NASA Astrophysics Data System (ADS)
Oda, Hirokuni; Xuan, Chuang
2014-10-01
development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
NASA Astrophysics Data System (ADS)
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
NASA Astrophysics Data System (ADS)
Li, Zhong-xiao; Li, Zhen-chun
2016-09-01
The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Arslan, Musa T.; Tofighi, Mohammad; Sevimli, Rasim A.; ćetin, Ahmet E.
2015-05-01
One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.
Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu
2015-01-01
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871
Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2013-08-07
Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.
Deconvolution of interferometric data using interior point iterative algorithms
NASA Astrophysics Data System (ADS)
Theys, C.; Lantéri, H.; Aime, C.
2016-09-01
We address the problem of deconvolution of astronomical images that could be obtained with future large interferometers in space. The presentation is made in two complementary parts. The first part gives an introduction to the image deconvolution with linear and nonlinear algorithms. The emphasis is made on nonlinear iterative algorithms that verify the constraints of non-negativity and constant flux. The Richardson-Lucy algorithm appears there as a special case for photon counting conditions. More generally, the algorithm published recently by Lanteri et al. (2015) is based on scale invariant divergences without assumption on the statistic model of the data. The two proposed algorithms are interior-point algorithms, the latter being more efficient in terms of speed of calculation. These algorithms are applied to the deconvolution of simulated images corresponding to an interferometric system of 16 diluted telescopes in space. Two non-redundant configurations, one disposed around a circle and the other on an hexagonal lattice, are compared for their effectiveness on a simple astronomical object. The comparison is made in the direct and Fourier spaces. Raw "dirty" images have many artifacts due to replicas of the original object. Linear methods cannot remove these replicas while iterative methods clearly show their efficacy in these examples.
Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.
2015-01-01
SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
An l1-TV algorithm for deconvolution with salt and pepper noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, Brendt; Rodriguez, Paul
2008-01-01
There has recently been considerable interest in applying Total Variation with an {ell}{sup 1} data fidelity term to the denoising of images subject to salt and pepper noise, but the extension of this formulation to more general problems, such as deconvolution, has received little attention, most probably because most efficient algorithms for {ell}{sup 1}-TV denoising can not handle more general inverse problems. We apply the Iteratively Reweighted Norm algorithm to this problem, and compare performance with an alternative algorithm based on the Mumford-Shah functional.
A novel SURE-based criterion for parametric PSF estimation.
Xue, Feng; Blu, Thierry
2015-02-01
We propose an unbiased estimate of a filtered version of the mean squared error--the blur-SURE (Stein's unbiased risk estimate)--as a novel criterion for estimating an unknown point spread function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective functional over a family of Wiener processings. Based on this estimated blur kernel, we then perform nonblind deconvolution using our recently developed algorithm. The SURE-based framework is exemplified with a number of parametric PSF, involving a scaling factor that controls the blur size. A typical example of such parametrization is the Gaussian kernel. The experimental results demonstrate that minimizing the blur-SURE yields highly accurate estimates of the PSF parameters, which also result in a restoration quality that is very similar to the one obtained with the exact PSF, when plugged into our recent multi-Wiener SURE-LET deconvolution algorithm. The highly competitive results obtained outline the great potential of developing more powerful blind deconvolution algorithms based on SURE-like estimates.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Estimating Fluctuating Pressures From Distorted Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Leondes, Cornelius T.
1994-01-01
Two algorithms extract estimates of time-dependent input (upstream) pressures from outputs of pressure sensors located at downstream ends of pneumatic tubes. Effect deconvolutions that account for distoring effects of tube upon pressure signal. Distortion of pressure measurements by pneumatic tubes also discussed in "Distortion of Pressure Signals in Pneumatic Tubes," (ARC-12868). Varying input pressure estimated from measured time-varying output pressure by one of two deconvolution algorithms that take account of measurement noise. Algorithms based on minimum-covariance (Kalman filtering) theory.
An optimized algorithm for multiscale wideband deconvolution of radio astronomical images
NASA Astrophysics Data System (ADS)
Offringa, A. R.; Smirnov, O.
2017-10-01
We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.
Parsimonious Charge Deconvolution for Native Mass Spectrometry
2018-01-01
Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659
Faceting for direction-dependent spectral deconvolution
NASA Astrophysics Data System (ADS)
Tasse, C.; Hugo, B.; Mirmont, M.; Smirnov, O.; Atemkeng, M.; Bester, L.; Hardcastle, M. J.; Lakhoo, R.; Perkins, S.; Shimwell, T.
2018-04-01
The new generation of radio interferometers is characterized by high sensitivity, wide fields of view and large fractional bandwidth. To synthesize the deepest images enabled by the high dynamic range of these instruments requires us to take into account the direction-dependent Jones matrices, while estimating the spectral properties of the sky in the imaging and deconvolution algorithms. In this paper we discuss and implement a wideband wide-field spectral deconvolution framework (DDFacet) based on image plane faceting, that takes into account generic direction-dependent effects. Specifically, we present a wide-field co-planar faceting scheme, and discuss the various effects that need to be taken into account to solve for the deconvolution problem (image plane normalization, position-dependent Point Spread Function, etc). We discuss two wideband spectral deconvolution algorithms based on hybrid matching pursuit and sub-space optimisation respectively. A few interesting technical features incorporated in our imager are discussed, including baseline dependent averaging, which has the effect of improving computing efficiency. The version of DDFacet presented here can account for any externally defined Jones matrices and/or beam patterns.
NASA Astrophysics Data System (ADS)
Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li
2014-09-01
This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.
XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-08-01
XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe
2015-02-15
Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less
Parallelization of a blind deconvolution algorithm
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery
NASA Technical Reports Server (NTRS)
Smith, Jeffrey
2012-01-01
The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.
Ströhl, Florian; Kaminski, Clemens F
2015-01-16
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
NASA Astrophysics Data System (ADS)
Ströhl, Florian; Kaminski, Clemens F.
2015-03-01
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
High quality image-pair-based deblurring method using edge mask and improved residual deconvolution
NASA Astrophysics Data System (ADS)
Cui, Guangmang; Zhao, Jufeng; Gao, Xiumin; Feng, Huajun; Chen, Yueting
2017-04-01
Image deconvolution problem is a challenging task in the field of image process. Using image pairs could be helpful to provide a better restored image compared with the deblurring method from a single blurred image. In this paper, a high quality image-pair-based deblurring method is presented using the improved RL algorithm and the gain-controlled residual deconvolution technique. The input image pair includes a non-blurred noisy image and a blurred image captured for the same scene. With the estimated blur kernel, an improved RL deblurring method based on edge mask is introduced to obtain the preliminary deblurring result with effective ringing suppression and detail preservation. Then the preliminary deblurring result is served as the basic latent image and the gain-controlled residual deconvolution is utilized to recover the residual image. A saliency weight map is computed as the gain map to further control the ringing effects around the edge areas in the residual deconvolution process. The final deblurring result is obtained by adding the preliminary deblurring result with the recovered residual image. An optical experimental vibration platform is set up to verify the applicability and performance of the proposed algorithm. Experimental results demonstrate that the proposed deblurring framework obtains a superior performance in both subjective and objective assessments and has a wide application in many image deblurring fields.
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Changhui; Wei, Kai
2008-07-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
NASA Astrophysics Data System (ADS)
Zhou, T.; Popescu, S. C.; Krause, K.
2016-12-01
Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.
NASA Astrophysics Data System (ADS)
Neuer, Marcus J.
2013-11-01
A technique for the spectral identification of strontium-90 is shown, utilising a Maximum-Likelihood deconvolution. Different deconvolution approaches are discussed and summarised. Based on the intensity distribution of the beta emission and Geant4 simulations, a combined response matrix is derived, tailored to the β- detection process in sodium iodide detectors. It includes scattering effects and attenuation by applying a base material decomposition extracted from Geant4 simulations with a CAD model for a realistic detector system. Inversion results of measurements show the agreement between deconvolution and reconstruction. A detailed investigation with additional masking sources like 40K, 226Ra and 131I shows that a contamination of strontium can be found in the presence of these nuisance sources. Identification algorithms for strontium are presented based on the derived technique. For the implementation of blind identification, an exemplary masking ratio is calculated.
DECONV-TOOL: An IDL based deconvolution software package
NASA Technical Reports Server (NTRS)
Varosi, F.; Landsman, W. B.
1992-01-01
There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.
Instrument-induced spatial crosstalk deconvolution algorithm
NASA Technical Reports Server (NTRS)
Wright, Valerie G.; Evans, Nathan L., Jr.
1986-01-01
An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.
Deconvolution of astronomical images using SOR with adaptive relaxation.
Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J
2011-07-04
We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.
Texas two-step: a framework for optimal multi-input single-output deconvolution.
Neelamani, Ramesh; Deffenbaugh, Max; Baraniuk, Richard G
2007-11-01
Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework--Texas Two-Step--to solve MISO-D problems with known blurs. Texas Two-Step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas Two-Step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
Gold - A novel deconvolution algorithm with optimization for waveform LiDAR processing
NASA Astrophysics Data System (ADS)
Zhou, Tan; Popescu, Sorin C.; Krause, Keith; Sheridan, Ryan D.; Putman, Eric
2017-07-01
Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from the corresponding reference data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, <0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (<1.01 m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high vegetation. This study provides an alternative and innovative approach for waveform processing that will benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.
NASA Astrophysics Data System (ADS)
Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.
Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.
Reed, George H; Poyner, Russell R
2015-01-01
An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.
Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms.
Harikumar, G; Bresler, Y
1999-01-01
We address the problem of restoring an image from its noisy convolutions with two or more unknown finite impulse response (FIR) filters. We develop theoretical results about the existence and uniqueness of solutions, and show that under some generically true assumptions, both the filters and the image can be determined exactly in the absence of noise, and stably estimated in its presence. We present efficient algorithms to estimate the blur functions and their sizes. These algorithms are of two types, subspace-based and likelihood-based, and are extensions of techniques proposed for the solution of the multichannel blind deconvolution problem in one dimension. We present memory and computation-efficient techniques to handle the very large matrices arising in the two-dimensional (2-D) case. Once the blur functions are determined, they are used in a multichannel deconvolution step to reconstruct the unknown image. The theoretical and practical implications of edge effects, and "weakly exciting" images are examined. Finally, the algorithms are demonstrated on synthetic and real data.
Real-time blind image deconvolution based on coordinated framework of FPGA and DSP
NASA Astrophysics Data System (ADS)
Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun
2015-10-01
Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.
Efficient volumetric estimation from plenoptic data
NASA Astrophysics Data System (ADS)
Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.
2013-03-01
The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
Blind deconvolution post-processing of images corrected by adaptive optics
NASA Astrophysics Data System (ADS)
Christou, Julian C.
1995-08-01
Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.
A MAP blind image deconvolution algorithm with bandwidth over-constrained
NASA Astrophysics Data System (ADS)
Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong
2018-03-01
We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.
Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging
Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.
2014-01-01
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321
Multi-limit unsymmetrical MLIBD image restoration algorithm
NASA Astrophysics Data System (ADS)
Yang, Yang; Cheng, Yiping; Chen, Zai-wang; Bo, Chen
2012-11-01
A novel multi-limit unsymmetrical iterative blind deconvolution(MLIBD) algorithm was presented to enhance the performance of adaptive optics image restoration.The algorithm enhances the reliability of iterative blind deconvolution by introducing the bandwidth limit into the frequency domain of point spread(PSF),and adopts the PSF dynamic support region estimation to improve the convergence speed.The unsymmetrical factor is automatically computed to advance its adaptivity.Image deconvolution comparing experiments between Richardson-Lucy IBD and MLIBD were done,and the result indicates that the iteration number is reduced by 22.4% and the peak signal-to-noise ratio is improved by 10.18dB with MLIBD method. The performance of MLIBD algorithm is outstanding in the images restoration the FK5-857 adaptive optics and the double-star adaptive optics.
NASA Technical Reports Server (NTRS)
Ioup, G. E.
1985-01-01
Appendix 5 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer includes a resume of the professional background of the Principal Investigator on the project, lists of this publications and research papers, graduate thesis supervised, and grants received.
New regularization scheme for blind color image deconvolution
NASA Astrophysics Data System (ADS)
Chen, Li; He, Yu; Yap, Kim-Hui
2011-01-01
This paper proposes a new regularization scheme to address blind color image deconvolution. Color images generally have a significant correlation among the red, green, and blue channels. Conventional blind monochromatic deconvolution algorithms handle each color image channels independently, thereby ignoring the interchannel correlation present in the color images. In view of this, a unified regularization scheme for image is developed to recover edges of color images and reduce color artifacts. In addition, by using the color image properties, a spectral-based regularization operator is adopted to impose constraints on the blurs. Further, this paper proposes a reinforcement regularization framework that integrates a soft parametric learning term in addressing blind color image deconvolution. A blur modeling scheme is developed to evaluate the relevance of manifold parametric blur structures, and the information is integrated into the deconvolution scheme. An optimization procedure called alternating minimization is then employed to iteratively minimize the image- and blur-domain cost functions. Experimental results show that the method is able to achieve satisfactory restored color images under different blurring conditions.
Strehl-constrained iterative blind deconvolution for post-adaptive-optics data
NASA Astrophysics Data System (ADS)
Desiderà, G.; Carbillet, M.
2009-12-01
Aims: We aim to improve blind deconvolution applied to post-adaptive-optics (AO) data by taking into account one of their basic characteristics, resulting from the necessarily partial AO correction: the Strehl ratio. Methods: We apply a Strehl constraint in the framework of iterative blind deconvolution (IBD) of post-AO near-infrared images simulated in a detailed end-to-end manner and considering a case that is as realistic as possible. Results: The results obtained clearly show the advantage of using such a constraint, from the point of view of both performance and stability, especially for poorly AO-corrected data. The proposed algorithm has been implemented in the freely-distributed and CAOS-based Software Package AIRY.
NASA Astrophysics Data System (ADS)
Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.
2014-12-01
Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.
High Resolution Imaging Using Phase Retrieval. Volume 2
1991-10-01
aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude
Using deconvolution to improve the metrological performance of the grid method
NASA Astrophysics Data System (ADS)
Grédiac, Michel; Sur, Frédéric; Badulescu, Claudiu; Mathias, Jean-Denis
2013-06-01
The use of various deconvolution techniques to enhance strain maps obtained with the grid method is addressed in this study. Since phase derivative maps obtained with the grid method can be approximated by their actual counterparts convolved by the envelope of the kernel used to extract phases and phase derivatives, non-blind restoration techniques can be used to perform deconvolution. Six deconvolution techniques are presented and employed to restore a synthetic phase derivative map, namely direct deconvolution, regularized deconvolution, the Richardson-Lucy algorithm and Wiener filtering, the last two with two variants concerning their practical implementations. Obtained results show that the noise that corrupts the grid images must be thoroughly taken into account to limit its effect on the deconvolved strain maps. The difficulty here is that the noise on the grid image yields a spatially correlated noise on the strain maps. In particular, numerical experiments on synthetic data show that direct and regularized deconvolutions are unstable when noisy data are processed. The same remark holds when Wiener filtering is employed without taking into account noise autocorrelation. On the other hand, the Richardson-Lucy algorithm and Wiener filtering with noise autocorrelation provide deconvolved maps where the impact of noise remains controlled within a certain limit. It is also observed that the last technique outperforms the Richardson-Lucy algorithm. Two short examples of actual strain fields restoration are finally shown. They deal with asphalt and shape memory alloy specimens. The benefits and limitations of deconvolution are presented and discussed in these two cases. The main conclusion is that strain maps are correctly deconvolved when the signal-to-noise ratio is high and that actual noise in the actual strain maps must be more specifically characterized than in the current study to address higher noise levels with Wiener filtering.
Navarro, Jorge; Ring, Terry A.; Nigg, David W.
2015-03-01
A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less
Bouridane, Ahmed; Ling, Bingo Wing-Kuen
2018-01-01
This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy. PMID:29702629
NASA Astrophysics Data System (ADS)
Xuan, Chuang; Oda, Hirokuni
2015-11-01
The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907-3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.
Samanipour, Saer; Reid, Malcolm J; Bæk, Kine; Thomas, Kevin V
2018-04-17
Nontarget analysis is considered one of the most comprehensive tools for the identification of unknown compounds in a complex sample analyzed via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Due to the complexity of the data generated via LC-HRMS, the data-dependent acquisition mode, which produces the MS 2 spectra of a limited number of the precursor ions, has been one of the most common approaches used during nontarget screening. However, data-independent acquisition mode produces highly complex spectra that require proper deconvolution and library search algorithms. We have developed a deconvolution algorithm and a universal library search algorithm (ULSA) for the analysis of complex spectra generated via data-independent acquisition. These algorithms were validated and tested using both semisynthetic and real environmental data. A total of 6000 randomly selected spectra from MassBank were introduced across the total ion chromatograms of 15 sludge extracts at three levels of background complexity for the validation of the algorithms via semisynthetic data. The deconvolution algorithm successfully extracted more than 60% of the added ions in the analytical signal for 95% of processed spectra (i.e., 3 complexity levels multiplied by 6000 spectra). The ULSA ranked the correct spectra among the top three for more than 95% of cases. We further tested the algorithms with 5 wastewater effluent extracts for 59 artificial unknown analytes (i.e., their presence or absence was confirmed via target analysis). These algorithms did not produce any cases of false identifications while correctly identifying ∼70% of the total inquiries. The implications, capabilities, and the limitations of both algorithms are further discussed.
Constrained maximum consistency multi-path mitigation
NASA Astrophysics Data System (ADS)
Smith, George B.
2003-10-01
Blind deconvolution algorithms can be useful as pre-processors for signal classification algorithms in shallow water. These algorithms remove the distortion of the signal caused by multipath propagation when no knowledge of the environment is available. A framework in which filters that produce signal estimates from each data channel that are as consistent with each other as possible in a least-squares sense has been presented [Smith, J. Acoust. Soc. Am. 107 (2000)]. This framework provides a solution to the blind deconvolution problem. One implementation of this framework yields the cross-relation on which EVAM [Gurelli and Nikias, IEEE Trans. Signal Process. 43 (1995)] and Rietsch [Rietsch, Geophysics 62(6) (1997)] processing are based. In this presentation, partially blind implementations that have good noise stability properties are compared using Classification Operating Characteristics (CLOC) analysis. [Work supported by ONR under Program Element 62747N and NRL, Stennis Space Center, MS.
Total variation based image deconvolution for extended depth-of-field microscopy images
NASA Astrophysics Data System (ADS)
Hausser, F.; Beckers, I.; Gierlak, M.; Kahraman, O.
2015-03-01
One approach for a detailed understanding of dynamical cellular processes during drug delivery is the use of functionalized biocompatible nanoparticles and fluorescent markers. An appropriate imaging system has to detect these moving particles so as whole cell volumes in real time with high lateral resolution in a range of a few 100 nm. In a previous study Extended depth-of-field microscopy (EDF-microscopy) has been applied to fluorescent beads and tradiscantia stamen hair cells and the concept of real-time imaging has been proved in different microscopic modes. In principle a phase retardation system like a programmable space light modulator or a static waveplate is incorporated in the light path and modulates the wavefront of light. Hence the focal ellipsoid is smeared out and images seem to be blurred in a first step. An image restoration by deconvolution using the known point-spread-function (PSF) of the optical system is necessary to achieve sharp microscopic images of an extended depth-of-field. This work is focused on the investigation and optimization of deconvolution algorithms to solve this restoration problem satisfactorily. This inverse problem is challenging due to presence of Poisson distributed noise and Gaussian noise, and since the PSF used for deconvolution exactly fits in just one plane within the object. We use non-linear Total Variation based image restoration techniques, where different types of noise can be treated properly. Various algorithms are evaluated for artificially generated 3D images as well as for fluorescence measurements of BPAE cells.
Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho
2018-01-01
To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p < 0.001) and for the overall image quality (mean, 3.8; range, 3.3-4.0; p < 0.001). The most preferred anatomical regions were the azygoesophageal recess, thoracic spine, and unobscured lung. The visibility of chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.
Quantitative fluorescence microscopy and image deconvolution.
Swedlow, Jason R
2013-01-01
Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.
Crowded field photometry with deconvolved images.
NASA Astrophysics Data System (ADS)
Linde, P.; Spännare, S.
A local implementation of the Lucy-Richardson algorithm has been used to deconvolve a set of crowded stellar field images. The effects of deconvolution on detection limits as well as on photometric and astrometric properties have been investigated as a function of the number of deconvolution iterations. Results show that deconvolution improves detection of faint stars, although artifacts are also found. Deconvolution provides more stars measurable without significant degradation of positional accuracy. The photometric precision is affected by deconvolution in several ways. Errors due to unresolved images are notably reduced, while flux redistribution between stars and background increases the errors.
Langenbucher, Frieder
2003-11-01
Convolution and deconvolution are the classical in-vitro-in-vivo correlation tools to describe the relationship between input and weighting/response in a linear system, where input represents the drug release in vitro, weighting/response any body response in vivo. While functional treatment, e.g. in terms of polyexponential or Weibull distribution, is more appropriate for general survey or prediction, numerical algorithms are useful for treating actual experimental data. Deconvolution is not considered an algorithm by its own, but the inversion of a corresponding convolution. MS Excel is shown to be a useful tool for all these applications.
Minimum entropy deconvolution and blind equalisation
NASA Technical Reports Server (NTRS)
Satorius, E. H.; Mulligan, J. J.
1992-01-01
Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-21
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
NASA Astrophysics Data System (ADS)
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-01
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
NASA Astrophysics Data System (ADS)
Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua
2016-03-01
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.
Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J
2014-05-01
In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.
Wavespace-Based Coherent Deconvolution
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Cattafesta, Louis N., III
2012-01-01
Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.
Towards real-time image deconvolution: application to confocal and STED microscopy
Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.
2013-01-01
Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127
Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths.
Ingaramo, Maria; York, Andrew G; Hoogendoorn, Eelco; Postma, Marten; Shroff, Hari; Patterson, George H
2014-03-17
We use Richardson-Lucy (RL) deconvolution to combine multiple images of a simulated object into a single image in the context of modern fluorescence microscopy techniques. RL deconvolution can merge images with very different point-spread functions, such as in multiview light-sheet microscopes,1, 2 while preserving the best resolution information present in each image. We show that RL deconvolution is also easily applied to merge high-resolution, high-noise images with low-resolution, low-noise images, relevant when complementing conventional microscopy with localization microscopy. We also use RL deconvolution to merge images produced by different simulated illumination patterns, relevant to structured illumination microscopy (SIM)3, 4 and image scanning microscopy (ISM). The quality of our ISM reconstructions is at least as good as reconstructions using standard inversion algorithms for ISM data, but our method follows a simpler recipe that requires no mathematical insight. Finally, we apply RL deconvolution to merge a series of ten images with varying signal and resolution levels. This combination is relevant to gated stimulated-emission depletion (STED) microscopy, and shows that merges of high-quality images are possible even in cases for which a non-iterative inversion algorithm is unknown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei
2018-07-01
Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Almasganj, Mohammad; Adabi, Saba; Fatemizadeh, Emad; Xu, Qiuyun; Sadeghi, Hamid; Daveluy, Steven; Nasiriavanaki, Mohammadreza
2017-03-01
Optical Coherence Tomography (OCT) has a great potential to elicit clinically useful information from tissues due to its high axial and transversal resolution. In practice, an OCT setup cannot reach to its theoretical resolution due to imperfections of its components, which make its images blurry. The blurriness is different alongside regions of image; thus, they cannot be modeled by a unique point spread function (PSF). In this paper, we investigate the use of solid phantoms to estimate the PSF of each sub-region of imaging system. We then utilize Lucy-Richardson, Hybr and total variation (TV) based iterative deconvolution methods for mitigating occurred spatially variant blurriness. It is shown that the TV based method will suppress the so-called speckle noise in OCT images better than the two other approaches. The performance of proposed algorithm is tested on various samples, including several skin tissues besides the test image blurred with synthetic PSF-map, demonstrating qualitatively and quantitatively the advantage of TV based deconvolution method using spatially-variant PSF for enhancing image quality.
Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond
2015-01-01
Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin
2012-11-21
New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.
Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong
2011-06-01
With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
An l1-TV Algorithm for Deconvolution with Salt and Pepper Noise
2009-04-01
deblurring in the presence of impulsive noise ,” Int. J. Comput. Vision, vol. 70, no. 3, pp. 279–298, Dec. 2006. [13] A. E. Beaton and J. W. Tukey, “The...AN 1-TV ALGORITHM FOR DECONVOLUTIONWITH SALT AND PEPPER NOISE Brendt Wohlberg∗ T-7 Mathematical Modeling and Analysis Los Alamos National Laboratory...and pepper noise , but the extension of this formulation to more general prob- lems, such as deconvolution, has received little attention. We consider
High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method
NASA Astrophysics Data System (ADS)
Gillon, M.; Pont, F.; Moutou, C.; Bouchy, F.; Courbin, F.; Sohy, S.; Magain, P.
2006-11-01
A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large-scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.
Semi-blind sparse image reconstruction with application to MRFM.
Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O
2012-09-01
We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.
A blind deconvolution method based on L1/L2 regularization prior in the gradient space
NASA Astrophysics Data System (ADS)
Cai, Ying; Shi, Yu; Hua, Xia
2018-02-01
In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.
Hom, Erik F. Y.; Marchis, Franck; Lee, Timothy K.; Haase, Sebastian; Agard, David A.; Sedat, John W.
2011-01-01
We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy. PMID:17491626
A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2011-09-01
We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.
NASA Astrophysics Data System (ADS)
Luo, L.; Fan, M.; Shen, M. Z.
2007-07-01
Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.
A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference
NASA Astrophysics Data System (ADS)
Kolb, J.; Lekic, V.
2012-12-01
Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter components. Furthermore, we demonstrate that this new approach is far less susceptible to generating spurious features even at high noise levels. Finally, the method yields not only the most-likely receiver function, but also quantifies its full uncertainty. [1] Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawlinson (2012), Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301
NASA Astrophysics Data System (ADS)
Kazakis, Nikolaos A.
2018-01-01
The present comment concerns the correct presentation of an algorithm proposed in the above paper for the glow-curve deconvolution in the case of continuous distribution of trapping states. Since most researchers would use directly the proposed algorithm as published, they should be notified of its correct formulation during the fitting of TL glow curves of materials with continuous trap distribution using this Equation.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
NASA Astrophysics Data System (ADS)
Meresescu, Alina G.; Kowalski, Matthieu; Schmidt, Frédéric; Landais, François
2018-06-01
The Water Residence Time distribution is the equivalent of the impulse response of a linear system allowing the propagation of water through a medium, e.g. the propagation of rain water from the top of the mountain towards the aquifers. We consider the output aquifer levels as the convolution between the input rain levels and the Water Residence Time, starting with an initial aquifer base level. The estimation of Water Residence Time is important for a better understanding of hydro-bio-geochemical processes and mixing properties of wetlands used as filters in ecological applications, as well as protecting fresh water sources for wells from pollutants. Common methods of estimating the Water Residence Time focus on cross-correlation, parameter fitting and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution, regularized, non-parametric inverse problem algorithm that enforces smoothness and uses constraints of causality and positivity to estimate the Water Residence Time curve. Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime per test case; compared to the popular and fast cross-correlation method, it produces a more precise Water Residence Time curve even in the case of noisy measurements. The algorithm needs only one regularization parameter to balance between smoothness of the Water Residence Time and accuracy of the reconstruction. We propose an approach on how to automatically find a suitable value of the regularization parameter from the input data only. Tests on real data illustrate the potential of this method to analyze hydrological datasets.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2002-09-01
We describe a postprocessing methodology for reconstructing undersampled image sequences with randomly varying blur that can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive-optics-(AO)-compensated imagery taken by the Starfire Optical Range 3.5-m telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground-based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques that include a representation of spatial sampling by the focal plane array elements based on a forward stochastic model. This generalization enables the random shifts and shape of the AO- compensated point spread function (PSF) to be used to partially eliminate the aliasing effects associated with sub-Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss that occurs when imaging in wide- field-of-view (FOV) modes.
An improved method for polarimetric image restoration in interferometry
NASA Astrophysics Data System (ADS)
Pratley, Luke; Johnston-Hollitt, Melanie
2016-11-01
Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.
NASA Technical Reports Server (NTRS)
Schade, David J.; Elson, Rebecca A. W.
1993-01-01
We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.
NASA Astrophysics Data System (ADS)
Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen
2016-11-01
To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.
Salas, Lucas A; Koestler, Devin C; Butler, Rondi A; Hansen, Helen M; Wiencke, John K; Kelsey, Karl T; Christensen, Brock C
2018-05-29
Genome-wide methylation arrays are powerful tools for assessing cell composition of complex mixtures. We compare three approaches to select reference libraries for deconvoluting neutrophil, monocyte, B-lymphocyte, natural killer, and CD4+ and CD8+ T-cell fractions based on blood-derived DNA methylation signatures assayed using the Illumina HumanMethylationEPIC array. The IDOL algorithm identifies a library of 450 CpGs, resulting in an average R 2 = 99.2 across cell types when applied to EPIC methylation data collected on artificial mixtures constructed from the above cell types. Of the 450 CpGs, 69% are unique to EPIC. This library has the potential to reduce unintended technical differences across array platforms.
NASA Astrophysics Data System (ADS)
Luo, Lin; Fan, Min; Shen, Mang-zuo
2008-01-01
Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats
2000-05-01
Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.
2008-03-27
nonmechanical zoom system. 2.2.2 Increasing Field of Regard. In general, telescope systems cannot increase their field of regard (FoR) without some form of...automatically for solar tele- scopes. [7] Guidelines for the algorithm have been clearly defined for over a decade. [20] The process is based on the idea...Matlabr contains an interative form of this type of deconvolution that is capable of taking into account additive noise. All that is needed is the
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-06-01
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, Thomas W. -S.; Marshall, Philip J.; Wechsler, Risa H.
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of amore » subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.« less
Advanced Source Deconvolution Methods for Compton Telescopes
NASA Astrophysics Data System (ADS)
Zoglauer, Andreas
The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a list-mode approach to get the best angular resolution, to get achieve both at the same time! The second open question concerns the best deconvolution algorithm. For example, several algorithms have been investigated for the famous COMPTEL 26Al map which resulted in significantly different images. There is no clear answer as to which approach provides the most accurate result, largely due to the fact that detailed simulations to test and verify the approaches and their limitations were not possible at that time. This has changed, and therefore we propose to evaluate several deconvolution algorithms (e.g. Richardson-Lucy, Maximum-Entropy, MREM, and stochastic origin ensembles) with simulations of typical observations to find the best algorithm for each application and for each stage of the hybrid reconstruction approach. We will adapt, implement, and fully evaluate the hybrid source reconstruction approach as well as the various deconvolution algorithms with simulations of synthetic benchmarks and simulations of key science objectives such as diffuse nuclear line science and continuum science of point sources, as well as with calibrations/observations of the COSI balloon telescope. This proposal for "development of new data analysis methods for future satellite missions" will significantly improve the source deconvolution techniques for modern Compton telescopes and will allow unlocking the full potential of envisioned satellite missions using Compton-scatter technology in astrophysics, heliophysics and planetary sciences, and ultimately help them to "discover how the universe works" and to better "understand the sun". Ultimately it will also benefit ground based applications such as nuclear medicine and environmental monitoring as all developed algorithms will be made publicly available within the open-source Compton telescope analysis framework MEGAlib.
Data preprocessing method for liquid chromatography-mass spectrometry based metabolomics.
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-09-18
A set of data preprocessing algorithms for peak detection and peak list alignment are reported for analysis of liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data. For spectrum deconvolution, peak picking is achieved at the selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into the z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers demonstrates that the developed data preprocessing method performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS(2), for peak picking, peak list alignment, and quantification.
A Data Pre-processing Method for Liquid Chromatography Mass Spectrometry-based Metabolomics
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S.; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-01-01
A set of data pre-processing algorithms for peak detection and peak list alignment are reported for analysis of LC-MS based metabolomics data. For spectrum deconvolution, peak picking is achieved at selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers, demonstrates that the developed data pre-processing methods performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS2, for peak picking, peak list alignment and quantification. PMID:22931487
VizieR Online Data Catalog: Spatial deconvolution code (Quintero Noda+, 2015)
NASA Astrophysics Data System (ADS)
Quintero Noda, C.; Asensio Ramos, A.; Orozco Suarez, D.; Ruiz Cobo, B.
2015-05-01
This deconvolution method follows the scheme presented in Ruiz Cobo & Asensio Ramos (2013A&A...549L...4R) The Stokes parameters are projected onto a few spectral eigenvectors and the ensuing maps of coefficients are deconvolved using a standard Lucy-Richardson algorithm. This introduces a stabilization because the PCA filtering reduces the amount of noise. (1 data file).
Image deblurring by motion estimation for remote sensing
NASA Astrophysics Data System (ADS)
Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun
2010-08-01
The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.
Laramée, J A; Arbogast, B; Deinzer, M L
1989-10-01
It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.
A digital algorithm for spectral deconvolution with noise filtering and peak picking: NOFIPP-DECON
NASA Technical Reports Server (NTRS)
Edwards, T. R.; Settle, G. L.; Knight, R. D.
1975-01-01
Noise-filtering, peak-picking deconvolution software incorporates multiple convoluted convolute integers and multiparameter optimization pattern search. The two theories are described and three aspects of the software package are discussed in detail. Noise-filtering deconvolution was applied to a number of experimental cases ranging from noisy, nondispersive X-ray analyzer data to very noisy photoelectric polarimeter data. Comparisons were made with published infrared data, and a man-machine interactive language has evolved for assisting in very difficult cases. A modified version of the program is being used for routine preprocessing of mass spectral and gas chromatographic data.
NASA Astrophysics Data System (ADS)
Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang
2017-03-01
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.
Iterative-Transform Phase Diversity: An Object and Wavefront Recovery Algorithm
NASA Technical Reports Server (NTRS)
Smith, J. Scott
2011-01-01
Presented is a solution for recovering the wavefront and an extended object. It builds upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering the wavefront and extended object from noisy data.
Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution.
Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl
2016-11-16
Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.
Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution
NASA Astrophysics Data System (ADS)
Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl
2016-11-01
Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.
Toward Overcoming the Local Minimum Trap in MFBD
2015-07-14
the first two years of this grant: • A. Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind Deconvolution...Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Numerical Optimization Meth- ods for Blind Deconvolution, Numerical Algorithms, volume 65, issue 1...Publications (published) during reporting period: A. Cornelio, E. Loli Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind
Time-Domain Receiver Function Deconvolution using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Moreira, L. P.
2017-12-01
Receiver Functions (RF) are well know method for crust modelling using passive seismological signals. Many different techniques were developed to calculate the RF traces, applying the deconvolution calculation to radial and vertical seismogram components. A popular method used a spectral division of both components, which requires human intervention to apply the Water Level procedure to avoid instabilities from division by small numbers. One of most used method is an iterative procedure to estimate the RF peaks and applying the convolution with vertical component seismogram, comparing the result with the radial component. This method is suitable for automatic processing, however several RF traces are invalid due to peak estimation failure.In this work it is proposed a deconvolution algorithm using Genetic Algorithm (GA) to estimate the RF peaks. This method is entirely processed in the time domain, avoiding the time-to-frequency calculations (and vice-versa), and totally suitable for automatic processing. Estimated peaks can be used to generate RF traces in a seismogram format for visualization. The RF trace quality is similar for high magnitude events, although there are less failures for RF calculation of smaller events, increasing the overall performance for high number of events per station.
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong
2015-05-01
Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.
A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution
NASA Astrophysics Data System (ADS)
Zuo, B.; Hu, X.; Li, H.
2011-12-01
A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.
1983-06-01
system, provides a convenient, low- noise , fully parallel method of improving contrast and enhancing structural detail in an image prior to input to a...directed towards problems in deconvolution, reconstruction from projections, bandlimited extrapolation, and shift varying deblurring of images...deconvolution algorithm has been studied with promising 5 results [I] for simulated motion blurs. Future work will focus on noise effects and the extension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixing; Yang, LV; Xu, Kele
Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Hojjatoleslami, S A; Avanaki, M R N; Podoleanu, A Gh
2013-08-10
Optical coherence tomography (OCT) has the potential for skin tissue characterization due to its high axial and transverse resolution and its acceptable depth penetration. In practice, OCT cannot reach the theoretical resolutions due to imperfections of some of the components used. One way to improve the quality of the images is to estimate the point spread function (PSF) of the OCT system and deconvolve it from the output images. In this paper, we investigate the use of solid phantoms to estimate the PSF of the imaging system. We then utilize iterative Lucy-Richardson deconvolution algorithm to improve the quality of the images. The performance of the proposed algorithm is demonstrated on OCT images acquired from a variety of samples, such as epoxy-resin phantoms, fingertip skin and basaloid larynx and eyelid tissues.
Scalar flux modeling in turbulent flames using iterative deconvolution
NASA Astrophysics Data System (ADS)
Nikolaou, Z. M.; Cant, R. S.; Vervisch, L.
2018-04-01
In the context of large eddy simulations, deconvolution is an attractive alternative for modeling the unclosed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows; however, their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory they can be used in order to model any unclosed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence.
NASA Astrophysics Data System (ADS)
Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.
Multichannel blind iterative image restoration.
Sroubek, Filip; Flusser, Jan
2003-01-01
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2000-10-01
A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.
Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura
2006-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
NASA Astrophysics Data System (ADS)
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2006-03-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.
Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2007-01-01
We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179
A pratical deconvolution algorithm in multi-fiber spectra extraction
NASA Astrophysics Data System (ADS)
Zhang, Haotong; Li, Guangwei; Bai, Zhongrui
2015-08-01
Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.
Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes
NASA Astrophysics Data System (ADS)
Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen
2017-09-01
Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.
Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Qiheng; Zhang, Jianlin
2011-11-01
Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.
Charge reconstruction in large-area photomultipliers
NASA Astrophysics Data System (ADS)
Grassi, M.; Montuschi, M.; Baldoncini, M.; Mantovani, F.; Ricci, B.; Andronico, G.; Antonelli, V.; Bellato, M.; Bernieri, E.; Brigatti, A.; Brugnera, R.; Budano, A.; Buscemi, M.; Bussino, S.; Caruso, R.; Chiesa, D.; Corti, D.; Dal Corso, F.; Ding, X. F.; Dusini, S.; Fabbri, A.; Fiorentini, G.; Ford, R.; Formozov, A.; Galet, G.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Insolia, A.; Isocrate, R.; Lippi, I.; Longhitano, F.; Lo Presti, D.; Lombardi, P.; Marini, F.; Mari, S. M.; Martellini, C.; Meroni, E.; Mezzetto, M.; Miramonti, L.; Monforte, S.; Nastasi, M.; Ortica, F.; Paoloni, A.; Parmeggiano, S.; Pedretti, D.; Pelliccia, N.; Pompilio, R.; Previtali, E.; Ranucci, G.; Re, A. C.; Romani, A.; Saggese, P.; Salamanna, G.; Sawy, F. H.; Settanta, G.; Sisti, M.; Sirignano, C.; Spinetti, M.; Stanco, L.; Strati, V.; Verde, G.; Votano, L.
2018-02-01
Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions—such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from 0.769 ± 0.001 (without deconvolution) to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at [1].
Streaming Multiframe Deconvolutions on GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2015-09-01
Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.
NASA Astrophysics Data System (ADS)
Gal, M.; Reading, A. M.; Ellingsen, S. P.; Koper, K. D.; Burlacu, R.; Gibbons, S. J.
2016-07-01
Microseisms in the period of 2-10 s are generated in deep oceans and near coastal regions. It is common for microseisms from multiple sources to arrive at the same time at a given seismometer. It is therefore desirable to be able to measure multiple slowness vectors accurately. Popular ways to estimate the direction of arrival of ocean induced microseisms are the conventional (fk) or adaptive (Capon) beamformer. These techniques give robust estimates, but are limited in their resolution capabilities and hence do not always detect all arrivals. One of the limiting factors in determining direction of arrival with seismic arrays is the array response, which can strongly influence the estimation of weaker sources. In this work, we aim to improve the resolution for weaker sources and evaluate the performance of two deconvolution algorithms, Richardson-Lucy deconvolution and a new implementation of CLEAN-PSF. The algorithms are tested with three arrays of different aperture (ASAR, WRA and NORSAR) using 1 month of real data each and compared with the conventional approaches. We find an improvement over conventional methods from both algorithms and the best performance with CLEAN-PSF. We then extend the CLEAN-PSF framework to three components (3C) and evaluate 1 yr of data from the Pilbara Seismic Array in northwest Australia. The 3C CLEAN-PSF analysis is capable in resolving a previously undetected Sn phase.
Deconvolution of azimuthal mode detection measurements
NASA Astrophysics Data System (ADS)
Sijtsma, Pieter; Brouwer, Harry
2018-05-01
Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high "noise floor" of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10-15 dB was found.
NASA Technical Reports Server (NTRS)
Becker, Joseph F.; Valentin, Jose
1996-01-01
The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
NASA Astrophysics Data System (ADS)
Ying, Zhang; Zhengqiang, Li; Yan, Wang
2014-03-01
Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.
Deconvolution of the vestibular evoked myogenic potential.
Lütkenhöner, Bernd; Basel, Türker
2012-02-07
The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dwell time method based on Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Zhen
2017-10-01
When the noise in the surface error data given by the interferometer has no effect on the iterative convergence of the RL algorithm, the RL algorithm for deconvolution in image restoration can be applied to the CCOS model to solve the dwell time. By extending the initial error function on the edge and denoising the noise in the surface error data given by the interferometer , it makes the result more available . The simulation results show the final residual error 10.7912nm nm in PV and 0.4305 nm in RMS, when the initial surface error is 107.2414 nm in PV and 15.1331 nm in RMS. The convergence rates of the PV and RMS values can reach up to 89.9% and 96.0%, respectively . The algorithms can satisfy the requirement of fabrication very well.
An underwater turbulence degraded image restoration algorithm
NASA Astrophysics Data System (ADS)
Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew
2017-09-01
Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.
ESO/ST-ECF Data Analysis Workshop, 5th, Garching, Germany, Apr. 26, 27, 1993, Proceedings
NASA Astrophysics Data System (ADS)
Grosbol, Preben; de Ruijsscher, Resy
1993-01-01
Various papers on astronomical data analysis are presented. Individual optics addressed include: surface photometry of early-type galaxies, wavelet transform and adaptive filtering, package for surface photometry of galaxies, calibration of large-field mosaics, surface photometry of galaxies with HST, wavefront-supported image deconvolution, seeing effects on elliptical galaxies, multiple algorithms deconvolution program, enhancement of Skylab X-ray images, MIDAS procedures for the image analysis of E-S0 galaxies, photometric data reductions under MIDAS, crowded field photometry with deconvolved images, the DENIS Deep Near Infrared Survey. Also discussed are: analysis of astronomical time series, detection of low-amplitude stellar pulsations, new SOT method for frequency analysis, chaotic attractor reconstruction and applications to variable stars, reconstructing a 1D signal from irregular samples, automatic analysis for time series with large gaps, prospects for content-based image retrieval, redshift survey in the South Galactic Pole Region.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Symetrica Measurements at PNNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouzes, Richard T.; Mace, Emily K.; Redding, Rebecca L.
2009-01-26
Symetrica is a small company based in Southampton, England, that has developed an algorithm for processing gamma ray spectra obtained from a variety of scintillation detectors. Their analysis method applied to NaI(Tl), BGO, and LaBr spectra results in deconvoluted spectra with the “resolution” improved by about a factor of three to four. This method has also been applied by Symetrica to plastic scintillator with the result that full energy peaks are produced. If this method is valid and operationally viable, it could lead to a significantly improved plastic scintillator based radiation portal monitor system.
NASA Technical Reports Server (NTRS)
Plassman, Gerald E.
2005-01-01
This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition (SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms. The report also presents a survey of alternative algorithms, including partial SVD's special case SVD's, and others developed for concurrent processing systems.
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
NASA Astrophysics Data System (ADS)
Sapia, Mark Angelo
2000-11-01
Three-dimensional microscope images typically suffer from reduced resolution due to the effects of convolution, optical aberrations and out-of-focus blurring. Two- dimensional ultrasound images are also degraded by convolutional bluffing and various sources of noise. Speckle noise is a major problem in ultrasound images. In microscopy and ultrasound, various methods of digital filtering have been used to improve image quality. Several methods of deconvolution filtering have been used to improve resolution by reversing the convolutional effects, many of which are based on regularization techniques and non-linear constraints. The technique discussed here is a unique linear filter for deconvolving 3D fluorescence microscopy or 2D ultrasound images. The process is to solve for the filter completely in the spatial-domain using an adaptive algorithm to converge to an optimum solution for de-blurring and resolution improvement. There are two key advantages of using an adaptive solution: (1)it efficiently solves for the filter coefficients by taking into account all sources of noise and degraded resolution at the same time, and (2)achieves near-perfect convergence to the ideal linear deconvolution filter. This linear adaptive technique has other advantages such as avoiding artifacts of frequency-domain transformations and concurrent adaptation to suppress noise. Ultimately, this approach results in better signal-to-noise characteristics with virtually no edge-ringing. Many researchers have not adopted linear techniques because of poor convergence, noise instability and negative valued data in the results. The methods presented here overcome many of these well-documented disadvantages and provide results that clearly out-perform other linear methods and may also out-perform regularization and constrained algorithms. In particular, the adaptive solution is most responsible for overcoming the poor performance associated with linear techniques. This linear adaptive approach to deconvolution is demonstrated with results of restoring blurred phantoms for both microscopy and ultrasound and restoring 3D microscope images of biological cells and 2D ultrasound images of human subjects (courtesy of General Electric and Diasonics, Inc.).
1984-06-01
and shift varying deblurring of images. mui W AcCOan~MP ins Several of the techniques which have been investigated under this work unit are based upon...concern with the use of these iterative algorithms for deconvolution is the effect of noise on the restoration. In the absence of constraints on the...perform badly in the presence of broadband noise . An ad A hoc procedure which improves performance is to prefilter the data to enhance the signal-to
Full cycle rapid scan EPR deconvolution algorithm.
Tseytlin, Mark
2017-08-01
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan. Copyright © 2017 Elsevier Inc. All rights reserved.
Full cycle rapid scan EPR deconvolution algorithm
NASA Astrophysics Data System (ADS)
Tseytlin, Mark
2017-08-01
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.
Blind deconvolution of 2-D and 3-D fluorescent micrographs
NASA Astrophysics Data System (ADS)
Krishnamurthi, Vijaykumar; Liu, Yi-Hwa; Holmes, Timothy J.; Roysam, Badrinath; Turner, James N.
1992-06-01
This paper presents recent results of our reconstructions of 3-D data from Drosophila chromosomes as well as our simulations with a refined version of the algorithm used in the former. It is well known that the calibration of the point spread function (PSF) of a fluorescence microscope is a tedious process and involves esoteric techniques in most cases. This problem is further compounded in the case of confocal microscopy where the measured intensities are usually low. A number of techniques have been developed to solve this problem, all of which are methods in blind deconvolution. These are so called because the measured PSF is not required in the deconvolution of degraded images from any optical system. Our own efforts in this area involved the maximum likelihood (ML) method, the numerical solution to which is obtained by the expectation maximization (EM) algorithm. Based on the reasonable early results obtained during our simulations with 2-D phantoms, we carried out experiments with real 3-D data. We found that the blind deconvolution method using the ML approach gave reasonable reconstructions. Next we tried to perform the reconstructions using some 2-D data, but we found that the results were not encouraging. We surmised that the poor reconstructions were primarily due to the large values of dark current in the input data. This, coupled with the fact that we are likely to have similar data with considerable dark current from a confocal microscope prompted us to look into ways of constraining the solution of the PSF. We observed that in the 2-D case, the reconstructed PSF has a tendency to retain values larger than those of the theoretical PSF in regions away from the center (outside of those we considered to be its region of support). This observation motivated us to apply an upper bound constraint on the PSF in these regions. Furthermore, we constrain the solution of the PSF to be a bandlimited function, as in the case in the true situation. We have derived two separate approaches for implementing the constraint. One approach involves the mathematical rigors of Lagrange multipliers. This approach is discussed in another paper. The second approach involves an adaptation of the Gershberg Saxton algorithm, which ensures bandlimitedness and non-negativity of the PSF. Although the latter approach is mathematically less rigorous than the former, we currently favor it because it has a simpler implementation on a computer and has smaller memory requirements. The next section describes briefly the theory and derivation of these constraint equations using Lagrange multipliers.
NASA Astrophysics Data System (ADS)
Asfahani, J.; Tlas, M.
2015-10-01
An easy and practical method for interpreting residual gravity anomalies due to simple geometrically shaped models such as cylinders and spheres has been proposed in this paper. This proposed method is based on both the deconvolution technique and the simplex algorithm for linear optimization to most effectively estimate the model parameters, e.g., the depth from the surface to the center of a buried structure (sphere or horizontal cylinder) or the depth from the surface to the top of a buried object (vertical cylinder), and the amplitude coefficient from the residual gravity anomaly profile. The method was tested on synthetic data sets corrupted by different white Gaussian random noise levels to demonstrate the capability and reliability of the method. The results acquired show that the estimated parameter values derived by this proposed method are close to the assumed true parameter values. The validity of this method is also demonstrated using real field residual gravity anomalies from Cuba and Sweden. Comparable and acceptable agreement is shown between the results derived by this method and those derived from real field data.
A Comparative Study of Different Deblurring Methods Using Filters
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Kavitha, S.
2011-12-01
This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.
STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission
NASA Astrophysics Data System (ADS)
Knollmüller, Jakob; Frank, Philipp; Ensslin, Torsten A.
2018-05-01
STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.
Analysis of the glow curve of SrB 4O 7:Dy compounds employing the GOT model
NASA Astrophysics Data System (ADS)
Ortega, F.; Molina, P.; Santiago, M.; Spano, F.; Lester, M.; Caselli, E.
2006-02-01
The glow curve of SrB 4O 7:Dy phosphors has been analysed with the general one trap model (GOT). To solve the differential equation describing the GOT model a novel algorithm has been employed, which reduces significantly the deconvolution time with respect to the time required by usual integration algorithms, such as the Runge-Kutta method.
Bilinear Inverse Problems: Theory, Algorithms, and Applications
NASA Astrophysics Data System (ADS)
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical guarantees and stability theory are derived and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.
Windprofiler optimization using digital deconvolution procedures
NASA Astrophysics Data System (ADS)
Hocking, W. K.; Hocking, A.; Hocking, D. G.; Garbanzo-Salas, M.
2014-10-01
Digital improvements to data acquisition procedures used for windprofiler radars have the potential for improving the height coverage at optimum resolution, and permit improved height resolution. A few newer systems already use this capability. Real-time deconvolution procedures offer even further optimization, and this has not been effectively employed in recent years. In this paper we demonstrate the advantages of combining these features, with particular emphasis on the advantages of real-time deconvolution. Using several multi-core CPUs, we have been able to achieve speeds of up to 40 GHz from a standard commercial motherboard, allowing data to be digitized and processed without the need for any type of hardware except for a transmitter (and associated drivers), a receiver and a digitizer. No Digital Signal Processor chips are needed, allowing great flexibility with analysis algorithms. By using deconvolution procedures, we have then been able to not only optimize height resolution, but also have been able to make advances in dealing with spectral contaminants like ground echoes and other near-zero-Hz spectral contamination. Our results also demonstrate the ability to produce fine-resolution measurements, revealing small-scale structures within the backscattered echoes that were previously not possible to see. Resolutions of 30 m are possible for VHF radars. Furthermore, our deconvolution technique allows the removal of range-aliasing effects in real time, a major bonus in many instances. Results are shown using new radars in Canada and Costa Rica.
Polarimeter Blind Deconvolution Using Image Diversity
2007-09-01
significant presence when imaging through turbulence and its ease of production in the labora- tory. An innovative algorithm for detection and estimation...1.2.2.2 Atmospheric Turbulence . Atmospheric turbulence spatially distorts the wavefront as light passes through it and causes blurring of images in an...intensity image . Various values of β are used in the experiments. The optimal β value varied with the input and the algorithm . The hybrid seemed to
Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion
2009-01-01
Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051
Sparse-view proton computed tomography using modulated proton beams.
Lee, Jiseoc; Kim, Changhwan; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong; Cho, Seungryong
2015-02-01
Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method-projection onto convex sets (SM-POCS), superiorization method-expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed within 1% error. EM-based algorithms produced an increased image noise and RMSE as the iteration reaches about 20, while the POCS-based algorithms showed a monotonic convergence with iterations. The ASD-POCS algorithm outperformed the others in terms of CNR, RMSE, and the accuracy of the reconstructed relative stopping power in the region of lung and soft tissues. The four iterative algorithms, i.e., ASD-POCS, SM-POCS, SM-EM, and EM-TV, have been developed and applied for proton CT image reconstruction. Although it still seems that the images need to be improved for practical applications to the treatment planning, proton CT imaging by use of the modulated beams in sparse-view sampling has demonstrated its feasibility.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
A time reversal algorithm in acoustic media with Dirac measure approximations
NASA Astrophysics Data System (ADS)
Bretin, Élie; Lucas, Carine; Privat, Yannick
2018-04-01
This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.
NASA Astrophysics Data System (ADS)
Navarro, Jorge
The goal of this study presented is to determine the best available nondestructive technique necessary to collect validation data as well as to determine burnup and cooling time of the fuel elements on-site at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal, the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements nondestructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed were used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results, it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however, in order to enhance the quality of the spectra collected using this scintillator, a deconvolution method was developed. Following the development of the deconvolution method for ATR applications, the technique was tested using one-isotope, multi-isotope, and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr 3 detector in an above the water configuration and deconvolution algorithms.
Non-stationary blind deconvolution of medical ultrasound scans
NASA Astrophysics Data System (ADS)
Michailovich, Oleg V.
2017-03-01
In linear approximation, the formation of a radio-frequency (RF) ultrasound image can be described based on a standard convolution model in which the image is obtained as a result of convolution of the point spread function (PSF) of the ultrasound scanner in use with a tissue reflectivity function (TRF). Due to the band-limited nature of the PSF, the RF images can only be acquired at a finite spatial resolution, which is often insufficient for proper representation of the diagnostic information contained in the TRF. One particular way to alleviate this problem is by means of image deconvolution, which is usually performed in a "blind" mode, when both PSF and TRF are estimated at the same time. Despite its proven effectiveness, blind deconvolution (BD) still suffers from a number of drawbacks, chief among which stems from its dependence on a stationary convolution model, which is incapable of accounting for the spatial variability of the PSF. As a result, virtually all existing BD algorithms are applied to localized segments of RF images. In this work, we introduce a novel method for non-stationary BD, which is capable of recovering the TRF concurrently with the spatially variable PSF. Particularly, our approach is based on semigroup theory which allows one to describe the effect of such a PSF in terms of the action of a properly defined linear semigroup. The approach leads to a tractable optimization problem, which can be solved using standard numerical methods. The effectiveness of the proposed solution is supported by experiments with in vivo ultrasound data.
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
Septal penetration correction in I-131 imaging following thyroid cancer treatment
NASA Astrophysics Data System (ADS)
Barrack, Fiona; Scuffham, James; McQuaid, Sarah
2018-04-01
Whole body gamma camera images acquired after I-131 treatment for thyroid cancer can suffer from collimator septal penetration artefacts because of the high energy of the gamma photons. This results in the appearance of ‘spoke’ artefacts, emanating from regions of high activity concentration, caused by the non-isotropic attenuation of the collimator. Deconvolution has the potential to reduce such artefacts, by taking into account the non-Gaussian point-spread-function (PSF) of the system. A Richardson–Lucy deconvolution algorithm, with and without prior scatter-correction was tested as a method of reducing septal penetration in planar gamma camera images. Phantom images (hot spheres within a warm background) were acquired and deconvolution using a measured PSF was applied. The results were evaluated through region-of-interest and line profile analysis to determine the success of artefact reduction and the optimal number of deconvolution iterations and damping parameter (λ). Without scatter-correction, the optimal results were obtained with 15 iterations and λ = 0.01, with the counts in the spokes reduced to 20% of the original value, indicating a substantial decrease in their prominence. When a triple-energy-window scatter-correction was applied prior to deconvolution, the optimal results were obtained with six iterations and λ = 0.02, which reduced the spoke counts to 3% of the original value. The prior application of scatter-correction therefore produced the best results, with a marked change in the appearance of the images. The optimal settings were then applied to six patient datasets, to demonstrate its utility in the clinical setting. In all datasets, spoke artefacts were substantially reduced after the application of scatter-correction and deconvolution, with the mean spoke count being reduced to 10% of the original value. This indicates that deconvolution is a promising technique for septal penetration artefact reduction that could potentially improve the diagnostic accuracy of I-131 imaging. Novelty and significance This work has demonstrated that scatter correction combined with deconvolution can be used to substantially reduce the appearance of septal penetration artefacts in I-131 phantom and patient gamma camera planar images, enable improved visualisation of the I-131 distribution. Deconvolution with symmetric PSF has previously been used to reduce artefacts in gamma camera images however this work details the novel use of an asymmetric PSF to remove the angularly dependent septal penetration artefacts.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
Marciano, Michael A; Adelman, Jonathan D
2017-03-01
The deconvolution of DNA mixtures remains one of the most critical challenges in the field of forensic DNA analysis. In addition, of all the data features required to perform such deconvolution, the number of contributors in the sample is widely considered the most important, and, if incorrectly chosen, the most likely to negatively influence the mixture interpretation of a DNA profile. Unfortunately, most current approaches to mixture deconvolution require the assumption that the number of contributors is known by the analyst, an assumption that can prove to be especially faulty when faced with increasingly complex mixtures of 3 or more contributors. In this study, we propose a probabilistic approach for estimating the number of contributors in a DNA mixture that leverages the strengths of machine learning. To assess this approach, we compare classification performances of six machine learning algorithms and evaluate the model from the top-performing algorithm against the current state of the art in the field of contributor number classification. Overall results show over 98% accuracy in identifying the number of contributors in a DNA mixture of up to 4 contributors. Comparative results showed 3-person mixtures had a classification accuracy improvement of over 6% compared to the current best-in-field methodology, and that 4-person mixtures had a classification accuracy improvement of over 20%. The Probabilistic Assessment for Contributor Estimation (PACE) also accomplishes classification of mixtures of up to 4 contributors in less than 1s using a standard laptop or desktop computer. Considering the high classification accuracy rates, as well as the significant time commitment required by the current state of the art model versus seconds required by a machine learning-derived model, the approach described herein provides a promising means of estimating the number of contributors and, subsequently, will lead to improved DNA mixture interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Improving resolution of crosswell seismic section based on time-frequency analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, H.; Li, Y.
1994-12-31
According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less
Gong, Ting; Szustakowski, Joseph D
2013-04-15
For heterogeneous tissues, measurements of gene expression through mRNA-Seq data are confounded by relative proportions of cell types involved. In this note, we introduce an efficient pipeline: DeconRNASeq, an R package for deconvolution of heterogeneous tissues based on mRNA-Seq data. It adopts a globally optimized non-negative decomposition algorithm through quadratic programming for estimating the mixing proportions of distinctive tissue types in next-generation sequencing data. We demonstrated the feasibility and validity of DeconRNASeq across a range of mixing levels and sources using mRNA-Seq data mixed in silico at known concentrations. We validated our computational approach for various benchmark data, with high correlation between our predicted cell proportions and the real fractions of tissues. Our study provides a rigorous, quantitative and high-resolution tool as a prerequisite to use mRNA-Seq data. The modularity of package design allows an easy deployment of custom analytical pipelines for data from other high-throughput platforms. DeconRNASeq is written in R, and is freely available at http://bioconductor.org/packages. Supplementary data are available at Bioinformatics online.
Monaural Sound Localization Based on Reflective Structure and Homomorphic Deconvolution
Park, Yeonseok; Choi, Anthony
2017-01-01
The asymmetric structure around the receiver provides a particular time delay for the specific incoming propagation. This paper designs a monaural sound localization system based on the reflective structure around the microphone. The reflective plates are placed to present the direction-wise time delay, which is naturally processed by convolutional operation with a sound source. The received signal is separated for estimating the dominant time delay by using homomorphic deconvolution, which utilizes the real cepstrum and inverse cepstrum sequentially to derive the propagation response’s autocorrelation. Once the localization system accurately estimates the information, the time delay model computes the corresponding reflection for localization. Because of the structure limitation, two stages of the localization process perform the estimation procedure as range and angle. The software toolchain from propagation physics and algorithm simulation realizes the optimal 3D-printed structure. The acoustic experiments in the anechoic chamber denote that 79.0% of the study range data from the isotropic signal is properly detected by the response value, and 87.5% of the specific direction data from the study range signal is properly estimated by the response time. The product of both rates shows the overall hit rate to be 69.1%. PMID:28946625
The volatile compound BinBase mass spectral database.
Skogerson, Kirsten; Wohlgemuth, Gert; Barupal, Dinesh K; Fiehn, Oliver
2011-08-04
Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement.
The volatile compound BinBase mass spectral database
2011-01-01
Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). Conclusions The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement. PMID:21816034
Estimation of neutron energy distributions from prompt gamma emissions
NASA Astrophysics Data System (ADS)
Panikkath, Priyada; Udupi, Ashwini; Sarkar, P. K.
2017-11-01
A technique of estimating the incident neutron energy distribution from emitted prompt gamma intensities from a system exposed to neutrons is presented. The emitted prompt gamma intensities or the measured photo peaks in a gamma detector are related to the incident neutron energy distribution through a convolution of the response of the system generating the prompt gammas to mono-energetic neutrons. Presently, the system studied is a cylinder of high density polyethylene (HDPE) placed inside another cylinder of borated HDPE (BHDPE) having an outer Pb-cover and exposed to neutrons. The emitted five prompt gamma peaks from hydrogen, boron, carbon and lead can be utilized to unfold the incident neutron energy distribution as an under-determined deconvolution problem. Such an under-determined set of equations are solved using the genetic algorithm based Monte Carlo de-convolution code GAMCD. Feasibility of the proposed technique is demonstrated theoretically using the Monte Carlo calculated response matrix and intensities of emitted prompt gammas from the Pb-covered BHDPE-HDPE system in the case of several incident neutron spectra spanning different energy ranges.
Eddy-Current Sensors with Asymmetrical Point Spread Function
Gajda, Janusz; Stencel, Marek
2016-01-01
This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm. PMID:27782033
Eddy-Current Sensors with Asymmetrical Point Spread Function.
Gajda, Janusz; Stencel, Marek
2016-10-04
This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.
Fruit fly optimization based least square support vector regression for blind image restoration
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.
NASA Technical Reports Server (NTRS)
Ioup, G. E.; Ioup, J. W.
1985-01-01
Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.
Two-Photon Excitation STED Microscopy with Time-Gated Detection
Coto Hernández, Iván; Castello, Marco; Lanzanò, Luca; d’Amora, Marta; Bianchini, Paolo; Diaspro, Alberto; Vicidomini, Giuseppe
2016-01-01
We report on a novel two-photon excitation stimulated emission depletion (2PE-STED) microscope based on time-gated detection. The time-gated detection allows for the effective silencing of the fluorophores using moderate stimulated emission beam intensity. This opens the possibility of implementing an efficient 2PE-STED microscope with a stimulated emission beam running in a continuous-wave. The continuous-wave stimulated emission beam tempers the laser architecture’s complexity and cost, but the time-gated detection degrades the signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) of the image. We recover the SNR and the SBR through a multi-image deconvolution algorithm. Indeed, the algorithm simultaneously reassigns early-photons (normally discarded by the time-gated detection) to their original positions and removes the background induced by the stimulated emission beam. We exemplify the benefits of this implementation by imaging sub-cellular structures. Finally, we discuss of the extension of this algorithm to future all-pulsed 2PE-STED implementationd based on time-gated detection and a nanosecond laser source. PMID:26757892
Domingo-Almenara, Xavier; Brezmes, Jesus; Vinaixa, Maria; Samino, Sara; Ramirez, Noelia; Ramon-Krauel, Marta; Lerin, Carles; Díaz, Marta; Ibáñez, Lourdes; Correig, Xavier; Perera-Lluna, Alexandre; Yanes, Oscar
2016-10-04
Gas chromatography coupled to mass spectrometry (GC/MS) has been a long-standing approach used for identifying small molecules due to the highly reproducible ionization process of electron impact ionization (EI). However, the use of GC-EI MS in untargeted metabolomics produces large and complex data sets characterized by coeluting compounds and extensive fragmentation of molecular ions caused by the hard electron ionization. In order to identify and extract quantitative information on metabolites across multiple biological samples, integrated computational workflows for data processing are needed. Here we introduce eRah, a free computational tool written in the open language R composed of five core functions: (i) noise filtering and baseline removal of GC/MS chromatograms, (ii) an innovative compound deconvolution process using multivariate analysis techniques based on compound match by local covariance (CMLC) and orthogonal signal deconvolution (OSD), (iii) alignment of mass spectra across samples, (iv) missing compound recovery, and (v) identification of metabolites by spectral library matching using publicly available mass spectra. eRah outputs a table with compound names, matching scores and the integrated area of compounds for each sample. The automated capabilities of eRah are demonstrated by the analysis of GC-time-of-flight (TOF) MS data from plasma samples of adolescents with hyperinsulinaemic androgen excess and healthy controls. The quantitative results of eRah are compared to centWave, the peak-picking algorithm implemented in the widely used XCMS package, MetAlign, and ChromaTOF software. Significantly dysregulated metabolites are further validated using pure standards and targeted analysis by GC-triple quadrupole (QqQ) MS, LC-QqQ, and NMR. eRah is freely available at http://CRAN.R-project.org/package=erah .
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.
2016-01-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R
2016-11-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Jorge
2013-12-01
The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent tomore » the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.« less
Kim, Min-Gab; Kim, Jin-Yong
2018-05-01
In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.
Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.
Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J
2018-04-16
Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas
1992-07-01
Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.
Evaluation of deconvolution modelling applied to numerical combustion
NASA Astrophysics Data System (ADS)
Mehl, Cédric; Idier, Jérôme; Fiorina, Benoît
2018-01-01
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.
Spatial studies of planetary nebulae with IRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, G.W.; Zuckerman, B.
1991-06-01
The infrared sizes at the four IRAS wavelengths of 57 planetaries, most with 20-60 arcsec optical size, are derived from spatial deconvolution of one-dimensional survey mode scans. Survey observations from multiple detectors and hours confirmed (HCON) observations are combined to increase the sampling to a rate that is sufficient for successful deconvolution. The Richardson-Lucy deconvolution algorithm is used to obtain an increase in resolution of a factor of about 2 or 3 from the normal IRAS detector sizes of 45, 45, 90, and 180 arcsec at wavelengths 12, 25, 60, and 100 microns. Most of the planetaries deconvolve at 12more » and 25 microns to sizes equal to or smaller than the optical size. Some of the planetaries with optical rings 60 arcsec or more in diameter show double-peaked IRAS profiles. Many, such as NGC 6720 and NGC 6543 show all infrared sizes equal to the optical size, while others indicate increasing infrared size with wavelength. Deconvolved IRAS profiles are presented for the 57 planetaries at nearly all wavelengths where IRAS flux densities are 1-2 Jy or higher. 60 refs.« less
A stopping criterion to halt iterations at the Richardson-Lucy deconvolution of radiographic images
NASA Astrophysics Data System (ADS)
Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.
2015-07-01
Radiographic images, as any experimentally acquired ones, are affected by spoiling agents which degrade their final quality. The degradation caused by agents of systematic character, can be reduced by some kind of treatment such as an iterative deconvolution. This approach requires two parameters, namely the system resolution and the best number of iterations in order to achieve the best final image. This work proposes a novel procedure to estimate the best number of iterations, which replaces the cumbersome visual inspection by a comparison of numbers. These numbers are deduced from the image histograms, taking into account the global difference G between them for two subsequent iterations. The developed algorithm, including a Richardson-Lucy deconvolution procedure has been embodied into a Fortran program capable to plot the 1st derivative of G as the processing progresses and to stop it automatically when this derivative - within the data dispersion - reaches zero. The radiograph of a specially chosen object acquired with thermal neutrons from the Argonauta research reactor at Institutode Engenharia Nuclear - CNEN, Rio de Janeiro, Brazil, have undergone this treatment with fair results.
MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra
NASA Astrophysics Data System (ADS)
Reid, Deseree J.; Diesing, Jessica M.; Miller, Matthew A.; Perry, Scott M.; Wales, Jessica A.; Montfort, William R.; Marty, Michael T.
2018-04-01
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. [Figure not available: see fulltext.
Comparison of image deconvolution algorithms on simulated and laboratory infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, D.
1994-11-15
We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.
A new method to analyze UV stellar occultation data
NASA Astrophysics Data System (ADS)
Evdokimova, D.; Baggio, L.; Montmessin, F.; Belyaev, D.; Bertaux, J.-L.
2017-09-01
In this paper we present a new method of data processing and a classification of different types of stray light at SPICAV UV stellar occultations. The method was developed on a basis of Richardson-Lucy algorithm including: (a) deconvolution process of measured star light and (b) separation of extra emissions registered by the spectrometer.
NASA Astrophysics Data System (ADS)
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
NASA Astrophysics Data System (ADS)
de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode
2017-01-01
Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.
A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry
NASA Astrophysics Data System (ADS)
Wang, Chisheng; Li, Qingquan; Liu, Yanxiong; Wu, Guofeng; Liu, Peng; Ding, Xiaoli
2015-03-01
Due to the low-cost and lightweight units, single-wavelength LiDAR bathymetric systems are an ideal option for shallow-water (<12 m) bathymetry. However, one disadvantage of such systems is the lack of near-infrared and Raman channels, which results in difficulties in extracting the water surface. Therefore, the choice of a suitable waveform processing method is extremely important to guarantee the accuracy of the bathymetric retrieval. In this paper, we test six algorithms for single-wavelength bathymetric waveform processing, i.e. peak detection (PD), the average square difference function (ASDF), Gaussian decomposition (GD), quadrilateral fitting (QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). To date, most of these algorithms have previously only been applied in topographic LiDAR waveforms captured over land. A simulated dataset and an Optech Aquarius dataset were used to assess the algorithms, with the focus being on their capability of extracting the depth and the bottom response. The influences of a number of water and equipment parameters were also investigated by the use of a Monte Carlo method. The results showed that the RLD method had a superior performance in terms of a high detection rate and low errors in the retrieved depth and magnitude. The attenuation coefficient, noise level, water depth, and bottom reflectance had significant influences on the measurement error of the retrieved depth, while the effects of scan angle and water surface roughness were not so obvious.
Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.
Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona
2016-05-31
Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.
He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan
2018-01-01
Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.
2000-01-01
We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.
PSF reconstruction for Compton-based prompt gamma imaging
NASA Astrophysics Data System (ADS)
Jan, Meei-Ling; Lee, Ming-Wei; Huang, Hsuan-Ming
2018-02-01
Compton-based prompt gamma (PG) imaging has been proposed for in vivo range verification in proton therapy. However, several factors degrade the image quality of PG images, some of which are due to inherent properties of a Compton camera such as spatial resolution and energy resolution. Moreover, Compton-based PG imaging has a spatially variant resolution loss. In this study, we investigate the performance of the list-mode ordered subset expectation maximization algorithm with a shift-variant point spread function (LM-OSEM-SV-PSF) model. We also evaluate how well the PG images reconstructed using an SV-PSF model reproduce the distal falloff of the proton beam. The SV-PSF parameters were estimated from simulation data of point sources at various positions. Simulated PGs were produced in a water phantom irradiated with a proton beam. Compared to the LM-OSEM algorithm, the LM-OSEM-SV-PSF algorithm improved the quality of the reconstructed PG images and the estimation of PG falloff positions. In addition, the 4.44 and 5.25 MeV PG emissions can be accurately reconstructed using the LM-OSEM-SV-PSF algorithm. However, for the 2.31 and 6.13 MeV PG emissions, the LM-OSEM-SV-PSF reconstruction provides limited improvement. We also found that the LM-OSEM algorithm followed by a shift-variant Richardson-Lucy deconvolution could reconstruct images with quality visually similar to the LM-OSEM-SV-PSF-reconstructed images, while requiring shorter computation time.
Inverting Monotonic Nonlinearities by Entropy Maximization
López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261
Inverting Monotonic Nonlinearities by Entropy Maximization.
Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
GASPACHO: a generic automatic solver using proximal algorithms for convex huge optimization problems
NASA Astrophysics Data System (ADS)
Goossens, Bart; Luong, Hiêp; Philips, Wilfried
2017-08-01
Many inverse problems (e.g., demosaicking, deblurring, denoising, image fusion, HDR synthesis) share various similarities: degradation operators are often modeled by a specific data fitting function while image prior knowledge (e.g., sparsity) is incorporated by additional regularization terms. In this paper, we investigate automatic algorithmic techniques for evaluating proximal operators. These algorithmic techniques also enable efficient calculation of adjoints from linear operators in a general matrix-free setting. In particular, we study the simultaneous-direction method of multipliers (SDMM) and the parallel proximal algorithm (PPXA) solvers and show that the automatically derived implementations are well suited for both single-GPU and multi-GPU processing. We demonstrate this approach for an Electron Microscopy (EM) deconvolution problem.
A distance-driven deconvolution method for CT image-resolution improvement
NASA Astrophysics Data System (ADS)
Han, Seokmin; Choi, Kihwan; Yoo, Sang Wook; Yi, Jonghyon
2016-12-01
The purpose of this research is to achieve high spatial resolution in CT (computed tomography) images without hardware modification. The main idea is to consider geometry optics model, which can provide the approximate blurring PSF (point spread function) kernel, which varies according to the distance from the X-ray tube to each point. The FOV (field of view) is divided into several band regions based on the distance from the X-ray source, and each region is deconvolved with a different deconvolution kernel. As the number of subbands increases, the overshoot of the MTF (modulation transfer function) curve increases first. After that, the overshoot begins to decrease while still showing a larger MTF than the normal FBP (filtered backprojection). The case of five subbands seems to show balanced performance between MTF boost and overshoot minimization. It can be seen that, as the number of subbands increases, the noise (STD) can be seen to show a tendency to decrease. The results shows that spatial resolution in CT images can be improved without using high-resolution detectors or focal spot wobbling. The proposed algorithm shows promising results in improving spatial resolution while avoiding excessive noise boost.
NASA Astrophysics Data System (ADS)
Jeffs, Brian D.; Christou, Julian C.
1998-09-01
This paper addresses post processing for resolution enhancement of sequences of short exposure adaptive optics (AO) images of space objects. The unknown residual blur is removed using Bayesian maximum a posteriori blind image restoration techniques. In the problem formulation, both the true image and the unknown blur psf's are represented by the flexible generalized Gaussian Markov random field (GGMRF) model. The GGMRF probability density function provides a natural mechanism for expressing available prior information about the image and blur. Incorporating such prior knowledge in the deconvolution optimization is crucial for the success of blind restoration algorithms. For example, space objects often contain sharp edge boundaries and geometric structures, while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits smoothed, random , texture-like features on a peaked central core. By properly choosing parameters, GGMRF models can accurately represent both the blur psf and the object, and serve to regularize the deconvolution problem. These two GGMRF models also serve as discriminator functions to separate blur and object in the solution. Algorithm performance is demonstrated with examples from synthetic AO images. Results indicate significant resolution enhancement when applied to partially corrected AO images. An efficient computational algorithm is described.
A frequency-domain seismic blind deconvolution based on Gini correlations
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Zhang, Bing; Gao, Jinghuai; Huo Liu, Qing
2018-02-01
In reflection seismic processing, the seismic blind deconvolution is a challenging problem, especially when the signal-to-noise ratio (SNR) of the seismic record is low and the length of the seismic record is short. As a solution to this ill-posed inverse problem, we assume that the reflectivity sequence is independent and identically distributed (i.i.d.). To infer the i.i.d. relationships from seismic data, we first introduce the Gini correlations (GCs) to construct a new criterion for the seismic blind deconvolution in the frequency-domain. Due to a unique feature, the GCs are robust in their higher tolerance of the low SNR data and less dependent on record length. Applications of the seismic blind deconvolution based on the GCs show their capacity in estimating the unknown seismic wavelet and the reflectivity sequence, whatever synthetic traces or field data, even with low SNR and short sample record.
Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL).
Koestler, Devin C; Jones, Meaghan J; Usset, Joseph; Christensen, Brock C; Butler, Rondi A; Kobor, Michael S; Wiencke, John K; Kelsey, Karl T
2016-03-08
Confounding due to cellular heterogeneity represents one of the foremost challenges currently facing Epigenome-Wide Association Studies (EWAS). Statistical methods leveraging the tissue-specificity of DNA methylation for deconvoluting the cellular mixture of heterogenous biospecimens offer a promising solution, however the performance of such methods depends entirely on the library of methylation markers being used for deconvolution. Here, we introduce a novel algorithm for Identifying Optimal Libraries (IDOL) that dynamically scans a candidate set of cell-specific methylation markers to find libraries that optimize the accuracy of cell fraction estimates obtained from cell mixture deconvolution. Application of IDOL to training set consisting of samples with both whole-blood DNA methylation data (Illumina HumanMethylation450 BeadArray (HM450)) and flow cytometry measurements of cell composition revealed an optimized library comprised of 300 CpG sites. When compared existing libraries, the library identified by IDOL demonstrated significantly better overall discrimination of the entire immune cell landscape (p = 0.038), and resulted in improved discrimination of 14 out of the 15 pairs of leukocyte subtypes. Estimates of cell composition across the samples in the training set using the IDOL library were highly correlated with their respective flow cytometry measurements, with all cell-specific R (2)>0.99 and root mean square errors (RMSEs) ranging from [0.97 % to 1.33 %] across leukocyte subtypes. Independent validation of the optimized IDOL library using two additional HM450 data sets showed similarly strong prediction performance, with all cell-specific R (2)>0.90 and R M S E<4.00 %. In simulation studies, adjustments for cell composition using the IDOL library resulted in uniformly lower false positive rates compared to competing libraries, while also demonstrating an improved capacity to explain epigenome-wide variation in DNA methylation within two large publicly available HM450 data sets. Despite consisting of half as many CpGs compared to existing libraries for whole blood mixture deconvolution, the optimized IDOL library identified herein resulted in outstanding prediction performance across all considered data sets and demonstrated potential to improve the operating characteristics of EWAS involving adjustments for cell distribution. In addition to providing the EWAS community with an optimized library for whole blood mixture deconvolution, our work establishes a systematic and generalizable framework for the assembly of libraries that improve the accuracy of cell mixture deconvolution.
An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.
Adabi, Saba; Fotouhi, Audrey; Xu, Qiuyun; Daveluy, Steve; Mehregan, Darius; Podoleanu, Adrian; Nasiriavanaki, Mohammadreza
2018-05-01
Optical coherence tomography (OCT) of skin delivers three-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution modality, OCT images suffer from some artifacts that lead to misinterpretation of tissue structures. Therefore, an overview of methods to mitigate artifacts in OCT imaging of the skin is of paramount importance. Speckle, intensity decay, and blurring are three major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. Two speckle reduction methods (one based on artificial neural network and one based on spatial compounding), an attenuation compensation algorithm (based on Beer-Lambert law) and a deblurring procedure (using deconvolution), are described. Moreover, optical properties extraction algorithm based on extended Huygens-Fresnel (EHF) principle to obtain some additional information from OCT images are discussed. In this short overview, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. The results showed a significant improvement in the visibility of the clinically relevant features in the images. The quality improvement was evaluated using several numerical assessment measures. Clinical dermatologists benefit from using these image enhancement algorithms to improve OCT diagnosis and essentially function as a noninvasive optical biopsy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei
2015-04-11
To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
Linear MALDI-ToF simultaneous spectrum deconvolution and baseline removal.
Picaud, Vincent; Giovannelli, Jean-Francois; Truntzer, Caroline; Charrier, Jean-Philippe; Giremus, Audrey; Grangeat, Pierre; Mercier, Catherine
2018-04-05
Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.
Measuring the electrical properties of soil using a calibrated ground-coupled GPR system
Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.
2008-01-01
Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.
ERIC Educational Resources Information Center
Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.
2005-01-01
A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…
Blind source deconvolution for deep Earth seismology
NASA Astrophysics Data System (ADS)
Stefan, W.; Renaut, R.; Garnero, E. J.; Lay, T.
2007-12-01
We present an approach to automatically estimate an empirical source characterization of deep earthquakes recorded teleseismically and subsequently remove the source from the recordings by applying regularized deconvolution. A principle goal in this work is to effectively deblur the seismograms, resulting in more impulsive and narrower pulses, permitting better constraints in high resolution waveform analyses. Our method consists of two stages: (1) we first estimate the empirical source by automatically registering traces to their 1st principal component with a weighting scheme based on their deviation from this shape, we then use this shape as an estimation of the earthquake source. (2) We compare different deconvolution techniques to remove the source characteristic from the trace. In particular Total Variation (TV) regularized deconvolution is used which utilizes the fact that most natural signals have an underlying spareness in an appropriate basis, in this case, impulsive onsets of seismic arrivals. We show several examples of deep focus Fiji-Tonga region earthquakes for the phases S and ScS, comparing source responses for the separate phases. TV deconvolution is compared to the water level deconvolution, Tikenov deconvolution, and L1 norm deconvolution, for both data and synthetics. This approach significantly improves our ability to study subtle waveform features that are commonly masked by either noise or the earthquake source. Eliminating source complexities improves our ability to resolve deep mantle triplications, waveform complexities associated with possible double crossings of the post-perovskite phase transition, as well as increasing stability in waveform analyses used for deep mantle anisotropy measurements.
Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.
Guerra, Stefania; Facchinetti, Andrea; Sparacino, Giovanni; Nicolao, Giuseppe De; Cobelli, Claudio
2012-06-01
Minimally invasive continuous glucose monitoring (CGM) sensors can greatly help diabetes management. Most of these sensors consist of a needle electrode, placed in the subcutaneous tissue, which measures an electrical current exploiting the glucose-oxidase principle. This current is then transformed to glucose levels after calibrating the sensor on the basis of one, or more, self-monitoring blood glucose (SMBG) samples. In this study, we design and test a real-time signal-enhancement module that, cascaded to the CGM device, improves the quality of its output by a proper postprocessing of the CGM signal. In fact, CGM sensors measure glucose in the interstitium rather than in the blood compartment. We show that this distortion can be compensated by means of a regularized deconvolution procedure relying on a linear regression model that can be updated whenever a pair of suitably sampled SMBG references is collected. Tests performed both on simulated and real data demonstrate a significant accuracy improvement of the CGM signal. Simulation studies also demonstrate the robustness of the method against departures from nominal conditions, such as temporal misplacement of the SMBG samples and uncertainty in the blood-to-interstitium glucose kinetic model. Thanks to its online capabilities, the proposed signal-enhancement algorithm can be used to improve the performance of CGM-based real-time systems such as the hypo/hyper glycemic alert generators or the artificial pancreas.
Source Pulse Estimation of Mine Shock by Blind Deconvolution
NASA Astrophysics Data System (ADS)
Makowski, R.
The objective of seismic signal deconvolution is to extract from the signal information concerning the rockmass or the signal in the source of the shock. In the case of blind deconvolution, we have to extract information regarding both quantities. Many methods of deconvolution made use of in prospective seismology were found to be of minor utility when applied to shock-induced signals recorded in the mines of the Lubin Copper District. The lack of effectiveness should be attributed to the inadequacy of the model on which the methods are based, with respect to the propagation conditions for that type of signal. Each of the blind deconvolution methods involves a number of assumptions; hence, only if these assumptions are fulfilled, we may expect reliable results.Consequently, we had to formulate a different model for the signals recorded in the copper mines of the Lubin District. The model is based on the following assumptions: (1) The signal emitted by the sh ock source is a short-term signal. (2) The signal transmitting system (rockmass) constitutes a parallel connection of elementary systems. (3) The elementary systems are of resonant type. Such a model seems to be justified by the geological structure as well as by the positions of the shock foci and seismometers. The results of time-frequency transformation also support the dominance of resonant-type propagation.Making use of the model, a new method for the blind deconvolution of seismic signals has been proposed. The adequacy of the new model, as well as the efficiency of the proposed method, has been confirmed by the results of blind deconvolution. The slight approximation errors obtained with a small number of approximating elements additionally corroborate the adequacy of the model.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
NASA Astrophysics Data System (ADS)
Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul
2015-09-01
Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.
2012-03-01
geometry of reflection from a smooth (or mirror-like) surface [27]. In passive polarimetry , the angle of polarization (AoP) provides information about... polarimetry for remote sens- ing applications”. Appl. Opt., 45(22):5453–5469, Aug 2006. URL http://ao.osa.org/abstract.cfm?URI=ao-45-22-5453. 27
Robert, Jean-Luc; Erkamp, Ramon; Korukonda, Sanghamithra; Vignon, François; Radulescu, Emil
2015-11-01
In ultrasound imaging, an array of elements is used to image a medium. If part of the array is blocked by an obstacle, or if the array is made from several sub-arrays separated by a gap, grating lobes appear and the image is degraded. The grating lobes are caused by missing spatial frequencies, corresponding to the blocked or non-existing elements. However, in an active imaging system, where elements are used both for transmitting and receiving, the round trip signal is redundant: different pairs of transmit and receive elements carry similar information. It is shown here that, if the gaps are smaller than the active sub-apertures, this redundancy can be used to compensate for the missing signals and recover full resolution. Three algorithms are proposed: one is based on a synthetic aperture method, a second one uses dual-apodization beamforming, and the third one is a radio frequency (RF) data based deconvolution. The algorithms are evaluated on simulated and experimental data sets. An application could be imaging through ribs with a large aperture.
SU-E-I-08: Investigation of Deconvolution Methods for Blocker-Based CBCT Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, C; Jin, M; Ouyang, L
2015-06-15
Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An “ideal” projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used tomore » recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (∼20 RMSE) can achieve 4-fold improvement over the direct method (∼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation compared to the direct method.« less
4Pi microscopy deconvolution with a variable point-spread function.
Baddeley, David; Carl, Christian; Cremer, Christoph
2006-09-20
To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.
MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*
Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying
2016-01-01
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644
Receiver function deconvolution using transdimensional hierarchical Bayesian inference
NASA Astrophysics Data System (ADS)
Kolb, J. M.; Lekić, V.
2014-06-01
Teleseismic waves can convert from shear to compressional (Sp) or compressional to shear (Ps) across impedance contrasts in the subsurface. Deconvolving the parent waveforms (P for Ps or S for Sp) from the daughter waveforms (S for Ps or P for Sp) generates receiver functions which can be used to analyse velocity structure beneath the receiver. Though a variety of deconvolution techniques have been developed, they are all adversely affected by background and signal-generated noise. In order to take into account the unknown noise characteristics, we propose a method based on transdimensional hierarchical Bayesian inference in which both the noise magnitude and noise spectral character are parameters in calculating the likelihood probability distribution. We use a reversible-jump implementation of a Markov chain Monte Carlo algorithm to find an ensemble of receiver functions whose relative fits to the data have been calculated while simultaneously inferring the values of the noise parameters. Our noise parametrization is determined from pre-event noise so that it approximates observed noise characteristics. We test the algorithm on synthetic waveforms contaminated with noise generated from a covariance matrix obtained from observed noise. We show that the method retrieves easily interpretable receiver functions even in the presence of high noise levels. We also show that we can obtain useful estimates of noise amplitude and frequency content. Analysis of the ensemble solutions produced by our method can be used to quantify the uncertainties associated with individual receiver functions as well as with individual features within them, providing an objective way for deciding which features warrant geological interpretation. This method should make possible more robust inferences on subsurface structure using receiver function analysis, especially in areas of poor data coverage or under noisy station conditions.
Denoised Wigner distribution deconvolution via low-rank matrix completion
Lee, Justin; Barbastathis, George
2016-08-23
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
Denoised Wigner distribution deconvolution via low-rank matrix completion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Justin; Barbastathis, George
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data
Pnevmatikakis, Eftychios A.; Soudry, Daniel; Gao, Yuanjun; Machado, Timothy A.; Merel, Josh; Pfau, David; Reardon, Thomas; Mu, Yu; Lacefield, Clay; Yang, Weijian; Ahrens, Misha; Bruno, Randy; Jessell, Thomas M.; Peterka, Darcy S.; Yuste, Rafael; Paninski, Liam
2016-01-01
SUMMARY We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multineuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data. PMID:26774160
Bayesian least squares deconvolution
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Petit, P.
2015-11-01
Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.
Correspondence regarding Zhong et al., BMC Bioinformatics 2013 Mar 7;14:89.
Kuhn, Alexandre
2014-11-28
Computational expression deconvolution aims to estimate the contribution of individual cell populations to expression profiles measured in samples of heterogeneous composition. Zhong et al. recently proposed Digital Sorting Algorithm (BMC Bioinformatics 2013 Mar 7;14:89) and showed that they could accurately estimate population-specific expression levels and expression differences between two populations. They compared DSA with Population-Specific Expression Analysis (PSEA), a previous deconvolution method that we developed to detect expression changes occurring within the same population between two conditions (e.g. disease versus non-disease). However, Zhong et al. compared PSEA-derived specific expression levels across different cell populations. Specific expression levels obtained with PSEA cannot be directly compared across different populations as they are on a relative scale. They are accurate as we demonstrate by deconvolving the same dataset used by Zhong et al. and, importantly, allow for comparison of population-specific expression across conditions.
An integrated analysis-synthesis array system for spatial sound fields.
Bai, Mingsian R; Hua, Yi-Hsin; Kuo, Chia-Hao; Hsieh, Yu-Hao
2015-03-01
An integrated recording and reproduction array system for spatial audio is presented within a generic framework akin to the analysis-synthesis filterbanks in discrete time signal processing. In the analysis stage, a microphone array "encodes" the sound field by using the plane-wave decomposition. Direction of arrival of plane-wave components that comprise the sound field of interest are estimated by multiple signal classification. Next, the source signals are extracted by using a deconvolution procedure. In the synthesis stage, a loudspeaker array "decodes" the sound field by reconstructing the plane-wave components obtained in the analysis stage. This synthesis stage is carried out by pressure matching in the interior domain of the loudspeaker array. The deconvolution problem is solved by truncated singular value decomposition or convex optimization algorithms. For high-frequency reproduction that suffers from the spatial aliasing problem, vector panning is utilized. Listening tests are undertaken to evaluate the deconvolution method, vector panning, and a hybrid approach that combines both methods to cover frequency ranges below and above the spatial aliasing frequency. Localization and timbral attributes are considered in the subjective evaluation. The results show that the hybrid approach performs the best in overall preference. In addition, there is a trade-off between reproduction performance and the external radiation.
Processing strategy for water-gun seismic data from the Gulf of Mexico
Lee, Myung W.; Hart, Patrick E.; Agena, Warren F.
2000-01-01
In order to study the regional distribution of gas hydrates and their potential relationship to a large-scale sea-fl oor failures, more than 1,300 km of near-vertical-incidence seismic profi les were acquired using a 15-in3 water gun across the upper- and middle-continental slope in the Garden Banks and Green Canyon regions of the Gulf of Mexico. Because of the highly mixed phase water-gun signature, caused mainly by a precursor of the source arriving about 18 ms ahead of the main pulse, a conventional processing scheme based on the minimum phase assumption is not suitable for this data set. A conventional processing scheme suppresses the reverberations and compresses the main pulse, but the failure to suppress precursors results in complex interference between the precursors and primary refl ections, thus obscuring true refl ections. To clearly image the subsurface without interference from the precursors, a wavelet deconvolution based on the mixedphase assumption using variable norm is attempted. This nonminimum- phase wavelet deconvolution compresses a longwave- train water-gun signature into a simple zero-phase wavelet. A second-zero-crossing predictive deconvolution followed by a wavelet deconvolution suppressed variable ghost arrivals attributed to the variable depths of receivers. The processing strategy of using wavelet deconvolution followed by a secondzero- crossing deconvolution resulted in a sharp and simple wavelet and a better defi nition of the polarity of refl ections. Also, the application of dip moveout correction enhanced lateral resolution of refl ections and substantially suppressed coherent noise.
Carnevale Neto, Fausto; Pilon, Alan C; Selegato, Denise M; Freire, Rafael T; Gu, Haiwei; Raftery, Daniel; Lopes, Norberto P; Castro-Gamboa, Ian
2016-01-01
Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.
Carnevale Neto, Fausto; Pilon, Alan C.; Selegato, Denise M.; Freire, Rafael T.; Gu, Haiwei; Raftery, Daniel; Lopes, Norberto P.; Castro-Gamboa, Ian
2016-01-01
Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts. PMID:27747213
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Algorithm for ion beam figuring of low-gradient mirrors.
Jiao, Changjun; Li, Shengyi; Xie, Xuhui
2009-07-20
Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.
Mortensen, Stig B; Klim, Søren; Dammann, Bernd; Kristensen, Niels R; Madsen, Henrik; Overgaard, Rune V
2007-10-01
The non-linear mixed-effects model based on stochastic differential equations (SDEs) provides an attractive residual error model, that is able to handle serially correlated residuals typically arising from structural mis-specification of the true underlying model. The use of SDEs also opens up for new tools for model development and easily allows for tracking of unknown inputs and parameters over time. An algorithm for maximum likelihood estimation of the model has earlier been proposed, and the present paper presents the first general implementation of this algorithm. The implementation is done in Matlab and also demonstrates the use of parallel computing for improved estimation times. The use of the implementation is illustrated by two examples of application which focus on the ability of the model to estimate unknown inputs facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of the insulin secretion rate based on a linear two-compartment model for C-peptide measurements. In the second application the model is extended to also give an estimate of the time varying liver extraction based on both C-peptide and insulin measurements.
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
Huang, Xiaoshuai; Fan, Junchao; Li, Liuju; Liu, Haosen; Wu, Runlong; Wu, Yi; Wei, Lisi; Mao, Heng; Lal, Amit; Xi, Peng; Tang, Liqiang; Zhang, Yunfeng; Liu, Yanmei; Tan, Shan; Chen, Liangyi
2018-06-01
To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy.
Storath, Martin; Rickert, Dennis; Unser, Michael; Weinmann, Andreas
2017-10-01
We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data.
Proteomic Prediction of Breast Cancer Risk: A Cohort Study
2007-03-01
Total 1728 1189 68.81 (c) Data processing. Data analysis was performed using in-house software (Du P , Angeletti RH. Automatic deconvolution of...isotope-resolved mass spectra using variable selection and quantized peptide mass distribution. Anal Chem., 78:3385-92, 2006; P Du, R Sudha, MB...control. Reportable Outcomes So far our publications have been on the development of algorithms for signal processing: 1. Du P , Angeletti RH
Two-photon speckle illumination for super-resolution microscopy.
Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne
2018-06-01
We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.
Improving space debris detection in GEO ring using image deconvolution
NASA Astrophysics Data System (ADS)
Núñez, Jorge; Núñez, Anna; Montojo, Francisco Javier; Condominas, Marta
2015-07-01
In this paper we present a method based on image deconvolution to improve the detection of space debris, mainly in the geostationary ring. Among the deconvolution methods we chose the iterative Richardson-Lucy (R-L), as the method that achieves better goals with a reasonable amount of computation. For this work, we used two sets of real 4096 × 4096 pixel test images obtained with the Telescope Fabra-ROA at Montsec (TFRM). Using the first set of data, we establish the optimal number of iterations in 7, and applying the R-L method with 7 iterations to the images, we show that the astrometric accuracy does not vary significantly while the limiting magnitude of the deconvolved images increases significantly compared to the original ones. The increase is in average about 1.0 magnitude, which means that objects up to 2.5 times fainter can be detected after deconvolution. The application of the method to the second set of test images, which includes several faint objects, shows that, after deconvolution, up to four previously undetected faint objects are detected in a single frame. Finally, we carried out a study of some economic aspects of applying the deconvolution method, showing that an important economic impact can be envisaged.
Simulation Study of Effects of the Blind Deconvolution on Ultrasound Image
NASA Astrophysics Data System (ADS)
He, Xingwu; You, Junchen
2018-03-01
Ultrasonic image restoration is an essential subject in Medical Ultrasound Imaging. However, without enough and precise system knowledge, some traditional image restoration methods based on the system prior knowledge often fail to improve the image quality. In this paper, we use the simulated ultrasound image to find the effectiveness of the blind deconvolution method for ultrasound image restoration. Experimental results demonstrate that the blind deconvolution method can be applied to the ultrasound image restoration and achieve the satisfactory restoration results without the precise prior knowledge, compared with the traditional image restoration method. And with the inaccurate small initial PSF, the results shows blind deconvolution could improve the overall image quality of ultrasound images, like much better SNR and image resolution, and also show the time consumption of these methods. it has no significant increasing on GPU platform.
Kempka, Martin; Sjödahl, Johan; Björk, Anders; Roeraade, Johan
2004-01-01
A method for peak picking for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. The method is based on the assumption that two sets of ions are formed during the ionization stage, which have Gaussian distributions but different velocity profiles. This gives rise to a certain degree of peak skewness. Our algorithm deconvolutes the peak and utilizes the fast velocity, bulk ion distribution for peak picking. Evaluation of the performance of the new method was conducted using peptide peaks from a bovine serum albumin (BSA) digest, and compared with the commercial peak-picking algorithms Centroid and SNAP. When using the new two-Gaussian algorithm, for strong signals the mass accuracy was equal to or marginally better than the results obtained from the commercial algorithms. However, for weak, distorted peaks, considerable improvement in both mass accuracy and precision was obtained. This improvement should be particularly useful in proteomics, where a lack of signal strength is often encountered when dealing with weakly expressed proteins. Finally, since the new peak-picking method uses information from the entire signal, no adjustments of parameters related to peak height have to be made, which simplifies its practical use. Copyright 2004 John Wiley & Sons, Ltd.
Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
Bellido, Edson P; Rossouw, David; Botton, Gianluigi A
2014-06-01
Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.
Feasibility of infrared Earth tracking for deep-space optical communications.
Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G
2012-01-01
Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America
A framework for evaluating mixture analysis algorithms
NASA Astrophysics Data System (ADS)
Dasaratha, Sridhar; Vignesh, T. S.; Shanmukh, Sarat; Yarra, Malathi; Botonjic-Sehic, Edita; Grassi, James; Boudries, Hacene; Freeman, Ivan; Lee, Young K.; Sutherland, Scott
2010-04-01
In recent years, several sensing devices capable of identifying unknown chemical and biological substances have been commercialized. The success of these devices in analyzing real world samples is dependent on the ability of the on-board identification algorithm to de-convolve spectra of substances that are mixtures. To develop effective de-convolution algorithms, it is critical to characterize the relationship between the spectral features of a substance and its probability of detection within a mixture, as these features may be similar to or overlap with other substances in the mixture and in the library. While it has been recognized that these aspects pose challenges to mixture analysis, a systematic effort to quantify spectral characteristics and their impact, is generally lacking. In this paper, we propose metrics that can be used to quantify these spectral features. Some of these metrics, such as a modification of variance inflation factor, are derived from classical statistical measures used in regression diagnostics. We demonstrate that these metrics can be correlated to the accuracy of the substance's identification in a mixture. We also develop a framework for characterizing mixture analysis algorithms, using these metrics. Experimental results are then provided to show the application of this framework to the evaluation of various algorithms, including one that has been developed for a commercial device. The illustration is based on synthetic mixtures that are created from pure component Raman spectra measured on a portable device.
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Cingolani, R.; Rinaldi, R.
2003-07-01
In this paper, we present a deconvolution method aimed at spectrally resolving the broad fluorescence spectra of proteins, namely, of the enzyme bovine liver glutamate dehydrogenase (GDH). The analytical procedure is based on the deconvolution of the emission spectra into three distinct Gaussian fluorescing bands Gj. The relative changes of the Gj parameters are directly related to the conformational changes of the enzyme, and provide interesting information about the fluorescence dynamics of the individual emitting contributions. Our deconvolution method results in an excellent fitting of all the spectra obtained with GDH in a number of experimental conditions (various conformational states of the protein) and describes very well the dynamics of a variety of phenomena, such as the dependence of hexamers association on protein concentration, the dynamics of thermal denaturation, and the interaction process between the enzyme and external quenchers. The investigation was carried out by means of different optical experiments, i.e., native enzyme fluorescence, thermal-induced unfolding, and fluorescence quenching studies, utilizing both the analysis of the “average” behavior of the enzyme and the proposed deconvolution approach.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J
2013-10-07
Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.
Steventon, Jessica J.; Trueman, Rebecca C.; Rosser, Anne E.; Jones, Derek K.
2016-01-01
Background Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. Method 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. Results Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Conclusion Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics. PMID:26335798
Gas chromatography - mass spectrometry data processing made easy.
Johnsen, Lea G; Skou, Peter B; Khakimov, Bekzod; Bro, Rasmus
2017-06-23
Evaluation of GC-MS data may be challenging due to the high complexity of data including overlapped, embedded, retention time shifted and low S/N ratio peaks. In this work, we demonstrate a new approach, PARAFAC2 based Deconvolution and Identification System (PARADISe), for processing raw GC-MS data. PARADISe is a computer platform independent freely available software incorporating a number of newly developed algorithms in a coherent framework. It offers a solution for analysts dealing with complex chromatographic data. It allows extraction of chemical/metabolite information directly from the raw data. Using PARADISe requires only few inputs from the analyst to process GC-MS data and subsequently converts raw netCDF data files into a compiled peak table. Furthermore, the method is generally robust towards minor variations in the input parameters. The method automatically performs peak identification based on deconvoluted mass spectra using integrated NIST search engine and generates an identification report. In this paper, we compare PARADISe with AMDIS and ChromaTOF in terms of peak quantification and show that PARADISe is more robust to user-defined settings and that these are easier (and much fewer) to set. PARADISe is based on non-proprietary scientifically evaluated approaches and we here show that PARADISe can handle more overlapping signals, lower signal-to-noise peaks and do so in a manner that requires only about an hours worth of work regardless of the number of samples. We also show that there are no non-detects in PARADISe, meaning that all compounds are detected in all samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Steventon, Jessica J; Trueman, Rebecca C; Rosser, Anne E; Jones, Derek K
2016-05-30
Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yang; Chu, Zhigang; Shen, Linbang; Ping, Guoli; Xu, Zhongming
2018-07-01
Being capable of demystifying the acoustic source identification result fast, Fourier-based deconvolution has been studied and applied widely for the delay and sum (DAS) beamforming with two-dimensional (2D) planar arrays. It is, however so far, still blank in the context of spherical harmonics beamforming (SHB) with three-dimensional (3D) solid spherical arrays. This paper is motivated to settle this problem. Firstly, for the purpose of determining the effective identification region, the premise of deconvolution, a shift-invariant point spread function (PSF), is analyzed with simulations. To make the premise be satisfied approximately, the opening angle in elevation dimension of the surface of interest should be small, while no restriction is imposed to the azimuth dimension. Then, two kinds of deconvolution theories are built for SHB using the zero and the periodic boundary conditions respectively. Both simulations and experiments demonstrate that the periodic boundary condition is superior to the zero one, and fits the 3D acoustic source identification with solid spherical arrays better. Finally, four periodic boundary condition based deconvolution methods are formulated, and their performance is disclosed both with simulations and experimentally. All the four methods offer enhanced spatial resolution and reduced sidelobe contaminations over SHB. The recovered source strength approximates to the exact one multiplied with a coefficient that is the square of the focus distance divided by the distance from the source to the array center, while the recovered pressure contribution is scarcely affected by the focus distance, always approximating to the exact one.
Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.
Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W
2016-03-31
Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.
2014-06-01
Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.
Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection
NASA Astrophysics Data System (ADS)
Li, Gang; McDonald, Geoff L.; Zhao, Qing
2017-01-01
This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.
Exploratory Development for a High Reliability Flaw Characterization Module.
1985-03-01
deconvolution), and displaying the waveforms and the complex Fourier spectra (magnitude and phase or real and imaginary parts) on hard copies. The Born...shifted, and put into the Born inver- sion algorithm. Hard copies of the Born inversion results of the type dis- played in Figure 6 were obtained for each...nickel alloys than in titanium alloys because melt practice is not yet sufficiently developed to prevent the introduction of voids and hard oxide
Laser Illuminated Imaging: Multiframe Beam Tilt Tracking and Deconvolution Algorithm
2013-03-01
same way with atmospheric turbulence resulting in tilt, blur and other higher order distortions on the returned image. Using the Fourier shift...of the target image with distortions such as speckle, blurring and defocus mitigated via a multiframe processing strategy. Atmospheric turbulence ...propagating a beam in a turbulent atmosphere with a beam width at the target is smaller than the field of view (FOV) of the receiver optics. 1.2
Blind Deconvolution Method of Image Deblurring Using Convergence of Variance
2011-03-24
random variable x is [9] fX (x) = 1√ 2πσ e−(x−m) 2/2σ2 −∞ < x <∞, σ > 0 (6) where m is the mean and σ is the variance. 7 Figure 1: Gaussian distribution...of the MAP Estimation algorithm when N was set to 50. The APEX method is not without its own difficulties when dealing with astro - nomical data
Scientific Visualization Made Easy for the Scientist
NASA Astrophysics Data System (ADS)
Westerhoff, M.; Henderson, B.
2002-12-01
amirar is an application program used in creating 3D visualizations and geometric models of 3D image data sets from various application areas, e.g. medicine, biology, biochemistry, chemistry, physics, and engineering. It has demonstrated significant adoption in the market place since becoming commercially available in 2000. The rapid adoption has expanded the features being requested by the user base and broadened the scope of the amira product offering. The amira product offering includes amira Standard, amiraDevT, used to extend the product capabilities by users, amiraMolT, used for molecular visualization, amiraDeconvT, used to improve quality of image data, and amiraVRT, used in immersive VR environments. amira allows the user to construct a visualization tailored to his or her needs without requiring any programming knowledge. It also allows 3D objects to be represented as grids suitable for numerical simulations, notably as triangular surfaces and volumetric tetrahedral grids. The amira application also provides methods to generate such grids from voxel data representing an image volume, and it includes a general-purpose interactive 3D viewer. amiraDev provides an application-programming interface (API) that allows the user to add new components by C++ programming. amira supports many import formats including a 'raw' format allowing immediate access to your native uniform data sets. amira uses the power and speed of the OpenGLr and Open InventorT graphics libraries and 3D graphics accelerators to allow you to access over 145 modules, enabling you to process, probe, analyze and visualize your data. The amiraMolT extension adds powerful tools for molecular visualization to the existing amira platform. amiraMolT contains support for standard molecular file formats, tools for visualization and analysis of static molecules as well as molecular trajectories (time series). amiraDeconv adds tools for the deconvolution of 3D microscopic images. Deconvolution is the process of increasing image quality and resolution by computationally compensating artifacts of the recording process. amiraDeconv supports 3D wide field microscopy as well as 3D confocal microscopy. It offers both non-blind and blind image deconvolution algorithms. Non-blind deconvolution uses an individual measured point spread function, while non-blind algorithms work on the basis of only a few recording parameters (like numerical aperture or zoom factor). amiraVR is a specialized and extended version of the amira visualization system which is dedicated for use in immersive installations, such as large-screen stereoscopic projections, CAVEr or Holobenchr systems. Among others, it supports multi-threaded multi-pipe rendering, head-tracking, advanced 3D interaction concepts, and 3D menus allowing interaction with any amira object in the same way as on the desktop. With its unique set of features, amiraVR represents both a VR (Virtual Reality) ready application for scientific and medical visualization in immersive environments, and a development platform that allows building VR applications.
Dependence of quantitative accuracy of CT perfusion imaging on system parameters
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Guang-Hong
2017-03-01
Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.
Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data
2015-01-01
A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively. PMID:24533635
Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.
Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q
2010-10-01
Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.
Image processing tools dedicated to quantification in 3D fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dieterlen, A.; De Meyer, A.; Colicchio, B.; Le Calvez, S.; Haeberlé, O.; Jacquey, S.
2006-05-01
3-D optical fluorescent microscopy now becomes an efficient tool for the volume investigation of living biological samples. Developments in instrumentation have permitted to beat off the conventional Abbe limit. In any case the recorded image can be described by the convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. Due to the finite resolution of the instrument, the original object is recorded with distortions and blurring, and contaminated by noise. This induces that relevant biological information cannot be extracted directly from raw data stacks. If the goal is 3-D quantitative analysis, then to assess optimal performance of the instrument and to ensure the data acquisition reproducibility, the system characterization is mandatory. The PSF represents the properties of the image acquisition system; we have proposed the use of statistical tools and Zernike moments to describe a 3-D PSF system and to quantify the variation of the PSF. This first step toward standardization is helpful to define an acquisition protocol optimizing exploitation of the microscope depending on the studied biological sample. Before the extraction of geometrical information and/or intensities quantification, the data restoration is mandatory. Reduction of out-of-focus light is carried out computationally by deconvolution process. But other phenomena occur during acquisition, like fluorescence photo degradation named "bleaching", inducing an alteration of information needed for restoration. Therefore, we have developed a protocol to pre-process data before the application of deconvolution algorithms. A large number of deconvolution methods have been described and are now available in commercial package. One major difficulty to use this software is the introduction by the user of the "best" regularization parameters. We have pointed out that automating the choice of the regularization level; also greatly improves the reliability of the measurements although it facilitates the use. Furthermore, to increase the quality and the repeatability of quantitative measurements a pre-filtering of images improves the stability of deconvolution process. In the same way, the PSF prefiltering stabilizes the deconvolution process. We have shown that Zemike polynomials can be used to reconstruct experimental PSF, preserving system characteristics and removing the noise contained in the PSF.
Microseismic source locations with deconvolution migration
NASA Astrophysics Data System (ADS)
Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu
2018-03-01
Identifying and locating microseismic events are critical problems in hydraulic fracturing monitoring for unconventional resources exploration. In contrast to active seismic data, microseismic data are usually recorded with unknown source excitation time and source location. In this study, we introduce deconvolution migration by combining deconvolution interferometry with interferometric cross-correlation migration (CCM). This method avoids the need for the source excitation time and enhances both the spatial resolution and robustness by eliminating the square term of the source wavelets from CCM. The proposed algorithm is divided into the following three steps: (1) generate the virtual gathers by deconvolving the master trace with all other traces in the microseismic gather to remove the unknown excitation time; (2) migrate the virtual gather to obtain a single image of the source location and (3) stack all of these images together to get the final estimation image of the source location. We test the proposed method on complex synthetic and field data set from the surface hydraulic fracturing monitoring, and compare the results with those obtained by interferometric CCM. The results demonstrate that the proposed method can obtain a 50 per cent higher spatial resolution image of the source location, and more robust estimation with smaller errors of the localization especially in the presence of velocity model errors. This method is also beneficial for source mechanism inversion and global seismology applications.
Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers
Vemula, Harika; Kitase, Yukiko; Ayon, Navid J.; Bonewald, Lynda; Gutheil, William G.
2016-01-01
Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight-aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules. PMID:27771391
Parallel Implementation of a Frozen Flow Based Wavefront Reconstructor
NASA Astrophysics Data System (ADS)
Nagy, J.; Kelly, K.
2013-09-01
Obtaining high resolution images of space objects from ground based telescopes is challenging, often requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by atmospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good initial estimate of the wavefront phase. Although wavefront sensors work well in low turbulence situations, they are less effective in high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth's horizon. One promising approach, which has been shown to work very well in high turbulence settings, uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. However, with the current serial implementation, the approach can be prohibitively expensive in situations when it is necessary to use a large number of frames. In this poster we describe a parallel implementation that overcomes this constraint. The parallel implementation exploits sparse matrix computations, and uses the Trilinos package developed at Sandia National Laboratories. Trilinos provides a variety of core mathematical software for parallel architectures that have been designed using high quality software engineering practices, The package is open source, and portable to a variety of high-performance computing architectures.
A method to measure the presampling MTF in digital radiography using Wiener deconvolution
NASA Astrophysics Data System (ADS)
Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui
2013-03-01
We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.
Evaluation of uncertainty for regularized deconvolution: A case study in hydrophone measurements.
Eichstädt, S; Wilkens, V
2017-06-01
An estimation of the measurand in dynamic metrology usually requires a deconvolution based on a dynamic calibration of the measuring system. Since deconvolution is, mathematically speaking, an ill-posed inverse problem, some kind of regularization is required to render the problem stable and obtain usable results. Many approaches to regularized deconvolution exist in the literature, but the corresponding evaluation of measurement uncertainties is, in general, an unsolved issue. In particular, the uncertainty contribution of the regularization itself is a topic of great importance, because it has a significant impact on the estimation result. Here, a versatile approach is proposed to express prior knowledge about the measurand based on a flexible, low-dimensional modeling of an upper bound on the magnitude spectrum of the measurand. This upper bound allows the derivation of an uncertainty associated with the regularization method in line with the guidelines in metrology. As a case study for the proposed method, hydrophone measurements in medical ultrasound with an acoustic working frequency of up to 7.5 MHz are considered, but the approach is applicable for all kinds of estimation methods in dynamic metrology, where regularization is required and which can be expressed as a multiplication in the frequency domain.
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
A CLEAN-based method for mosaic deconvolution
NASA Astrophysics Data System (ADS)
Gueth, F.; Guilloteau, S.; Viallefond, F.
1995-03-01
Mosaicing may be used in aperture synthesis to map large fields of view. So far, only MEM techniques have been used to deconvolve mosaic images (Cornwell (1988)). A CLEAN-based method has been developed, in which the components are located in a modified expression. This allows a better utilization of the information and consequent noise reduction in the overlapping regions. Simulations show that this method gives correct clean maps and recovers most of the flux of the sources. The introduction of the short-spacing visibilities in the data set is strongly required. Their absence actually introduces artificial lack of structures on the corresponding scale in the mosaic images. The formation of ``stripes'' in clean maps may also occur, but this phenomenon can be significantly reduced by using the Steer-Dewdney-Ito algorithm (Steer, Dewdney & Ito (1984)) to identify the CLEAN components. Typical IRAM interferometer pointing errors do not have a significant effect on the reconstructed images.
POX 186: the ultracompact blue compact dwarf galaxy reveals its nature
NASA Astrophysics Data System (ADS)
Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.
2000-01-01
High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.
Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D
2014-12-15
An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.
A hybrid method for synthetic aperture ladar phase-error compensation
NASA Astrophysics Data System (ADS)
Hua, Zhili; Li, Hongping; Gu, Yongjian
2009-07-01
As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.
Peng, Xian; Yuan, Han; Chen, Wufan; Ding, Lei
2017-01-01
Continuous loop averaging deconvolution (CLAD) is one of the proven methods for recovering transient auditory evoked potentials (AEPs) in rapid stimulation paradigms, which requires an elaborated stimulus sequence design to attenuate impacts from noise in data. The present study aimed to develop a new metric in gauging a CLAD sequence in terms of noise gain factor (NGF), which has been proposed previously but with less effectiveness in the presence of pink (1/f) noise. We derived the new metric by explicitly introducing the 1/f model into the proposed time-continuous sequence. We selected several representative CLAD sequences to test their noise property on typical EEG recordings, as well as on five real CLAD electroencephalogram (EEG) recordings to retrieve the middle latency responses. We also demonstrated the merit of the new metric in generating and quantifying optimized sequences using a classic genetic algorithm. The new metric shows evident improvements in measuring actual noise gains at different frequencies, and better performance than the original NGF in various aspects. The new metric is a generalized NGF measurement that can better quantify the performance of a CLAD sequence, and provide a more efficient mean of generating CLAD sequences via the incorporation with optimization algorithms. The present study can facilitate the specific application of CLAD paradigm with desired sequences in the clinic. PMID:28414803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, M.; Ebel, D.S.
2009-03-19
We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less
Calibration of a polarimetric imaging SAR
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.
1991-01-01
Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.
The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment
NASA Astrophysics Data System (ADS)
Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan
2018-07-01
To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Chang-hui; Wei, Kai
Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.
Markel, D; Naqa, I El
2012-06-01
Positron emission tomography (PET) presents a valuable resource for delineating the biological tumor volume (BTV) for image-guided radiotherapy. However, accurate and consistent image segmentation is a significant challenge within the context of PET, owing to its low spatial resolution and high levels of noise. Active contour methods based on the level set methods can be sensitive to noise and susceptible to failing in low contrast regions. Therefore, this work evaluates a novel active contour algorithm applied to the task of PET tumor segmentation. A novel active contour segmentation algorithm based on maximizing the Jensen-Renyi Divergence between regions of interest was applied to the task of segmenting lesions in 7 patients with T3-T4 pharyngolaryngeal squamous cell carcinoma. The algorithm was implemented on an NVidia GEFORCE GTV 560M GPU. The cases were taken from the Louvain database, which includes contours of the macroscopically defined BTV drawn using histology of resected tissue. The images were pre-processed using denoising/deconvolution. The segmented volumes agreed well with the macroscopic contours, with an average concordance index and classification error of 0.6 ± 0.09 and 55 ± 16.5%, respectively. The algorithm in its present implementation requires approximately 0.5-1.3 sec per iteration and can reach convergence within 10-30 iterations. The Jensen-Renyi active contour method was shown to come close to and in terms of concordance, outperforms a variety of PET segmentation methods that have been previously evaluated using the same data. Further evaluation on a larger dataset along with performance optimization is necessary before clinical deployment. © 2012 American Association of Physicists in Medicine.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C
2013-05-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.
2014-01-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422
Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias
2017-07-01
Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.
Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu
2016-10-21
Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi
2017-08-01
Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.
Tractometer: towards validation of tractography pipelines.
Côté, Marc-Alexandre; Girard, Gabriel; Boré, Arnaud; Garyfallidis, Eleftherios; Houde, Jean-Christophe; Descoteaux, Maxime
2013-10-01
We have developed the Tractometer: an online evaluation and validation system for tractography processing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using different acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball, spherical deconvolution) and different tracking parameters (masking, seeding, maximum curvature, step size). At this stage, the system is solely based on a revised FiberCup analysis, but we hope that the community will get involved and provide us with new phantoms, new algorithms, third party libraries and new geometrical metrics, to name a few. We believe that the new connectivity analysis and tractography characteristics proposed can highlight limits of the algorithms and contribute in solving open questions in fiber tracking: from raw data to connectivity analysis. Overall, we show that (i) averaging improves quality of tractography, (ii) sharp angular ODF profiles helps tractography, (iii) seeding and multi-seeding has a large impact on tractography outputs and must be used with care, and (iv) deterministic tractography produces less invalid tracts which leads to better connectivity results than probabilistic tractography. Copyright © 2013 Elsevier B.V. All rights reserved.
Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.
Song, Ci; Dai, Yifan; Peng, Xiaoqiang
2010-07-01
Classically, a dwell-time map is created with a method such as deconvolution or numerical optimization, with the input being a surface error map and influence function. This dwell-time map is the numerical optimum for minimizing residual form error, but it takes no account of machine dynamics limitations. The map is then reinterpreted as machine speeds and accelerations or decelerations in a separate operation. In this paper we consider combining the two methods in a single optimization by the use of a constrained nonlinear optimization model, which regards both the two-norm of the surface residual error and the dwell-time gradient as an objective function. This enables machine dynamic limitations to be properly considered within the scope of the optimization, reducing both residual surface error and polishing times. Further simulations are introduced to demonstrate the feasibility of the model, and the velocity map is reinterpreted from the dwell time, meeting the requirement of velocity and the limitations of accelerations or decelerations. Indeed, the model and algorithm can also apply to other computer-controlled subaperture methods.
Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.H.; Gray, T.A.; Thompson, R.B.
1983-01-01
The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less
Application of an NLME-Stochastic Deconvolution Approach to Level A IVIVC Modeling.
Kakhi, Maziar; Suarez-Sharp, Sandra; Shepard, Terry; Chittenden, Jason
2017-07-01
Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F abs ) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either retained or excluded to inform parameter estimation. The resulting F abs profiles were then used to model level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded on average similar results with respect to the IVIVC validation. These results could be achieved with stochastic deconvolution without recourse to IR data. Unlike numerical deconvolution, this also implies that in crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be included as part of the IVIVC analysis. Published by Elsevier Inc.
Application of digital image processing techniques to astronomical imagery, 1979
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1979-01-01
Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.
A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis
Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan
2009-01-01
DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301
Deconvolution of Energy Spectra in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Batkov, K. E.; Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasigha, R. M.;
2005-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic- ray elemental spectra measurements from below 100 GeV up to tens TeV for nuclei from hydrogen to iron. The instrument is composed of a silicon matrix detector followed by a carbon target, interleaved with scintillator tracking layers, and a segmented BGO calorimeter composed of 320 individual crystals totalling 18 radiation lengths, used to determine the particle energy. The technique for deconvolution of the energy spectra measured in the thin calorimeter is based on detailed simulations of the response of the ATIC instrument to different cosmic ray nuclei over a wide energy range. The method of deconvolution is described and energy spectrum of carbon obtained by this technique is presented.
Ultra-high resolution computed tomography imaging
Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.
2002-01-01
A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmer, W.
2015-06-15
Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated withmore » typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the description of lateral scatter.« less
Composite Characterization Using Laser Doppler Vibrometry and Multi-Frequency Wavenumber Analysis
NASA Technical Reports Server (NTRS)
Juarez, Peter; Leckey, Cara
2015-01-01
NASA has recognized the need for better characterization of composite materials to support advances in aeronautics and the next generation of space exploration vehicles. An area of related research is the evaluation of impact induced delaminations. Presented is a non-contact method of measuring the ply depth of impact delamination damage in a composite through use of a Scanning Laser Doppler Vibrometer (SLDV), multi-frequency wavenumber analysis, and a wavenumber-ply correlation algorithm. A single acquisition of a chirp excited lamb wavefield in an impacted composite is post-processed into a numerous single frequency excitation wavefields through a deconvolution process. A spatially windowed wavenumber analysis then extracts local wavenumbers from the wavefield, which are then correlated to theoretical dispersion curves for ply depth determination. SLDV based methods to characterize as-manufactured composite variation using wavefield analysis will also be discussed.
Matthews, Grant
2004-12-01
The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.
NASA Technical Reports Server (NTRS)
Hucek, Richard R.; Ardanuy, Philip E.; Kyle, H. Lee
1987-01-01
A deconvolution method for extracting the top of the atmosphere (TOA) mean, daily albedo field from a set of wide-FOV (WFOV) shortwave radiometer measurements is proposed. The method is based on constructing a synthetic measurement for each satellite observation. The albedo field is represented as a truncated series of spherical harmonic functions, and these linear equations are presented. Simulation studies were conducted to determine the sensitivity of the method. It is observed that a maximum of about 289 pieces of data can be extracted from a set of Nimbus 7 WFOV satellite measurements. The albedos derived using the deconvolution method are compared with albedos derived using the WFOV archival method; the developed albedo field achieved a 20 percent reduction in the global rms regional reflected flux density errors. The deconvolution method is applied to estimate the mean, daily average TOA albedo field for January 1983. A strong and extensive albedo maximum (0.42), which corresponds to the El Nino/Southern Oscillation event of 1982-1983, is detected over the south central Pacific Ocean.
Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian
2012-10-24
Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
Expectation maximization for hard X-ray count modulation profiles
NASA Astrophysics Data System (ADS)
Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.
2013-07-01
Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.
Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners.
Hendler, R W; Shrager, R I
1994-01-01
Singular value decomposition (SVD) is deeply rooted in the theory of linear algebra, and because of this is not readily understood by a large group of researchers who could profit from its application. In this paper, we discuss the subject on a level that should be understandable to scientists who are not well versed in linear algebra. However, because it is necessary that certain key concepts in linear algebra be appreciated in order to comprehend what is accomplished by SVD, we present the section, 'Bare basics of linear algebra'. This is followed by a discussion of the theory of SVD. Next we present step-by-step examples to illustrate how SVD is applied to deconvolute a titration involving a mixture of three pH indicators. One noiseless case is presented as well as two cases where either a fixed or varying noise level is present. Finally, we discuss additional deconvolutions of mixed spectra based on the use of the pseudoinverse.
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-12-01
The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model accuracy with the RMS value of 0.03-0.04. Currently, the telescope spectra are investigated for its calibrations and the results will be presented at AGU. References: [1] Hiesinger, H. and J. Helbert (2010) PSS, 58(1-2): 144-165. [2] Sprague, A.L. et al (2009) PSS, 57, 364-383. [3] Ramsey and Christiansen (1998) JGR, 103, 577-596
NASA Astrophysics Data System (ADS)
Sperling, Nicholas Niven
The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.
Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling
NASA Astrophysics Data System (ADS)
Dȩbski, Wojciech
2008-07-01
Many aspects of earthquake source dynamics like dynamic stress drop, rupture velocity and directivity, etc. are currently inferred from the source time functions obtained by a deconvolution of the propagation and recording effects from seismograms. The question of the accuracy of obtained results remains open. In this paper we address this issue by considering two aspects of the source time function deconvolution. First, we propose a new pseudo-spectral parameterization of the sought function which explicitly takes into account the physical constraints imposed on the sought functions. Such parameterization automatically excludes non-physical solutions and so improves the stability and uniqueness of the deconvolution. Secondly, we demonstrate that the Bayesian approach to the inverse problem at hand, combined with an efficient Markov Chain Monte Carlo sampling technique, is a method which allows efficient estimation of the source time function uncertainties. The key point of the approach is the description of the solution of the inverse problem by the a posteriori probability density function constructed according to the Bayesian (probabilistic) theory. Next, the Markov Chain Monte Carlo sampling technique is used to sample this function so the statistical estimator of a posteriori errors can be easily obtained with minimal additional computational effort with respect to modern inversion (optimization) algorithms. The methodological considerations are illustrated by a case study of the mining-induced seismic event of the magnitude M L ≈3.1 that occurred at Rudna (Poland) copper mine. The seismic P-wave records were inverted for the source time functions, using the proposed algorithm and the empirical Green function technique to approximate Green functions. The obtained solutions seem to suggest some complexity of the rupture process with double pulses of energy release. However, the error analysis shows that the hypothesis of source complexity is not justified at the 95% confidence level. On the basis of the analyzed event we also show that the separation of the source inversion into two steps introduces limitations on the completeness of the a posteriori error analysis.
Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.
Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard
2017-04-01
Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L
2005-01-01
This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.
NASA Astrophysics Data System (ADS)
Lin, Shan-Yang; Lee, Shui-Mei; Li, Mei-Jane; Liang, Run-Chu
1997-08-01
The possible changes in protein structures of the cataractous human lens capsules of the immature patients with myopia and/or systemic hypertension have been investigated using Fourier transform infrared (FT-IR) microspectroscopy. Second-derivative and deconvolution methods have been applied to obtain the position of the overlapping components of the amide I band and assign them to different secondary structures. Changes in the protein secondary structure and composition of amide I band were estimated quantitatively from Fourier self-deconvolution and curve fitting algorithms. The results indicate that myopia and/or systemic hypertension were found to significantly modify the protein secondary structure of the cataractous human lens capsules to increase the β-type structure and random coil and decrease the α-helix structure. Myopia-induced conformational change in triple helix structure was more pronounced. In conclusion, myopia and/or systemic hypertension seem to modify the conformation of the protein structures in cataractous human lens capsule to change ionic permeation through lens capsule to accelerate the cataract formation of senile patients.
Deconvolution method for accurate determination of overlapping peak areas in chromatograms.
Nelson, T J
1991-12-20
A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by conventional methods.
Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias
2017-01-01
ABSTRACT Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner. PMID:28379786
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Lenglet, Christophe
2018-02-15
We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
Color normalization of histology slides using graph regularized sparse NMF
NASA Astrophysics Data System (ADS)
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.
Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark
2005-06-22
In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less
Kinematic model for the space-variant image motion of star sensors under dynamical conditions
NASA Astrophysics Data System (ADS)
Liu, Chao-Shan; Hu, Lai-Hong; Liu, Guang-Bin; Yang, Bo; Li, Ai-Jun
2015-06-01
A kinematic description of a star spot in the focal plane is presented for star sensors under dynamical conditions, which involves all necessary parameters such as the image motion, velocity, and attitude parameters of the vehicle. Stars at different locations of the focal plane correspond to the slightly different orientation and extent of motion blur, which characterize the space-variant point spread function. Finally, the image motion, the energy distribution, and centroid extraction are numerically investigated using the kinematic model under dynamic conditions. A centroid error of eight successive iterations <0.002 pixel is used as the termination criterion for the Richardson-Lucy deconvolution algorithm. The kinematic model of a star sensor is useful for evaluating the compensation algorithms of motion-blurred images.
LCD motion blur reduction: a signal processing approach.
Har-Noy, Shay; Nguyen, Truong Q
2008-02-01
Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs.
A neural network approach for the blind deconvolution of turbulent flows
NASA Astrophysics Data System (ADS)
Maulik, R.; San, O.
2017-11-01
We present a single-layer feedforward artificial neural network architecture trained through a supervised learning approach for the deconvolution of flow variables from their coarse grained computations such as those encountered in large eddy simulations. We stress that the deconvolution procedure proposed in this investigation is blind, i.e. the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel. This may be conceptually contrasted to the celebrated approximate deconvolution approaches where a filter shape is predefined for an iterative deconvolution process. We demonstrate that the proposed blind deconvolution network performs exceptionally well in the a-priori testing of both two-dimensional Kraichnan and three-dimensional Kolmogorov turbulence and shows promise in forming the backbone of a physics-augmented data-driven closure for the Navier-Stokes equations.
Computer Algorithms for Measurement Control and Signal Processing of Transient Scattering Signatures
1988-09-01
CURVE * C Y2 IS THE BACKGROUND CURVE * C NSHIF IS THE NUMBER OF POINT TO SHIFT * C SET IS THE SUM OF THE POINT TO SHIFT * C IN ORDER TO ZERO PADDING ...reduces the spec- tral content in both the low and high frequency regimes. If the threshold is set to zero , a "naive’ deconvolution results. This provides...side of equation 5.2 was close to zero , so it can be neglected. As a result, the expected power is equal to the variance. The signal plus noise power
Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B
2014-04-01
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
2012-02-12
is the total number of data points, is an approximately unbiased estimate of the “expected relative Kullback - Leibler distance” ( information loss...possible models). Thus, after each model from Table 2 is fit to a data set, we can compute the Akaike weights for the set of candidate models and use ...computed from the OLS best- fit model solution (top), from a deconvolution of the data using normal curves (middle) and from a deconvolution of the data
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
Klughammer, Christof; Schreiber, Ulrich
2016-05-01
A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.
Large seismic source imaging from old analogue seismograms
NASA Astrophysics Data System (ADS)
Caldeira, Bento; Buforn, Elisa; Borges, José; Bezzeghoud, Mourad
2017-04-01
In this work we present a procedure to recover the ground motions by a proper digital structure, from old seismograms in analogue physical support (paper or microfilm) to study the source rupture process, by application of modern finite source inversion tools. Despite the quality that the analog data and the digitizing technologies available may have, recover the ground motions with the accurate metrics from old seismograms, is often an intricate procedure. Frequently the general parameters of the analogue instruments response that allow recover the shape of the ground motions (free periods and damping) are known, but the magnification that allow recover the metric of these motions is dubious. It is in these situations that the procedure applies. The procedure is based on assign of the moment magnitude value to the integral of the apparent Source Time Function (STF), estimated by deconvolution of a synthetic elementary seismogram from the related observed seismogram, corrected with an instrument response affected by improper magnification. Two delicate issues in the process are 1) the calculus of the synthetic elementary seismograms that must consider later phases if applied to large earthquakes (the portions of signal should be 3 or 4 times larger than the rupture time) and 2) the deconvolution to calculate the apparent STF. In present version of the procedure was used the Direct Solution Method to compute the elementary seismograms and the deconvolution was processed in time domain by an iterative algorithm that allow constrains the STF to stay positive and time limited. The method was examined using synthetic data to test the accuracy and robustness. Finally, a set of 17 real old analog seismograms from the Santa Maria (Azores) 1939 earthquake (Mw=7.1) was used in order to recover the waveforms in the required digital structure, from which by inversion allows compute the finite source rupture model (slip distribution). Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
Automatic layer segmentation of H&E microscopic images of mice skin
NASA Astrophysics Data System (ADS)
Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham
2016-05-01
Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Lun, Aaron T L; Bach, Karsten; Marioni, John C
2016-04-27
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.
Quantitative diagnosis of bladder cancer by morphometric analysis of HE images
NASA Astrophysics Data System (ADS)
Wu, Binlin; Nebylitsa, Samantha V.; Mukherjee, Sushmita; Jain, Manu
2015-02-01
In clinical practice, histopathological analysis of biopsied tissue is the main method for bladder cancer diagnosis and prognosis. The diagnosis is performed by a pathologist based on the morphological features in the image of a hematoxylin and eosin (HE) stained tissue sample. This manuscript proposes algorithms to perform morphometric analysis on the HE images, quantify the features in the images, and discriminate bladder cancers with different grades, i.e. high grade and low grade. The nuclei are separated from the background and other types of cells such as red blood cells (RBCs) and immune cells using manual outlining, color deconvolution and image segmentation. A mask of nuclei is generated for each image for quantitative morphometric analysis. The features of the nuclei in the mask image including size, shape, orientation, and their spatial distributions are measured. To quantify local clustering and alignment of nuclei, we propose a 1-nearest-neighbor (1-NN) algorithm which measures nearest neighbor distance and nearest neighbor parallelism. The global distributions of the features are measured using statistics of the proposed parameters. A linear support vector machine (SVM) algorithm is used to classify the high grade and low grade bladder cancers. The results show using a particular group of nuclei such as large ones, and combining multiple parameters can achieve better discrimination. This study shows the proposed approach can potentially help expedite pathological diagnosis by triaging potentially suspicious biopsies.
Krajewska, Maryla; Smith, Layton H.; Rong, Juan; Huang, Xianshu; Hyer, Marc L.; Zeps, Nikolajs; Iacopetta, Barry; Linke, Steven P.; Olson, Allen H.; Reed, John C.; Krajewski, Stan
2009-01-01
Cell death is of broad physiological and pathological importance, making quantification of biochemical events associated with cell demise a high priority for experimental pathology. Fibrosis is a common consequence of tissue injury involving necrotic cell death. Using tissue specimens from experimental mouse models of traumatic brain injury, cardiac fibrosis, and cancer, as well as human tumor specimens assembled in tissue microarray (TMA) format, we undertook computer-assisted quantification of specific immunohistochemical and histological parameters that characterize processes associated with cell death. In this study, we demonstrated the utility of image analysis algorithms for color deconvolution, colocalization, and nuclear morphometry to characterize cell death events in tissue specimens: (a) subjected to immunostaining for detecting cleaved caspase-3, cleaved poly(ADP-ribose)-polymerase, cleaved lamin-A, phosphorylated histone H2AX, and Bcl-2; (b) analyzed by terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling assay to detect DNA fragmentation; and (c) evaluated with Masson's trichrome staining. We developed novel algorithm-based scoring methods and validated them using TMAs as a high-throughput format. The proposed computer-assisted scoring methods for digital images by brightfield microscopy permit linear quantification of immunohistochemical and histochemical stainings. Examples are provided of digital image analysis performed in automated or semiautomated fashion for successful quantification of molecular events associated with cell death in tissue sections. (J Histochem Cytochem 57:649–663, 2009) PMID:19289554
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Optimization and automation of quantitative NMR data extraction.
Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos
2013-06-18
NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
NASA Astrophysics Data System (ADS)
Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L.
2017-01-01
The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.
NASA Astrophysics Data System (ADS)
Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge
2017-09-01
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.
Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.
Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K
2016-08-01
The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.
Ramachandra, Ranjan; de Jonge, Niels
2012-01-01
Three-dimensional (3D) data sets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). The deconvolution of the 3D datasets was optimized to obtain the highest possible axial resolution. The deconvolution involved two different point spread function (PSF)s, each calculated iteratively via blind deconvolution.. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but at the cost of a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only. PMID:22152090
Two-dimensional imaging of two types of radicals by the CW-EPR method
NASA Astrophysics Data System (ADS)
Czechowski, Tomasz; Krzyminiewski, Ryszard; Jurga, Jan; Chlewicki, Wojciech
2008-01-01
The CW-EPR method of image reconstruction is based on sample rotation in a magnetic field with a constant gradient (50 G/cm). In order to obtain a projection (radical density distribution) along a given direction, the EPR spectra are recorded with and without the gradient. Deconvolution, then gives the distribution of the spin density. Projection at 36 different angles gives the information that is necessary for reconstruction of the radical distribution. The problem becomes more complex when there are at least two types of radicals in the sample, because the deconvolution procedure does not give satisfactory results. We propose a method to calculate the projections for each radical, based on iterative procedures. The images of density distribution for each radical obtained by our procedure have proved that the method of deconvolution, in combination with iterative fitting, provides correct results. The test was performed on a sample of polymer PPS Br 111 ( p-phenylene sulphide) with glass fibres and minerals. The results indicated a heterogeneous distribution of radicals in the sample volume. The images obtained were in agreement with the known shape of the sample.
NASA Astrophysics Data System (ADS)
Li, Gang; Zhao, Qing
2017-03-01
In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.
Real-time deblurring of handshake blurred images on smartphones
NASA Astrophysics Data System (ADS)
Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser
2015-02-01
This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.
Santos, Radleigh G; Appel, Jon R; Giulianotti, Marc A; Edwards, Bruce S; Sklar, Larry A; Houghten, Richard A; Pinilla, Clemencia
2013-05-30
In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.
Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu
2015-06-18
The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging.
NASA Astrophysics Data System (ADS)
Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.
2017-12-01
Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability, achievable resolution, and exploitation of the irregular shape to partially resolve ambiguities. The general applicability of these new approaches to existing data sets from Mars, Mercury, and Lunar investigations will be noted.
Directional MTF measurement using sphere phantoms for a digital breast tomosynthesis system
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Baek, Jongduk
2015-03-01
The digital breast tomosynthesis (DBT) has been widely used as a diagnosis imaging modality of breast cancer because of potential for structure noise reduction, better detectability, and less breast compression. Since 3D modulation transfer function (MTF) is one of the quantitative metrics to assess the spatial resolution of medical imaging systems, it is very important to measure 3D MTF of the DBT system to evaluate the resolution performance. In order to do that, Samei et al. used sphere phantoms and applied Thornton's method to the DBT system. However, due to the limitation of Thornton's method, the low frequency drop, caused by the limited data acquisition angle and reconstruction filters, was not measured correctly. To overcome this limitation, we propose a Richardson-Lucy (RL) deconvolution based estimation method to measure the directional MTF. We reconstructed point and sphere objects using FDK algorithm within a 40⁰ data acquisition angle. The ideal 3D MTF is obtained by taking Fourier transform of the reconstructed point object, and three directions (i.e., fx-direction, fy-direction, and fxy-direction) of the ideal 3D MTF are used as a reference. To estimate the directional MTF, the plane integrals of the reconstructed and ideal sphere object were calculated and used to estimate the directional PSF using RL deconvolution technique. Finally, the directional MTF was calculated by taking Fourier transform of the estimated PSF. Compared to the previous method, the proposed method showed a good agreement with the ideal directional MTF, especially at low frequency regions.
Data consistency-driven scatter kernel optimization for x-ray cone-beam CT
NASA Astrophysics Data System (ADS)
Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong
2015-08-01
Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.
Liquid argon TPC signal formation, signal processing and reconstruction techniques
NASA Astrophysics Data System (ADS)
Baller, B.
2017-07-01
This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.
SU-F-T-478: Effect of Deconvolution in Analysis of Mega Voltage Photon Beam Profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, M; Manigandan, D; Murali, V
2016-06-15
Purpose: To study and compare the penumbra of 6 MV and 15 MV photon beam profiles after deconvoluting different volume ionization chambers. Methods: 0.125cc Semi-Flex chamber, Markus Chamber and PTW Farmer chamber were used to measure the in-plane and cross-plane profiles at 5 cm depth for 6 MV and 15 MV photons. The profiles were measured for various field sizes starting from 2×2 cm till 30×30 cm. PTW TBA scan software was used for the measurements and the “deconvolution” functionality in the software was used to remove the volume averaging effect due to finite volume of the chamber along lateralmore » and longitudinal directions for all the ionization chambers. The predicted true profile was compared and the change in penumbra before and after deconvolution was studied. Results: After deconvoluting the penumbra decreased by 1 mm for field sizes ranging from 2 × 2 cm till 20 x20 cm. This is observed for along both lateral and longitudinal directions. However for field sizes from 20 × 20 till 30 ×30 cm the difference in penumbra was around 1.2 till 1.8 mm. This was observed for both 6 MV and 15 MV photon beams. The penumbra was always lesser in the deconvoluted profiles for all the ionization chambers involved in the study. The variation in difference in penumbral values were in the order of 0.1 till 0.3 mm between the deconvoluted profile along lateral and longitudinal directions for all the chambers under study. Deconvolution of the profiles along longitudinal direction for Farmer chamber was not good and is not comparable with other deconvoluted profiles. Conclusion: The results of the deconvoluted profiles for 0.125cc and Markus chamber was comparable and the deconvolution functionality can be used to overcome the volume averaging effect.« less
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan
2017-12-01
In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8-10 May 2017, Cappadocia-Nevşehir (Turkey).
Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution
NASA Astrophysics Data System (ADS)
Tian, Y.; Rao, C. H.; Wei, K.
2008-10-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.
The SDSS-XDQSO quasar targeting catalog
NASA Astrophysics Data System (ADS)
Bovy, Jo; Hennawi, J. F.; Hogg, D. W.; Myers, A. D.; Ross, N. P.
2011-01-01
We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the SDSS catalog, even at medium redshifts (2.5 < z < 3). We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method (XD) to estimate the underlying density. We properly convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low- (z < 2.2), medium- (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point-sources with dereddened i-and magnitude between 17.75 and 22.45 mag in SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar selection technique at low redshift, and out-performs all other flux-based methods for selecting the medium-redshift quasars of our primary interest. Research supported by NASA (grant NNX08AJ48G) and the NSF (grant AST-0908357).
Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D
2012-08-01
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.
Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne
2017-02-15
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee
1987-01-01
A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Singh, Upendra Kumar
2017-02-01
This paper deals with the application of continuous wavelet transform (CWT) and Euler deconvolution methods to estimate the source depth using magnetic anomalies. These methods are utilized mainly to focus on the fundamental issue of mapping the major coal seam and locating tectonic lineaments. The main aim of the study is to locate and characterize the source of the magnetic field by transferring the data into an auxiliary space by CWT. The method has been tested on several synthetic source anomalies and finally applied to magnetic field data from Jharia coalfield, India. Using magnetic field data, the mean depth of causative sources points out the different lithospheric depth over the study region. Also, it is inferred that there are two faults, namely the northern boundary fault and the southern boundary fault, which have an orientation in the northeastern and southeastern direction respectively. Moreover, the central part of the region is more faulted and folded than the other parts and has sediment thickness of about 2.4 km. The methods give mean depth of the causative sources without any a priori information, which can be used as an initial model in any inversion algorithm.
Hybrid Imaging for Extended Depth of Field Microscopy
NASA Astrophysics Data System (ADS)
Zahreddine, Ramzi Nicholas
An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.
Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja
2015-08-15
The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.
Santos, Radleigh G.; Appel, Jon R.; Giulianotti, Marc A.; Edwards, Bruce S.; Sklar, Larry A.; Houghten, Richard A.; Pinilla, Clemencia
2014-01-01
In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays. PMID:23722730
NASA Astrophysics Data System (ADS)
Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.
2006-02-01
This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.
Erny, Guillaume L; Moeenfard, Marzieh; Alves, Arminda
2015-02-01
In this manuscript, the separation of kahweol and cafestol esters from Arabica coffee brews was investigated using liquid chromatography with a diode array detector. When detected in conjunction, cafestol, and kahweol esters were eluted together, but, after optimization, the kahweol esters could be selectively detected by setting the wavelength at 290 nm to allow their quantification. Such an approach was not possible for the cafestol esters, and spectral deconvolution was used to obtain deconvoluted chromatograms. In each of those chromatograms, the four esters were baseline separated allowing for the quantification of the eight targeted compounds. Because kahweol esters could be quantified either using the chromatogram obtained by setting the wavelength at 290 nm or using the deconvoluted chromatogram, those compounds were used to compare the analytical performances. Slightly better limits of detection were obtained using the deconvoluted chromatogram. Identical concentrations were found in a real sample with both approaches. The peak areas in the deconvoluted chromatograms were repeatable (intraday repeatability of 0.8%, interday repeatability of 1.0%). This work demonstrates the accuracy of spectral deconvolution when using liquid chromatography to mathematically separate coeluting compounds using the full spectra recorded by a diode array detector. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj
2016-10-05
Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wapenaar, K.; van der Neut, J.; Ruigrok, E.; Draganov, D.; Hunziker, J.; Slob, E.; Thorbecke, J.; Snieder, R.
2008-12-01
It is well-known that under specific conditions the crosscorrelation of wavefields observed at two receivers yields the impulse response between these receivers. This principle is known as 'Green's function retrieval' or 'seismic interferometry'. Recently it has been recognized that in many situations it can be advantageous to replace the correlation process by deconvolution. One of the advantages is that deconvolution compensates for the waveform emitted by the source; another advantage is that it is not necessary to assume that the medium is lossless. The approaches that have been developed to date employ a 1D deconvolution process. We propose a method for seismic interferometry by multidimensional deconvolution and show that under specific circumstances the method compensates for irregularities in the source distribution. This is an important difference with crosscorrelation methods, which rely on the condition that waves are equipartitioned. This condition is for example fulfilled when the sources are regularly distributed along a closed surface and the power spectra of the sources are identical. The proposed multidimensional deconvolution method compensates for anisotropic illumination, without requiring knowledge about the positions and the spectra of the sources.
Proton pinhole imaging on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Zylstra, A. B.; Park, H.-S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Séguin, F. H.; Turnbull, D.; Wilks, S. C.
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.
Wang, Hongbin; Miller, Paul C
2014-02-01
The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B., E-mail: zylstra@lanl.gov; Park, H.-S.; Ross, J. S.
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; ...
2016-07-29
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility.
Zylstra, A B; Park, H-S; Ross, J S; Fiuza, F; Frenje, J A; Higginson, D P; Huntington, C; Li, C K; Petrasso, R D; Pollock, B; Remington, B; Rinderknecht, H G; Ryutov, D; Séguin, F H; Turnbull, D; Wilks, S C
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
Conte, Gian Marco; Castellano, Antonella; Altabella, Luisa; Iadanza, Antonella; Cadioli, Marcello; Falini, Andrea; Anzalone, Nicoletta
2017-04-01
Dynamic susceptibility contrast MRI (DSC) and dynamic contrast-enhanced MRI (DCE) are useful tools in the diagnosis and follow-up of brain gliomas; nevertheless, both techniques leave the open issue of data reproducibility. We evaluated the reproducibility of data obtained using two different commercial software for perfusion maps calculation and analysis, as one of the potential sources of variability can be the software itself. DSC and DCE analyses from 20 patients with gliomas were tested for both the intrasoftware (as intraobserver and interobserver reproducibility) and the intersoftware reproducibility, as well as the impact of different postprocessing choices [vascular input function (VIF) selection and deconvolution algorithms] on the quantification of perfusion biomarkers plasma volume (Vp), volume transfer constant (K trans ) and rCBV. Data reproducibility was evaluated with the intraclass correlation coefficient (ICC) and Bland-Altman analysis. For all the biomarkers, the intra- and interobserver reproducibility resulted in almost perfect agreement in each software, whereas for the intersoftware reproducibility the value ranged from 0.311 to 0.577, suggesting fair to moderate agreement; Bland-Altman analysis showed high dispersion of data, thus confirming these findings. Comparisons of different VIF estimation methods for DCE biomarkers resulted in ICC of 0.636 for K trans and 0.662 for Vp; comparison of two deconvolution algorithms in DSC resulted in an ICC of 0.999. The use of single software ensures very good intraobserver and interobservers reproducibility. Caution should be taken when comparing data obtained using different software or different postprocessing within the same software, as reproducibility is not guaranteed anymore.
NASA Technical Reports Server (NTRS)
Ioup, J. W.; Ioup, G. E.; Rayborn, G. H., Jr.; Wood, G. M., Jr.; Upchurch, B. T.
1984-01-01
Mass spectrometer data in the form of ion current versus mass-to-charge ratio often include overlapping mass peaks, especially in low- and medium-resolution instruments. Numerical deconvolution of such data effectively enhances the resolution by decreasing the overlap of mass peaks. In this paper two approaches to deconvolution are presented: a function-domain iterative technique and a Fourier transform method which uses transform-domain function-continuation. Both techniques include data smoothing to reduce the sensitivity of the deconvolution to noise. The efficacy of these methods is demonstrated through application to representative mass spectrometer data and the deconvolved results are discussed and compared to data obtained from a spectrometer with sufficient resolution to achieve separation of the mass peaks studied. A case for which the deconvolution is seriously affected by Gibbs oscillations is analyzed.
Broadband ion mobility deconvolution for rapid analysis of complex mixtures.
Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj
2018-05-04
High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.
Zhang, Liguo; Sun, Jianguo; Yin, Guisheng; Zhao, Jing; Han, Qilong
2015-01-01
In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation. PMID:26110403
Fault Detection of Roller-Bearings Using Signal Processing and Optimization Algorithms
Kwak, Dae-Ho; Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2014-01-01
This study presents a fault detection of roller bearings through signal processing and optimization techniques. After the occurrence of scratch-type defects on the inner race of bearings, variations of kurtosis values are investigated in terms of two different data processing techniques: minimum entropy deconvolution (MED), and the Teager-Kaiser Energy Operator (TKEO). MED and the TKEO are employed to qualitatively enhance the discrimination of defect-induced repeating peaks on bearing vibration data with measurement noise. Given the perspective of the execution sequence of MED and the TKEO, the study found that the kurtosis sensitivity towards a defect on bearings could be highly improved. Also, the vibration signal from both healthy and damaged bearings is decomposed into multiple intrinsic mode functions (IMFs), through empirical mode decomposition (EMD). The weight vectors of IMFs become design variables for a genetic algorithm (GA). The weights of each IMF can be optimized through the genetic algorithm, to enhance the sensitivity of kurtosis on damaged bearing signals. Experimental results show that the EMD-GA approach successfully improved the resolution of detectability between a roller bearing with defect, and an intact system. PMID:24368701
NASA Astrophysics Data System (ADS)
Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert
2014-08-01
Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.
Bandyopadhyay, Somnath; Connolly, Sean E; Jabado, Omar; Ye, June; Kelly, Sheila; Maldonado, Michael A; Westhovens, Rene; Nash, Peter; Merrill, Joan T; Townsend, Robert M
2017-01-01
To characterise patients with active SLE based on pretreatment gene expression-defined peripheral immune cell patterns and identify clusters enriched for potential responders to abatacept treatment. This post hoc analysis used baseline peripheral whole blood transcriptomic data from patients in a phase IIb trial of intravenous abatacept (~10 mg/kg/month). Cell-specific genes were used with a published deconvolution algorithm to identify immune cell proportions in patient samples, and unsupervised consensus clustering was generated. Efficacy data were re-analysed. Patient data (n=144: abatacept: n=98; placebo: n=46) were grouped into four main clusters (C) by predominant characteristic cells: C1-neutrophils; C2-cytotoxic T cells, B-cell receptor-ligated B cells, monocytes, IgG memory B cells, activated T helper cells; C3-plasma cells, activated dendritic cells, activated natural killer cells, neutrophils; C4-activated dendritic cells, cytotoxic T cells. C3 had the highest baseline total British Isles Lupus Assessment Group (BILAG) scores, highest antidouble-stranded DNA autoantibody levels and shortest time to flare (TTF), plus trends in favour of response to abatacept over placebo: adjusted mean difference in BILAG score over 1 year, -4.78 (95% CI -12.49 to 2.92); median TTF, 56 vs 6 days; greater normalisation of complement component 3 and 4 levels. Differential improvements with abatacept were not seen in other clusters, except for median TTF in C1 (201 vs 109 days). Immune cell clustering segmented disease severity and responsiveness to abatacept. Definition of immune response cell types may inform design and interpretation of SLE trials and treatment decisions. NCT00119678; results.
Signal restoration through deconvolution applied to deep mantle seismic probes
NASA Astrophysics Data System (ADS)
Stefan, W.; Garnero, E.; Renaut, R. A.
2006-12-01
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.
NASA Astrophysics Data System (ADS)
Chu, Zhigang; Yang, Yang; He, Yansong
2015-05-01
Spherical Harmonics Beamforming (SHB) with solid spherical arrays has become a particularly attractive tool for doing acoustic sources identification in cabin environments. However, it presents some intrinsic limitations, specifically poor spatial resolution and severe sidelobe contaminations. This paper focuses on overcoming these limitations effectively by deconvolution. First and foremost, a new formulation is proposed, which expresses SHB's output as a convolution of the true source strength distribution and the point spread function (PSF) defined as SHB's response to a unit-strength point source. Additionally, the typical deconvolution methods initially suggested for planar arrays, deconvolution approach for the mapping of acoustic sources (DAMAS), nonnegative least-squares (NNLS), Richardson-Lucy (RL) and CLEAN, are adapted to SHB successfully, which are capable of giving rise to highly resolved and deblurred maps. Finally, the merits of the deconvolution methods are validated and the relationships of source strength and pressure contribution reconstructed by the deconvolution methods vs. focus distance are explored both with computer simulations and experimentally. Several interesting results have emerged from this study: (1) compared with SHB, DAMAS, NNLS, RL and CLEAN all can not only improve the spatial resolution dramatically but also reduce or even eliminate the sidelobes effectively, allowing clear and unambiguous identification of single source or incoherent sources. (2) The availability of RL for coherent sources is highest, then DAMAS and NNLS, and that of CLEAN is lowest due to its failure in suppressing sidelobes. (3) Whether or not the real distance from the source to the array center equals the assumed one that is referred to as focus distance, the previous two results hold. (4) The true source strength can be recovered by dividing the reconstructed one by a coefficient that is the square of the focus distance divided by the real distance from the source to the array center. (5) The reconstructed pressure contribution is almost not affected by the focus distance, always approximating to the true one. This study will be of great significance to the accurate localization and quantification of acoustic sources in cabin environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, B; Smith, C; La Riviere, P
2016-06-15
Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less
Artificial neural networks in biology and chemistry: the evolution of a new analytical tool.
Cartwright, Hugh M
2008-01-01
Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.
Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra
NASA Astrophysics Data System (ADS)
Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye
2018-04-01
Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.
A generic nuclei detection method for histopathological breast images
NASA Astrophysics Data System (ADS)
Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.
2016-03-01
The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.
Sparse and redundant representations for inverse problems and recognition
NASA Astrophysics Data System (ADS)
Patel, Vishal M.
Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.
Sparsity-based image monitoring of crystal size distribution during crystallization
NASA Astrophysics Data System (ADS)
Liu, Tao; Huo, Yan; Ma, Cai Y.; Wang, Xue Z.
2017-07-01
To facilitate monitoring crystal size distribution (CSD) during a crystallization process by using an in-situ imaging system, a sparsity-based image analysis method is proposed for real-time implementation. To cope with image degradation arising from in-situ measurement subject to particle motion, solution turbulence, and uneven illumination background in the crystallizer, sparse representation of a real-time captured crystal image is developed based on using an in-situ image dictionary established in advance, such that the noise components in the captured image can be efficiently removed. Subsequently, the edges of a crystal shape in a captured image are determined in terms of the salience information defined from the denoised crystal images. These edges are used to derive a blur kernel for reconstruction of a denoised image. A non-blind deconvolution algorithm is given for the real-time reconstruction. Consequently, image segmentation can be easily performed for evaluation of CSD. The crystal image dictionary and blur kernels are timely updated in terms of the imaging conditions to improve the restoration efficiency. An experimental study on the cooling crystallization of α-type L-glutamic acid (LGA) is shown to demonstrate the effectiveness and merit of the proposed method.
Volumetric Light-field Encryption at the Microscopic Scale
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149
Analysis of Cellular DNA Content by Flow Cytometry.
Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong
2017-10-02
Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.
Light-scattering flow cytometry for identification and characterization of blood microparticles
NASA Astrophysics Data System (ADS)
Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.
2012-05-01
We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.
Volumetric Light-field Encryption at the Microscopic Scale
NASA Astrophysics Data System (ADS)
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.
Analysis of Cellular DNA Content by Flow Cytometry.
Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong
2017-11-01
Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.
Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus
2016-11-25
Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.
Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D
2014-01-01
Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.
NASA Astrophysics Data System (ADS)
Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.
2018-01-01
The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.
Objective evaluation of linear and nonlinear tomosynthetic reconstruction algorithms
NASA Astrophysics Data System (ADS)
Webber, Richard L.; Hemler, Paul F.; Lavery, John E.
2000-04-01
This investigation objectively tests five different tomosynthetic reconstruction methods involving three different digital sensors, each used in a different radiologic application: chest, breast, and pelvis, respectively. The common task was to simulate a specific representative projection for each application by summation of appropriately shifted tomosynthetically generated slices produced by using the five algorithms. These algorithms were, respectively, (1) conventional back projection, (2) iteratively deconvoluted back projection, (3) a nonlinear algorithm similar to back projection, except that the minimum value from all of the component projections for each pixel is computed instead of the average value, (4) a similar algorithm wherein the maximum value was computed instead of the minimum value, and (5) the same type of algorithm except that the median value was computed. Using these five algorithms, we obtained data from each sensor-tissue combination, yielding three factorially distributed series of contiguous tomosynthetic slices. The respective slice stacks then were aligned orthogonally and averaged to yield an approximation of a single orthogonal projection radiograph of the complete (unsliced) tissue thickness. Resulting images were histogram equalized, and actual projection control images were subtracted from their tomosynthetically synthesized counterparts. Standard deviations of the resulting histograms were recorded as inverse figures of merit (FOMs). Visual rankings of image differences by five human observers of a subset (breast data only) also were performed to determine whether their subjective observations correlated with homologous FOMs. Nonparametric statistical analysis of these data demonstrated significant differences (P > 0.05) between reconstruction algorithms. The nonlinear minimization reconstruction method nearly always outperformed the other methods tested. Observer rankings were similar to those measured objectively.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Juerg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2010-05-01
In recent years, seismic interferometry (or Green's function retrieval) has led to many applications in seismology (exploration, regional and global), underwater acoustics and ultrasonics. One of the explanations for this broad interest lies in the simplicity of the methodology. In passive data applications a simple crosscorrelation of responses at two receivers gives the impulse response (Green's function) at one receiver as if there were a source at the position of the other. In controlled-source applications the procedure is similar, except that it involves in addition a summation along the sources. It has also been recognized that the simple crosscorrelation approach has its limitations. From the various theoretical models it follows that there are a number of underlying assumptions for retrieving the Green's function by crosscorrelation. The most important assumptions are that the medium is lossless and that the waves are equipartitioned. In heuristic terms the latter condition means that the receivers are illuminated isotropically from all directions, which is for example achieved when the sources are regularly distributed along a closed surface, the sources are mutually uncorrelated and their power spectra are identical. Despite the fact that in practical situations these conditions are at most only partly fulfilled, the results of seismic interferometry are generally quite robust, but the retrieved amplitudes are unreliable and the results are often blurred by artifacts. Several researchers have proposed to address some of the shortcomings by replacing the correlation process by deconvolution. In most cases the employed deconvolution procedure is essentially 1-D (i.e., trace-by-trace deconvolution). This compensates the anelastic losses, but it does not account for the anisotropic illumination of the receivers. To obtain more accurate results, seismic interferometry by deconvolution should acknowledge the 3-D nature of the seismic wave field. Hence, from a theoretical point of view, the trace-by-trace process should be replaced by a full 3-D wave field deconvolution process. Interferometry by multidimensional deconvolution is more accurate than the trace-by-trace correlation and deconvolution approaches but the processing is more involved. In the presentation we will give a systematic analysis of seismic interferometry by crosscorrelation versus multi-dimensional deconvolution and discuss applications of both approaches.
Methods and Apparatus for Reducing Multipath Signal Error Using Deconvolution
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor); Lau, Kenneth H. (Inventor)
1999-01-01
A deconvolution approach to adaptive signal processing has been applied to the elimination of signal multipath errors as embodied in one preferred embodiment in a global positioning system receiver. The method and receiver of the present invention estimates then compensates for multipath effects in a comprehensive manner. Application of deconvolution, along with other adaptive identification and estimation techniques, results in completely novel GPS (Global Positioning System) receiver architecture.
Bardy, Fabrice; Dillon, Harvey; Van Dun, Bram
2014-04-01
Rapid presentation of stimuli in an evoked response paradigm can lead to overlap of multiple responses and consequently difficulties interpreting waveform morphology. This paper presents a deconvolution method allowing overlapping multiple responses to be disentangled. The deconvolution technique uses a least-squared error approach. A methodology is proposed to optimize the stimulus sequence associated with the deconvolution technique under low-jitter conditions. It controls the condition number of the matrices involved in recovering the responses. Simulations were performed using the proposed deconvolution technique. Multiple overlapping responses can be recovered perfectly in noiseless conditions. In the presence of noise, the amount of error introduced by the technique can be controlled a priori by the condition number of the matrix associated with the used stimulus sequence. The simulation results indicate the need for a minimum amount of jitter, as well as a sufficient number of overlap combinations to obtain optimum results. An aperiodic model is recommended to improve reconstruction. We propose a deconvolution technique allowing multiple overlapping responses to be extracted and a method of choosing the stimulus sequence optimal for response recovery. This technique may allow audiologists, psychologists, and electrophysiologists to optimize their experimental designs involving rapidly presented stimuli, and to recover evoked overlapping responses. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.
Gainer, Christian F; Utzinger, Urs; Romanowski, Marek
2012-07-01
The use of upconverting lanthanide nanoparticles in fast-scanning microscopy is hindered by a long luminescence decay time, which greatly blurs images acquired in a nondescanned mode. We demonstrate herein an image processing method based on Richardson-Lucy deconvolution that mitigates the detrimental effects of their luminescence lifetime. This technique generates images with lateral resolution on par with the system's performance, ∼1.2 μm, while maintaining an axial resolution of 5 μm or better at a scan rate comparable with traditional two-photon microscopy. Remarkably, this can be accomplished with near infrared excitation power densities of 850 W/cm(2), several orders of magnitude below those used in two-photon imaging with molecular fluorophores. By way of illustration, we introduce the use of lipids to coat and functionalize these nanoparticles, rendering them water dispersible and readily conjugated to biologically relevant ligands, in this case epidermal growth factor receptor antibody. This deconvolution technique combined with the functionalized nanoparticles will enable three-dimensional functional tissue imaging at exceptionally low excitation power densities.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.
1996-01-01
In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.
Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure
NASA Astrophysics Data System (ADS)
Xie, J. "; Schaff, D. P.
2010-12-01
Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.
Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.
Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J
2018-04-01
Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.
Horger, Marius; Fallier-Becker, Petra; Thaiss, Wolfgang M; Sauter, Alexander; Bösmüller, Hans; Martella, Manuela; Preibsch, Heike; Fritz, Jan; Nikolaou, Konstantin; Kloth, Christopher
2018-05-03
This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m 2 ), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BF deconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BV deconvolution (P < .005). Mean k-trans Patlak correlated strongly with mean k-trans deconvolution (r = 0.939, P = .001), and both correlated with mean BF deconvolution (P = .001, r = 0.748), max BF deconvolution (P = .028, r = 0.564), mean BV deconvolution (P = .001, r = 0.752), and max BV deconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-trans deconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-trans Patlak (P = .041, r = 0.686) and mean BF deconvolution (P = .038, r = 0.695). k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Spectroscopic characterization of low dose rate brachytherapy sources
NASA Astrophysics Data System (ADS)
Beach, Stephen M.
The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these analogs. Several dosimetrically-relevant water-equivalent plastics were also investigated for their transmission properties within a liquid water environment, as well as in air. The framework for the accurate spectrometry of LDR sources is established as a result of this dissertation work. In addition to the measurement and analysis methods, this work presents the basic measured spectroscopic characteristics of each LDR seed currently in use in the clinic today.
A comparison of deconvolution and the Rutland-Patlak plot in parenchymal renal uptake rate.
Al-Shakhrah, Issa A
2012-07-01
Deconvolution and the Rutland-Patlak (R-P) plot are two of the most commonly used methods for analyzing dynamic radionuclide renography. Both methods allow estimation of absolute and relative renal uptake of radiopharmaceutical and of its rate of transit through the kidney. Seventeen patients (32 kidneys) were referred for further evaluation by renal scanning. All patients were positioned supine with their backs to the scintillation gamma camera, so that the kidneys and the heart are both in the field of view. Approximately 5-7 mCi of (99m)Tc-DTPA (diethylinetriamine penta-acetic acid) in about 0.5 ml of saline is injected intravenously and sequential 20 s frames were acquired, the study on each patient lasts for approximately 20 min. The time-activity curves of the parenchymal region of interest of each kidney, as well as the heart were obtained for analysis. The data were then analyzed with deconvolution and the R-P plot. A strong positive association (n = 32; r = 0.83; R (2) = 0.68) was found between the values that obtained by applying the two methods. Bland-Altman statistical analysis demonstrated that ninety seven percent of the values in the study (31 cases from 32 cases, 97% of the cases) were within limits of agreement (mean ± 1.96 standard deviation). We believe that R-P analysis method is expected to be more reproducible than iterative deconvolution method, because the deconvolution technique (the iterative method) relies heavily on the accuracy of the first point analyzed, as any errors are carried forward into the calculations of all the subsequent points, whereas R-P technique is based on an initial analysis of the data by means of the R-P plot, and it can be considered as an alternative technique to find and calculate the renal uptake rate.
NASA Technical Reports Server (NTRS)
Wood, G. M.; Rayborn, G. H.; Ioup, J. W.; Ioup, G. E.; Upchurch, B. T.; Howard, S. J.
1981-01-01
Mathematical deconvolution of digitized analog signals from scientific measuring instruments is shown to be a means of extracting important information which is otherwise hidden due to time-constant and other broadening or distortion effects caused by the experiment. Three different approaches to deconvolution and their subsequent application to recorded data from three analytical instruments are considered. To demonstrate the efficacy of deconvolution, the use of these approaches to solve the convolution integral for the gas chromatograph, magnetic mass spectrometer, and the time-of-flight mass spectrometer are described. Other possible applications of these types of numerical treatment of data to yield superior results from analog signals of the physical parameters normally measured in aerospace simulation facilities are suggested and briefly discussed.
Multi-frame partially saturated images blind deconvolution
NASA Astrophysics Data System (ADS)
Ye, Pengzhao; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2016-12-01
When blurred images have saturated or over-exposed pixels, conventional blind deconvolution approaches often fail to estimate accurate point spread function (PSF) and will introduce local ringing artifacts. In this paper, we propose a method to deal with the problem under the modified multi-frame blind deconvolution framework. First, in the kernel estimation step, a light streak detection scheme using multi-frame blurred images is incorporated into the regularization constraint. Second, we deal with image regions affected by the saturated pixels separately by modeling a weighted matrix during each multi-frame deconvolution iteration process. Both synthetic and real-world examples show that more accurate PSFs can be estimated and restored images have richer details and less negative effects compared to state of art methods.
Improved deconvolution of very weak confocal signals.
Day, Kasey J; La Rivière, Patrick J; Chandler, Talon; Bindokas, Vytas P; Ferrier, Nicola J; Glick, Benjamin S
2017-01-01
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.
Wen, Yanhua; Wei, Yanjun; Zhang, Shumei; Li, Song; Liu, Hongbo; Wang, Fang; Zhao, Yue; Zhang, Dongwei; Zhang, Yan
2017-05-01
Tumour heterogeneity describes the coexistence of divergent tumour cell clones within tumours, which is often caused by underlying epigenetic changes. DNA methylation is commonly regarded as a significant regulator that differs across cells and tissues. In this study, we comprehensively reviewed research progress on estimating of tumour heterogeneity. Bioinformatics-based analysis of DNA methylation has revealed the evolutionary relationships between breast cancer cell lines and tissues. Further analysis of the DNA methylation profiles in 33 breast cancer-related cell lines identified cell line-specific methylation patterns. Next, we reviewed the computational methods in inferring clonal evolution of tumours from different perspectives and then proposed a deconvolution strategy for modelling cell subclonal populations dynamics in breast cancer tissues based on DNA methylation. Further analysis of simulated cancer tissues and real cell lines revealed that this approach exhibits satisfactory performance and relative stability in estimating the composition and proportions of cellular subpopulations. The application of this strategy to breast cancer individuals of the Cancer Genome Atlas's identified different cellular subpopulations with distinct molecular phenotypes. Moreover, the current and potential future applications of this deconvolution strategy to clinical breast cancer research are discussed, and emphasis was placed on the DNA methylation-based recognition of intra-tumour heterogeneity. The wide use of these methods for estimating heterogeneity to further clinical cohorts will improve our understanding of neoplastic progression and the design of therapeutic interventions for treating breast cancer and other malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades
NASA Astrophysics Data System (ADS)
Peng, Di; Jiao, Lingrui; Yu, Yuelong; Liu, Yingzheng; Oshio, Tetsuya; Kawakubo, Tomoki; Yakushiji, Akimitsu
2017-09-01
Fast-responding pressure-sensitive paint (Fast PSP) and temperature-sensitive paint (TSP) measurements were conducted on two turbocharger compressors using a single-shot lifetime-based technique. The fast PSP and TSP were applied on separate blades of one compressor, and both paints were excited by a pulsed 532 nm Nd:YAG laser. The luminescent decay signals following the laser pulse were recorded by a CCD camera in a double-exposure mode. Instantaneous pressure and temperature fields on compressor blades were obtained simultaneously, for rotation speeds up to 150,000 rpm. The variations in pressure and temperature fields with rotation speed, flow rate and runtime were clearly visualized, showing the advantage of high spatial resolution. Severe image blurring problems and significant temperature-induced errors in the PSP results were found at high rotation speeds. The first issue was addressed by incorporating a deconvolution-based deblurring algorithm to recover the clear image from the blurred image using the combination of luminescent lifetime and rotation speed. The second issue was resolved by applying a pixel-by-pixel temperature correction based on the TSP results. The current technique has shown great capabilities in flow diagnostics of turbomachinery and can serve as a powerful tool for CFD validations and design optimizations.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently. PMID:25849350
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.
Brost, Eric Edward; Watanabe, Yoichi
2018-06-01
Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2016-09-01
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
Edrei, Eitan; Scarcelli, Giuliano
2016-09-16
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
NASA Astrophysics Data System (ADS)
McDonald, Geoff L.; Zhao, Qing
2017-01-01
Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection from vibration data, however this method has limitations. A convolution adjustment to the MED definition and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases causing spurious impulses to be erroneously deconvolved. A problem with the MED solution is that it is an iterative selection process, and will not necessarily design an optimal filter for the posed problem. Additionally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target goal of multiple periodic impulses, it is still an iterative non-optimal solution to the posed problem and only solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the output goal, and should directly solve for the optimal filter in a non-iterative manner. To meet these goals, we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA). MOMEDA proposes a deconvolution problem with an infinite impulse train as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox with and without a gear tooth chip, we show that MOMEDA and its deconvolution spectrums according to the period between the impulses can be used to detect faults and study the health of rotating machine elements effectively.
No-reference image quality assessment for horizontal-path imaging scenarios
NASA Astrophysics Data System (ADS)
Rios, Carlos; Gladysz, Szymon
2013-05-01
There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.
An X-ray image of the violent interstellar medium in 30 Doradus
NASA Technical Reports Server (NTRS)
Wang, Q.; Helfand, D. J.
1991-01-01
A detailed analysis of the X-ray emission from the largest H II region complex in the Local Group, 30 Dor, is presented. Applying a new maximum entropy deconvolution algorithm to the Einstein Observatory data, reveals striking correlations among the X-ray, radio, and optical morphologies of the region, with X-ray-emitting bubbles filling cavities surrounded by H-alpha shells and coextensive diffuse X-ray and radio continuum emission from throughout the region. The total X-ray luminosity in the 0.16-3.5 keV band from an area within 160 pc of the central cluster R136 is about 2 x 10 to the 37th ergs/sec.
NASA Technical Reports Server (NTRS)
Hucek, Richard R.; Ardanuy, Philip; Kyle, H. Lee
1990-01-01
The results of a constrained, wide field-of-view radiometer measurement deconvolution are presented and compared against higher resolution results obtained from the Earth Radiation Budget instrument on the Nimbus-7 satellite and from the Earth Radiation Budget Experiment. The method is applicable to both longwave and shortwave observations and is specifically designed to treat the problem of anisotropic reflection and emission at the top of the atmosphere as well as low signal-to-noise ratios that arise regionally within a field. The procedure is reviewed, and the improvements in resolution obtained are examined. Some minor improvements in the albedo algorithm are also described.
Improving Range Estimation of a 3-Dimensional Flash Ladar via Blind Deconvolution
2010-09-01
12 2.1.4 Optical Imaging as a Linear and Nonlinear System 15 2.1.5 Coherence Theory and Laser Light Statistics . . . 16 2.2 Deconvolution...rather than deconvolution. 2.1.5 Coherence Theory and Laser Light Statistics. Using [24] and [25], this section serves as background on coherence theory...the laser light incident on the detector surface. The image intensity related to different types of coherence is governed by the laser light’s spatial
NASA Astrophysics Data System (ADS)
Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas
2014-06-01
Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.
Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas
2014-06-01
Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.
NASA Astrophysics Data System (ADS)
Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong
2007-10-01
The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring blood flow and vascular volume with the commercially available reference standard of the deconvolution-based approach. The lack of substantial agreement between the measurements of vascular transit time and permeability-surface area product may be attributed to the different tracer kinetic principles employed by both models and the detailed capillary tissue exchange physiological modeling of the DP technique.
Three Channel Polarimetric Based Data Deconvolution
2011-03-01
which have been degraded by atmospheric turbulence and noise . This thesis explains in entirety the process used for deblurring and de- noising images...10 3.1.2 Noise Model...Blur and Noise .............................................................................................................. 34 5.3 Laboratory Results
Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide
NASA Astrophysics Data System (ADS)
Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.
Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
NASA Astrophysics Data System (ADS)
Bovy Jo; Hogg, David W.; Roweis, Sam T.
2011-06-01
We generalize the well-known mixtures of Gaussians approach to density estimation and the accompanying Expectation-Maximization technique for finding the maximum likelihood parameters of the mixture to the case where each data point carries an individual d-dimensional uncertainty covariance and has unique missing data properties. This algorithm reconstructs the error-deconvolved or "underlying" distribution function common to all samples, even when the individual data points are samples from different distributions, obtained by convolving the underlying distribution with the heteroskedastic uncertainty distribution of the data point and projecting out the missing data directions. We show how this basic algorithm can be extended with conjugate priors on all of the model parameters and a "split-and-"erge- procedure designed to avoid local maxima of the likelihood. We demonstrate the full method by applying it to the problem of inferring the three-dimensional veloc! ity distribution of stars near the Sun from noisy two-dimensional, transverse velocity measurements from the Hipparcos satellite.
Cosmic Microwave Background Mapmaking with a Messenger Field
NASA Astrophysics Data System (ADS)
Huffenberger, Kevin M.; Næss, Sigurd K.
2018-01-01
We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.
NASA Technical Reports Server (NTRS)
Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)
1992-01-01
Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.
Image-guided filtering for improving photoacoustic tomographic image reconstruction.
Awasthi, Navchetan; Kalva, Sandeep Kumar; Pramanik, Manojit; Yalavarthy, Phaneendra K
2018-06-01
Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-01-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2015-10-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.
Improved deconvolution of very weak confocal signals
Day, Kasey J.; La Rivière, Patrick J.; Chandler, Talon; Bindokas, Vytas P.; Ferrier, Nicola J.; Glick, Benjamin S.
2017-01-01
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage. PMID:28868135
Improved deconvolution of very weak confocal signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less
Improved deconvolution of very weak confocal signals
Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon; ...
2017-06-06
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less
Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G
2012-05-01
This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.
NASA Astrophysics Data System (ADS)
Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
2004-08-01
An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOVY, J.; Sheldon, E.; Hennawi, J.F.
2011-03-10
We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient,more » and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.« less
Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2000-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L.
Histones play central roles in most chromosomal functions and both their basic biology and roles in disease have been the subject of intense study. Since multiple PTMs along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here, we used state of the art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFindermore » as search engine, and LcMsSpectator as a data visualization tool. ProMex sums across retention time to maximize sensitivity and accuracy for low abundance species in MS1deconvolution. MSPathFinder searches the MS2 data against protein sequence databases with user-defined modifications. LcMsSpectator presents the results from ProMex and MSPathFinder in a format that allows quick manual evaluation of critical attributes for high-confidence identifications. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.« less
Hargiss, Leonard O; Zipp, G Greg; Jessop, Theodore C; Sun, Xuejun; Keyes, Philip; Rawlins, David B; Liang, Zhi; Park, Kum Joo; Gu, Huizhong
2014-11-15
An ultra high-pressure liquid chromatography/mass spectrometry (UHPLC/MS) separation and analysis method has been devised for open access analysis of synthetic reactions used in the production of DNA-encoded chemical libraries. The aqueous mobile phase is 100mM hexafluoroisopropanol and 8.6mM triethylamine; the organic mobile phase is methanol. The UHPLC separation uses a C18 OST column (50mm×2.1mm×1.7μm) at 60°C, with a flow rate of 0.6mL/min. Gradient concentration is from 10 to 40% B in 1.0min, increasing to 95% B at 1.2min. Cycle time was about 5min. This method provides a detection limit of a 20-mer oligonucleotide by mass spectrometry of better than 1pmol on-column. Linear UV response for 20-mer extends from 2 to 200pmol/μL in concentration, same-day relative average deviations are less than 5% and bias (observed minus expected) is less than 10%. Deconvoluted mass spectra are generated for components in the predicted mass range using a maximum entropy algorithm. Mass accuracy of deconvoluted spectra is typically 20ppm or better for isotopomers of oligonucleotides up to 7000Da. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhongzhi; Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Liu, Xu
2018-06-01
Parallel detection, which can use the additional information of a pinhole plane image taken at every excitation scan position, could be an efficient method to enhance the resolution of a confocal laser scanning microscope. In this paper, we discuss images obtained under different conditions and using different image restoration methods with parallel detection to quantitatively compare the imaging quality. The conditions include different noise levels and different detector array settings. The image restoration methods include linear deconvolution and pixel reassignment with Richard-Lucy deconvolution and with maximum-likelihood estimation deconvolution. The results show that the linear deconvolution share properties such as high-efficiency and the best performance under all different conditions, and is therefore expected to be of use for future biomedical routine research.
Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.
Suh, D M; Kim, W W; Chung, J G
1999-01-01
Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C
2015-01-16
The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluating the Visualization of What a Deep Neural Network Has Learned.
Samek, Wojciech; Binder, Alexander; Montavon, Gregoire; Lapuschkin, Sebastian; Muller, Klaus-Robert
Deep neural networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multilayer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision, given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and interpret the reasoning embodied in a DNN for a single test image. These methods quantify the "importance" of individual pixels with respect to the classification decision and allow a visualization in terms of a heatmap in pixel/input space. While the usefulness of heatmaps can be judged subjectively by a human, an objective quality measure is missing. In this paper, we present a general methodology based on region perturbation for evaluating ordered collections of pixels such as heatmaps. We compare heatmaps computed by three different methods on the SUN397, ILSVRC2012, and MIT Places data sets. Our main result is that the recently proposed layer-wise relevance propagation algorithm qualitatively and quantitatively provides a better explanation of what made a DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution method. We provide theoretical arguments to explain this result and discuss its practical implications. Finally, we investigate the use of heatmaps for unsupervised assessment of the neural network performance.Deep neural networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multilayer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision, given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and interpret the reasoning embodied in a DNN for a single test image. These methods quantify the "importance" of individual pixels with respect to the classification decision and allow a visualization in terms of a heatmap in pixel/input space. While the usefulness of heatmaps can be judged subjectively by a human, an objective quality measure is missing. In this paper, we present a general methodology based on region perturbation for evaluating ordered collections of pixels such as heatmaps. We compare heatmaps computed by three different methods on the SUN397, ILSVRC2012, and MIT Places data sets. Our main result is that the recently proposed layer-wise relevance propagation algorithm qualitatively and quantitatively provides a better explanation of what made a DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution method. We provide theoretical arguments to explain this result and discuss its practical implications. Finally, we investigate the use of heatmaps for unsupervised assessment of the neural network performance.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
NASA Astrophysics Data System (ADS)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.; Iida, Y.; Quintero Noda, C.; Shimizu, T.
2017-11-01
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km s-1 and +3.0 km s-1 at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
Peptide de novo sequencing of mixture tandem mass spectra
Hotta, Stéphanie Yuki Kolbeck; Verano‐Braga, Thiago; Kjeldsen, Frank
2016-01-01
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co‐isolation and thus prone to false identifications. The deconvolution approach matched complementary b‐, y‐ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co‐isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. PMID:27329701
Deconvolution using a neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Deconvolution of gas chromatographic data
NASA Technical Reports Server (NTRS)
Howard, S.; Rayborn, G. H.
1980-01-01
The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.
Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona
Bultman, Mark W.
2015-01-01
Euler deconvolution depth estimates derived from aeromagnetic data with a structural index of 0 show that mapped faults on the northern margin of the Patagonia Mountains generally agree with the depth estimates in the new geologic model. The deconvolution depth estimates also show that the concealed Patagonia Fault southwest of the Patagonia Mountains is more complex than recent geologic mapping represents. Additionally, Euler deconvolution depth estimates with a structural index of 2 locate many potential intrusive bodies that might be associated with known and unknown mineralization.
Application of a multiscale maximum entropy image restoration algorithm to HXMT observations
NASA Astrophysics Data System (ADS)
Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi
2016-08-01
This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)
Electromagnetic Test-Facility characterization: an identification approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zicker, J.E.; Candy, J.V.
The response of an object subjected to high energy, transient electromagnetic (EM) fields sometimes called electromagnetic pulses (EMP), is an important issue in the survivability of electronic systems (e.g., aircraft), especially when the field has been generated by a high altitude nuclear burst. The characterization of transient response information is a matter of national concern. In this report we discuss techniques to: (1) improve signal processing at a test facility; and (2) parameterize a particular object response. First, we discuss the application of identification-based signal processing techniques to improve signal levels at the Lawrence Livermore National Laboratory (LLNL) EM Transientmore » Test Facility. We identify models of test equipment and then use these models to deconvolve the input/output sequences for the object under test. A parametric model of the object is identified from this data. The model can be used to extrapolate the response to these threat level EMP. Also discussed is the development of a facility simulator (EMSIM) useful for experimental design and calibration and a deconvolution algorithm (DECONV) useful for removing probe effects from the measured data.« less
NASA Astrophysics Data System (ADS)
Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.
2015-05-01
Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.
Fizeau interferometric imaging of Io volcanism with LBTI/LMIRcam
NASA Astrophysics Data System (ADS)
Leisenring, J. M.; Hinz, P. M.; Skrutskie, M.; Skemer, A.; Woodward, C. E.; Veillet, C.; Arcidiacono, C.; Bailey, V.; Bertero, M.; Boccacci, P.; Conrad, A.; de Kleer, K.; de Pater, I.; Defrère, D.; Hill, J.; Hofmann, K.-H.; Kaltenegger, L.; La Camera, A.; Nelson, M. J.; Schertl, D.; Spencer, J.; Weigelt, G.; Wilson, J. C.
2014-07-01
The Large Binocular Telescope (LBT) houses two 8.4-meter mirrors separated by 14.4 meters on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with a spatial resolution equivalent to that of a 22.8-meter telescope and the light- gathering power of single 11.8-meter mirror. Capitalizing on these unique capabilities, we used LBTI/LMIRcam to image thermal radiation from volcanic activity on the surface of Io at M-Band (4.8 μm) over a range of parallactic angles. At the distance of Io, the M-Band resolution of the interferometric baseline corresponds to a physical distance of ~135 km, enabling high-resolution monitoring of Io volcanism such as ares and outbursts inaccessible from other ground-based telescopes operating in this wavelength regime. Two deconvolution routines are used to recover the full spatial resolution of the combined images, resolving at least sixteen known volcanic hot spots. Coupling these observations with advanced image reconstruction algorithms demonstrates the versatility of Fizeau interferometry and realizes the LBT as the first in a series of extremely large telescopes.
Shedding light on the Global Ocean microbiome with algorithms and data collection
NASA Astrophysics Data System (ADS)
Lauro, F.; Ostrowski, M.; Chénard, C.; Acerbi, E.; Paulsen, I.; Jensen, R.
2016-02-01
In the Global Oceans, the marine microbiome plays a critical role in biogeochemical cycling of nutrients, but surveying marine microbial communities requires ship time for sample collection, economically constraining the number of samples collected. An integrative understanding of the microbiome's activity and performance requires the collection of high-density data, both temporally and spatially in a cost-effective way. We have overcome this bottleneck by crowdsourcing the data collection to vessels of opportunity, including bluewater sailing yachts. Sailors know the oceans, and experience first-hand the declines in ocean productivity and the effects of pollution and climate change. Moreover, simply the ability to sample a microbial community during anomalous or inclement weather conditions is a major advance in sampling strategy. Our approach inherently incorporates the benefit of outreach and participation of people in scientific research, gaining positive media attention for sailors, scientists and concerned citizens alike. We have tested the basic methods during a 2013 Indian Ocean Concept Cruise, from Cape Town to Singapore, performing experimental work and reaching sampling locations inaccessible to traditional Oceanographic Vessels. At the same time we developed a small, yacht-adapted automated sampling device that takes a variety of biological and chemical measurements. In 2015 our first beta-cruisers sampled the Pacific Ocean in the first ever citizen-oceanography transect at high and low latitudes in both hemispheres. The collected samples were characterized with next-gen sequencing technology and analysed with a combination of novel algorithmic approaches. With big data management, machine learning algorithms and agent-based models we show that it is possible to deconvolute the complexity of the Ocean Microbiome for the scientific management of fisheries, marine protected areas and preservation of the oceans and seas for generations to come.
Improved Phased Array Imaging of a Model Jet
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Podboy, Gary G.
2010-01-01
An advanced phased array system, OptiNav Array 48, and a new deconvolution algorithm, TIDY, have been used to make octave band images of supersonic and subsonic jet noise produced by the NASA Glenn Small Hot Jet Acoustic Rig (SHJAR). The results are much more detailed than previous jet noise images. Shock cell structures and the production of screech in an underexpanded supersonic jet are observed directly. Some trends are similar to observations using spherical and elliptic mirrors that partially informed the two-source model of jet noise, but the radial distribution of high frequency noise near the nozzle appears to differ from expectations of this model. The beamforming approach has been validated by agreement between the integrated image results and the conventional microphone data.
He, Jia-yao; Peng, Rong-fei; Zhang, Zhan-xia
2002-02-01
A self-constructed visible spectrophotometer using an acousto-optic tunable filter(AOTF) as a dispersing element is described. Two different AOTFs (one from The Institute for Silicate (Shanghai, China) and the other from Brimrose(USA)) are tested. The software written with visual C++ and operated on a Window98 platform is an applied program with dual database and multi-windows. Four independent windows, namely scanning, quantitative, calibration and result are incorporated. The Fourier self-deconvolution algorithm is also incorporated to improve the spectral resolution. The wavelengths are calibrated using the polynomial curve fitting method. The spectra and calibration curves of soluble aniline blue and phenol red are presented to show the feasibility of the constructed spectrophotometer.
Enhancing multi-spot structured illumination microscopy with fluorescence difference
NASA Astrophysics Data System (ADS)
Ward, Edward N.; Torkelsen, Frida H.; Pal, Robert
2018-03-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested.
Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T
2010-05-01
We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.
Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S
2010-03-01
This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.
Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.
2002-01-01
Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.
A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.
Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen
2018-05-08
A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .
Schinkel, Lena; Lehner, Sandro; Knobloch, Marco; Lienemann, Peter; Bogdal, Christian; McNeill, Kristopher; Heeb, Norbert V
2018-03-01
Chlorinated paraffins (CPs) are high production volume chemicals widely used as additives in metal working fluids. Thereby, CPs are exposed to hot metal surfaces which may induce degradation processes. We hypothesized that the elimination of hydrochloric acid would transform CPs into chlorinated olefins (COs). Mass spectrometry is widely used to detect CPs, mostly in the selected ion monitoring mode (SIM) evaluating 2-3 ions at mass resolutions R < 20'000. This approach is not suited to detected COs, because their mass spectra strongly overlap with CPs. We applied a mathematical deconvolution method based on full-scan MS data to separate interfered CP/CO spectra. Metal drilling indeed induced HCl-losses. CO proportions in exposed mixtures of chlorotridecanes increased. Thermal exposure of chlorotridecanes at 160, 180, 200 and 220 °C also induced dehydrohalogenation reactions and CO proportions also increased. Deconvolution of respective mass spectra is needed to study the CP transformation kinetics without bias from CO interferences. Apparent first-order rate constants (k app ) increased up to 0.17, 0.29 and 0.46 h -1 for penta-, hexa- and heptachloro-tridecanes exposed at 220 °C. Respective half-life times (τ 1/2 ) decreased from 4.0 to 2.4 and 1.5 h. Thus, higher chlorinated paraffins degrade faster than lower chlorinated ones. In conclusion, exposure of CPs during metal drilling and thermal treatment induced HCl losses and CO formation. It is expected that CPs and COs are co-released from such processes. Full-scan mass spectra and subsequent deconvolution of interfered signals is a promising approach to tackle the CP/CO problem, in case of insufficient mass resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khodasevich, I. A.; Voitikov, S. V.; Orlovich, V. A.; Kosmyna, M. B.; Shekhovtsov, A. N.
2016-09-01
Unpolarized spontaneous Raman spectra of crystalline double calcium orthovanadates Ca10M(VO4)7 (M = Li, K, Na) in the range 150-1600 cm-1 were measured. Two vibrational bands with full-width at half-maximum (FWHM) of 37-50 cm-1 were found in the regions 150-500 and 700-1000 cm-1. The band shapes were approximated well by deconvolution into Voigt profiles. The band at 700-1000 cm-1 was stronger and deconvoluted into eight Voigt profiles. The frequencies of two strong lines were ~848 and ~862 cm-1 for Ca10Li(VO4)7; ~850 and ~866 cm-1 for Ca10Na(VO4)7; and ~844 and ~866 cm-1 for Ca10K(VO4)7. The Lorentzian width parameters of these lines in the Voigt profiles were ~5 times greater than those of the Gaussian width parameters. The FWHM of the Voigt profiles were ~18-42 cm-1. The two strongest lines had widths of 21-25 cm-1. The vibrational band at 300-500 cm-1 was ~5-6 times weaker than that at 700-1000 cm-1 and was deconvoluted into four lines with widths of 25-40 cm-1. The large FWHM of the Raman lines indicated that the crystal structures were disordered. These crystals could be of interest for Raman conversion of pico- and femtosecond laser pulses because of the intense vibrations with large FWHM in the Raman spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode /SP data inmore » an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of −3.0 km s{sup −1} and +3.0 km s{sup −1} at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.« less
Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.
Ngô, Huân M; Zhou, Ying; Lorenzi, Hernan; Wang, Kai; Kim, Taek-Kyun; Zhou, Yong; El Bissati, Kamal; Mui, Ernest; Fraczek, Laura; Rajagopala, Seesandra V; Roberts, Craig W; Henriquez, Fiona L; Montpetit, Alexandre; Blackwell, Jenefer M; Jamieson, Sarra E; Wheeler, Kelsey; Begeman, Ian J; Naranjo-Galvis, Carlos; Alliey-Rodriguez, Ney; Davis, Roderick G; Soroceanu, Liliana; Cobbs, Charles; Steindler, Dennis A; Boyer, Kenneth; Noble, A Gwendolyn; Swisher, Charles N; Heydemann, Peter T; Rabiah, Peter; Withers, Shawn; Soteropoulos, Patricia; Hood, Leroy; McLeod, Rima
2017-09-13
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Peptide de novo sequencing of mixture tandem mass spectra.
Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Verano-Braga, Thiago; Kjeldsen, Frank
2016-09-01
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20-35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impulse radar imaging system for concealed object detection
NASA Astrophysics Data System (ADS)
Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.
2013-10-01
Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal-to-noise parameter to determine how the frequencies contained in the echo dataset are normalised. The chosen image reconstruction algorithm is based on the back-projection method. The algorithm was implemented in MATLAB and uses a pre-calculated sensitivity matrix to increase the computation speed. The results include both 2D and 3D image datasets. The 3D datasets were obtained by scanning the dual sixteen element linear antenna array over the test object. The system has been tested on both humans and mannequin test objects. The front surface of an object placed on the human/mannequin torso is clearly visible, but its presence is also seen from a tell-tale imaging characteristic. This characteristic is caused by a reduction in the wave velocity as the electromagnetic radiation passes through the object, and manifests as an indentation in the reconstructed image that is readily identifiable. The prototype system has been shown to easily detect a 12 mm x 30 mm x70 mm plastic object concealed under clothing.
Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia
2014-08-01
We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.
Investigation of the flow structure in thin polymer films using 3D µPTV enhanced by GPU
NASA Astrophysics Data System (ADS)
Cavadini, Philipp; Weinhold, Hannes; Tönsmann, Max; Chilingaryan, Suren; Kopmann, Andreas; Lewkowicz, Alexander; Miao, Chuan; Scharfer, Philip; Schabel, Wilhelm
2018-04-01
To understand the effects of inhomogeneous drying on the quality of polymer coatings, an experimental setup to resolve the occurring flow field throughout the drying film has been developed. Deconvolution microscopy is used to analyze the flow field in 3D and time. Since the dimension of the spatial component in the direction of the line-of-sight is limited compared to the lateral components, a multi-focal approach is used. Here, the beam of light is equally distributed on up to five cameras using cubic beam splitters. Adding a meniscus lens between each pair of camera and beam splitter and setting different distances between each camera and its meniscus lens creates multi-focality and allows one to increase the depth of the observed volume. Resolving the spatial component in the line-of-sight direction is based on analyzing the point spread function. The analysis of the PSF is computational expensive and introduces a high complexity compared to traditional particle image velocimetry approaches. A new algorithm tailored to the parallel computing architecture of recent graphics processing units has been developed. The algorithm is able to process typical images in less than a second and has further potential to realize online analysis in the future. As a prove of principle, the flow fields occurring in thin polymer solutions drying at ambient conditions and at boundary conditions that force inhomogeneous drying are presented.
NASA Astrophysics Data System (ADS)
Boroomand, Ameneh; Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2015-03-01
The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.
NASA Astrophysics Data System (ADS)
Majer, C. L.; Meyer, S.; Konrad, S.; Sarli, E.; Bartelmann, M.
2016-07-01
This paper continues a series in which we intend to show how all observables of galaxy clusters can be combined to recover the two-dimensional, projected gravitational potential of individual clusters. Our goal is to develop a non-parametric algorithm for joint cluster reconstruction taking all cluster observables into account. For this reason we focus on the line-of-sight projected gravitational potential, proportional to the lensing potential, in order to extend existing reconstruction algorithms. In this paper, we begin with the relation between the Compton-y parameter and the Newtonian gravitational potential, assuming hydrostatic equilibrium and a polytropic stratification of the intracluster gas. Extending our first publication we now consider a spheroidal rather than a spherical cluster symmetry. We show how a Richardson-Lucy deconvolution can be used to convert the intensity change of the CMB due to the thermal Sunyaev-Zel'dovich effect into an estimate for the two-dimensional gravitational potential. We apply our reconstruction method to a cluster based on an N-body/hydrodynamical simulation processed with the characteristics (resolution and noise) of the ALMA interferometer for which we achieve a relative error of ≲20 per cent for a large fraction of the virial radius. We further apply our method to an observation of the galaxy cluster RXJ1347 for which we can reconstruct the potential with a relative error of ≲20 per cent for the observable cluster range.
Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.
Freudenmann, Lena Katharina; Marcu, Ana; Stevanović, Stefan
2018-07-01
The entirety of human leukocyte antigen (HLA)-presented peptides is referred to as the HLA ligandome of a cell or tissue, in tumours often termed immunopeptidome. Mapping the tumour immunopeptidome by mass spectrometry (MS) comprehensively views the pathophysiologically relevant antigenic signature of human malignancies. MS is an unbiased approach stringently filtering the candidates to be tested as opposed to epitope prediction algorithms. In the setting of peptide-specific immunotherapies, MS-based strategies significantly diminish the risk of lacking clinical benefit, as they yield highly enriched amounts of truly presented peptides. Early immunopeptidomic efforts were severely limited by technical sensitivity and manual spectra interpretation. The technological progress with development of orbitrap mass analysers and enhanced chromatographic performance led to vast improvements in mass accuracy, sensitivity, resolution, and speed. Concomitantly, bioinformatic tools were developed to process MS data, integrate sequencing results, and deconvolute multi-allelic datasets. This enabled the immense advancement of tumour immunopeptidomics. Studying the HLA-presented peptide repertoire bears high potential for both answering basic scientific questions and translational application. Mapping the tumour HLA ligandome has started to significantly contribute to target identification for the design of peptide-specific cancer immunotherapies in clinical trials and compassionate need treatments. In contrast to prediction algorithms, rare HLA allotypes and HLA class II can be adequately addressed when choosing MS-guided target identification platforms. Herein, we review the identification of tumour HLA ligands focusing on sources, methods, bioinformatic data analysis, translational application, and provide an outlook on future developments. © 2018 John Wiley & Sons Ltd.
Bade, Richard; Causanilles, Ana; Emke, Erik; Bijlsma, Lubertus; Sancho, Juan V; Hernandez, Felix; de Voogt, Pim
2016-11-01
A screening approach was applied to influent and effluent wastewater samples. After injection in a LC-LTQ-Orbitrap, data analysis was performed using two deconvolution tools, MsXelerator (modules MPeaks and MS Compare) and Sieve 2.1. The outputs were searched incorporating an in-house database of >200 pharmaceuticals and illicit drugs or ChemSpider. This hidden target screening approach led to the detection of numerous compounds including the illicit drug cocaine and its metabolite benzoylecgonine and the pharmaceuticals carbamazepine, gemfibrozil and losartan. The compounds found using both approaches were combined, and isotopic pattern and retention time prediction were used to filter out false positives. The remaining potential positives were reanalysed in MS/MS mode and their product ions were compared with literature and/or mass spectral libraries. The inclusion of the chemical database ChemSpider led to the tentative identification of several metabolites, including paraxanthine, theobromine, theophylline and carboxylosartan, as well as the pharmaceutical phenazone. The first three of these compounds are isomers and they were subsequently distinguished based on their product ions and predicted retention times. This work has shown that the use deconvolution tools facilitates non-target screening and enables the identification of a higher number of compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Ciesielski, Bartlomiej; Marciniak, Agnieszka; Zientek, Agnieszka; Krefft, Karolina; Cieszyński, Mateusz; Boguś, Piotr; Prawdzik-Dampc, Anita
2016-12-01
This study is about the accuracy of EPR dosimetry in bones based on deconvolution of the experimental spectra into the background (BG) and the radiation-induced signal (RIS) components. The model RIS's were represented by EPR spectra from irradiated enamel or bone powder; the model BG signals by EPR spectra of unirradiated bone samples or by simulated spectra. Samples of compact and trabecular bones were irradiated in the 30-270 Gy range and the intensities of their RIS's were calculated using various combinations of those benchmark spectra. The relationships between the dose and the RIS were linear (R 2 > 0.995), with practically no difference between results obtained when using signals from irradiated enamel or bone as the model RIS. Use of different experimental spectra for the model BG resulted in variations in intercepts of the dose-RIS calibration lines, leading to systematic errors in reconstructed doses, in particular for high- BG samples of trabecular bone. These errors were reduced when simulated spectra instead of the experimental ones were used as the benchmark BG signal in the applied deconvolution procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed
2018-04-01
The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic sphere, hence, quantitatively evaluating the methods. In the real case, the described algorithms are used to enhance a portion of aeromagnetic data acquired in Mackenzie Corridor, Northern Mainland, Canada.
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2001-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
Development of a compact and cost effective multi-input digital signal processing system
NASA Astrophysics Data System (ADS)
Darvish-Molla, Sahar; Chin, Kenrick; Prestwich, William V.; Byun, Soo Hyun
2018-01-01
A prototype digital signal processing system (DSP) was developed using a microcontroller interfaced with a 12-bit sampling ADC, which offers a considerably inexpensive solution for processing multiple detectors with high throughput. After digitization of the incoming pulses, in order to maximize the output counting rate, a simple algorithm was employed for pulse height analysis. Moreover, an algorithm aiming at the real-time pulse pile-up deconvolution was implemented. The system was tested using a NaI(Tl) detector in comparison with a traditional analogue and commercial digital systems for a variety of count rates. The performance of the prototype system was consistently superior to the analogue and the commercial digital systems up to the input count rate of 61 kcps while was slightly inferior to the commercial digital system but still superior to the analogue system in the higher input rates. Considering overall cost, size and flexibility, this custom made multi-input digital signal processing system (MMI-DSP) was the best reliable choice for the purpose of the 2D microdosimetric data collection, or for any measurement in which simultaneous multi-data collection is required.
Space-Based Observation Technology
2000-10-01
Conan, V. Michau, and S. Salem . Regularized multiframe myopic deconvolution from wavefront sensing. In Propagation through the Atmosphere III...specified false alarm rate PFA . Proceeding with curving fitting, one obtains a best-fit curve “10.1y14.2 - 0.2” as the detector for the target
NASA Technical Reports Server (NTRS)
Ioup, George E.; Ioup, Juliette W.
1991-01-01
The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.
Joint deconvolution and classification with applications to passive acoustic underwater multipath.
Anderson, Hyrum S; Gupta, Maya R
2008-11-01
This paper addresses the problem of classifying signals that have been corrupted by noise and unknown linear time-invariant (LTI) filtering such as multipath, given labeled uncorrupted training signals. A maximum a posteriori approach to the deconvolution and classification is considered, which produces estimates of the desired signal, the unknown channel, and the class label. For cases in which only a class label is needed, the classification accuracy can be improved by not committing to an estimate of the channel or signal. A variant of the quadratic discriminant analysis (QDA) classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids deconvolution. The proposed QDA classifier can work either directly on the signal or on features whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power features is derived. Results on simulated data and real Bowhead whale vocalizations show that jointly considering deconvolution with classification can dramatically improve classification performance over traditional methods over a range of signal-to-noise ratios.
A new scoring function for top-down spectral deconvolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Qiang; Wu, Si; Liu, Xiaowen
2014-12-18
Background: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showedmore » that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization.« less
Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong
2014-10-01
A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues in complicated matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.
2011-01-01
Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.
Lee, Myung W.
1999-01-01
Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.
An iterative shrinkage approach to total-variation image restoration.
Michailovich, Oleg V
2011-05-01
The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a situation, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information--commonly referred to as simply priors--is essential for image restoration, rendering it stable and robust to noise. Moreover, using the priors makes the recovered images exhibit some plausible features of their original counterpart. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In this present paper, a different approach to the solution of the problem is proposed based upon the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae. Finally, a number of standard examples of image deblurring are demonstrated, in which the proposed method can provide restoration results of superior quality as compared to the case of sparse-wavelet deconvolution.
Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi
2017-01-18
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.
A predictive software tool for optimal timing in contrast enhanced carotid MR angiography
NASA Astrophysics Data System (ADS)
Moghaddam, Abbas N.; Balawi, Tariq; Habibi, Reza; Panknin, Christoph; Laub, Gerhard; Ruehm, Stefan; Finn, J. Paul
2008-03-01
A clear understanding of the first pass dynamics of contrast agents in the vascular system is crucial in synchronizing data acquisition of 3D MR angiography (MRA) with arrival of the contrast bolus in the vessels of interest. We implemented a computational model to simulate contrast dynamics in the vessels using the theory of linear time-invariant systems. The algorithm calculates a patient-specific impulse response for the contrast concentration from time-resolved images following a small test bolus injection. This is performed for a specific region of interest and through deconvolution of the intensity curve using the long division method. Since high spatial resolution 3D MRA is not time-resolved, the method was validated on time-resolved arterial contrast enhancement in Multi Slice CT angiography. For 20 patients, the timing of the contrast enhancement of the main bolus was predicted by our algorithm from the response to the test bolus, and then for each case the predicted time of maximum intensity was compared to the corresponding time in the actual scan which resulted in an acceptable agreement. Furthermore, as a qualitative validation, the algorithm's predictions of the timing of the carotid MRA in 20 patients with high quality MRA were correlated with the actual timing of those studies. We conclude that the above algorithm can be used as a practical clinical tool to eliminate guesswork and to replace empiric formulae by a priori computation of patient-specific timing of data acquisition for MR angiography.
Freye, Chris E; Moore, Nicholas R; Synovec, Robert E
2018-02-16
The complementary information provided by tandem ionization time-of-flight mass spectrometry (TI-TOFMS) is investigated for comparative discovery-based analysis, when coupled with comprehensive two-dimensional gas chromatography (GC × GC). The TI conditions implemented were a hard ionization energy (70 eV) concurrently collected with a soft ionization energy (14 eV). Tile-based Fisher ratio (F-ratio) analysis is used to analyze diesel fuel spiked with twelve analytes at a nominal concentration of 50 ppm. F-ratio analysis is a supervised discovery-based technique that compares two different sample classes, in this case spiked and unspiked diesel, to reduce the complex GC × GC-TI-TOFMS data into a hit list of class distinguishing analyte features. Hit lists of the 70 eV and 14 eV data sets, and the single hit list produced when the two data sets are fused together, are all investigated. For the 70 eV hit list, eleven of the twelve analytes were found in the top thirteen hits. For the 14 eV hit list, nine of the twelve analytes were found in the top nine hits, with the other three analytes either not found or well down the hit list. As expected, the F-ratios per m/z used to calculate each average F-ratio per hit were generally smaller fragment ions for the 70 eV data set, while the larger fragment ions were emphasized in the 14 eV data set, supporting the notion that complementary information was provided. The discovery rate was improved when F-ratio analysis was performed on the fused data sets resulted in eleven of the twelve analytes being at the top of the single hit list. Using PARAFAC, analytes that were "discovered" were deconvoluted in order to obtain their identification via match values (MV). Location of the analytes and the "F-ratio spectra" obtained from F-ratio analysis were used to guide the deconvolution. Eight of the twelve analytes where successfully deconvoluted and identified using the in-house library for the 70 eV data set. PARAFAC deconvolution of the two separate data sets provided increased confidence in identification of "discovered" analytes. Herein, we explore the limit of analyte discovery and limit of analyte identification, and demonstrate a general workflow for the investigation of key chemical features in complex samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Restoration of solar and star images with phase diversity-based blind deconvolution
NASA Astrophysics Data System (ADS)
Li, Qiang; Liao, Sheng; Wei, Honggang; Shen, Mangzuo
2007-04-01
The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble of short-exposure images obtained simultaneously from multiple cameras to jointly estimate the object and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the turbulence-degraded images generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475 m) in La Palma and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted. The star image still can be restored when the defocus distance is measured inaccurately. The restored results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing the point-like or extended objects.
A review on color normalization and color deconvolution methods in histopathology.
Onder, Devrim; Zengin, Selen; Sarioglu, Sulen
2014-01-01
The histopathologists get the benefits of wide range of colored dyes to have much useful information about the lesions and the tissue compositions. Despite its advantages, the staining process comes up with quite complex variations in staining concentrations and correlations, tissue fixation types, and fixation time periods. Together with the improvements in computing power and with the development of novel image analysis methods, these imperfections have led to the emerging of several color normalization algorithms. This article is a review of the currently available digital color normalization methods for the bright field histopathology. We describe the proposed color normalization methodologies in detail together with the lesion and tissue types used in the corresponding experiments. We also present the quantitative validation approaches for each of the proposed methodology where available.
Enhancing multi-spot structured illumination microscopy with fluorescence difference
Torkelsen, Frida H.
2018-01-01
Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested. PMID:29657751
Computational optical tomography using 3-D deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Nguyen, Thanh; Bui, Vy; Nehmetallah, George
2018-04-01
Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.
Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.
2010-01-01
In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.
Deconvolution by Homomorphic and Wiener Filtering
1988-09-01
XR?(e-j) =XR(e. 7w), XJ(e-jw) -Xei) and 4 ej) -Re’) ,ej)X~i) d+ ar g [X(e l a)[ ( Assumnption: both X(z) and X(z) are analytic in a region included the...consistent if 3k(wi+,) E IJ" g (X(ej"’+’)/wiJ - Arg[X(ej’")] + 2irk(wi+t ) < THLDI < r. The idea of the algorithm is to adapt the step size Aw imtil the phase...given by arg X(ejw) = S(eJw) dw, or, according to [141 ’ G " g [X(e-’÷.’)/T ,= argX(ejw) + LAW d argX(e(’+ )+ dargX(ei’) 1T2 where d-S(e’) = argX(e3d
Cawello, Willi; Braun, Marina; Andreas, Jens-Otto
2018-01-13
Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.
Histogram deconvolution - An aid to automated classifiers
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1983-01-01
It is shown that N-dimensional histograms are convolved by the addition of noise in the picture domain. Three methods are described which provide the ability to deconvolve such noise-affected histograms. The purpose of the deconvolution is to provide automated classifiers with a higher quality N-dimensional histogram from which to obtain classification statistics.
Wear, Keith A
2014-04-01
In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
2014-06-01
Purpose: To implement a new method that integrates deconvolution with segmentation under the variational framework for PET tumor delineation. Methods: Deconvolution and segmentation are both challenging problems in image processing. The partial volume effect (PVE) makes tumor boundaries in PET image blurred which affects the accuracy of tumor segmentation. Deconvolution aims to obtain a PVE-free image, which can help to improve the segmentation accuracy. Conversely, a correct localization of the object boundaries is helpful to estimate the blur kernel, and thus assist in the deconvolution. In this study, we proposed to solve the two problems simultaneously using a variational methodmore » so that they can benefit each other. The energy functional consists of a fidelity term and a regularization term, and the blur kernel was limited to be the isotropic Gaussian kernel. We minimized the energy functional by solving the associated Euler-Lagrange equations and taking the derivative with respect to the parameters of the kernel function. An alternate minimization method was used to iterate between segmentation, deconvolution and blur-kernel recovery. The performance of the proposed method was tested on clinic PET images of patients with non-Hodgkin's lymphoma, and compared with seven other segmentation methods using the dice similarity index (DSI) and volume error (VE). Results: Among all segmentation methods, the proposed one (DSI=0.81, VE=0.05) has the highest accuracy, followed by the active contours without edges (DSI=0.81, VE=0.25), while other methods including the Graph Cut and the Mumford-Shah (MS) method have lower accuracy. A visual inspection shows that the proposed method localizes the real tumor contour very well. Conclusion: The result showed that deconvolution and segmentation can contribute to each other. The proposed variational method solve the two problems simultaneously, and leads to a high performance for tumor segmentation in PET. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less