismic data

    NASA Astrophysics Data System (ADS)

    Li, Chuanhui; Zhang, Fanchang

    2017-07-01

    In order to improve the computation speed of matching pursuit decomposition of seismic data, a matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope peaks from the current signal in every iteration according to the number of compute nodes and assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. With the help of parallel computer systems and Message Passing Interface, the parallel algorithm gives full play to the advantages of parallel computing to significantly improve the computation speed of the matching pursuit decomposition and also has good expandability. Besides, searching only one optimal Morlet wavelet by every compute node in every iteration is the most efficient implementation.

  17. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  18. Long-term survey of lion-roar emissions inside the terrestrial magnetosheath obtained from the STAFF-SA measurements onboard the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Krupar, V.; Kruparova, O.; Santolik, O.

    2017-12-01

    Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.

  19. Data analysis of photon beam position at PLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J.; Shin, S., E-mail: tlssh@postech.ac.kr; Huang, Jung-Yun

    In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beammore » position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.« less

  20. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    PubMed

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  1. Prioritization of Disease Susceptibility Genes Using LSM/SVD.

    PubMed

    Gong, Lejun; Yang, Ronggen; Yan, Qin; Sun, Xiao

    2013-12-01

    Understanding the role of genetics in diseases is one of the most important tasks in the postgenome era. It is generally too expensive and time consuming to perform experimental validation for all candidate genes related to disease. Computational methods play important roles for prioritizing these candidates. Herein, we propose an approach to prioritize disease genes using latent semantic mapping based on singular value decomposition. Our hypothesis is that similar functional genes are likely to cause similar diseases. Measuring the functional similarity between known disease susceptibility genes and unknown genes is to predict new disease susceptibility genes. Taking autism as an instance, the analysis results of the top ten genes prioritized demonstrate they might be autism susceptibility genes, which also indicates our approach could discover new disease susceptibility genes. The novel approach of disease gene prioritization could discover new disease susceptibility genes, and latent disease-gene relations. The prioritized results could also support the interpretive diversity and experimental views as computational evidence for disease researchers.

  2. C-2W Magnetic Measurement Suite

    NASA Astrophysics Data System (ADS)

    Roche, T.; Thompson, M. C.; Griswold, M.; Knapp, K.; Koop, B.; Ottaviano, A.; Tobin, M.; TAE, Tri Alpha Energy, Inc. Team

    2017-10-01

    Commissioning and early operations are underway on C-2W, Tri Alpha Energy's new FRC experiment. The increased complexity level of this machine requires an equally enhanced diagnostic capability. A fundamental component of any magnetically confined fusion experiment is a firm understanding of the magnetic field itself. C-2W is outfitted with over 700 magnetic field probes, 550 internal and 150 external. Innovative in-vacuum annular flux loop / B-dot combination probes will provide information about plasma shape, size, pressure, energy, total temperature, and trapped flux when coupled with establish theoretical interpretations. The massive Mirnov array, consisting of eight rings of eight 3D probes, will provide detailed information about plasma motion, stability, and MHD modal content with the aid of singular value decomposition (SVD) analysis. Internal Rogowski probes will detect the presence of axial currents flowing in the plasma jet in multiple axial locations. Initial data from this array of diagnostics will be presented along with some interpretation and discussion of the analysis techniques used.

  3. Reduced order modeling of head related transfer functions for virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley

    2003-04-01

    The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.

  4. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  5. Parallel Reconstruction Using Null Operations (PRUNO)

    PubMed Central

    Zhang, Jian; Liu, Chunlei; Moseley, Michael E.

    2011-01-01

    A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290

  6. Accelerated decomposition techniques for large discounted Markov decision processes

    NASA Astrophysics Data System (ADS)

    Larach, Abdelhadi; Chafik, S.; Daoui, C.

    2017-12-01

    Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.

  7. Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.

    PubMed

    Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai

    2016-03-01

    Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.

  8. Progressive Precision Surface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on anmore » underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.« less

  9. Structural system identification based on variational mode decomposition

    NASA Astrophysics Data System (ADS)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  10. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    PubMed

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  11. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  12. Terascale Optimal PDE Simulations (TOPS) Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Professor Olof B. Widlund

    2007-07-09

    Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part ofmore » the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e.g., illustrated in [24, 25, 26]. This work is based on [29, 31]. Our work over these five and half years has, in our opinion, helped advance the knowledge of domain decomposition methods significantly. We see these methods as providing valuable alternatives to other iterative methods, in particular, those based on multi-grid. In our opinion, our accomplishments also match the goals of the TOPS project quite closely.« less

  13. Long-term power generation expansion planning with short-term demand response: Model, algorithms, implementation, and electricity policies

    NASA Astrophysics Data System (ADS)

    Lohmann, Timo

    Electric sector models are powerful tools that guide policy makers and stakeholders. Long-term power generation expansion planning models are a prominent example and determine a capacity expansion for an existing power system over a long planning horizon. With the changes in the power industry away from monopolies and regulation, the focus of these models has shifted to competing electric companies maximizing their profit in a deregulated electricity market. In recent years, consumers have started to participate in demand response programs, actively influencing electricity load and price in the power system. We introduce a model that features investment and retirement decisions over a long planning horizon of more than 20 years, as well as an hourly representation of day-ahead electricity markets in which sellers of electricity face buyers. This combination makes our model both unique and challenging to solve. Decomposition algorithms, and especially Benders decomposition, can exploit the model structure. We present a novel method that can be seen as an alternative to generalized Benders decomposition and relies on dynamic linear overestimation. We prove its finite convergence and present computational results, demonstrating its superiority over traditional approaches. In certain special cases of our model, all necessary solution values in the decomposition algorithms can be directly calculated and solving mathematical programming problems becomes entirely obsolete. This leads to highly efficient algorithms that drastically outperform their programming problem-based counterparts. Furthermore, we discuss the implementation of all tailored algorithms and the challenges from a modeling software developer's standpoint, providing an insider's look into the modeling language GAMS. Finally, we apply our model to the Texas power system and design two electricity policies motivated by the U.S. Environment Protection Agency's recently proposed CO2 emissions targets for the power sector.

  14. Microvascular Pathology and Morphometrics of Sporadic and Hereditary Small Vessel Diseases of the Brain

    PubMed Central

    Craggs, Lucinda JL; Yamamoto, Yumi; Deramecourt, Vincent; Kalaria, Raj N

    2014-01-01

    Small vessel diseases (SVDs) of the brain are likely to become increasingly common in tandem with the rise in the aging population. In recent years, neuroimaging and pathological studies have informed on the pathogenesis of sporadic SVD and several single gene (monogenic) disorders predisposing to subcortical strokes and diffuse white matter disease. However, one of the limitations toward studying SVD lies in the lack of consistent assessment criteria and lesion burden for both clinical and pathological measures. Arteriolosclerosis and diffuse white matter changes are the hallmark features of both sporadic and hereditary SVDs. The pathogenesis of the arteriopathy is the key to understanding the differential progression of disease in various SVDs. Remarkably, quantification of microvascular abnormalities in sporadic and hereditary SVDs has shown that qualitatively the processes involved in arteriolar degeneration are largely similar in sporadic SVD compared with hereditary disorders such as cerebral autosomal arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Important significant regional differences in lesion location within the brain may enable one to distinguish SVDs, where frontal lobe involvement appears consistently with almost every SVD, but others bear specific pathologies in other lobes, such as the temporal pole in CADASIL and the pons in pontine autosomal dominant microangiopathy and leukoencephalopathy or PADMAL. Additionally, degenerative changes in the vascular smooth muscle cells, the cerebral endothelium and the basal lamina are often rapid and more aggressive in genetic disorders. Further quantification of other microvascular elements and even neuronal cells is needed to fully characterize SVD pathogenesis and to differentiate the usefulness of vascular interventions and treatments on the resulting pathology. PMID:25323665

  15. Persistence of symptoms in primary somatoform vertigo and dizziness: a disorder "lost" in health care?

    PubMed

    Tschan, Regine; Best, Christoph; Wiltink, Jörg; Beutel, Manfred E; Dieterich, Marianne; Eckhardt-Henn, Annegret

    2013-04-01

    The aim of this study was to perform a 3-year follow-up of primary somatoform vertigo and dizziness (SVD) regarding health care use and treatment. Ninety-two patients with dizziness underwent detailed vestibular neurophysiological testing and a Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Psychometric assessments comprised the Vertigo Symptom Scale, the Vertigo Handicap Questionnaire, the SCL-90-R, and the Short-Form-36 Health Survey. At the 3-year follow-up, 65 patients with primary SVD (anxiety, n = 29; depression, n = 14; somatoform disorders, n = 22) were reassessed (70.7% response). The patients improved in symptom severity (p < 0.05), handicap (p < 0.01), and physical quality of life (QoL; p < 0.05) but showed no change in emotional distress. A total of 63.1% (of n = 65) had ongoing SVD. A total of 69.2% (of n = 65) received different forms of treatments. A total of 46.1% (of n = 65) searched redundant medical diagnostic procedures. The patients with decreased coping capacity over time obtained the best prognosis. Primary SVD is an ineffectively treated disorder. Recommendations for specific complaint-oriented psychotherapy programs were given.

  16. FACETS: multi-faceted functional decomposition of protein interaction networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2012-10-15

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/

  17. A Domain Decomposition Parallelization of the Fast Marching Method

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.

  18. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.

    PubMed

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-12-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.

  19. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems

    PubMed Central

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111

  20. Perivascular Spaces, Glymphatic Dysfunction, and Small Vessel Disease

    PubMed Central

    Mestre, Humberto; Kostrikov, Serhii; Mehta, Rupal I.; Nedergaard, Maiken

    2017-01-01

    Cerebral small vessel diseases (SVD) range broadly in etiology but share a remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces, cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered. PMID:28798076

  1. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  2. Attenuation of brain white matter lesions after lacunar stroke.

    PubMed

    Durand-Birchenall, Julia; Leclercq, Claire; Daouk, Joël; Monet, Pauline; Godefroy, Olivier; Bugnicourt, Jean-Marc

    2012-02-01

    White matter lesions (WMLs) are commonly observed in stroke patients with small vessel disease (SVD) and are thought to result from a progressive, irreversible disease process following arteriolosclerosis. In this study, we report a case of partial disappearance of WMLs 1 year after a lacunar stroke in a 69-year-old man with evidence of SVD. We also discuss possible mechanisms associated with this observation.

  3. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  4. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  5. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  6. Impacts of El Niño and El Niño Modoki on the precipitation in Colombia

    NASA Astrophysics Data System (ADS)

    Córdoba Machado, Samir; Palomino Lemus, Reiner; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda; Jesús Esteban Parra, María

    2015-04-01

    The influence of the tropical Pacific SST on precipitation in Colombia is examined using 341 stations covering the period 1979-2009. Through a Singular Value Decomposition (SVD) the two main coupled variability modes show SST patterns clearly associated with El Niño (EN) and El Niño Modoki (ENM), respectively, presenting great coupling strength with the corresponding seasonal precipitation modes in Colombia. The results reveal that, mainly in winter and summer, EN and ENM events are associated with a significant rainfall decrease over northern, central, and western Colombia. The opposite effect occurs in some localities during spring, summer, and autumn. The southwestern region of Colombia exhibits an opposite behaviour connected to EN and ENM events during years when both events do not coexist, showing that the seasonal precipitation response is not linear. The Partial Regression Analysis used to quantify separately the influence of the two types of ENSO on seasonal precipitation shows the importance of both types in the reconstruction process. The results obtained in this study establish the base for modeling and forecasting the seasonal precipitation in Colombia using the tropical Pacific SST associated with El Niño and El Niño Modoki. Keywords: Seasonal precipitation, Tropical Pacific SST, El Niño, El Niño Modoki, Singular Value Decomposition, Colombia. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  7. Empirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends

    PubMed Central

    Teodoro, Douglas; Lovis, Christian

    2013-01-01

    Background Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. Objective To improve antibiotic resistance trend analysis algorithms by building a novel, fully data-driven forecasting method from the combination of trend extraction and machine learning models for enhanced biosurveillance systems. Methods We investigate a robust model for extraction and forecasting of antibiotic resistance trends using a decade of microbiology data. Our method consists of breaking down the resistance time series into independent oscillatory components via the empirical mode decomposition technique. The resulting waveforms describing intrinsic resistance trends serve as the input for the forecasting algorithm. The algorithm applies the delay coordinate embedding theorem together with the k-nearest neighbor framework to project mappings from past events into the future dimension and estimate the resistance levels. Results The algorithms that decompose the resistance time series and filter out high frequency components showed statistically significant performance improvements in comparison with a benchmark random walk model. We present further qualitative use-cases of antibiotic resistance trend extraction, where empirical mode decomposition was applied to highlight the specificities of the resistance trends. Conclusion The decomposition of the raw signal was found not only to yield valuable insight into the resistance evolution, but also to produce novel models of resistance forecasters with boosted prediction performance, which could be utilized as a complementary method in the analysis of antibiotic resistance trends. PMID:23637796

  8. Characteristics of stroke mechanisms in patients with medullary infarction.

    PubMed

    Lee, M J; Park, Y G; Kim, S J; Lee, J J; Bang, O Y; Kim, J S

    2012-11-01

    Few studies have focused on the mechanisms underlying medullary infarctions. Our aim in this study was to investigate stroke mechanisms in patients with medullary infarctions and to determine the clinical, radiological and laboratory characteristics of these patients with different underlying stroke etiologies. Consecutive patients with medullary infarction were analysed. Stroke mechanisms were classified as large artery disease (LAD), cardiogenic embolism (CE), small vessel disease (SVD), arterial dissection or undetermined etiology. Clinical, radiological and laboratory factors were analysed according to the location of the lesion and stroke mechanisms. A total of 77 patients were enrolled in this study. Amongst them, 53 (68.8%) patients had lateral medullary infarction (LMI), 22 (28.6%) had medial medullary infarction (MMI), and the remaining 2 (2.6%) had hemimedullary infarction. In both LMI and MMI patients, LAD was the most frequently encountered stroke mechanism. Arterial dissection was the second most common cause followed by SVD and CE in patients with LMI, whereas SVD was more frequently observed (P < 0.001) and dissection and CE were less prevalent (P < 0.001 and P = 0.024, respectively) in MMI than in LMI. Regarding differences amongst stroke etiologies, patients with dissection were younger and had a significantly lower incidence of metabolic syndrome (P = 0.002 and P = 0.009, respectively) than patients with LAD and SVD. Patients in the LAD (19/34, 60%) and dissection groups (12/14, 75%) had abnormal perfusion-weighted MRI (PWI) findings, whereas all patients with SVD (9/9) had normal PWI findings (P < 0.001). Stroke mechanisms in medullary infarction differ between LMI and MMI. Clinical and radiological characteristics, especially PWI features, are helpful in discriminating the etiologies of stroke in these patients. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  9. Parallel text rendering by a PostScript interpreter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritskii, S.P.; Zastavnoi, B.A.

    1994-11-01

    The most radical method of increasing the performance of devices controlled by PostScript interpreters may be the use of multiprocessor controllers. This paper presents a method for parallelizing the operation of a PostScript interpreter for rendering text. The proposed method is based on decomposition of the outlines of letters into horizontal strips covering equal areas. The subroutines thus obtained are distributed to the processors in a network and then filled in by conventional sequential algorithms. A special algorithm has been developed for dividing the outlines of characters into subroutines so that each may be colored independently of the others. Themore » algorithm uses special estimates for estimating the correct partition so that the corresponding outlines are divided into horizontal strips. A method is presented for finding such estimates. Two different processing approaches are presented. In the first, one of the processors performs the decomposition of the outlines and distributes the strips to the remaining processors, which are responsible for the rendering. In the second approach, the decomposition process is itself distributed among the processors in the network.« less

  10. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  11. Swine vesicular disease in northern Italy: diffusion through densely populated pig areas.

    PubMed

    Bellini, S; Alborali, L; Zanardi, G; Bonazza, V; Brocchi, E

    2010-12-01

    At the end of 2006, a recrudescence of swine vesicular disease (SVD) was recorded in Italy and the disease spread widely throughout the northern regions. Lombardy, a densely populated pig area, was most affected and the presence of the disease caused heavy economic losses to the entire pig industry. Although SVD is considered only moderately contagious, the epidemic in the north was characterised by a rapid spread of the condition. Numerous difficulties were encountered in eradicating it. Over the past decade, there has been a significant increase in the population of pigs in Lombardy, concentrated mainly in a few areas which were the most severely affected during the 2006 to 2007 SVD epidemic. Increases in both the pig population and animal movements, combined with weak biosecurity measures, increased the spread rate of the disease and hampered eradication activities.

  12. Effects of image compression and degradation on an automatic diabetic retinopathy screening algorithm

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.

    2010-03-01

    Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.

  13. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    PubMed

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  14. An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG.

    PubMed

    Orosco, Lorena; Laciar, Eric; Correa, Agustina Garces; Torres, Abel; Graffigna, Juan P

    2009-01-01

    Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm. The algorithm first computes the Intrinsic Mode Functions (IMFs) of EEG records, then calculates the energy of each IMF and performs the detection based on an energy threshold and a minimum duration decision. The algorithm was tested in 9 invasive EEG records provided and validated by the Epilepsy Center of the University Hospital of Freiburg. In 90 segments analyzed (39 with epileptic seizures) the sensitivity and specificity obtained with the method were of 56.41% and 75.86% respectively. It could be concluded that EMD is a promissory method for epileptic seizure detection in EEG records.

  15. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts

    PubMed Central

    PONTIFEX, MATTHEW B.; GWIZDALA, KATHRYN L.; PARKS, ANDREW C.; BILLINGER, MARTIN; BRUNNER, CLEMENS

    2017-01-01

    Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies. PMID:28026876

  16. Domain Decomposition: A Bridge between Nature and Parallel Computers

    DTIC Science & Technology

    1992-09-01

    B., "Domain Decomposition Algorithms for Indefinite Elliptic Problems," S"IAM Journal of S; cientific and Statistical (’omputing, Vol. 13, 1992, pp...AD-A256 575 NASA Contractor Report 189709 ICASE Report No. 92-44 ICASE DOMAIN DECOMPOSITION: A BRIDGE BETWEEN NATURE AND PARALLEL COMPUTERS DTIC dE...effectively implemented on dis- tributed memory multiprocessors. In 1990 (as reported in Ref. 38 using the tile algo- rithm), a 103,201-unknown 2D elliptic

  17. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  18. Breast density evaluation using spectral mammography, radiologist reader assessment and segmentation techniques: a retrospective study based on left and right breast comparison

    PubMed Central

    Molloi, Sabee; Ding, Huanjun; Feig, Stephen

    2015-01-01

    Purpose The purpose of this study was to compare the precision of mammographic breast density measurement using radiologist reader assessment, histogram threshold segmentation, fuzzy C-mean segmentation and spectral material decomposition. Materials and Methods Spectral mammography images from a total of 92 consecutive asymptomatic women (50–69 years old) who presented for annual screening mammography were retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and spectral material decomposition. The breast density correlation between left and right breasts was used to assess the precision of these techniques to measure breast composition relative to dual-energy material decomposition. Results In comparison to the other techniques, the results of breast density measurements using dual-energy material decomposition showed the highest correlation. The relative standard error of estimate for breast density measurements from left and right breasts using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm and dual-energy material decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively. Conclusion The results indicate that the precision of dual-energy material decomposition was approximately factor of two higher than the other techniques with regard to better correlation of breast density measurements from right and left breasts. PMID:26031229

  19. An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei

    2018-03-01

    A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.

  20. Attenuation of Brain White Matter Lesions After Lacunar Stroke

    PubMed Central

    Durand-Birchenall, Julia; Leclercq, Claire; Daouk, Joël; Monet, Pauline; Godefroy, Olivier; Bugnicourt, Jean-Marc

    2012-01-01

    White matter lesions (WMLs) are commonly observed in stroke patients with small vessel disease (SVD) and are thought to result from a progressive, irreversible disease process following arteriolosclerosis. In this study, we report a case of partial disappearance of WMLs 1 year after a lacunar stroke in a 69-year-old man with evidence of SVD. We also discuss possible mechanisms associated with this observation. PMID:22347611

  1. Could Better Phenotyping Small Vessel Disease Provide New Insights into Alzheimer Disease and Improve Clinical Trial Outcomes?

    PubMed

    Marnane, Michael; Hsiung, Ging-Yuek R

    2016-01-01

    Alzheimer Disease (AD) is the most common primary cause of dementia with a burgeoning epidemic as life expectancy and general medical care improve worldwide. Recent data from pathologic studies has shown that the cooccurrence of other neurodegenerative and vascular pathologies is in fact the rule rather than the exception. In late onset AD, cerebral small vessel disease (SVD) is almost invariably co-existent to a greater or lesser extent and is known to promote cognitive deterioration. Previous observational studies and clinical trials have largely sought to divide dementia based on predominant neurodegenerative or vascular mechanisms. Given the high degree of overlap, findings from such studies may be difficult to interpret and apply to population cohorts. Additionally opportunities may be lost for uncovering novel interventions that target interactions between co-existent vascular and neurodegenerative pathologies. In the current review, we consider potential pathophysiologic mechanisms through which SVD may be associated with and promote AD pathology. In particular we explore shared environmental and genetic associations and how these may converge via neuroinflammatory pathways potentially providing novel therapeutic targets. SVD has heterogenous manifestations on cerebral imaging and at pathology. We discuss how studying SVD topography may enable us to better identify those at risk for more rapid cognitive decline and improve future clinical trial design.

  2. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    PubMed

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. [Serum level of S100B as a marker of progression of vascular mild cognitive impairment into subcortical vascular dementia and therapy effectiveness].

    PubMed

    Levada, O A; Traïlin, A V

    2012-01-01

    We evaluated serum level of S100B in 11 patients with subcortical vascular dementia (SVD) and 19 patients with subcortical vascular mild cognitive impairment (SVMCI). Comparable groups were age-matched (79.18 +/- 7.76 in SVD group, 77.84 +/- 3.83 in SVMCI; P = 0.53). 22 patients were assessed after 1 month therapy. It was shown that the serum S100B level significantly increased--(0.065 +/- 0.020) micro/l (P = 0.0005) in SVD patients comparing to SVMCI ones - (0.043 +/- 0.010) microg/l. S100B level was significantly correlated with the clinical parameters: MMSE performance (r(s) = -0.61), CDR (r(s) = 0.58), attention task (r(s) = -0.46), pseudobulbar syndrome severity (r(s) = 0.37) and walking alteration (r(s)= 0.37). In patients with reduction of S100B level due to therapy (positive dynamics, n = 12) we registered significant improvement of some clinical parameters: MMSE, attention level, walking. In patients with increasing of S100B level (negative dynamics, n = 10) we didn't registered improvement of any clinical parameters. We made the conclusion that the serum level of S100B could be used as marker of progression SVMCI into SVD and therapy effectiveness.

  4. Hybridization of decomposition and local search for multiobjective optimization.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2014-10-01

    Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.

  5. Electrical conductivity imaging using gradient B, decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2004-03-01

    In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.

  6. Intraseasonal variability of winter precipitation over central asia and the western tibetan plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Liu, Xiaodong; Dong, Buwen

    2017-09-01

    Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.

  7. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.

    PubMed

    Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk

    2013-12-01

    Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.

  8. Blind compressive sensing dynamic MRI

    PubMed Central

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our phase transition experiments demonstrate that the BCS scheme provides much better recovery rates than classical Fourier-based CS schemes, while being only marginally worse than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in comparison to existing low rank and compressed sensing schemes. PMID:23542951

  9. A new linear back projection algorithm to electrical tomography based on measuring data decomposition

    NASA Astrophysics Data System (ADS)

    Sun, Benyuan; Yue, Shihong; Cui, Ziqiang; Wang, Huaxiang

    2015-12-01

    As an advanced measurement technique of non-radiant, non-intrusive, rapid response, and low cost, the electrical tomography (ET) technique has developed rapidly in recent decades. The ET imaging algorithm plays an important role in the ET imaging process. Linear back projection (LBP) is the most used ET algorithm due to its advantages of dynamic imaging process, real-time response, and easy realization. But the LBP algorithm is of low spatial resolution due to the natural ‘soft field’ effect and ‘ill-posed solution’ problems; thus its applicable ranges are greatly limited. In this paper, an original data decomposition method is proposed, and every ET measuring data are decomposed into two independent new data based on the positive and negative sensing areas of the measuring data. Consequently, the number of total measuring data is extended to twice as many as the number of the original data, thus effectively reducing the ‘ill-posed solution’. On the other hand, an index to measure the ‘soft field’ effect is proposed. The index shows that the decomposed data can distinguish between different contributions of various units (pixels) for any ET measuring data, and can efficiently reduce the ‘soft field’ effect of the ET imaging process. In light of the data decomposition method, a new linear back projection algorithm is proposed to improve the spatial resolution of the ET image. A series of simulations and experiments are applied to validate the proposed algorithm by the real-time performances and the progress of spatial resolutions.

  10. Application of modified Martinez-Silva algorithm in determination of net cover

    NASA Astrophysics Data System (ADS)

    Stefanowicz, Łukasz; Grobelna, Iwona

    2016-12-01

    In the article we present the idea of modifications of Martinez-Silva algorithm, which allows for determination of place invariants (p-invariants) of Petri net. Their generation time is important in the parallel decomposition of discrete systems described by Petri nets. Decomposition process is essential from the point of view of discrete system design, as it allows for separation of smaller sequential parts. The proposed modifications of Martinez-Silva method concern the net cover by p-invariants and are focused on two important issues: cyclic reduction of invariant matrix and cyclic checking of net cover.

  11. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  12. Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data.

    PubMed

    Liu, Yuanyuan; Shang, Fanhua; Jiao, Licheng; Cheng, James; Cheng, Hong

    2015-11-01

    In recent years, low-rank tensor completion (LRTC) problems have received a significant amount of attention in computer vision, data mining, and signal processing. The existing trace norm minimization algorithms for iteratively solving LRTC problems involve multiple singular value decompositions of very large matrices at each iteration. Therefore, they suffer from high computational cost. In this paper, we propose a novel trace norm regularized CANDECOMP/PARAFAC decomposition (TNCP) method for simultaneous tensor decomposition and completion. We first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, and then achieve a convex combination problem of much smaller-scale matrix trace norm minimization. Finally, we develop an efficient algorithm based on alternating direction method of multipliers to solve our problem. The promising experimental results on synthetic and real-world data validate the effectiveness of our TNCP method. Moreover, TNCP is significantly faster than the state-of-the-art methods and scales to larger problems.

  13. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudin, Pablo, E-mail: baudin.pablo@gmail.com; qLEAP – Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C; Marín, José Sánchez

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well asmore » the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.« less

  14. A copyright protection scheme for digital images based on shuffled singular value decomposition and visual cryptography.

    PubMed

    Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta

    2016-01-01

    This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack.

  15. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    NASA Astrophysics Data System (ADS)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten

    2017-11-01

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.

  16. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  17. Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Srivastava, Askok N.; Matthews, Bryan; Das, Santanu

    2008-01-01

    The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.

  18. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.

    1995-04-01

    formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. Anmore » analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.« less

  19. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less

  20. Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging.

    PubMed

    Eloyan, Ani; Muschelli, John; Nebel, Mary Beth; Liu, Han; Han, Fang; Zhao, Tuo; Barber, Anita D; Joel, Suresh; Pekar, James J; Mostofsky, Stewart H; Caffo, Brian

    2012-01-01

    Successful automated diagnoses of attention deficit hyperactive disorder (ADHD) using imaging and functional biomarkers would have fundamental consequences on the public health impact of the disease. In this work, we show results on the predictability of ADHD using imaging biomarkers and discuss the scientific and diagnostic impacts of the research. We created a prediction model using the landmark ADHD 200 data set focusing on resting state functional connectivity (rs-fc) and structural brain imaging. We predicted ADHD status and subtype, obtained by behavioral examination, using imaging data, intelligence quotients and other covariates. The novel contributions of this manuscript include a thorough exploration of prediction and image feature extraction methodology on this form of data, including the use of singular value decompositions (SVDs), CUR decompositions, random forest, gradient boosting, bagging, voxel-based morphometry, and support vector machines as well as important insights into the value, and potentially lack thereof, of imaging biomarkers of disease. The key results include the CUR-based decomposition of the rs-fc-fMRI along with gradient boosting and the prediction algorithm based on a motor network parcellation and random forest algorithm. We conjecture that the CUR decomposition is largely diagnosing common population directions of head motion. Of note, a byproduct of this research is a potential automated method for detecting subtle in-scanner motion. The final prediction algorithm, a weighted combination of several algorithms, had an external test set specificity of 94% with sensitivity of 21%. The most promising imaging biomarker was a correlation graph from a motor network parcellation. In summary, we have undertaken a large-scale statistical exploratory prediction exercise on the unique ADHD 200 data set. The exercise produced several potential leads for future scientific exploration of the neurological basis of ADHD.

Top