Sample records for decorative lighting system

  1. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, C.J.; Kross, B.J.; Majewski, S.; Wojcik, R.F.

    1998-08-25

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools. 5 figs.

  2. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

  3. The Effects of Interior Design on Communication and Impressions of a Counselor in a Counseling Room

    ERIC Educational Resources Information Center

    Miwa, Yoshiko; Hanyu, Kazunori

    2006-01-01

    This study aimed to investigate effects of the interior design of a counseling room on participants' self-disclosure and impressions of a counselor. The authors examined the effects of lighting and decorations. It tested four conditions crossing decorations (with or without home-like decorations) and type of lighting (bright or dim). Eighty…

  4. Magnetic and optical properties of carbon and silicon decorated free standing buckled germanene: A DFT approach

    NASA Astrophysics Data System (ADS)

    Dhar, Namrata; Jana, Debnarayan

    2018-04-01

    Ab initio magnetic and optical properties of group IV elements (carbon (C) and silicon (Si)) decorated free standing (FS) buckled germanene systems have been employed theoretically. Our study elucidates that, decoration of these elements in proper sites with suitable concentrations form dynamically stable configurations. Band structure is modified due to decoration of these atoms in Ge-nanosheet and pristine semi-metallic germanene undergoes to semiconductors with a finite amount of bandgap. Interestingly, this bandgap value meets closely the requirement of gap for field effect transistor (FET) applications. Moreover, significant magnetic moment is induced in non-magnetic germanene for C decorated structure and ground state in anti-ferromagnetic in nature for this structure. Along with magnetic property, optical properties like dielectric functions, optical absorption, electron energy loss spectra (EELS), refractive index and reflectivity of these systems have also been investigated. Maximum number of plasma frequencies appear for Si decorated configuration considering both parallel and perpendicular polarizations. In addition, birefringence characteristics of these configurations have also been studied as it is an important parameter in various applications of optical devices, liquid crystal displays, light modulators etc.

  5. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Yanhui; Liang, Wei; Guo, Jinqiu; Tang, Hua; Liu, Shuaishuai

    2018-02-01

    A novel MoS2 quantum dots (QDs) decorated g-C3N4/Ag heterostructured photocatalyst has been synthesized via a two-step method including in situ microemulsion-assisted reduction and wetness impregnation method. The obtained heterostructure photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectrosxopy (PL). The photocatalytic activity was evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The MoS2 QDs decorated hybrid photocatalysts exhibited significantly enhanced photocatalytic performance. The concentration of Ag and MoS2 QDs showing the optimal photocatalytic performance was determined to be 10% and 0.3% respectively, which exceeded the photocatalytic performance of pure g-C3N4 by more than 4.7 times. Recycling experiments confirmed that the hybrid catalysts had superior cycle performance and stability. The enhanced photocatalytic activity of MoS2 QDs decorated g-C3N4/Ag hybrid photocatalysts can be mainly ascribed to enhanced visible-light absorption, the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of g-C3N4, Ag and MoS2 QDs, in which Ag nanoparticles act as the charge separation center. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts was obtained from the active species trapping experiments.

  6. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    PubMed

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  7. Achieving Weak Light Response with Plasmonic Nanogold-Decorated Organic Phototransistors.

    PubMed

    Luo, Xiao; Du, Lili; Liang, Yuanlong; Zhao, Feiyu; Lv, Wenli; Xu, Kun; Wang, Ying; Peng, Yingquan

    2018-05-09

    Weak light response of organic photodetectors has fascinating potentials in fields of modern science and technology. However, their photoresponsivity is hindered by poor photocarrier excitation and transport. Decorating active-layer surface with plasmonic nanometals is considered a viable strategy to address this issue. Here, we demonstrate a plasmonic nanogold decorated organic phototransistor achieving remarkable enhancement of photoresponsivity. Meanwhile, the photoresponsive range is broadened by 4 orders of magnitude. The proposed design is substantiated by a schematic energy level model combined with theoretical simulation analysis, enabling the development of the advanced optoelectronics.

  8. Light controllable catalytic activity of Au clusters decorated with photochromic molecules.

    PubMed

    Guo, Na; Yam, Kah Meng; Zhang, Chun

    2018-06-15

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au 8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au 8 ) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au 8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  9. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  10. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  11. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.

    PubMed

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-05-16

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers.

  12. 18. View of decorative railing panels, castiron post, and masonry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of decorative railing panels, cast-iron post, and masonry pedestal for light fixtures. (Dec. 23, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY

  13. Enhancement method for rendered images of home decoration based on SLIC superpixels

    NASA Astrophysics Data System (ADS)

    Dai, Yutong; Jiang, Xiaotong

    2018-04-01

    Rendering technology has been widely used in the home decoration industry in recent years for images of home decoration design. However, due to the fact that rendered images of home decoration design rely heavily on the parameters of renderer and the lights of scenes, most rendered images in this industry require further optimization afterwards. To reduce workload and enhance rendered images automatically, an algorithm utilizing neural networks is proposed in this manuscript. In addition, considering few extreme conditions such as strong sunlight and lights, SLIC superpixels based segmentation is used to choose out these bright areas of an image and enhance them independently. Finally, these chosen areas are merged with the entire image. Experimental results show that the proposed method effectively enhances the rendered images when compared with some existing algorithms. Besides, the proposed strategy is proven to be adaptable especially to those images with obvious bright parts.

  14. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  15. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity.

    PubMed

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K; Wiltshire, Benjamin D; Kisslinger, Ryan; Shankar, Karthik

    2018-01-05

    Anodically formed, vertically oriented, self-organized cylindrical TiO 2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO 2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  16. The development of a lunar habitability system

    NASA Technical Reports Server (NTRS)

    Schowalter, D. T.; Malone, T. B.

    1972-01-01

    Lunar shelter habitability requirements and design criteria are presented. The components of lunar shelter habitability studied are: (1) free volume, (2) compartmentalization, (3) area layout arrangement, (4) area use frequency/duration furnishings, (5) equipment operability, (6) decor, (7) lighting, (8) noise, (9) temperature, and (10) growth potential.

  17. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wu, Haijun; Li, Chunmei; Che, Huinan; Hu, Hao; Hu, Wei; Liu, Chunbo; Ai, Junzhe; Dong, Hongjun

    2018-05-01

    The Co3O4/g-C3N4 Z-scheme system is constructed by decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on the surface of g-C3N4, which dramatically improves the photocatalytic activity for degrading tetracycline hydrochloride (TC) compared with single g-C3N4. The microstructure investigations evidence the mesoporous structure and enlarged specific surface area of Co3O4/g-C3N4 Z-scheme system, which implies the increase of surface active sites and adsorption ability for reactant molecules. Moreover, by virtue of analyzing physical and photoelectrochemical properties, it evidences that the decoration effect of mesoporous Co3O4 nanospheres on the surface of g-C3N4 obviously improves the transfer and separation efficiency of charge carriers between two phase interfaces and broadens light harvest range. These important factors are beneficial to enhancing photocatalytic activity of Co3O4/g-C3N4 Z-scheme system. In addition, the photocatalityc reaction mechanism is also revealed in depth.

  18. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity

    PubMed Central

    Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei

    2016-01-01

    Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260

  19. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  20. Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: A system with many potential applications

    NASA Astrophysics Data System (ADS)

    Doney, Robert L.; Agui, Juan H.; Sen, Surajit

    2009-09-01

    Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.

  1. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.

    PubMed

    Pu, Ying-Chih; Wang, Gongming; Chang, Kao-Der; Ling, Yichuan; Lin, Yin-Kai; Fitzmorris, Bob C; Liu, Chia-Ming; Lu, Xihong; Tong, Yexiang; Zhang, Jin Z; Hsu, Yung-Jung; Li, Yat

    2013-08-14

    Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

  2. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis.

    PubMed

    Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna

    2018-06-01

    Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes

    NASA Astrophysics Data System (ADS)

    Gaidi, M.; Trabelsi, K.; Hajjaji, A.; Chourou, M. L.; Alhazaa, A. N.; Bessais, B.; El Khakani, M. A.

    2018-01-01

    Homogeneous decoration of TiO2 nanotubes (NTs) by Ag metallic nanoparticles (NPs) was carried out by a relatively simple photoreduction process. This Ag-NPs decoration was found to improve the photoconversion efficiency of the TiO2-NTs based photoanodes. The x-ray photoelectron spectroscopy and x-ray diffraction analyses confirmed that all the Ag-NPs are metallic and the underlying TiO2-NTs crystallize in the anatase phase after their annealing at 400 °C, respectively. Transmission electron microscopy observations have confirmed the effective decoration of the TiO2-NTs’ surface by Ag-NPs, and allowed to measure the average Ag-NPs size, which was found to increase linearly from (4 ± 2) nm to (16 ± 4) nm when the photoreduction time is increased from 5 to 20 min. The diffuse reflectivity of the Ag-NPs decorated TiO2-NTs was found to decrease significantly as compared to the undecorated TiO2-NTs. Interestingly, the Ag-NPs decorated TiO2-NTs exhibited a significantly enhanced photochemical response, under visible radiation, with regards to the undecorated NTs. This enhancement was found to reach its maximum for the TiO2-NTs decorated with Ag-NPs having the optimal average diameter of ˜8.5 nm. The maximum photoconversion efficiency of Ag-NPs decorated TiO2-NTs was about two times greater than for the undecorated ones. This improved photo-electro-chemical response is believed to be associated with the additional absorption of visible light of Ag-NPs through the localized surface plasmon resonance phenomenon. This interpretation is supported by the fact that the photoluminescence intensity of the Ag-NPs decorated TiO2-NTs was found to decrease significantly as compared to undecorated NTs, due to charge carriers trapping in the Ag NPs. This demonstrates that Ag-NPs decoration promotes photogenerated charges separation in the TiO2-NTs, increasing thereby their capacity for current photogeneration. The surface decoration of TiO2 NTs by noble metals NPs is expected to impact positively the use of TiO2-NTs based photoanodes in some energetic applications such as hydrogen generation and photo-electrochemical solar cells.

  4. Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes.

    PubMed

    Gaidi, M; Trabelsi, K; Hajjaji, A; Chourou, M L; Alhazaa, A N; Bessais, B; El Khakani, M A

    2018-01-05

    Homogeneous decoration of TiO 2 nanotubes (NTs) by Ag metallic nanoparticles (NPs) was carried out by a relatively simple photoreduction process. This Ag-NPs decoration was found to improve the photoconversion efficiency of the TiO 2 -NTs based photoanodes. The x-ray photoelectron spectroscopy and x-ray diffraction analyses confirmed that all the Ag-NPs are metallic and the underlying TiO 2 -NTs crystallize in the anatase phase after their annealing at 400 °C, respectively. Transmission electron microscopy observations have confirmed the effective decoration of the TiO 2 -NTs' surface by Ag-NPs, and allowed to measure the average Ag-NPs size, which was found to increase linearly from (4 ± 2) nm to (16 ± 4) nm when the photoreduction time is increased from 5 to 20 min. The diffuse reflectivity of the Ag-NPs decorated TiO 2 -NTs was found to decrease significantly as compared to the undecorated TiO 2 -NTs. Interestingly, the Ag-NPs decorated TiO 2 -NTs exhibited a significantly enhanced photochemical response, under visible radiation, with regards to the undecorated NTs. This enhancement was found to reach its maximum for the TiO 2 -NTs decorated with Ag-NPs having the optimal average diameter of ∼8.5 nm. The maximum photoconversion efficiency of Ag-NPs decorated TiO 2 -NTs was about two times greater than for the undecorated ones. This improved photo-electro-chemical response is believed to be associated with the additional absorption of visible light of Ag-NPs through the localized surface plasmon resonance phenomenon. This interpretation is supported by the fact that the photoluminescence intensity of the Ag-NPs decorated TiO 2 -NTs was found to decrease significantly as compared to undecorated NTs, due to charge carriers trapping in the Ag NPs. This demonstrates that Ag-NPs decoration promotes photogenerated charges separation in the TiO 2 -NTs, increasing thereby their capacity for current photogeneration. The surface decoration of TiO 2 NTs by noble metals NPs is expected to impact positively the use of TiO 2 -NTs based photoanodes in some energetic applications such as hydrogen generation and photo-electrochemical solar cells.

  5. Light metal decoration on nitrogen/sulfur codoped graphyne: An efficient strategy for designing hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Shahsavar, Azin

    2018-07-01

    Nitrogen/sulfur dual doped carbon materials have attracted a great deal of interest due to their fascinating applications in lithium ion batteries, hydrogen storage, and oxygen reduction reactions. Here, the hydrogen storage capacity of NS dual-doped graphyne (GYNS) decorated with Li or Na is theoretically explored. The NS-codoping leads to greater charge transfer and stronger binding between the alkali metal and graphyne surface giving rise to enhanced hydrogen storage capacity. We showed that the NS-codoping increases the hydrogen storage capacities of Li-decorated and Na-decorated GY by almost 30% and 60%, respectively. At high NS concentration, the hydrogen uptake capacities can reach to 8.98 wt% and 9.34 wt% for double-side Li- decorated GYNS and Na-decorated GYNS. Moreover, the average adsorption energies per H2 are -0.27 eV for 2Li/GYNS(33.3%) and -0.26 eV for 2Na/GYNS(33.3%) which lie in desirable range for practical applications at ambient conditions.

  6. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  7. Light trapping and surface plasmon enhanced high-performance NIR photodetector

    PubMed Central

    Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang

    2014-01-01

    Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of trapping the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and trapping of freely propagating plane waves from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857

  8. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight

    NASA Astrophysics Data System (ADS)

    Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.

    2018-03-01

    Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.

  9. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  10. Signal polymorphism under a constant environment: the odd cross in a web decorating spider

    NASA Astrophysics Data System (ADS)

    Walter, André; Elgar, Mark A.

    2016-12-01

    The quality of many animal signals varies, perhaps through their use in different contexts or by representing an adaptive response to reduce the risk of exploitation. Spiders of the orb weaver genus Argiope add linear, cruciate or circular silk structures to their orb webs, creating inter- and intra-specific polymorphic visual signals. Different decoration patterns are frequently attributed to different signal effects, but this view is contradicted by commonly observed intraspecific variation in decorating behaviour. Adults of Argiope mascordi are bimodal web decorators, building two distinct patterns, circular and cruciate silk structures. We investigated the variation of patterns under controlled, invariant laboratory conditions. Circular decorations were most frequent, but individuals often switch to the other pattern. This variation neither increased nor decreased over time, suggesting that pattern variability is primarily intrinsic rather than an exclusive response to environmental changes. Accordingly, we discuss the evolutionary implications in the light of the conservation of a single signal function through maintaining the variation of its quality and the alternative view that silk decorations may not represent adaptive signals at all.

  11. A phototactic micromotor based on platinum nanoparticle decorated carbon nitride.

    PubMed

    Ye, Zhenrong; Sun, Yunyu; Zhang, Hui; Song, Bo; Dong, Bin

    2017-11-30

    In this paper, we report a unique phototactic (both positive and negative) micromotor based on platinum nanoparticle decorated carbon nitride. The phototaxis relies on the self-diffusiophoretic mechanism and different surface modifications. The micromotor reported in the current study does not require the addition of any external fuels and shows versatile motion behaviour, i.e. start, stop, directional and programmable motion, which is controlled by light. In addition, since the actuation of the precipitated micromotors at the bottom of a solution using light results in the opacity changes from transparent to translucent, we anticipate that the current micromotor may have potential application in the field of smart windows.

  12. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    PubMed

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated TiO 2 -NTs was attributed to the interfacial charge transfer mechanism (IFCT). Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  14. Calcium-decorated carbyne networks as hydrogen storage media.

    PubMed

    Sorokin, Pavel B; Lee, Hoonkyung; Antipina, Lyubov Yu; Singh, Abhishek K; Yakobson, Boris I

    2011-07-13

    Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ∼0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ∼8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.

  15. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  16. Advanced Technology for Portable Personal Visualization

    DTIC Science & Technology

    1991-03-01

    walking. The building model is created using AutoCAD. Realism is enhanced by calculating a radiosity solution for the lighting model. This has an added...lighting, color combinations and decor. Due to the computationally intensive nature of the radiosity solution, modeling changes cannot be made on-line

  17. Nickel oxide decorated zinc oxide composite nanorods: Excellent catalyst for photoreduction of hexavalent chromium.

    PubMed

    Singh, Simranjeet; Ahmed, Imtiaz; Haldar, Krishna Kanta

    2018-08-01

    In light of the growing interest and ability to search for new materials, we have synthesized Nickel oxide (NiO) nanoparticles decorated Zinc (ZnO) nanorods composite (NiO/ZnO) nanostructure. The NiO/ZnO heterostructure formation was confirmed by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). The fabricated environmental friendly NiO/ZnO composite nanostructure shows a well-defined photoreduction characteristic of hexavalent Chromium (Cr) (VI) to tri-valent Chromium (Cr) (III) under UV-light. Such an enhanced photoreduction property is attributed due to the decreased electron-hole recombination process which was proved by photoluminescence (PL) spectroscopy, photocurrent study, and electrochemical impedance spectroscopy. Furthermore, the photocatalytic activity rate of the NiO decorated ZnO nanorods was much higher than that of bare ZnO nanorods for the reduction of chromium (VI) and the rate is found to be 0.306 min -1 . These results have demonstrates that suitable surface engineering may open up new opportunities in the development of high-performance photocatalyst. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots.

    PubMed

    Qin, Jing-Kai; Ren, Dan-Dan; Shao, Wen-Zhu; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Hu, PingAn; Zhen, Liang; Xu, Cheng-Yan

    2017-11-15

    ReS 2 films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS 2 -based phototransistor by coupling CdSe-CdS-ZnS core-shell quantum dots. Under 589 nm laser irradiation, the responsivity of the ReS 2 phototransistor decorated with quantum dots could be enhanced by more than 25 times (up to ∼654 A/W) and the rising and recovery time can be also reduced to 3.2 and 2.8 s, respectively. The excellent optoelectronic performance is originated from the coupling effect of quantum dots light absorber and cross-linker ligands 1,2-ethanedithiol. Photoexcited electron-hole pairs in quantum dots can separate and transfer efficiently due to the type-II band alignment and charge exchange process at the interface. Our work shows that the simple hybrid zero- and two-dimensional hybrid system can be employed for photodetection applications.

  19. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    PubMed Central

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718

  20. Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment

    NASA Astrophysics Data System (ADS)

    Aboueloyoun Taha, Ahmed

    2015-12-01

    One-dimensional (1D) porous carbon nanofibers (CNFs) decorated by silver (Ag) nanoparticles (NPs) were prepared using a one-pot/self-template synthesis strategy by combining electrospinning and carbonization methods. The characterization results revealed that AgNPs were homogenously distributed along the CNFs and possessed a relatively uniform nano-size of about 12 nm. The novel membrane distinctively displayed enhanced photocatalytic activity under visible-light irradiation. The membrane exhibited excellent dye degradation and bacteria disinfection in batch experiments. The high photocatalytic activity can be attributed to the highly accessible surface areas, good light absorption capability, and high separation efficiency of photogenerated electron-hole pairs. The as-prepared membranes can be easily recycled because of their 1D property.

  1. Earth Observation taken during the Expedition 37 mission

    NASA Image and Video Library

    2013-10-30

    ISS037-E-022828 (30 Oct. 2013) --- This isn?t someone?s frame grab of a decorative Halloween scene, although it was photographed on Halloween eve. It is actually a picture of the Aurora Australis or Southern Lights, photographed by one of the Expedition 37 crew members on the International Space Station as the orbital complex flew over Tasmania on Oct. 30. The human-produced hardware in the picture is part of the outpost?s robotic arm system.

  2. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    PubMed

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    NASA Astrophysics Data System (ADS)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  4. Decoration Increases the Conspicuousness of Raptor Nests

    PubMed Central

    Canal, David; Mulero-Pázmány, Margarita; Negro, Juan José; Sergio, Fabrizio

    2016-01-01

    Avian nests are frequently concealed or camouflaged, but a number of species builds noticeable nests or use conspicuous materials for nest decoration. In most cases, nest decoration has a role in mate choice or provides thermoregulatory or antiparasitic benefits. In territorial species however, decorations may serve additional or complementary functions, such as extended phenotypic signaling of nest-site occupancy and social status to potential intruders. The latter may benefit both signaler and receiver by minimizing the risk of aggressive interactions, especially in organisms with dangerous weaponry. Support for this hypothesis was recently found in a population of black kites (Milvus migrans), a territorial raptor that decorates its nest with white artificial materials. However, the crucial assumption that nest decorations increased nest-site visibility to conspecifics was not assessed, a key aspect given that black kite nests may be well concealed within the canopy. Here, we used an unmanned aircraft system to take pictures of black kite nests, with and without an experimentally placed decoration, from different altitudes and distances simulating the perspective of a flying and approaching, prospecting intruder. The pictures were shown to human volunteers through a standardized routine to determine whether detection rates varied according the nest decoration status and distance. Decorated nests consistently showed a higher detection frequency and a lower detection-latency, compared to undecorated versions of the same nests. Our results confirm that nest decoration in this species may act as a signaling medium that enhances nest visibility for aerial receivers, even at large distances. This finding complements previous work on this communication system, which showed that nest decoration was a threat informing trespassing conspecifics on the social dominance, territory quality and fighting capabilities of the signaler. PMID:27455066

  5. Decoration Increases the Conspicuousness of Raptor Nests.

    PubMed

    Canal, David; Mulero-Pázmány, Margarita; Negro, Juan José; Sergio, Fabrizio

    2016-01-01

    Avian nests are frequently concealed or camouflaged, but a number of species builds noticeable nests or use conspicuous materials for nest decoration. In most cases, nest decoration has a role in mate choice or provides thermoregulatory or antiparasitic benefits. In territorial species however, decorations may serve additional or complementary functions, such as extended phenotypic signaling of nest-site occupancy and social status to potential intruders. The latter may benefit both signaler and receiver by minimizing the risk of aggressive interactions, especially in organisms with dangerous weaponry. Support for this hypothesis was recently found in a population of black kites (Milvus migrans), a territorial raptor that decorates its nest with white artificial materials. However, the crucial assumption that nest decorations increased nest-site visibility to conspecifics was not assessed, a key aspect given that black kite nests may be well concealed within the canopy. Here, we used an unmanned aircraft system to take pictures of black kite nests, with and without an experimentally placed decoration, from different altitudes and distances simulating the perspective of a flying and approaching, prospecting intruder. The pictures were shown to human volunteers through a standardized routine to determine whether detection rates varied according the nest decoration status and distance. Decorated nests consistently showed a higher detection frequency and a lower detection-latency, compared to undecorated versions of the same nests. Our results confirm that nest decoration in this species may act as a signaling medium that enhances nest visibility for aerial receivers, even at large distances. This finding complements previous work on this communication system, which showed that nest decoration was a threat informing trespassing conspecifics on the social dominance, territory quality and fighting capabilities of the signaler.

  6. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    EPA Science Inventory

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  7. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    PubMed

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  8. Carapace surface architecture facilitates camouflage of the decorator crab Tiarinia cornigera.

    PubMed

    Sanka, Immanuel; Suyono, Eko Agus; Rivero-Müller, Adolfo; Alam, Parvez

    2016-09-01

    This paper elucidates the unique setal morphology of the decorator crab Tiarinia cornigera, and further presents evidence to that setal morphology promotes micro-organism nucleation and adhesion. The carapace of this crab is covered by clusters of setae, each comprising a hollow acicular stem that is enveloped by a haystack-like structure. Using computational fluid dynamics, we find that these setae are responsible for manipulating water flow over the carapace surface. Micro-organisms in the sea water, nest in areas of flow stagnation and as a result, nucleate to and biofoul the setae by means of chemical adhesion. Attached micro-organisms secrete extracellular polymeric substances, which we deduce must also provide an additional element of chemical adhesion to mechanically interlocked mesoscopic and macroscopic biomatter. By coupling physical and chemical methods for adhesion, T. cornigera is able to hierarchically decorate its carapace. Our paper brings to light the unique decorator crab carapace morphology of T. cornigera; and furthermore evidences its function in micro-organism nucleation and adhesion. We show how this special carapace morphology directs and guides water flow to form nesting regions of water stagnation where micro-organisms can nucleate and adhere. In the literature, decorator crab carapaces are presumed to be able to mechanically interlock biomatter as camouflage using hook-like setal outgrowths. T. cornigera contrarily exhibits clusters of hay-stack like structures. By encouraging micro-organism adhesion to the carapace setae, T. cornigera is able to effectively attach biomatter using both chemical and physical principles of adhesion. T. cornigera essentially has a super-biofouling carapace surface, for at least micro-organisms. Our work will have an impact on researchers interested in biofouling, adhesion, biomedical and purification filter systems, and in the development of novel biomimetic surfaces with tailored properties. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. 4 CFR 7.4 - Employment limitations, foreign gifts and decorations, and misconduct.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4 Accounts 1 2011-01-01 2011-01-01 false Employment limitations, foreign gifts and decorations, and misconduct. 7.4 Section 7.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PERSONNEL RELATIONS AND SERVICES § 7.4 Employment limitations, foreign gifts and decorations, and misconduct. The...

  10. 4 CFR 7.4 - Employment limitations, foreign gifts and decorations, and misconduct.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 4 Accounts 1 2014-01-01 2013-01-01 true Employment limitations, foreign gifts and decorations, and misconduct. 7.4 Section 7.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PERSONNEL RELATIONS AND SERVICES § 7.4 Employment limitations, foreign gifts and decorations, and misconduct. The...

  11. 4 CFR 7.4 - Employment limitations, foreign gifts and decorations, and misconduct.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Employment limitations, foreign gifts and decorations, and misconduct. 7.4 Section 7.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PERSONNEL RELATIONS AND SERVICES § 7.4 Employment limitations, foreign gifts and decorations, and misconduct. The...

  12. 4 CFR 7.4 - Employment limitations, foreign gifts and decorations, and misconduct.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 4 Accounts 1 2012-01-01 2012-01-01 false Employment limitations, foreign gifts and decorations, and misconduct. 7.4 Section 7.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PERSONNEL RELATIONS AND SERVICES § 7.4 Employment limitations, foreign gifts and decorations, and misconduct. The...

  13. 4 CFR 7.4 - Employment limitations, foreign gifts and decorations, and misconduct.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 4 Accounts 1 2013-01-01 2013-01-01 false Employment limitations, foreign gifts and decorations, and misconduct. 7.4 Section 7.4 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM PERSONNEL RELATIONS AND SERVICES § 7.4 Employment limitations, foreign gifts and decorations, and misconduct. The...

  14. Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation.

    PubMed

    Abdullahi, Nura; Saion, Elias; Shaari, Abdul Halim; Al-Hada, Naif Mohammed; Keiteb, Aysar

    2015-01-01

    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.

  15. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin

    2018-06-01

    Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

  16. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. How is Workers' Mood Affected by Workplace Lighting?

    NASA Astrophysics Data System (ADS)

    Tonello, Graciela

    The aim of the study was to investigate to what extent variations in natural daylight, as well as in indoor lighting and decoration, would affect the mood of people working indoor. It was assumed that such an impact would be moderated by the personality characteristics of the individuals. The study was carried out in northern Argentina in workplaces consisting mostly of open plan offices, but also some rooms for one or two persons, and a factory plant were included. About 20 per cent completely lacked windows. In spite of the considerable variations in day length, ranging from ten-and-a-half hours in June to fourteen hours in December, no overall seasonal variations in mood could be established. One obvious reason for this may have been the frequent use of shading devices which reduced the impact of the variations in natural daylight between summer and winter. On the other hand, the differences between the interior environments in terms of lighting and decoration did seem to have at least some impact. Both analyses of regression and variance showed interior decoration to be the most important from the emotional point of view. The participants throughout, reported a more positive mood in the colourful environments. The difference was consistent over the year but became significant only during autumn and winter. Individuals of type B (few signs of tension) reported a more positive emotional status throughout the year than those of type A, which is in line with previous results linking type A to anger and hostility.

  18. 12 CFR 264b.3 - Restrictions on acceptance of gifts and decorations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Restrictions on acceptance of gifts and... THE FEDERAL RESERVE SYSTEM RULES REGARDING FOREIGN GIFTS AND DECORATIONS § 264b.3 Restrictions on acceptance of gifts and decorations. (a) Board employees are prohibited from requesting or otherwise...

  19. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and delivers about 55 lm at 3000K with the requested radiation pattern and sparkle effect. Some field tests were done with positive feedback.

  20. Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Jeong, Sunho; Moon, Jooho

    2017-04-26

    Efficient sunlight-driven water-splitting devices can be achieved by using an optically and energetically well-matched pair of photoelectrodes in a tandem configuration. The key for maximizing the photoelectrochemical efficiency is the use of a highly transparent front photoelectrode with a band gap below 2.0 eV. Herein, we propose two-dimensional (2D) photonic crystal (PC) structures consisting of a CuFeO 2 -decorated microsphere monolayer, which serve as self-light-harvesting architectures allowing for amplified light absorption and high transparency. The photocurrent densities are evaluated for three CuFeO 2 2D PC-based photoelectrodes with microspheres of different sizes. The optical analysis confirmed the presence of a photonic stop band that generates slow light and at the same time amplifies the absorption of light. The 410 nm sized CuFeO 2 -decorated microsphere 2D PC photocathode shows an exceptionally high visible light transmittance of 76.4% and a relatively high photocurrent of 0.2 mA cm -2 at 0.6 V vs a reversible hydrogen electrode. The effect of the microsphere size on the carrier collection efficiency was analyzed by in situ conductive atomic force microscopy observation under illumination. Our novel synthetic method to produce self-light-harvesting nanostructures provides a promising approach for the effective use of solar energy by highly transparent photocathodes.

  1. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  2. Host manipulation by an ichneumonid spider ectoparasitoid that takes advantage of preprogrammed web-building behaviour for its cocoon protection.

    PubMed

    Takasuka, Keizo; Yasui, Tomoki; Ishigami, Toru; Nakata, Kensuke; Matsumoto, Rikio; Ikeda, Kenichi; Maeto, Kaoru

    2015-08-01

    Host manipulation by parasites and parasitoids is a fascinating phenomenon within evolutionary ecology, representing an example of extended phenotypes. To elucidate the mechanism of host manipulation, revealing the origin and function of the invoked actions is essential. Our study focused on the ichneumonid spider ectoparasitoid Reclinervellus nielseni, which turns its host spider (Cyclosa argenteoalba) into a drugged navvy, to modify the web structure into a more persistent cocoon web so that the wasp can pupate safely on this web after the spider's death. We focused on whether the cocoon web originated from the resting web that an unparasitized spider builds before moulting, by comparing web structures, building behaviour and silk spectral/tensile properties. We found that both resting and cocoon webs have reduced numbers of radii decorated by numerous fibrous threads and specific decorating behaviour was identical, suggesting that the cocoon web in this system has roots in the innate resting web and ecdysteroid-related components may be responsible for the manipulation. We also show that these decorations reflect UV light, possibly to prevent damage by flying web-destroyers such as birds or large insects. Furthermore, the tensile test revealed that the spider is induced to repeat certain behavioural steps in addition to resting web construction so that many more threads are laid down for web reinforcement. © 2015. Published by The Company of Biologists Ltd.

  3. Outbreak of Legionnaire's disease linked to a decorative fountain by molecular epidemiology.

    PubMed

    Hlady, W G; Mullen, R C; Mintz, C S; Shelton, B G; Hopkins, R S; Daikos, G L

    1993-10-15

    The incubation period of Legionnaires' disease in five patients was traced to attendance at conventions in a hotel in the Orlando, Florida, area between January 6 and February 2, 1992. The five case patients (mean age, 69 years) were older than 55 randomly chosen controls (mean age, 53 years) who had also attended one of the same conventions (p = 0.007). All case patients were males, as were 40% of the controls (p = 0.01). No significant differences in exposures were found between case patients and controls, but all case patients and 65% of the controls reported exposure to a decorative fountain in the hotel lobby. Water from the fountain was the only one of 55 environmental specimens to test positive for Legionella. Both the environmental isolate and the only clinical isolate were Legionella pneumophila serogroup 1, with identical patterns identified on monoclonal antibody subtyping and pulsed-field gel electrophoresis (PFGE) of genomic restriction fragments. The fountain's recirculating system had been irregularly maintained, and water in the fountain may have been heated by submersed lighting. These findings demonstrate the utility of monoclonal antibody subtyping and PFGE of genomic restriction fragments in assessing the significance of environmental isolates of L. pneumophila, especially when other epidemiologic findings are inconclusive. They also show that decorative fountains may be a potential source of infection with L. pneumophila, and emphasize the need for standard maintenance and disinfection procedures.

  4. In-volume structuring of a bilayered polymer foil using direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Rößler, Florian; Günther, Katja; Lasagni, Andrés F.

    2018-05-01

    Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.

  5. Decorating an individual living cell with a shell of controllable thickness by cytocompatible surface initiated graft polymerization.

    PubMed

    Wang, Guan; Zhang, Kai; Wang, Yindian; Zhao, Changwen; He, Bin; Ma, Yuhong; Yang, Wantai

    2018-05-03

    Surface engineering of individual living cells is a promising field for cell-based applications. However, engineering individual cells with controllable thickness by chemical methods has been rarely studied. This article describes the development of a new cytocompatible chemical strategy to decorate individual living cells. The thicknesses of the crosslinked shells could be conveniently controlled by the irradiation time, visible light intensity, or monomer concentration. Moreover, the lag phase of the yeast cell division was extended and their stability against lysis was improved, which could also be tuned by controlling the shell thickness.

  6. Application of the light emitting diodes (LEDs) in optical measurements

    NASA Astrophysics Data System (ADS)

    Sabinin, Vladimir E.; Savelyev, Sergey K.; Solk, Sergey V.

    2003-06-01

    At current moment the Light Emitting Diodes (LED) have found a great amount of applications in different areas -- for location and communication systems, optical information systems, in architecture light decoration and advertising, traffic signals, etc. In current work we are making attempt to analyze some new possible fields of LED application. Among these may be build in systems of photometry control. Many different optic and optoelectronic systems are in need of such devices, able to operate for a long time in an autonomous regime. LED's and especially optocouples on their base can provide required time stability and spectral characteristics. The main drawback of such elements is the particularity of the emission diagram. In many case it has unpredictable form, but high reliability and very simple design may compensate many of LED's drawbacks. Below are analyzed the optical schemes enabling transformation of the semiconductor crystal in visible and IR ranges into the beams with angular divergence of 2 degrees. From one crystal, having diameter less than 1 mm was gained the axial light power exceeding 1000 cd and it is possible to form the light sources providing light power up to 50 - 100 W/str. If to take into account that LED have narrow spectral band and high stability of this spectral band, their small dimensions, rather high efficiency, a possibility of intensity modulation by supply current it is very promising to apply these devices for system of buid in control. Such possibility was not realized in full up till now.

  7. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.

    PubMed

    Ding, Yi; Wang, Yanli

    2016-08-17

    Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.

  8. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    PubMed Central

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  9. Fabrication of Ag-decorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green

    NASA Astrophysics Data System (ADS)

    Regmi, Chhabilal; Dhakal, Dipesh; Kim, Tae-Ho; Yamaguchi, Takutaro; Wohn Lee, Soo

    2018-04-01

    A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger’s effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

  10. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    NASA Astrophysics Data System (ADS)

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.

    2013-11-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells. Electronic supplementary information (ESI) available: http://janus.northwestern.edu/wololab/auxiliary/supplementary_data_2013.docx. See DOI: 10.1039/c3nr02203j

  11. Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system

    NASA Astrophysics Data System (ADS)

    Lin, Quankui; Huang, Xiaojie; Tang, Junmei; Han, Yuemei; Chen, Hao

    2013-12-01

    A targeted drug delivery system based on graphene oxide (GO) was produced via one-pot synthesis method, taking advantages of the self-polymerization of the dopamine (DA). The polymerization of dopamine resulted in polydopamine capped GO nanocomposite. Meanwhile, the anti-tumor drug doxorubicin (DOX) can be loaded in the nanocomposite and the tumor cell targeting molecule folic acid (FA) can also been immobilized on the nanocomposite surface simultaneously. The size of the obtained FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) is about 600 nm. It renders a sustained drug release manner. The cell culture results reveal that the FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) via one-pot method shows property of targeted killing of cancer cells in vitro. This one-pot method just needs the pH adjusting to induce the self-polymerization of DA, but excludes the fussy chemical grafting process and the organic solvents, which make it an environmentally friendly method to synthesize FA-decorated GO-based drug delivery system.

  12. 3. DETAIL VIEW OF THE MAIN ENTRY OF BUILDING 13, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF THE MAIN ENTRY OF BUILDING 13, SHOWING THE ORIGINAL LIGHT FIXTURES AND THE EGYPTIAN MOTIF DECORATION; LOOKING SSW. (Ryan) - Veterans Administration Medical Center, Building No. 13, Old State Route 13 West, Marion, Williamson County, IL

  13. Insect form vision as one potential shaping force of spider web decoration design.

    PubMed

    Cheng, R-C; Yang, E-C; Lin, C-P; Herberstein, M E; Tso, I-M

    2010-03-01

    Properties of prey sensory systems are important factors shaping the design of signals generated by organisms exploiting them. In this study we assessed how prey sensory preference affected the exploiter signal design by investigating the evolutionary relationship and relative attractiveness of linear and cruciate form web decorations built by Argiope spiders. Because insects have an innate preference for bilaterally symmetrical patterns, we hypothesized that cruciate form decorations were evolved from linear form due to their higher visual attractiveness to insects. We first reconstructed a molecular phylogeny of the Asian members of the genus Argiope using mitochondrial markers to infer the evolutionary relationship of two decoration forms. Results of ancestral character state reconstruction showed that the linear form was ancestral and the cruciate form derived. To evaluate the luring effectiveness of two decoration forms, we performed field experiments in which the number and orientation of decoration bands were manipulated. Decoration bands arranged in a cruciate form were significantly more attractive to insects than those arranged in a linear form, no matter whether they were composed of silks or dummies. Moreover, dummy decoration bands arranged in a cruciate form attracted significantly more insects than those arranged in a vertical/horizontal form. Such results suggest that pollinator insects' innate preference for certain bilateral or radial symmetrical patterns might be one of the driving forces shaping the arrangement pattern of spider web decorations.

  14. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    PubMed

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shu-Mei; Ma, De-Kun, E-mail: dkma@wzu.edu.cn; Cai, Ping

    2014-12-15

    Graphical abstract: TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO{sub 2}. • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirablemore » for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO{sub 2}. With increasing the amount of TiO{sub 2}, the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The current study not only develops a new methodology to synthesize ultrathin nanosheets but also provides a novel strategy to design composite photocatalysts with high reaction activity and good selectivity.« less

  16. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    PubMed

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  17. Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid.

    PubMed

    Yoon, Chang-Min; Jang, Yoonsun; Noh, Jungchul; Kim, Jungwon; Jang, Jyongsik

    2017-10-24

    Electrophotorheological (EPR) fluids, whose rheological activity is dually responsive to light and electric fields (E fields), is formulated by mixing photosensitive spiropyran-decorated silica (SP-sSiO 2 ) nanoparticles with zwitterionic lecithin and mineral oil. A reversible photorheological (PR) activity of the EPR fluid is developed via the binding and releasing mechanism of lecithin and merocyanine (MC, a photoisomerized form of SP) under ultraviolet (UV) and visible (VIS) light applications. Moreover, the EPR fluid exhibits an 8-fold higher electrorheological (ER) performance compared to the SP-sSiO 2 nanoparticle-based ER fluid (without lecithin) under an E field, which is attributed to the enhanced dielectric properties facilitated by the binding of the lecithin and SP molecules. Upon dual application of UV light and an E field, the EPR fluid exhibits high EPR performance (ca. 115.3 Pa) that far exceeds its separate PR (ca. 0.8 Pa) and ER (ca. 57.5 Pa) activities, because of the synergistic contributions of the PR and ER effects through rigid and fully connected fibril-like structures. Consequently, this study offers a strategy on formulation of dual-stimuli responsive smart fluid systems.

  18. 3. DETAIL VIEW OF S ENTRY DOOR TO BUILDING 8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF S ENTRY DOOR TO BUILDING 8, SHOWING ONE OF THE ORIGINAL LIGHT FIXTURES AND THE EGYPTIAN MOTIF DECORATION; LOOKING N (Ryan) - Veterans Administration Medical Center, Building No. 8, Old State Route 13 West, Marion, Williamson County, IL

  19. [Decorative elements in the medical imaging area improve patients' perception of pleasantness].

    PubMed

    García Marcos, R; Martí-Bonmatí, L; Martínez, J J; Vilar, J; Katic, N; Lemercier, P; Díaz Dhó, R

    2014-01-01

    To evaluate the sensation of pleasantness perceived by patients attended in the radiology department in response to decorative elements hung on the walls in the waiting rooms and in the hallways of the imaging area. The material resources comprised works of art in the form of "magic windows" representing scenes from nature installed on the ceilings and walls of the waiting area and hallways of the imaging area. Patients were given a brief questionnaire with general data and questions (sadness-cheerfulness, coldness-warmth, darkness-light, and pessimism-optimism) about their perception of the decorative elements. Of the 150 questionnaires collected, 142 were filled out correctly. The overall health of these patients was good in 84 (56%), not bad in 58 (39%), and poor in 8 (5%). The idea seemed very good to 70 patients (47%), good to 58 (39%), not bad to 8 (5%), indifferent to 11 (7%), bad to 1 (1%), and very bad to 2 (1%). As far a patients' mobility, 119 patients (79%) walked into the department, 18 (12%) were wheeled in on beds, and 13 (9%) needed wheelchairs. We found a high level of satisfaction with the decorative elements. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  20. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets.

    PubMed

    Li, Qin; Guo, Beidou; Yu, Jiaguo; Ran, Jingrun; Zhang, Baohong; Yan, Huijuan; Gong, Jian Ru

    2011-07-20

    The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion.

  1. New insights into the role of Mn and Fe in coloring origin of blue decorations of blue-and-white porcelains by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Luo, Wugan; Chen, Dongliang; Xu, Wei; Ming, Chaofang; Wang, Changsui; Wang, Lihua

    2013-04-01

    Blue and white porcelain is one of the most valuable ancient ceramics varieties in ancient China. It is well known for its beautiful blue decorations. However, the origin of its blue color has not been very clear till now. In this research, two blue and white porcelains from Jingdezhen, Jiangxi province were selected and Mn and Fe K-edge XANES spectra were recorded from blue decorations with or without transparent glaze. Results showed that Mn K-edge XANES features were almost identical between different samples while that of iron changed. The above findings indicated the positive role of iron in the variation of blue decorations. As for manganese, although more system researches were need, its negative role on the variations of the tone of blue decorations was obtained. On the other hand, the paper also revealed the XAFS results will be affect by the glaze layer above the pigment. These findings provided us more information to understand the coloring origin of blue decorations of blue-and-white porcelain by means of XANES spectroscopy.

  2. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  3. Design Considerations for an OPAC Workstation: An Introduction to Specifications and a Model Configuration.

    ERIC Educational Resources Information Center

    Martin, Ron G.

    1989-01-01

    Describes guidelines for an online public access catalog (OPAC) workstation that will support the terminal, printer, and other peripherals. Workstation dimensions, lighting, wire management, printer and paper, acoustical treatment, seating, storage for books and coats, wastebasket, and interior decoration are addressed. Flexibility and simplicity…

  4. Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell.

    PubMed

    Han, He-Xing; Shi, Chen; Zhang, Nan; Yuan, Li; Sheng, Guo-Ping

    2018-10-15

    Hexavalent chromium (Cr(VI)) is a prominent toxic metal with significant adverse human health effects. Photocatalytic reduction of Cr(VI) to less-toxic trivalent chromium (Cr(III)) is a promising method for removing Cr(VI) from aquatic environments. However, this technique often suffers from electron-hole recombination of semiconductors and poor reduction efficiency. The photoelectrocatalytic microbial fuel cell (Photo-MFC), which can use wastewater and light to recover electricity, has recently been proven to improve the separation of photocarriers of semiconductors and enhance cathodic reduction of pollutants. Here, the reduction of Cr(VI) was investigated in a Photo-MFC with a Pd-decorated p-type silicon nanowire (Pd/SiNW) photocathode and a bioanode under visible light. The Cr(VI) reduction efficiency reached 98.7% in 8 h under visible light, which was much higher than that under dark condition (56.2%) and open-circuit condition (19.4%). The enhanced Cr(VI) removal was mainly attributed to the synergistic effect of Pd/SiNW photocathode and bioanode. Cr(VI) reduction in the Photo-MFC fitted well with pseudo-first-order kinetics. The kinetics constants and reduction efficiencies of Cr(VI) decreased with the increase of pH, initial Cr(VI) concentration and external resistance. This work provides a promising alternative to mitigate Cr(VI) pollution in aquatic environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: Theoretical prediction and experimental validation.

    PubMed

    Song, Dongxing; Jing, Dengwei

    2017-11-01

    Regulation of the localized surface plasmon resonance (LSPR) of nanoparticles by changing the dielectric constant of the surrounding medium has been exploited in many practical applications. In this study, using Ag-nanodot-decorated SiO 2 nanoparticles (Ag-decorated SiO 2 NPs) with different solvents, we investigated the potential of using such core-satellite nanostructures as a liquid sensor for the determination of melamine. The dielectric constant effect of the surrounding medium on the LSPR property was given particular attention. It was found that colloids with water as solvent display a LSPR shift of 14nm, and this value was 18nm for ethanol. For colloids with methanol and glycol as solvents, the peak shifts are negligible. Finite-difference time-domain (FDTD) simulations were used to assign the LSPR peaks of Ag-decorated SiO 2 NPs and to monitor the effect of the substrate and solvent on the LSPR properties. In the calculations, the wavelength positions of the LSPR peaks for Ag-decorated SiO 2 NPs in various solvents were successfully predicted in the order methanol

  6. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan

    2018-01-01

    Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

  7. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; You, Ning; Yu, Zhe

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated chargemore » separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.« less

  8. Al or Si decorated graphene-oxide: A promising material for capture and activation of ethylene and acetylene

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Dinparast, Leila

    2018-06-01

    In this work, quantum chemical calculations are performed to compare adsorption behavior of ethylene and acetylene molecules over Al- or Si-decorated graphene oxide (Al/Si-GO). The corresponding adsorption energies, geometrical parameters and net charge-transfer values are calculated using the dispersion-corrected DFT calculations. The obtained large adsorption energies of the Al and Si atoms over GO suggest that both Al-GO and Si-GO are stable enough to be used as a stable substrate to capture and activate ethylene or acetylene. The results show that the adsorption of C2H4 or C2H2 on Al-GO is more favorable than over Si-GO surface, mainly due to the orbital interactions between the adsorbate and surface. Also, the DFT calculations reveal that the interaction of C2H2 with both surfaces is stronger than that of C2H4. Our findings are applicable for future theoretical and experimental studies about the interaction of hydrocarbons with light metal decorated graphene-based materials as well as heterogeneous catalysis.

  9. Decoration of wide bandgap semiconducting materials for enhancing photoelectrochemical efficiency of PEC systems.

    NASA Astrophysics Data System (ADS)

    Bakranov, N.; Zhabaikhanov, A.; Kudaibergenov, S.; Ibraev, N.

    2018-03-01

    The production of photoanodes based on wide-band gap materials such as TiO2 is economically viable because of the low cost of synthesis methods. Contrary to economic aspects, wide-band gap semiconductor materials have a significant disadvantage due to low sensitivity to photons of visible light. To increase the photoactive parameters of the material of the electrodes in the visible range, the methods for decorating nanomasses of titanium dioxide by narrow-gap semiconductors are used. One of the most suitable narrow-gap semiconductor materials are CdS and Fe2O3. Controlled deposition of such materials on wide-gap semiconductors allows to regulate both the diffusion time of charge carriers and the band structure of TiO2/Fe2O3 and TiO2/CdS composites. The dimensions of the structure of the photoelectrode material of the cell have a large influence on the characteristics of the photocatalyst created. Thus, in the hematite structures of nanometre dimension, the rate of recombination of charge carriers fades away in comparison with bulk structures. Reducing the size of CdS structures also positively affects the nature of the photocatalytic reaction.

  10. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-04-25

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  11. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    NASA Astrophysics Data System (ADS)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  12. 41 CFR 102-42.155 - Can foreign gifts or decorations be destroyed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Can foreign gifts or decorations be destroyed? 102-42.155 Section 102-42.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 42...

  13. TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing

    2018-06-01

    Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.

  14. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction.

    PubMed

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-02-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g(-1) h(-1), which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.

  15. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-02-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g-1 h-1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications.

  16. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  17. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

    PubMed Central

    Chen, Dejian; Zou, Liling; Li, Shunxing; Zheng, Fengying

    2016-01-01

    Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibits remarkably significant improvement on visible light absorption, narrow band gap and efficient charge collection and separation. The photocatalytic H2 production rate of NS-rGO/TiO2 is high as 13996 μmol g−1 h−1, which exceeds that obtained on TiO2 alone and TiO2 with parallel graphene sheets by 3.45 and 3.05 times, respectively. This improvement is due to the presence of NS-rGO as an electron collector and transporter. The geometry of NS-rGO should be effective in the design of a graphene/TiO2 composite for photocatalytic applications. PMID:26828853

  18. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China.

    PubMed

    Zhai, L; Zhao, J; Xu, B; Deng, Y; Xu, Z

    2013-03-01

    The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. To assess the prevalence of indoor formaldehyde pollution caused by decoration and resultant respiratory system symptoms exhibited in exposed adults and children, due to indoor formaldehyde pollution caused by decoration. Survey sites were chosen and indoor formaldehyde concentrations determined according to the standard of formaldehyde in GB50325-2001. Logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for potential confounders for this survey. Formaldehyde concentration was above the standard in 64% of Shenyang City. Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory system disorders in both adults (OR=2.603, [95% CI: 1.770-3.828], OR=1.604, [95% CI: 1.146-2.244], respectively) and children (OR=4.250, [2.064-8.753], OR=1.831, [1.006-3.333], respectively). The prevalence of common respiratory system disorders was related both to formaldehyde pollution and insufficient ventilation after decorating.

  19. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  20. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO3(La,Cr)-decorated WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu

    2017-08-01

    The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO3(La,Cr)/WO3 with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO3(La,Cr) nanoparticles are uniformly decorated on the WO3 nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO3 and SrTiO3(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z-scheme heterojunction, SrTiO3(La,Cr)/WO3 exhibits excellent adsorption-photocatalytic performance and stability on MB removal, which could be potentially used for practical wastewater treatment.

  1. Multifunctional Ag-decorated porous TiO2 nanofibers in dye-sensitized solar cells: efficient light harvesting, light scattering, and electrolyte contact.

    PubMed

    Hwang, Sun Hye; Song, Hee; Lee, Jungsup; Jang, Jyongsik

    2014-09-26

    Designing the photoanode structure in dye-sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver-decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m(2)  g(-1) provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF-based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF-based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

    PubMed

    Rtimi, S; Pulgarin, C; Bensimon, M; Kiwi, J

    2016-08-01

    Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  4. X-ray microfluorescence analysis of pigments in decorative paintings from the sarcophagus cartonnage of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Calza, C.; Anjos, M. J.; de Souza, S. M. F. Mendonça; Brancaglion, A.; Lopes, R. T.

    2007-10-01

    This work characterized the elemental composition of the pigments used in decorative paintings from the sarcophagus cartonnage fragments of an Egyptian mummy, using μXRF with Synchrotron Radiation. This female mummy (n.158) is considered one of the most important pieces of the National Museum (Rio de Janeiro, Brazil) because of its unconventional embalming with legs and arms swathed separately. The measurements were performed at the XRF beamline D09B of the Brazilian Synchrotron Light Laboratory (LNLS), using white beam and a Si(Li) detector with resolution of 165 eV at 5.9 keV. The elements found in the samples were: Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Hg and Pb.

  5. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness.

    PubMed

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-12-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  6. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  7. The Interactions between L-Tyrosine Based Nanoparticles Decorated with Folic Acid and Cervical Cancer Cells Under Physiological Flow

    PubMed Central

    Ditto, Andrew J.; Shah, Kush N.; Robishaw, Nikki K.; Panzner, Matthew J.; Youngs, Wiley J.; Yun, Yang H.

    2012-01-01

    Many anticancer drugs have been established clinically, but their efficacy can be compromised by nonspecific toxicity and an inability to reach the desired cancerous intracellular spaces. In order to address these issues, researchers have explored the use of folic acid as a targeted moiety to increase specificity of chemotherapeutic drugs. To expand upon such research, we have conjugated folic acid to functionalized poly(ethylene glycol) and subsequently decorated the surface of L-tyrosine polyphosphate (LTP) nanoparticles. These nanoparticles possess the appropriate size (100–500 nm) for internalization as shown by scanning electron microscopy and dynamic light scattering. Under simulated physiological flow, LTP nanoparticles decorated with folic acid (targeted nanoparticles) show a 10-fold greater attachment to HeLa, a cervical cancer cell line, compared to control nanoparticles and to human dermal fibroblasts. The attachment of these targeted nanoparticles progresses at a linear rate, and the strength of this nanoparticle attachment is shown to withstand shear stresses of 3.0 dynes/cm2. These interactions of the targeted nanoparticles to HeLa are likely a result of a receptor-ligand binding, as a competition study with free folic acid inhibits the nanoparticle attachment. Finally, the targeted nanoparticles encapsulated with a silver based drug show increased efficacy in comparison to non-decorated (plain) nanoparticles and drug alone against HeLa cells. Thus, targeted nanoparticles are a promising delivery platform for developing anticancer therapies that over-express the folate receptors (FRs). PMID:22957928

  8. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Emilio Xavier, E-mail: emilio@exeResearch.com; The Chem21 Group, Inc., 1780 Wilson Drive, Lake Forest, IL 60045; Hopfinger, Anton J., E-mail: hopfingr@gmail.com

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted frommore » the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. - Highlights: • Proposed toxicity mechanism of action for decorated nanotubes complexes • Discussion of the key molecular features for each endpoint's mechanism of action • Unique mechanisms of action for each of the six biological systems • Hypothesized mechanisms of action based on QSAR/QNAR predictive models.« less

  9. 78 FR 25946 - Hardwood and Decorative Plywood From the People's Republic of China: Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ..., ultra-violet light cured polyurethanes, oil or oil-modified or water based polyurethanes, wax, epoxy... obscure the grain, texture or markings of wood include, but are not limited to, paper, aluminum, high... to the CBP. See Notice of Final Determination of Sales at Less Than Fair Value, and Negative...

  10. #gottacatchemall: Exploring Pokemon Go in Search of Learning Enhancement Objects

    ERIC Educational Resources Information Center

    Cacchione, Annamaria; Procter-Legg, Emma; Petersen, Sobah Abbas

    2017-01-01

    The Augmented Reality Game, Pokemon Go, took the world by storm in the summer of 2016. City landscapes were decorated with amusing, colourful objects called Pokemon, and the holiday activities were enhanced by catching these wonderful creatures. In light of this, it is inevitable for mobile language learning researchers to reflect on the impact of…

  11. Craft and the Curriculum

    ERIC Educational Resources Information Center

    Stewart, Marilyn G.

    2012-01-01

    Since the earliest times, humans have made objects--oil lamps carved out of stone to light their way, baskets and pots to hold grain and water, blankets and clothing to protect them from the elements. At some point, their need for the functional was enhanced by their desire for the beautiful. They began to decorate their lamps, pots, baskets,…

  12. Possibilities of Architectural Lighting to Create New Style

    NASA Astrophysics Data System (ADS)

    Chudinova, V. G.; Bokova, O. R.

    2017-11-01

    The article presents the argumentation of the provision on the style-forming potential of the lighting design the sphere of which is interpreted in a wide range of genres. The area of the intersection of form-building technological and artistic aspects lies in the field of ecology which includes not only energy saving, but also the well-being of the human and the society. The theory and practice of designing the night-time image of architectural ensembles, buildings and landscapes develops much slower than the implementation of light solutions in the advertising industry. In most cases, the possibilities of lighting design are used only in the field of decorative lighting despite their huge aesthetic potential and rapidly improving technologies. The request for innovation and uniqueness usually arises on the basis of image and political ambitions of large corporations or for the positioning of powerful brands. The success of such projects becomes a driver for both creation and promotion of innovative solutions. However, in a broader scientific sense, not only the design of artificial light systems but also the optimization of the daylight usage falls into the sphere lighting design. The need for the new methods of architectural shaping is dictated by the need to introduce in the building of resource-saving lighting technologies, ecological infrastructure including alternative energy sources. The article gives the examples of different lighting design genres supplemented with illustrations. The conclusions concern the prospective directions and tasks of scientific research in the field of lighting design.

  13. Energy Partitioning and Impulse Dispersion in the Decorated, Tapered, Strongly Nonlinear Granular Alignment: A System with Many Potential Applications

    DTIC Science & Technology

    2010-03-01

    finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the... Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically...second was the DTC setup. In this case, small Nitinol 2.38 mm diameter particles were in- troduced between the main STC particles so that NDTC=9. 53 The

  14. Gold nanoparticles-decorated electrospun poly(N-vinyl-2-pyrrolidone) nanofibers with tunable size and coverage density for nanomolar detection of single and binary component dyes by surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurniawan, Alfin; Wang, Meng-Jiy

    2017-09-01

    The application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this study, a simple approach to fabricate electrospun poly(N-vinylpyrrolidone) (PVP) mats decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination was presented. AuNPs were decorated on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the fiber mats could be tuned by varying the calcination temperature. Calcination of AuNPs-decorated PVP fibers at 500 °C-700 °C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fiber, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated mat which calcined at 500 °C (500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred μM. The fabricated SERS substrate demonstrated high reproducibility with the spot-to-spot variation in SERS signal intensities was ±10% and ±12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6%-96.6%) and reproducibility (%RSD values less than 15 for all samples).

  15. Flexible SERS Substrates: Challenges and Opportunities

    DTIC Science & Technology

    2016-01-28

    interactions between the analyte, silver nanoparticles , and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous...present our recent work on the preparation, characterization, and SERS activity of silver nanoparticle decorated polymeric electrospun nanofibers

  16. Low-dose chemotherapy of hepatocellular carcinoma through triggered-release from bilayer-decorated magnetoliposomes.

    PubMed

    Chen, Yanjing; Chen, Yuan; Xiao, Da; Bose, Arijit; Deng, Ruitang; Bothun, Geoffrey D

    2014-04-01

    Low-dose (LD) chemotherapy is a promising treatment strategy that may be improved by controlled delivery. Polyethylene glycol-stabilized bilayer-decorated magnetoliposomes (dMLs) have been designed as a stimuli-responsive LD chemotherapy drug delivery system and tested in vitro using Huh-7 hepatocellular carcinoma cell line. The dMLs contained hydrophobic superparamagnetic iron oxide nanoparticles within the lipid bilayer and doxorubicin hydrochloride (DOX, 2 μM) within the aqueous core. Structural analysis by cryogenic transmission electron microscopy and dynamic light scattering showed that the assemblies were approximately 120 nm in diameter. Furthermore, the samples consisted of a mixture of dMLs and bare liposomes (no nanoparticles), which provided dual burst and spontaneous DOX release profiles, respectively. Cell viability results show that the cytotoxicity of DOX-loaded dMLs was similar to that of bare dMLs (∼10%), which indicates that spontaneous DOX leakage had little cytotoxic effect. However, when subjected to a physiologically acceptable radiofrequency (RF) electromagnetic field, cell viability was reduced up to 40% after 8h and significant cell death (>90%) was observed after 24h. The therapeutic mechanism was intracellular RF-triggered DOX release from the dMLs and not intracellular hyperthermia due to nanoparticle heating via magnetic losses. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Low-Dose Chemotherapy of Hepatocellular Carcinoma through Triggered-Release from Bilayer-Decorated Magnetoliposomes

    PubMed Central

    Chen, Yanjing; Chen, Yuan; Xiao, Da; Bose, Arijit; Deng, Ruitang; Bothun, Geoffrey D.

    2014-01-01

    Low-dose (LD) chemotherapy is a promising treatment strategy that may be improved by controlled delivery. Polyethylene glycol-stabilized bilayer-decorated magnetoliposomes (dMLs) have been designed as a stimuli-responsive LD chemotherapy drug delivery system and tested in vitro using Huh-7 hepatocellular carcinoma cell line. The dMLs contained hydrophobic superparamagnetic iron oxide nanoparticles within the lipid bilayer and doxorubicin hydrochloride (DOX, 2 µM) within the aqueous core. Structural analysis by cryogenic transmission electron microscopy and dynamic light scattering showed that the assemblies were approximately 120 nm in diameter. Furthermore, the samples consisted of a mixture of dMLs and bare liposomes (no nanoparticles), which provided dual burst and spontaneous DOX release profiles, respectively. Cell viability results show that the cytotoxicity of DOX-loaded dMLs was similar to that of bare dMLs (~10%), which indicates that spontaneous DOX leakage had little cytotoxic effect. However, when subjected to a physiologically acceptable radiofrequency (RF) electromagnetic field, cell viability was reduced up to 40% after 8 h and complete cell death was observed after 24 h. The therapeutic mechanism was intracellular RF-triggered DOX release from the dMLs and not intracellular hyperthermia due to nanoparticle heating via magnetic losses. PMID:24549047

  18. Fabrication of Pt nanoparticles decorated Gd-doped Bi2MoO6 nanosheets: Design, radicals regulating and mechanism of Gd/Pt-Bi2MoO6 photocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Hongda; Li, Wenjun; Wang, Fangzhi; Liu, Xintong; Ren, Chaojun; Miao, Xiao

    2018-01-01

    A new Pt nanoparticles decorated Gd-doped Bi2MoO6 photocatalyst was synthesized by the hydrothermal process and in-situ reduction method. The crystal structure, morphology, chemical state and optical property of the obtained photocatalysts were investigated. The activities of photocatalysts were also evaluated by the degradation of Rhodamine B, Tetracyclines and 4-Chlorophenol under visible light irradiation, and the results indicated that the Gd/Pt co-modified Bi2MoO6 sample shows better photocatalytic activity. Meanwhile, the results of trapping experiments and Electron Spin Resonance (ESR) spectra demonstrated that the rad OH radicals can be formed by doping of Gd3+ ions, and the addition of Pt was conducive to the producing of more • O2- and rad OH radicals. Also the results from the degradation of 4-chlorophenol implied that the formed rad OH radicals in the system of Gd/Pt-BMO possess stronger oxidizability than • O2- radicals for degrading the special organics which are difficult to be mineralized. Additionally, the mechanism about the excellent photocatalytic activity of Gd/Pt co-modified Bi2MoO6 was also discussed.

  19. Synthesis of BiVO4-GO-PVDF nanocomposite: An excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies

    NASA Astrophysics Data System (ADS)

    Biswas, Md Rokon Ud Dowla; Oh, Won-Chun

    2018-06-01

    BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.

  20. Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers

    NASA Astrophysics Data System (ADS)

    Zheng, Shaohui; Du Nguyen, Van; Song, Seung Yoon; Han, Jiwon; Park, Jong-Oh

    2017-10-01

    In this study, a novel type of hyaluronic acid (HA)-decorated nanostructured lipid carrier (NLC) was prepared and investigated as a light-triggered drug release and combined photothermal-chemotherapy for cancer treatment. Polyhedral gold nanoparticles (Au NPs) with an average size of 10 nm were synthesized and co-encapsulated with doxorubicin (DOX) in the matrix of NLCs with a high drug loading efficiency (above 80%). HA decoration was achieved by the electrostatic interaction between HA and CTAB on the NLC surface. A remarkable temperature increase was observed by exposing the Au NP-loaded NLCs to an NIR laser, which heated the samples sufficiently (above 40 °C) to kill tumor cells. The entrapped DOX exhibited a sustained, stepwise NIR laser-triggered drug release pattern. The biocompatibility of the NLCs was investigated by MTT assay and the cell viability was maintained above 85%, even at high concentrations. The intracellular uptake of free DOX and entrapped DOX, observed by confocal microscopy, revealed two distinct uptake mechanisms, i.e. passive diffusion and endocytosis, respectively. In particular, internalization of the HA-Au-DOX-NLCs was more extensively enhanced than the Au-DOX-NLCs, which was attributed to HA-CD44 receptor-mediated endocytosis. Meanwhile, the internalized NLCs successfully escaped from the lysosomes, increasing the intracellular DOX. The HA-Au-DOX-NLCs IC50 value decreased from 2.3 to 0.6 μg ml-1 with NIR irradiation at 72 h, indicating the excellent synergistic antitumor effect of photothermal-chemotherapy. The photothermal ablation was further confirmed by a live/dead cell staining assay. Thus, a combined photothermal-chemotherapy approach has been proposed as a promising strategy for cancer treatment.

  1. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration.

    PubMed

    Liu, Yang; Jiang, Mingming; Zhang, Zhenzhong; Li, Binghui; Zhao, Haifeng; Shan, Chongxin; Shen, Dezhen

    2018-03-28

    The generation of hot electrons from metal nanostructures through plasmon decay provided a direct interfacial charge transfer mechanism, which no longer suffers from the barrier height restrictions observed for metal/semiconductor interfaces. Metal plasmon-mediated energy conversion with higher efficiency has been proposed as a promising alternative to construct novel optoelectronic devices, such as photodetectors, photovoltaic and photocatalytic devices, etc. However, the realization of the electrically-driven generation of hot electrons, and the application in light-emitting devices remain big challenges. Here, hybrid architectures comprising individual Ga-doped ZnO (ZnO:Ga) microwires via metal quasiparticle film decoration were fabricated. The hottest spots could be formed towards the center of the wires, and the quasiparticle films were converted into physically isolated nanoparticles by applying a bias onto the wires. Thus, the hot electrons became spatially localized towards the hottest regions, leading to a release of energy in the form of emitting photons. By adjusting the sputtering times and appropriate alloys, such as Au and Ag, wavelength-tunable emissions could be achieved. To exploit the EL emission characteristics, metal plasmons could be used as active elements to mediate the generation of hot electrons from metal nanostructures, which are located in the light-emitting regions, followed by injection into ZnO:Ga microwire-channels; thus, the production of plasmon decay-induced hot-electrons could function as an efficient approach to dominate emission wavelengths. Therefore, by introducing metal nanostructure decoration, individual ZnO:Ga microwires can be used to construct wavelength-tunable fluorescent emitters. The hybrid architectures of metal-ZnO micro/nanostructures offer a fantastic candidate to broaden the potential applications of semiconducting optoelectronic devices, such as photovoltaic devices, photodetectors, optoelectronic sensors, etc.

  2. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

    PubMed

    Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D

    2009-11-18

    A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.

  3. Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions

    NASA Astrophysics Data System (ADS)

    Sultan, Muhammad; Mumtaz, Sundas; Ali, Asad; Khan, Muhammad Yaqoob; Iqbal, Tahir

    2017-12-01

    ZnO nanorods decorated by NiO nanostructures were fabricated using facile chemical route. The nanorods of ZnO were prepared by using chemical bath deposition technique and subsequently decorated by NiO using sol-gel spin coating. The density and orientation of the ZnO nanorods was controlled through the seed layer with preferential growth along c-axis and hexagonal face. X-Ray Photoelectron Spectroscopy (XPS) analysis was used to confirm stoichiometry of the materials and band alignment study of the heterostructures. Type-II band alignment was observed from the experimental results. The IV characteristics of the device depicting rectifying behavior at different temperatures were observed with photocurrent generation in response to light excitation. The electrical properties reported in this study are in line with earlier work where heterojunctions were fabricated by physical deposition techniques.

  4. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  5. The targeted behavior of folate-decorated N-succinyl-N'-octyl chitosan evaluated by NIR system in mouse model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Deng, Dawei; Chen, Haiyan; Qian, Zhiyu; Gu, Yueqing

    2010-11-01

    The development of more selective delivery systems for cancer diagnosis and chemotherapy is one of the most important goals of current anticancer research. The purpose of this study is to construct and evaluate the folate-decorated, self-assembled nanoparticles as candidates to deliver near infrared fluorescent dyes into tumors and to investigate the mechanisms underlying the tumor targeting with folate-decorated, self-assembled nanoparticles. Folate-decorated N-succinyl-N'-octyl chitosan (folate-SOC) were synthesized. The chemical modification chitosan could self-assemble into stable micelles in aqueous medium. Micelle size determined by size analysis was around 140 nm in a phosphate-buffered saline (PBS, PH 7.4). Folate-SOC could maintain their structure for up to 15 days in PBS. Near infrared dye ICG-Der-01 as a mode drug was loaded in the micelles, and the entrapment efficiency (EE) and drug loading (DL) were investigated. The targeted behavior of folate-SOC was evaluated by near-infrared fluorescence imaging in vivo on different groups of denuded mice, with A549 or Bel-7402 tumors. The optical imaging results indicated that folated-decorated SOC showed an excellent tumor specificity in Bel-7402 tumor-bearing mice, and weak tumor specificity in A549 tumor bearing mice. We believe that this work can provide insight for the engineering of nanoparticles and be extended to cancer therapy and diagnosis so as to deliver multiple therapeutic agents and imaging probes at high local concentrations.

  6. Light weight fire resistant graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hsu, M. T. S.

    1986-01-01

    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft.

  7. Biotin-decorated silica coated PbS nanocrystals emitting in the second biological near infrared window for bioimaging

    NASA Astrophysics Data System (ADS)

    Corricelli, M.; Depalo, N.; di Carlo, E.; Fanizza, E.; Laquintana, V.; Denora, N.; Agostiano, A.; Striccoli, M.; Curri, M. L.

    2014-06-01

    Nanoparticles (NPs) emitting in the second biological near infrared (NIR) window of the electromagnetic spectrum have been successfully synthesized by growing a silica shell on the hydrophobic surface of OLEA/TOP PbS nanocrystals (NCs), by means of a reverse microemulsion approach, and subsequently decorated with biotin molecules. The fabrication of very uniform and monodisperse NPs, formed of SiO2 shell coated single core PbS NCs, has been demonstrated by means of a set of complementary optical and structural techniques (Vis-NIR absorption and photoluminescence spectroscopy, transmission electron microscopy) that have highlighted how experimental parameters, such as PbS NC and silica precursor concentration, are crucial to direct the morphology and optical properties of silica coated PbS NPs. Subsequently, the silica surface of the core-shell NPs has been grafted with amino groups, in order to achieve covalent binding of biotin to NIR emitting silica coated NPs. Finally the successful reaction with a green-fluorescent labelled streptavidin has verified the molecular recognition response of the biotin molecules decorating the PbS@SiO2 NP surface. Dynamic light scattering (DLS) and ζ-potential techniques have been used to monitor the hydrodynamic diameter and colloidal stability of both PbS@SiO2 and biotin decorated NPs, showing their high colloidal stability in physiological media, as needed for biomedical applications. Remarkably the obtained biotinylated PbS@SiO2 NPs have been found to retain emission properties in the `second optical window' of the NIR region of the electromagnetic spectrum, thus representing attractive receptor-targeted NIR fluorescent probes for in vivo tumour imaging.Nanoparticles (NPs) emitting in the second biological near infrared (NIR) window of the electromagnetic spectrum have been successfully synthesized by growing a silica shell on the hydrophobic surface of OLEA/TOP PbS nanocrystals (NCs), by means of a reverse microemulsion approach, and subsequently decorated with biotin molecules. The fabrication of very uniform and monodisperse NPs, formed of SiO2 shell coated single core PbS NCs, has been demonstrated by means of a set of complementary optical and structural techniques (Vis-NIR absorption and photoluminescence spectroscopy, transmission electron microscopy) that have highlighted how experimental parameters, such as PbS NC and silica precursor concentration, are crucial to direct the morphology and optical properties of silica coated PbS NPs. Subsequently, the silica surface of the core-shell NPs has been grafted with amino groups, in order to achieve covalent binding of biotin to NIR emitting silica coated NPs. Finally the successful reaction with a green-fluorescent labelled streptavidin has verified the molecular recognition response of the biotin molecules decorating the PbS@SiO2 NP surface. Dynamic light scattering (DLS) and ζ-potential techniques have been used to monitor the hydrodynamic diameter and colloidal stability of both PbS@SiO2 and biotin decorated NPs, showing their high colloidal stability in physiological media, as needed for biomedical applications. Remarkably the obtained biotinylated PbS@SiO2 NPs have been found to retain emission properties in the `second optical window' of the NIR region of the electromagnetic spectrum, thus representing attractive receptor-targeted NIR fluorescent probes for in vivo tumour imaging. Electronic supplementary information (ESI) available: Size statistical analysis of silanized PbS NPs, TLC plate showing the ninhydrin test results and a table summarizing the DH and ζ-potential values for the investigated samples. See DOI: 10.1039/c4nr01025f

  8. Facile fabrication of BiOI decorated NaNbO3 cubes: A p-n junction photocatalyst with improved visible-light activity

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Yan, Qing; Shao, Yu; Wang, Changqian; Yan, Tao; Ji, Pengge; Du, Bin

    2017-09-01

    To enhance the separation efficiency of photo-generated carriers, a p-n junction photocatalyst BiOI/NaNbO3 has been fabricated by a facile method. The obtained samples were characterized by XRD, SEM, TEM, HRTEM, PL, N2 sorption-desorption and DRS. DRS results showed that the light absorption edges of BiOI/NaNbO3 hybrids were red-shifted with the increase of BiOI content. The SEM and TEM images revealed that the BiOI was widely decorated over the surfaces of NaNbO3 cubes. The formation of p-n heterojunction at their interfaces was proved by the HRTEM image. The visible light-driven photocatalytic activity was evaluated by the degradation of methylene blue (MB) in aqueous solution. Compared with single NaNbO3 and BiOI, the BiOI/NaNbO3 hybrid photocatalysts have exhibited significantly enhanced activities. Meanwhile, the mass ratio of BiOI/NaNbO3 displayed important influence on the MB degradation. The hybrid photocatalyst with BiOI content of 40% performed the optimal activity. This activity enhancement should be attributed to the strong visible light absorption, the high migration and separation efficiency of photo-induced carriers. The photocurrent and PL measurements confirmed that the interfacial charge separation efficiency was greatly improved by coupling BiOI with NaNbO3. Controlled experiments proved that the degradation of pollutants was mainly attributed to the oxidizing ability of the generated holes (h+), ·O2-, and ·OH radicals.

  9. A novel local anesthetic system: transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine.

    PubMed

    Chen, Chuanyu; You, Peijun

    2017-01-01

    Barrier properties of the skin and physicochemical properties of drugs are the main factors for the delivery of local anesthetic molecules. The present work evaluates the anesthetic efficacy of drug-loaded nanocarrier (NC) systems for the delivery of local anesthetic drug, ropivacaine (RVC). In this study, transcriptional transactivator peptide (TAT)-decorated RVC-loaded NCs (TAT-RVC/NCs) were successfully fabricated. Physicochemical properties of NCs were determined in terms of particle size, zeta potential, drug encapsulation efficiency, drug-loading capacity, stability, and in vitro drug release. The skin permeation of NCs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro, and in vivo anesthetic effect was evaluated in mice. The results showed that TAT-RVC/NCs have a mean diameter of 133.2 nm and high drug-loading capacity of 81.7%. From the in vitro skin permeation results, it was observed that transdermal flux of TAT-RVC/NCs was higher than that of RVC-loaded NCs (RVC/NCs) and RVC injection. The evaluation of in vivo anesthetic effect illustrated that TAT-RVC/NCs can enhance the transdermal delivery of RVC by reducing the pain threshold in mice. These results indicate that TAT-decorated NCs systems are useful for overcoming the barrier function of the skin, decreasing the dosage of RVC and enhancing the anesthetic effect. Therefore, TAT-decorated NCs can be used as an effective transdermal delivery system for local anesthesia.

  10. Decorating surfaces with bidirectional texture functions.

    PubMed

    Zhou, Kun; Du, Peng; Wang, Lifeng; Matsushita, Yasuyuki; Shi, Jiaoying; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates BTFs in two steps. First, we automatically synthesize a BTF over the target surface from a given BTF sample. Then, we let the user interactively paint BTF patches onto the surface such that the painted patches seamlessly integrate with the background patterns. Our system is based on a patch-based texture synthesis approach known as quilting. We present a graphcut algorithm for BTF synthesis on surfaces and the algorithm works well for a wide variety of BTF samples, including those which present problems for existing algorithms. We also describe a graphcut texture painting algorithm for creating new surface imperfections (e.g., dirt, cracks, scratches) from existing imperfections found in input BTF samples. Using these algorithms, we can decorate surfaces with real-world textures that have spatially-variant reflectance, fine-scale geometry details, and surfaces imperfections. A particularly attractive feature of BTF painting is that it allows us to capture imperfections of real materials and paint them onto geometry models. We demonstrate the effectiveness of our system with examples.

  11. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the development of subcellularly targeted DDSs that will deliver specific drugs to the nuclei of the target cells and will enhance efficacy and reduce toxicity of these drugs.

  12. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less

  13. Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage?

    PubMed

    Tan, Eunice J; Li, Daiqin

    2009-06-01

    Many species of the orb-web spider genus Cyclosa often adorn their webs with decorations of prey remains, egg sacs and/or plant detritus, termed ;detritus decorations'. These detritus decorations have been hypothesised to camouflage the spider from predators or prey and thus reduce predation risk or increase foraging success. In the present study, we tested these two alternative hypotheses simultaneously using two types of detritus decorations (prey remain and egg sac) built by Cyclosa mulmeinensis (Thorell). By monitoring the possible responses of predators to spiders on their webs with and without decorations in the field, we tested whether web decorations would reduce the mortality of spiders. Wasp predators were observed to fly in the vicinity of webs with decorations slightly more often than in the vicinity of webs without decorations but there were very few attacks on spiders by wasps. By comparing the insect interception rates of webs with and without decorations in the field, we tested whether web decorations would increase the foraging success. Webs decorated with prey remains or egg sacs intercepted more insects than those without in the field. By calculating colour contrasts of both prey-remain and egg-sac decorations against spiders viewed by bird (blue tits) and hymenopteran (e.g. wasps) predators as well as hymenopteran (bees) prey, we showed that C. mulmeinensis spiders on webs with egg-sac decorations were invisible to both hymenopteran prey and predators and bird predators over short and long distances. While spiders on webs with prey-remain decorations were invisible to both hymenopterans and birds over short distances, spiders on webs with prey-remain decorations were visible to both predators and prey over long distances. Our results thus suggest that decorating webs with prey remains and egg sacs in C. mulmeinensis may primarily function as camouflage to conceal the spider from insects rather than as prey attractants, possibly contributing to the interception of more insect prey. However, the detritus decorations exhibit varying success as camouflage against predators, depending on whether predators are jumping spiders, wasps or birds, as well as on the decoration type.

  14. Nanowire arrays restore vision in blind mice.

    PubMed

    Tang, Jing; Qin, Nan; Chong, Yan; Diao, Yupu; Yiliguma; Wang, Zhexuan; Xue, Tian; Jiang, Min; Zhang, Jiayi; Zheng, Gengfeng

    2018-03-06

    The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.

  15. Evaluation of H2S sensing characteristics of metals-doped graphene and metals-decorated graphene: Insights from DFT study

    NASA Astrophysics Data System (ADS)

    Khodadadi, Zahra

    2018-05-01

    The high tendency of graphene to adsorb H2S gas has made it a good choice for the purpose of separating H2S gas from industrial waste streams, and it can also be used as a good H2S sensor. In this research, the adsorption of H2S molecule on pristine, transition metal (Ni, Cu and Zn)-doped graphene and metal-decorated graphene nanosheets have been investigated via first-principles approach based on Density Functional Theory (DFT). The most stable adsorption geometry, rate of adsorption energy and charge transfer of H2S molecule on pristine, metal-doped, and metal-decorated graphene nanosheets have been discussed. The adsorption of H2S gas on several kinds of graphene nanosheets was studied by three different models. As H2S molecule adsorbed on metal-doped graphene nanosheets, we found that the configuration with two hydrogen atoms towards the metal-doped graphene nanosheet as most desirable situation. Moreover, the calculations show that the adsorption energy of H2S on Cu-doped graphene nanosheet is the highest among all the other metal-doped graphene nanosheet systems. We also investigated the H2S capability to bind to Ni, Cu and Zn-decorated graphene nanosheets. It was found that after adsorption, the configuration of the sulfur atom, which was located close to the metal-decorated graphene nanosheets was stable thermodynamically. The Ni-decorated graphene nanosheet with large adsorption energy and short binding distance is suitable for chemisorptions. The unfilled d-shells Ni-decorated graphene nanosheets are primarily responsible for increase in the reactivity.

  16. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO2 Nanotubes Directly During Anodic Growth.

    PubMed

    Bian, Haidong; Nguyen, Nhat Truong; Yoo, JeongEun; Hejazi, Seyedsina; Mohajernia, Shiva; Müller, Julian; Spiecker, Erdmann; Tsuchiya, Hiroaki; Tomanec, Ondrej; Sanabria-Arenas, Beatriz E; Zboril, Radek; Li, Yang Yang; Schmuki, Patrik

    2018-05-30

    Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO 2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO 2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H 2 generation, with a H 2 production rate of 12.04 μL h -1 under solar light. This represents a strongly enhanced activity as compared to TiO 2 NTs decorated with monometallic particles of Au (7 μL h -1 ) or Pt (9.96 μL h -1 ).

  17. Intermediate stages of surface state formation and collapse of topological protection to transport in Bi2Se3

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhishek; Rai, Abhishek; Majhi, Kunjalata; Barman, Sudipta Roy; Ganesan, R.; Kumar, P. S. Anil

    2017-05-01

    Surface states consisting of helical Dirac fermions have been extensively studied in three-dimensional topological insulators. Yet, experiments to date have only investigated fully formed topological surface states (TSS) and it is not known whether preformed or partially formed surface states can exist or what properties they could potentially host. Here, by decorating thin films of Bi2Se3 with nanosized islands of the same material, we show for the first time that not only can surface states exist in various intermediate stages of formation but they exhibit unique properties not accessible in fully formed TSS. These include tunability of the Dirac cone mass, vertical migration of the surface state wave-function and the appearance of mid-gap Rashba-like states as exemplified by our theoretical model for decorated TIs. Our experiments show that an interplay of Rashba and Dirac fermions on the surface leads to an intriguing multi-channel weak anti-localization effect concomitant with an unprecedented tuning of the topological protection to transport. Our work offers a new route to engineer topological surface states involving Dirac-Rashba coupling by nano-scale decoration of TI thin films, at the same time shedding light on the real-space mechanism of surface state formation in general.

  18. Fluorescent single-digit detonation nanodiamond for biomedical applications

    NASA Astrophysics Data System (ADS)

    Nunn, Nicholas; d’Amora, Marta; Prabhakar, Neeraj; Panich, Alexander M.; Froumin, Natalya; Torelli, Marco D.; Vlasov, Igor; Reineck, Philipp; Gibson, Brant; Rosenholm, Jessica M.; Giordani, Silvia; Shenderova, Olga

    2018-07-01

    Detonation nanodiamonds (DNDs) have emerged as promising candidates for a variety of biomedical applications, thanks to different physicochemical and biological properties, such as small size and reactive surfaces. In this study, we propose carbon dot decorated single digit (4–5 nm diameter) primary particles of detonation nanodiamond as promising fluorescent probes. Due to their intrinsic fluorescence originating from tiny (1–2 atomic layer thickness) carbonaceous structures on their surfaces, they exhibit brightness suitable for in vitro imaging. Moreover, this material offers a unique, cost effective alternative to sub-10 nm nanodiamonds containing fluorescent nitrogen-vacancy color centers, which have not yet been produced at large scale. In this paper, carbon dot decorated nanodiamonds are characterized by several analytical techniques. In addition, the efficient cellular uptake and fluorescence of these particles are observed in vitro on MDA-MD-231 breast cancer cells by means of confocal imaging. Finally, the in vivo biocompatibility of carbon dot decorated nanodiamonds is demonstrated in zebrafish during the development. Our results indicate the potential of single-digit detonation nanodiamonds as biocompatible fluorescent probes. This unique material will find application in correlative light and electron microscopy, where small sized NDs can be attached to antibodies to act as a suitable dual marker for intracellular correlative microscopy of biomolecules.

  19. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity.

    PubMed

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-20

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  20. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-01

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  1. Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Liangpeng; Yang, Xu; Huang, Yanqin; Li, Xinjun

    2017-06-01

    Titanium oxide nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution and subsequently calcined. Titanium oxide nanotubes were further decorated by TiO2 nanoparticles through in situ hydrolysis of titanium isopropoxide containing alcohol and ammonia in an aqueous medium to form the composite catalyst (TNP/TiO2NTs). The morphology and structure of TNP/TiO2NTs were characterized by scanning and transmission electron microscopy, X-ray diffraction, UV-Vis, and Raman spectra. The separation efficiency of photo-excited carriers was investigated by photoluminescence technique and photoelectrochemical behavior. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange. Due to the synergy effect caused by the interaction of titanium oxide nanotubes and TiO2 nanoparticles, the TNP/TiO2NTs composite shows efficient photogenerated carriers' separation and the increased light absorption. The photocatalytic activity was enhanced.

  2. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    PubMed

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Control of magnetism in dilute magnetic semiconductor (Ga,Mn)As films by surface decoration of molecules

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Xiaolei; Xiong, Peng; Zhao, Jianhua

    2016-03-01

    The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,Mn)As thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,Mn)As thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,Mn)As and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  4. Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lim, Y. C.; Siti, A. S.; Nur Amiera, P.; Devagi, K.; Lim, Y. P.

    2017-09-01

    Coupling of titania with narrow band gap materials has been a promising strategy in preparing visible light responsive photocatalyst. In this work, self-organized copper decorated TiO2 nanotube (Cu/TNT) was prepared via electrodeposition of Cu onto highly ordered titania nanotube arrays (TNT). The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The DRS studies clearly show the extended absorption of Cu/TNT into the visible region and present a red shift of band gap to 2.1 eV. FESEM analysis has shown the dispersion of cubic-like Cu particles upon electrodeposition and EDX analysis supports the presence of copper species on the nanotubes surface. The photocatalytic ability of Cu/TNT was evaluated by the degradation of methyl orange from aqueous solution under low power visible light illumination. Compared to TNT, an appreciable improvement in methyl orange removal was observed for Cu/TNT and the highest removal efficiency of 80% was achieved. The effects of catalyst loading and samples repeatability were investigated and under optimum conditions, the removal efficiency of methyl orange over Cu/TNT had further increased to 93.4%. This work has demonstrated a feasible and simple way to introduce narrow band gap transition metal into nanotube arrays, which could create novel properties for functionalized nanotube arrays as well as promise a wide range of applications.

  5. Room-temperature synthesis of carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity.

    PubMed

    Huang, He; Huang, Ni; Wang, Zhonghua; Xia, Guangqiang; Chen, Ming; He, Lingling; Tong, Zhifang; Ren, Chunguang

    2017-09-15

    The preparation of highly efficient visible-light-driven photocatalyst for the photodegradation of organic pollutants has received much attention due to the increasing global energy crises and environmental pollution. In this study, carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets were successfully prepared via a room-temperature route. The as-prepared ZnO@AgI nanostructures exhibited highly efficient photocatalytic activity under visible light irradiation (λ>400nm). Under optimized AgI content, the ZnO@AgI-5% sample showed high photocatalytic activity, which was 25.7 and 1.5 times the activity of pure ZnO and pure AgI, respectively. Mechanism studies indicated that superoxide anion radicals (O 2 - ) was the main reactive species in the photocatalytic process. The high photocatalytic activity of the ZnO@AgI nanostructures is attributed to the highly active AgI nanoparticles and the heterojunction between AgI nanoparticles and ZnO nanosheets. The heterojunction structure reduced the recombination of the photogenerated electron-hole pairs in the conduction band (CB) and valence band (VB) of AgI nanoparticles by transferring the electrons from the CB of AgI nanoparticles to the CB of ZnO nanosheets. The composite of ZnO and AgI not only improves photocatalytic efficiency but also reduces photocatalyst cost, which is beneficial for practical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    NASA Astrophysics Data System (ADS)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  7. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  8. Enhancing light emission in flexible AC electroluminescent devices by tetrapod-like zinc oxide whiskers.

    PubMed

    Wen, Li; Liu, Nishuang; Wang, Siliang; Zhang, Hui; Zhao, Wanqiu; Yang, Zhichun; Wang, Yumei; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-10-03

    Flexible alternating current electroluminescent devices (ACEL) are more and more popular and widely used in liquid-crystal display back-lighting, large-scale architectural and decorative lighting due to their uniform light emission, low power consumption and high resolution. However, presently how to acquire high brightness under a certain voltage are confronted with challenges. Here, we demonstrate an electroluminescence (EL) enhancing strategy that tetrapod-like ZnO whiskers (T-ZnOw) are added into the bottom electrode of carbon nanotubes (CNTs) instead of phosphor layer in flexible ACEL devices emitting blue, green and orange lights, and the brightness is greatly enhanced due to the coupling between the T-ZnOw and ZnS phosphor dispersed in the flexible polydimethylsiloxane (PDMS) layer. This strategy provides a new routine for the development of high performance, flexible and large-area ACEL devices.

  9. Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Trabelsi, K.; Hajjaji, A.; Gaidi, M.; Bessais, B.; El Khakani, M. A.

    2017-08-01

    We report on the pulsed laser deposition (PLD) based nanodecoration of titanium dioxide (TiO2) nanotube arrays (NTAs) by Ag nanoparticles (NPs). We focus here on the investigation of the effect of the number of laser ablation pulses (NLP) of the silver target on both the average size of the Ag-NPs and the photoelectrochemical conversion efficiency of the Ag-NP decorated TiO2-NT based photoanodes. By varying the NLP, we were able to not only control the size of the PLD-deposited Ag nanoparticles from 20 to ˜50 nm, but also to increase concomitantly the surface coverage of the TiO2 NTAs by Ag-NPs. The red-shifting of the surface plasmon resonance peak of the PLD-deposited Ag-NPs deposited onto quartz substrates confirmed the increase of their size as the NLP is increased from 500 to 10 000. By investigating the photo-electrochemical properties of Ag-NP decorated TiO2-NTAs, by means of linear sweep cyclic voltammetry under UV-Vis illumination, we found that the generated photocurrent is sensitive to the size of the Ag-NPs and reaches a maximum value at NLP =500 (i.e.,; Ag-NP size of ˜20 nm). For NLP = 500, the photoconversion efficiency of the Ag-NP decorated TiO2-NTAs is shown to reach a maximum of 4.5% (at 0.5 V vs Ag/AgCl). The photocurrent enhancement of Ag-NP decorated TiO2-NTAs is believed to result from the additional light harvesting enabled by the ability of Ag-NPs to absorb visible irradiation caused by various localized surface plasmon resonances, which in turn depend on the size and interdistance of the Ag nanoparticles.

  10. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  11. Oscillatory electrostatic potential on graphene induced by group IV element decoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunyan; Yu, Liwei; Liu, Xiaojie

    The structures and electronic properties of partial C, Si and Ge decorated graphene were investigated by first-principles calculations. The calculations show that the interaction between graphene and the decoration patches is weak and the semiconductor patches act as agents for weak electron doping without much disturbing graphene electronic π-bands. Redistribution of electrons due to the partial decoration causes the electrostatic potential lower in the decorated graphene areas, thus induced an electric field across the boundary between the decorated and non-decorated domains. Such an alternating electric field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport.

  12. Oscillatory electrostatic potential on graphene induced by group IV element decoration

    DOE PAGES

    Du, Chunyan; Yu, Liwei; Liu, Xiaojie; ...

    2017-10-13

    The structures and electronic properties of partial C, Si and Ge decorated graphene were investigated by first-principles calculations. The calculations show that the interaction between graphene and the decoration patches is weak and the semiconductor patches act as agents for weak electron doping without much disturbing graphene electronic π-bands. Redistribution of electrons due to the partial decoration causes the electrostatic potential lower in the decorated graphene areas, thus induced an electric field across the boundary between the decorated and non-decorated domains. Such an alternating electric field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport.

  13. Colour Matching in Decorative Thermally Sprayed Glass Coatings

    NASA Astrophysics Data System (ADS)

    Poirier, Thierry; Bertrand, Pierre; Coddet, Christian

    2013-02-01

    Coloured coatings were obtained on steel by plasma spraying without severe in-flight alteration of pigments, taking profit of the low thermal conductivity of the glassy matrix of glaze particles. Colour matching was studied by mixing 3 different glazes, comparing Grassmann and Kubelka-Munk based algorithms. Results suggest that the latter method should be preferred upon Grassmann method, particularly when the light absorption/dispersion ratios of coloured feedstocks are very different.

  14. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  15. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes.

    PubMed

    Hegner, Franziska Simone; Cardenas-Morcoso, Drialys; Giménez, Sixto; López, Núria; Galan-Mascaros, Jose Ramon

    2017-11-23

    The realization of artificial photosynthesis may depend on the efficient integration of photoactive semiconductors and catalysts to promote photoelectrochemical water splitting. Many efforts are currently devoted to the processing of multicomponent anodes and cathodes in the search for appropriate synergy between light absorbers and active catalysts. No single material appears to combine both features. Many experimental parameters are key to achieve the needed synergy between both systems, without clear protocols for success. Herein, we show how computational chemistry can shed some light on this cumbersome problem. DFT calculations are useful to predict adequate energy-level alignment for thermodynamically favored hole transfer. As proof of concept, we experimentally confirmed the limited performance enhancement in hematite photoanodes decorated with cobalt hexacyanoferrate as a competent water-oxidation catalyst. Computational methods describe the misalignment of their energy levels, which is the origin of this mismatch. Photoelectrochemical studies indicate that the catalyst exclusively shifts the hematite surface state to lower potentials, which therefore reduces the onset for water oxidation. Although kinetics will still depend on interface architecture, our simple theoretical approach may identify and predict plausible semiconductor/catalyst combinations, which will speed up experimental work towards promising photoelectrocatalytic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 41 CFR 102-42.145 - When is public sale of a foreign gift or decoration authorized?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... foreign gift or decoration authorized? 102-42.145 Section 102-42.145 Public Contracts and Property... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Sale or Destruction of Foreign Gifts and Decorations § 102-42.145 When is public sale of a foreign gift or decoration authorized...

  17. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    NASA Astrophysics Data System (ADS)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  18. Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Zhang, Xiaoxing; Zhang, Jun; Tang, Ju

    2018-07-01

    Metal nanocluster decorated single-walled carbon nanotubes (SWCNT) with improved adsorption behaviour towards gaseous molecules compared with intrinsic ones, have been widely accepted as a workable media for gas interaction due to their strong catalysis. In this work, Pd4 cluster is determined as a catalytic centre to theoretically study the adsorption property of Pd4-decorated SWCNT upon SF6 decomposed species. Results indicate that Pd4-SWCNT possessing good responses and sensitivities towards three composed species of SF6 could realise selective detection for them according to the different conductivity changes resulting from the varying adsorption ability. The response of Pd4-SWCNT upon three molecules in order is SOF2 > H2S > SO2, and the conductivity of the proposed material is about to increase in SOF2 and H2S systems, while declining in SO2 system. Such conclusions would be helpful for experimentalists to explore novel SWCNT-based sensors in evaluating the operating state of SF6 insulation devices.

  19. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  20. 41 CFR 102-42.20 - What is the typical disposition process for gifts and decorations that employees are not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... decoration during Federal utilization screening, the employee may purchase the gift or decoration (see § 102-42.140). (5) If the employee declines to purchase the gift or decoration, and there is no Federal... disposition process for gifts and decorations that employees are not authorized to retain? 102-42.20 Section...

  1. Klamath Falls downtown development geothermal sidewalk snowmelt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.

    1995-10-01

    The Klamuth Falls, Oregon, downtown has seen a period of decline over the past 20 years as businesses have moved to new suburban shopping centers. Downtown business owners and the Klamuth Falls Downtown Redevelopment Agency are working to reverse that trend with a Downtown Streetscape Project intended to make the downtown a more pleasant place to work and do business. The visible elements of the project include new crosswalks with brick pavers, wheelchair ramps at sidewalk corners, new concrete sidewalks with a consistent decorative grid pattern, sidewalk planters for trees and flowers, and antique-style park benches and lighting fixtures. Amore » less visible, but equally valuable feature of the project is the plastic tubing installed under the sidewalks, wheelchair ramps and crosswalks, designed to keep them snow and ice free in the winter. A unique feature of the snowmelt system is the use of geothermal heated water on the return side of the Klamath Falls Geothermal District Heating System, made possible by the recent expansion of the district heating system.« less

  2. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes.

    PubMed

    Wang, Wei; Ruiz, Isaac; Ahmed, Kazi; Bay, Hamed Hosseini; George, Aaron S; Wang, Johnny; Butler, John; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-08-27

    In this work, we report the synthesis of an three-dimensional (3D) cone-shape CNT clusters (CCC) via chemical vapor deposition (CVD) with subsequent inductively coupled plasma (ICP) treatment. An innovative silicon decorated cone-shape CNT clusters (SCCC) is prepared by simply depositing amorphous silicon onto CCC via magnetron sputtering. The seamless connection between silicon decorated CNT cones and graphene facilitates the charge transfer in the system and suggests a binder-free technique of preparing lithium ion battery (LIB) anodes. Lithium ion batteries based on this novel 3D SCCC architecture demonstrates high reversible capacity of 1954 mAh g(-1) and excellent cycling stability (>1200 mAh g(-1) capacity with ≈ 100% coulombic efficiency after 230 cycles). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Archaeometallurgical characterization of the earliest European metal helmets

    PubMed Central

    Mödlinger, Marianne; Piccardo, Paolo; Kasztovszky, Zsolt; Kovács, Imre; Szőkefalvi-Nagy, Zoltán; Káli, György; Szilágyi, Veronika

    2013-01-01

    Archaeometric analyses on conical and decorated cap helmets from the Bronze Age are presented. The helmets are dated to the 14–12th century BC according to associated finds in hoards. Alloy composition, material structure and manufacturing processes are determined and shed light on the earliest development of weaponry production in Central and Eastern Europe. Analyses were carried out using light and dark field microscopy, SEM–EDXS, PIXE, TOF-ND and PGAA. The results allowed reconstructing the manufacturing process, the differences between the cap of the helmets and their knobs (i.e. alloy composition) and the joining technique of the two parts. PMID:26523114

  4. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir individuals from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.53, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from c. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  5. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-09-01

    Severe droughts occurred in the western United States during recent decades and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.58-0.85, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.65, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from ca. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Correspondingly, maximum tree height, leaf area:sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  6. The evolutionary ecology of decorating behaviour

    PubMed Central

    Ruxton, Graeme D.; Stevens, Martin

    2015-01-01

    Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon—presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material. PMID:26041868

  7. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  8. Electronic and magnetic properties of transition metal decorated monolayer GaS

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Fu; Liu, Li-Min; Zhao, Jijun

    2018-07-01

    Inducing controllable magnetism in two dimensional non-magnetic materials is very important for realizing dilute magnetic semiconductor. Using density functional theory, we have systematically investigated the effect of surface adsorption of various 3d transition metal (TM) atoms (Sc-Cu) on the electronic and magnetic properties of the monolayer GaS as representative of group-IIIA metal-monochalcogenide. We find that all adatoms favor the top site on the Ga atom. All the TM atoms, except for the Cr and Mn, can bond strongly to the GaS monolayer with sizable binding energies. Moreover, the TM decorated GaS monolayers exhibit interesting magnetic properties, which arise from the strong spin-dependent hybridization of the TM 3d orbitals with S 3p and Ga 4s orbitals. After examining the magnetic interaction between two same types of TM atoms, we find that most of them exhibit antiferromagnetic coupling, while Fe and Co atoms can form long-range ferromagnetism. Furthermore, we find that the electronic properties of metal decorated systems strongly rely on the type of TM adatom and the adsorption concentration. In particular, the spin-polarized semiconducting state can be realized in Fe doped system for a large range of doping concentrations. These findings indicate that the TM decorated GaS monolayers have potential device applications in next-generation electronics and spintronics.

  9. 41 CFR 102-42.140 - How is a sale of a foreign gift or decoration to an employee conducted?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... foreign gift or decoration to an employee conducted? 102-42.140 Section 102-42.140 Public Contracts and... REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Sale or Destruction of Foreign Gifts and Decorations § 102-42.140 How is a sale of a foreign gift or decoration to an...

  10. [Pattern recognition of decorative papers with different visual characteristics using visible spectroscopy coupled with principal component analysis (PCA)].

    PubMed

    Zhang, Mao-mao; Yang, Zhong; Lu, Bin; Liu, Ya-na; Sun, Xue-dong

    2015-02-01

    As one of the most important decorative materials for the modern household products, decorative papers impregnated with melamine not only have better decorative performance, but also could greatly improve the surface properties of materials. However, the appearance quality (such as color-difference evaluation and control) of decorative papers, as an important index for the surface quality of decorative paper, has been a puzzle for manufacturers and consumers. Nowadays, human eye is used to discriminate whether there exist color difference in the factory, which is not only of low efficiency but also prone to bring subjective error. Thus, it is of great significance to find an effective method in order to realize the fast recognition and classification of the decorative papers. In the present study, the visible spectroscopy coupled with principal component analysis (PCA) was used for the pattern recognition of decorative papers with different visual characteristics to investigate the feasibility of visible spectroscopy to rapidly recognize the types of decorative papers. The results showed that the correlation between visible spectroscopy and visual characteristics (L*, a* and b*) was significant, and the correlation coefficients wereup to 0.85 and some was even more than 0. 99, which might suggest that the visible spectroscopy reflected some information about visual characteristics on the surface of decorative papers. When using the visible spectroscopy coupled with PCA to recognize the types of decorative papers, the accuracy reached 94%-100%, which might suggest that the visible spectroscopy was a very potential new method for the rapid, objective and accurate recognition of decorative papers with different visual characteristics.

  11. Lighting for Tomorrow: What have we learned and what about the day after tomorrow?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2006-08-22

    This paper describes Lighting for Tomorrow, a program sponsored by the US Department of Energy Emerging Technologies Program, the American Lighting Association, and the Consortium for Energy Efficiency. The program has conducted a design competition for residential decorative lighting fixtures using energy-efficient light sources. The paper discusses the reasons for development of the design competition, and the intended outcomes of the effort. The two competitive rounds completed to date are described in terms of their specific messaging and rules, direct results, and lessons learned. Experience to date is synthesized relative to the intended outcomes, including new product introductions, increased awarenessmore » of energy efficiency within the lighting industry, and increased participation by lighting showrooms in marketing and selling energy-efficient light fixtures. The paper also highlights the emergence of Lighting for Tomorrow as a forum for addressing market and technical barriers impeding use of energy-efficient lighting in the residential sector. Finally, it describes how Lighting for Tomorrow's current year (2006) program has been designed to respond to lessons from the previous competitions, feedback from the industry, and changes in lighting technology.« less

  12. OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.

    2008-08-01

    Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.

  13. LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps

    NASA Astrophysics Data System (ADS)

    Ayuga, Carlos Eugenio Tapia; Zamorano, Jaime

    2018-07-01

    The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.

  14. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer

    NASA Astrophysics Data System (ADS)

    Maiolino, Sara; Moret, Francesca; Conte, Claudia; Fraix, Aurore; Tirino, Pasquale; Ungaro, Francesca; Sortino, Salvatore; Reddi, Elena; Quaglia, Fabiana

    2015-03-01

    In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS4). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS4 and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS4-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS4. DTX/TPPS4-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS4-dcNPs demonstrated a face-to-face arrangement of the TPPS4 units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS4 delivered from dcNPs as compared to free TPPS4. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS4 and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment.In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS4). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS4 and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS4-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS4. DTX/TPPS4-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS4-dcNPs demonstrated a face-to-face arrangement of the TPPS4 units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS4 delivered from dcNPs as compared to free TPPS4. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS4 and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment. Electronic supplementary information (ESI) available: Synthetic and experimental procedures. See DOI: 10.1039/c4nr06910b

  15. Gold decorated porous biosilica nanodevices for advanced medicine.

    PubMed

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; De Luca, Anna Chiara; Rea, Ilaria

    2018-06-08

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV-vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml -1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  16. Gold decorated porous biosilica nanodevices for advanced medicine

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Napolitano, Michela; De Stefano, Luca; Chiara De Luca, Anna; Rea, Ilaria

    2018-06-01

    Diatomite is a fossil material made of amorphous porous silica. In this work, polyethylene glycol (PEG)-modified diatomite NPs (PEG-DNPs) are decorated with gold NPs (AuNPs) by one-pot liquid-phase synthesis. Nanocomplexes (PEG-DNPs@AuNPs), with an average size of about 450 nm, are characterized by dynamic light scattering, electron microscopy, nitrogen adsorption/desorption analysis, UV–vis and photoluminescence spectroscopies. Preliminary studies on the use of the nanocomplex in nanomedicine are also presented. Tests performed incubating PEG-DNPs@AuNPs in physiological conditions reveal a good stability of material. Cellular uptake of labeled PEG-DNPs@AuNPs is investigated by confocal microscopy after incubation with human cervix epithelioid carcinoma (HeLa) cells up to 48 h: an efficient cytoplasmic localization is observed. In vitro cytotoxicity of nanocomplexes with a concentration up to 400 μg ml‑1 for 72 h is also evaluated. The results suggest the use of PEG-DNPs@AuNPs as advanced nanodevices adding imaging features to the nanocomplexes, due to AuNPs as contrast agent.

  17. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang

    2018-02-01

    Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.

  18. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  19. 10 CFR 1050.204 - Advance approval for acceptance of gifts or decorations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advance approval for acceptance of gifts or decorations. 1050.204 Section 1050.204 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) FOREIGN GIFTS AND DECORATIONS Guidelines for Acceptance of Foreign Gifts or Decorations § 1050.204 Advance approval for...

  20. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-07

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.

  1. Nanoparticle-Enhanced Silver-Nanowire Plasmonic Electrodes for High-Performance Organic Optoelectronic Devices.

    PubMed

    Kim, Taehyo; Kang, Saewon; Heo, Jungwoo; Cho, Seungse; Kim, Jae Won; Choe, Ayoung; Walker, Bright; Shanker, Ravi; Ko, Hyunhyub; Kim, Jin Young

    2018-05-21

    Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO 2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO 2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO 2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A -1 (at 3.2 V) and a power efficiency of 25.14 lm W -1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO 2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium.

    PubMed

    Kuthati, Yaswanth; Kankala, Ranjith Kumar; Busa, Prabhakar; Lin, Shi-Xiang; Deng, Jin-Pei; Mou, Chung-Yuan; Lee, Chia-Hung

    2017-04-01

    The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli. SNPs were decorated over the Cu-MSN surfaces by coordination of silver ions on diamine-functionalized Cu-MSN and further reduced to silver nanoparticles with formalin. We demonstrate that silver is capable of sensitizing the gram-negative bacteria E. coli to a gram-positive specific phototherapeutic agent in vitro; thereby expanding curcumin's phototherapeutic spectrum. The mesoporous structure of Cu-MSN remains intact after the exterior decoration with silver nanoparticles and subsequent curcumin loading through an enhanced effect from copper metal-curcumin affinity interaction. The synthesis, as well as successful assembly of the functional nanomaterials, was confirmed by various physical characterization techniques. Curcumin is capable of producing high amounts of reactive oxygen species (ROS) under light irradiation, which can further improve the silver ion release kinetics for antibacterial activity. In addition, the positive charged modified surfaces of Cu-MSN facilitate antimicrobial response through electrostatic attractions towards negatively charged bacterial cell membranes. The antibacterial action of the synthesized nanocomposites can be activated through a synergistic mechanism of energy transfer of the absorbed light from SNP to curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Raman and EDXRF Study on Overglaze Decorations of Jingdezhen Ceramics].

    PubMed

    Wu, Juan; Zhang, Mao-lin; Wu, Jun-ming; Li, Qi-jiang; Cao, Jian-wen; Li, Qing-hui; Zhao, Hong-xia

    2015-05-01

    Overglaze decoration porcelain is an important category of ancient Chinese ceramics, which has significant artistic value and scientific value. Nondestructive analysis methods such as Raman spectroscopy and EDXRF were used to analyze the overglaze decorations on the Jingdezhen ceramic samples of Yuan, Ming and Qing Dynasty. The recipe and color mechanism of the overglaze pigments were discussed according to the chemical composition and phase composition analysis. The study found that dark red overglaze decorations of ancient Honglvcai, Wucai and famille rose in Jingdezhen are colored by hematite, yellow color is lead tin yellow, carmine decoration is colored by gold less than 0. 1 % in concentration, and green decorations are colored by bivalent copper ion. The result also indicates that the effective combination of Raman spectroscopy and EDXRF can play an important role in the deep research on ceramic artifacts, especially for the overglaze decoration pigments which are interveined each other.

  4. 22 CFR 3.4 - Restriction on acceptance of gifts and decorations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Restriction on acceptance of gifts and decorations. 3.4 Section 3.4 Foreign Relations DEPARTMENT OF STATE GENERAL GIFTS AND DECORATIONS FROM FOREIGN GOVERNMENTS § 3.4 Restriction on acceptance of gifts and decorations. (a) An employee is prohibited from...

  5. Collection Development "Budget Decorating": Decorating Cents

    ERIC Educational Resources Information Center

    Kumaran, Maha

    2008-01-01

    Home decorating is a popular idea these days as seen in the rise of cable television channels like TLC and HGTV (Home & Garden Television) and TV shows like "Trading Spaces, Take This House and Sell It, Design on a Dime, Decorating Cents," and many others. Throughout history, humans have always expressed the desire to personalize and beautify…

  6. 46 CFR 72.05-15 - Ceilings, linings, trim, and decorations in accommodation spaces and safety areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ceilings, linings, trim, and decorations in... Ceilings, linings, trim, and decorations in accommodation spaces and safety areas. (a) Ceilings and linings... volume of combustible face trim, moldings, and decorations, including veneers, in any compartment shall...

  7. 46 CFR 72.05-15 - Ceilings, linings, trim, and decorations in accommodation spaces and safety areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ceilings, linings, trim, and decorations in... Ceilings, linings, trim, and decorations in accommodation spaces and safety areas. (a) Ceilings and linings... volume of combustible face trim, moldings, and decorations, including veneers, in any compartment shall...

  8. Cosmological Symbolism in the Decorative Cycles of Mid-Byzantine Churches

    NASA Astrophysics Data System (ADS)

    Shrimplin, V.

    2016-01-01

    Fundamental links between theology and astronomy are widely reflected in the Judaeo-Christian tradition. From Genesis to Revelation, the great mysteries of the beginning and end of the universe, and the cycles of birth and death of individuals, are explained in terms of cosmological concepts. These are in turn reflected in art and architecture and nowhere more broadly, perhaps, than in Byzantine architecture and decoration. Following the Iconoclast prohibition of images in the Orthodox church (726-843), the mid-Byzantine period (843-1204) witnessed the primacy of the representation of the heavens in art and architecture. Reinforced by such writers as Cosmas Indicopleustes and Pseudo-Dionysius the Areopagite, not only were individual images reflective of the heavens (nativity and rebirth at the winter solstice, and rebirth/resurrection at the spring equinox) but entire cycles of church decoration were devised so as to reflect the ordering of God's universe. The architecture and decoration of the quintessential mid-Byzantine cross-in-square church was symbolic itself of the universe, as at Hosios Loukas and Daphni (eleventh century). From the location of the Pantocrator in the central celestial dome, to the descending zones of squinches and pendentives and the lowest earthly zones, decorative schemes are used to reflect the view of the sky/heavens above earth. Hierarchical systems depicting the life of Christ and ascending/descending ranks of saints and angels were rigorously adhered to, with Mary in the apse as bridge between heaven and earth.

  9. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  10. Biomimetic Transferable Surface for a Real Time Control over Wettability and Photoerasable Writing with Water Drop Lens

    PubMed Central

    Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Homaeigohar, Shahin; Krasnov, Igor; Müller, Martin; Strunskus, Thomas; Elbahri, Mady

    2014-01-01

    We demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface. When it is decorated with PVDF nanofibers yarns, the random mesh transform from rose petal sticky state into grass leaf slippy state. When it is placed on sticky, hydrophilic metal coin, it converts the surface of the coin to super hydrophobic. Adjustments in the yarn system, like interyarn spacing, can be done in real time to influence its wettability, which is a unique feature. Next, we load the polymer with a photochromic compound for chemical restructuring. It affects the sliding angle of water drop and makes the fibers optically active. We also demonstrate a “water droplets lens” concept that enables erasable writing on photochromic rose petal sticky fibrous surface. The droplet on a highly hydrophobic surface acts as a ball lens to concentrate light onto a hot spot; thereby we demonstrate UV light writing with water lenses and visible light erasing. PMID:25491016

  11. Nano-RuO2 -Decorated Holey Graphene Composite Fibers for Micro-Supercapacitors with Ultrahigh Energy Density.

    PubMed

    Zhai, Shengli; Wang, Chaojun; Karahan, Huseyin Enis; Wang, Yanqing; Chen, Xuncai; Sui, Xiao; Huang, Qianwei; Liao, Xiaozhou; Wang, Xin; Chen, Yuan

    2018-06-07

    Compactness and versatility of fiber-based micro-supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO 2 ) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon-based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single-walled carbon nanotubes as nanospacers. This facile approach involes (1) space-confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru 3+ ions, and (3) anchoring RuO 2 nanoparticles on HrGO surfaces. Solid-state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm -3 at 2 mV s -1 . Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm -3 , the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self-powering energy system, a light-emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano-RuO 2 -decorated HrGO composite fibers for constructing micro-supercapacitors with high energy density for wearable electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discovery of a new method for potent drug development using power function of stoichiometry ofhomomeric biocomplexes or biological nanomotors

    PubMed Central

    Pi, Fengmei; Vieweger, Mario; Zhao, Zhengyi; Wang, Shaoying; Guo, Peixuan

    2015-01-01

    Introduction Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. Areas Covered We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines, or complexes with Z>1 and K=1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series, electrical circuit of Christmas decorations; failure of one light bulb causes the entire lighting system to lose power. In most multisubunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to nondrugged complexes. When K=1, and Z>1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. Expert Opinion Biomotors with multiple subunits are widespread in viruses, bacteria, and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency. PMID:26307193

  13. 41 CFR 102-42.125 - How is donation of gifts or decorations accomplished?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How is donation of gifts... 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.125 How is donation of gifts or decorations accomplished? The State Agencies for Surplus...

  14. 41 CFR 102-42.125 - How is donation of gifts or decorations accomplished?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false How is donation of gifts... 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.125 How is donation of gifts or decorations accomplished? The State Agencies for Surplus...

  15. 41 CFR 102-42.130 - Are there special requirements for the donation of gifts and decorations?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for the donation of gifts and decorations? 102-42.130 Section 102-42.130 Public Contracts and... REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.130 Are there special requirements for the donation of...

  16. 41 CFR 102-42.130 - Are there special requirements for the donation of gifts and decorations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for the donation of gifts and decorations? 102-42.130 Section 102-42.130 Public Contracts and... REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.130 Are there special requirements for the donation of...

  17. 41 CFR 102-42.125 - How is donation of gifts or decorations accomplished?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How is donation of gifts... 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.125 How is donation of gifts or decorations accomplished? The State Agencies for Surplus...

  18. 41 CFR 102-42.130 - Are there special requirements for the donation of gifts and decorations?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for the donation of gifts and decorations? 102-42.130 Section 102-42.130 Public Contracts and... REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.130 Are there special requirements for the donation of...

  19. 41 CFR 102-42.125 - How is donation of gifts or decorations accomplished?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false How is donation of gifts... 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.125 How is donation of gifts or decorations accomplished? The State Agencies for Surplus...

  20. 41 CFR 102-42.130 - Are there special requirements for the donation of gifts and decorations?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for the donation of gifts and decorations? 102-42.130 Section 102-42.130 Public Contracts and... REGULATION PERSONAL PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.130 Are there special requirements for the donation of...

  1. 41 CFR 102-42.125 - How is donation of gifts or decorations accomplished?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How is donation of gifts... 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.125 How is donation of gifts or decorations accomplished? The State Agencies for Surplus...

  2. 41 CFR 102-42.120 - When may gifts or decorations be donated to State agencies?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false When may gifts or... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts and Decorations § 102-42.120 When may gifts or decorations be donated to State agencies? If there is...

  3. 41 CFR 102-42.95 - How do we report gifts and decorations as excess personal property?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we report gifts... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Utilization of Foreign Gifts and Decorations § 102-42.95 How do we report gifts and decorations as excess personal property...

  4. Atomic structure of a decagonal Al-Pd-Mn phase

    NASA Astrophysics Data System (ADS)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  5. Decorative power generating panels creating angle insensitive transmissive colors

    PubMed Central

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-01-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ±70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications. PMID:24577075

  6. Decorative power generating panels creating angle insensitive transmissive colors

    NASA Astrophysics Data System (ADS)

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-02-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to +/-70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  7. Decorative power generating panels creating angle insensitive transmissive colors.

    PubMed

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L Jay

    2014-02-28

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ± 70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  8. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  9. Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pendashteh, Afshin; Senokos, Evgeny; Palma, Jesus; Anderson, Marc; Vilatela, Juan J.; Marcilla, Rebeca

    2017-12-01

    Supercapacitors capable of providing high voltage, energy and power density but yet light, low volume occupying, flexible and mechanically robust are highly interesting and demanded for portable applications. Herein, freestanding flexible hybrid electrodes based on MnO2 nanoparticles grown on macroscopic carbon nanotube fibers (CNTf-MnO2) were fabricated, without the need of any metallic current collector. The CNTf, a support with excellent electrical conductivity, mechanical stability, and appropriate pore structure, was homogeneously decorated with porous akhtenskite ɛ-MnO2 nanoparticles produced via electrodeposition in an optimized organic-aqueous mixture. Electrochemical properties of these decorated fibers were evaluated in different electrolytes including a neutral aqueous solution and a pure 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (PYR14TFSI). This comparison helps discriminate the various contributions to the total capacitance: (surface) Faradaic and non-Faradaic processes, improved wetting by aqueous electrolytes. Accordingly, symmetric supercapacitors with PYR14TFSI led to a high specific energy of 36 Wh· kgMnO2-1 (16 Wh·kg-1 including the weight of CNTf) and real specific power of 17 kW· kgMnO2-1 (7.5 kW kg-1) at 3.0 V with excellent cycling stability. Moreover, flexible all solid-state supercapacitors were fabricated using PYR14TFSI-based polymer electrolyte, exhibiting maximum energy density of 21 Wh·kg-1 and maximum power density of 8 kW kg-1 normalized by total active material.

  10. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    PubMed

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. 22 CFR 3.8 - Approval of retention of gifts or decorations with employing agency for official use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Approval of retention of gifts or decorations with employing agency for official use. 3.8 Section 3.8 Foreign Relations DEPARTMENT OF STATE GENERAL GIFTS AND DECORATIONS FROM FOREIGN GOVERNMENTS § 3.8 Approval of retention of gifts or decorations with...

  12. 22 CFR 3.9 - Disposal of gifts and decorations which become the property of the United States.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Disposal of gifts and decorations which become the property of the United States. 3.9 Section 3.9 Foreign Relations DEPARTMENT OF STATE GENERAL GIFTS AND DECORATIONS FROM FOREIGN GOVERNMENTS § 3.9 Disposal of gifts and decorations which become the...

  13. A Primary Study on the Recording Method of Interior Decoration in Qing Dynasty - A Case Study of Interior Decoration of Jingfu Palace

    NASA Astrophysics Data System (ADS)

    Rong, X.; He, B.; Zhuang, L.

    2017-08-01

    The existing interior decoration of Qing Dynasty is the master of that of each dynasty, with its diversified forms and complicated functions. As early as 1920s, the Rehabilitation Committee of Qing court recorded the interior furnishing in the Forbidden City by using Chinese traditional documentary method. Today, along with the constantly updated techniques, the recording method for the current situation of interior decoration has gradually developed from two-dimensional drawings into digital and comprehensive record. However, the current research results are mostly limited to a single field. This paper takes the digital record and reproduction about the current situation of interior decoration in Jingfu Palace in the Forbidden City as an example. Through the use of photogrammetry, 3D laser scanning, virtual display and other technology and equipment at the forefront of architectural field, it makes qualitative and quantitative record about the interior decoration inside Jingfu Palace. By combing with the interpretation of historical documents, it restores the original design ideas hidden behind the current situation of interior decoration, so as to summarize the best recording and reproducing method of interior decoration of Qing Dynasty.

  14. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  15. Multifunctional Surface-Enhanced Raman Spectroscopy-Detectable Silver Nanoparticles Combined Photodynamic Therapy and pH-Triggered Chemotherapy.

    PubMed

    Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J

    2016-12-01

    This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.

  16. Photographic copy of circa 1934, black and white photograph. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of circa 1934, black and white photograph. Located loose in oversized box at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C. Original Photographer unknown. CIRCA 1934 PHOTOGRAPH TAKEN ON WEST BANK APPROACH ROADWAY LOOKING NORTHEAST TOWARD EAST BANK SHOWING DETAIL OF RAILING AND DECORATIVE LIGHT STANDARD AND FIXTURE. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  17. On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model

    NASA Astrophysics Data System (ADS)

    Shen, B.-W.

    2014-04-01

    In this study, we discuss the role of the nonlinear terms and linear (heating) term in the energy cycle of the three-dimensional (X-Y-Z) non-dissipative Lorenz model (3D-NLM). (X, Y, Z) represent the solutions in the phase space. We first present the closed-form solution to the nonlinear equation d2 X/dτ2+ (X2/2)X = 0, τ is a non-dimensional time, which was never documented in the literature. As the solution is oscillatory (wave-like) and the nonlinear term (X2) is associated with the nonlinear feedback loop, it is suggested that the nonlinear feedback loop may act as a restoring force. We then show that the competing impact of nonlinear restoring force and linear (heating) force determines the partitions of the averaged available potential energy from Y and Z modes, respectively, denoted as APEY and APEZ. Based on the energy analysis, an energy cycle with four different regimes is identified with the following four points: A(X, Y) = (0,0), B = (Xt, Yt), C = (Xm, Ym), and D = (Xt, -Yt). Point A is a saddle point. The initial perturbation (X, Y, Z) = (0, 1, 0) gives (Xt, Yt) = ( 2σr , r) and (Xm, Ym) = (2 σr , 0). σ is the Prandtl number, and r is the normalized Rayleigh number. The energy cycle starts at (near) point A, A+ = (0, 0+) to be specific, goes through B, C, and D, and returns back to A, i.e., A- = (0,0-). From point A to point B, denoted as Leg A-B, where the linear (heating) force dominates, the solution X grows gradually with { KE↑, APEY↓, APEZ↓}. KE is the averaged kinetic energy. We use the upper arrow (↑) and down arrow (↓) to indicate an increase and decrease, respectively. In Leg B-C (or C-D) where nonlinear restoring force becomes dominant, the solution X increases (or decreases) rapidly with KE↑, APEY↑, APEZ↓ (or KE↓, APEY↓, APEZ↑). In Leg D-A, the solution X decreases slowly with {KE↓, APEY↑, APEZ↑ }. As point A is a saddle point, the aforementioned cycle may be only half of a "big" cycle, displaying the wing pattern of a glasswinged butterfly, and the other half cycle is antisymmetric with respect to the origin, namely B = (-Xt, -Yt), C = (-Xm, 0), and D = (-Xt, Yt).

  18. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  19. Holiday Decorating Contest - A Way to Meet Fellow Employees | Poster

    Cancer.gov

    The trolls from “Frozen,” a North Pole tunnel, and a Christmas tree­–shaped periodic table of elements were just a few of the decorations on display during the second annual Holiday Decorating Contest in December. The contest, sponsored by the R&W Club Frederick, awarded prizes to three groups and two individuals whose decorations were judged based on visual impact,

  20. Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation

    NASA Astrophysics Data System (ADS)

    Yuan, Lihua; Kang, Long; Chen, Yuhong; Wang, Daobin; Gong, Jijun; Wang, Chunni; Zhang, Meiling; Wu, Xiaojuan

    2018-03-01

    Hydrogen storage capacity on Titanium (Ti) decorated porous graphene (PG) has been investigated using density functional theory simulations with generalized gradient approximation method. The possible adsorption sites of Ti atom on PG and electronic properties of Ti-PG system are also discussed.The results show a Ti atom prefers to strongly adsorb on the center site above the C hexagon with the binding energy of 3.65 eV, and the polarization and the hybridization mechanisms both contribute to the Ti atom adsorption on PG. To avoid a tendency of clustering among Ti atoms, the single side of the PG unit cell should only contain one Ti atom. For the single side of PG, four H2 molecules can be adsorbed around Ti atom, and the adsorption mechanism of H2 molecules come from not only the polarization mechanism between Ti and H atoms but also the orbital hybridization among Ti atom, H2 molecules and C atoms. For the case of double sides of PG, eight H2 molecules can be adsorbed on Ti-decorated PG unit cell with the average adsorption energy of -0.457 eV, and the gravimetric hydrogen storage capacity is 6.11 wt.%. Furthermore, ab inito molecular-dynaics simulation result shows that six H2 molecules can be adsorbed on double sides of unit cell of Ti-PG system and the configuration of Ti-PG is very stable at 300 K and without external pressure, which indicates Ti-decorated PG could be considered as a potential hydrogen storage medium at ambient conditions.

  1. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.

    PubMed

    Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-12-07

    The hydrogen storage properties of pristine β 12 -borophene and Li-decorated β 12 -borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β 12 -borophene/H₂ and Li- β 12 -borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β 12 -borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β 12 -borophene. Our numerical calculation shows that Li- β 12 -borophene system can adsorb up to 7 H₂ molecules; while 2Li- β 12 -borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.

  2. 41 CFR 102-42.65 - What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and Antiquities...

  3. Holiday Decorating Contest - A Way to Meet Fellow Employees | Poster

    Cancer.gov

    The trolls from “Frozen,” a North Pole tunnel, and a Christmas tree­–shaped periodic table of elements were just a few of the decorations on display during the second annual Holiday Decorating Contest in December. The contest, sponsored by the R&W Club Frederick, awarded prizes to three groups and two individuals whose decorations were judged based on visual impact, creativity, and craftsmanship.

  4. 41 CFR 102-42.65 - What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commission on Art and Antiquities does not dispose of a gift or decoration? 102-42.65 Section 102-42.65... AND DECORATIONS General Provisions Special Disposals § 102-42.65 What happens if the Commission on Art and Antiquities does not dispose of a gift or decoration? If the Commission on Art and Antiquities...

  5. Adsorption of phenol and hydrazine upon pristine and X-decorated (X = Sc, Ti, Cr and Mn) MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu

    2018-05-01

    Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.

  6. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  7. 10 CFR 1050.201 - Policy against accepting foreign gifts or decorations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... foreign gifts or decorations. (a) The Constitution of the United States, Article I, section 9, clause 8... the acceptance by Federal employees of gifts and decorations with certain constraints and under...

  8. 10 CFR 1050.201 - Policy against accepting foreign gifts or decorations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... foreign gifts or decorations. (a) The Constitution of the United States, Article I, section 9, clause 8... the acceptance by Federal employees of gifts and decorations with certain constraints and under...

  9. 10 CFR 1050.201 - Policy against accepting foreign gifts or decorations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... foreign gifts or decorations. (a) The Constitution of the United States, Article I, section 9, clause 8... the acceptance by Federal employees of gifts and decorations with certain constraints and under...

  10. 5. EAST ELEVATION (OFFICE BLOCK), DETAIL SHOWING DECORATIVE PILASTERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST ELEVATION (OFFICE BLOCK), DETAIL SHOWING DECORATIVE PILASTERS AND STYLIZED EGG-AND-DART DECORATION AROUND WINDOWS OF UPPER FLOORS - Delaware, Lackawanna & Western Railroad & Ferry Terminal, Hudson Place, Hoboken, Hudson County, NJ

  11. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector.

    PubMed

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-13

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  12. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method

    NASA Astrophysics Data System (ADS)

    Azimi, Hassan Rayat; Ghoranneviss, Mahmood; Elahi, Seyed Mohammad; Mahmoudian, Mohammad Reza; Jamali-Sheini, Farid; Yousefi, Ramin

    2016-12-01

    ZnS/graphene nanocomposites with different graphene concentrations (5, 10 and 15 wt.%) were synthesized using L-cysteine as surfactant and graphene oxide (GO) powders as graphene source. Excellent performance for nanocomposites to remove methylene blue (MB) dye and hexavalent chromium (Cr(VI)) under visible-light illumination was revealed. TEM images showed that ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in the ZnS diameter size. XRD patterns, XPS and FTIR spectroscopy results indicated that GO sheets changed into reduced graphene oxide (rGO) during the synthesis process. Photocurrent measurements under a visiblelight source indicated a good chemical reaction between ZnS NPs and rGO sheets.

  13. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    PubMed Central

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-01-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate. PMID:27242172

  14. Photo current generation in RGO - CdS nanorod thin film device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Koushik; Chakrabarty, Sankalpita; Ibrahim, Sk.

    2016-05-23

    Herein, we report the synthesis and characterization of reduced graphene oxide (RGO) - cadmium sulfide (CdS) nanocomposite materials. The reduction of GO, formation of CdS and decoration of CdS onto RGO sheets were done in a one- pot solvothermal process. We have observed that the PL intensity for CdS nanorods remarkably quenched after the attachment of RGO, which established the photo induced charge transformation from the CdS nanorod to RGO sheets through the RGO-CdS interface. The optoelectronic transport properties of our fabricated large area thin film device exhibits excellent photo induced charge generation under simulated solar light illumination. The photomore » sensitivity of the device increases linearly with the increase of illuminated light intensity. The RGO-CdS composite exhibits enhance photocatalytic dye degradation efficiency in compare to control CdS under simulated solar light illumination.« less

  15. Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping

    NASA Astrophysics Data System (ADS)

    Long, Jun; Li, Jieyuan; Nan, Fang; Yin, Shi; Li, Jianjun; Cen, Wanglai

    2018-03-01

    Li decorated graphene is supposed to be a promising material for the hydrogen storage, which can be further improved by heteroatom doping. But a unified promoting mechanism for various doping types and species are still lacking, which hinders the rational design of advanced materials. The potential of N/B doped Li decorated graphene for hydrogen storage is investigated with DFT calculations. A covalent interaction between Li and the graphene substrates is identified to control the thermostability and hydrogen storage capacity (HSC) of the Li decorated substrate, which is in turn subject to the electronegativity of doping species and the doping types. Additionally, a conceptual descriptor is proposed to predict the HSC of Li decorated graphene. These results provide a unified explanation and prediction of the effects of heteroatom doping on Li decorated carbon materials for hydrogen storage.

  16. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    NASA Astrophysics Data System (ADS)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  17. Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption

    PubMed Central

    Sun, Xiaodong; Lv, Xuliang; Sui, Mingxu; Weng, Xiaodi; Li, Xiaopeng; Wang, Jijun

    2018-01-01

    To clear away the harmful effects of the increment of electromagnetic pollution, high performance absorbers with appropriate impedance matching and strong attenuation capacity are strongly desired. In this study, a chain-like PPy aerogel decorated with MOF-derived nanoporous Co/C (Co/C@PPy) has been successfully prepared by a self-assembled polymerization method. With a filler loading ratio of 10 wt %, the composite of Co/C@PPy could achieve a promising electromagnetic absorption performance both in intensity and bandwidth. An optimal reflection loss value of −44.76 dB is achieved, and the effective bandwidth (reflection loss lower than −10 dB) is as large as 6.56 GHz. Furthermore, a composite only loaded with 5 wt % Co/C@PPy also achieves an effective bandwidth of 5.20 GHz, which is even better than numerous reported electromagnetic absorption (EA) materials. The result reveals that the as-fabricated Co/C@PPy—with high absorption intensity, broad bandwidth, and light weight properties—can be utilized as a competitive absorber. PMID:29751650

  18. Symbols in motion: Flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean

    PubMed Central

    Manen, Claire; García-Martínez de Lagrán, Iñigo

    2018-01-01

    The rapid diffusion of farming technologies in the western Mediterranean raises questions about the mechanisms that drove the development of intensive contact networks and circulation routes between incoming Neolithic communities. Using a statistical method to analyze a brand-new set of cultural and chronological data, we document the large-scale processes that led to variations between Mediterranean archaeological cultures, and micro-scale processes responsible for the transmission of cultural practices within farming communities. The analysis of two symbolic productions, pottery decorations and personal ornaments, shed light on the complex interactions developed by Early Neolithic farmers in the western Mediterranean area. Pottery decoration diversity correlates with local processes of circulation and exchange, resulting in the emergence and the persistence of stylistic and symbolic boundaries between groups, while personal ornaments reflect extensive networks and the high level of mobility of Early Neolithic farmers. The two symbolic productions express different degrees of cultural interaction that may have facilitated the successful and rapid expansion of early farming societies in the western Mediterranean. PMID:29715284

  19. Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation

    NASA Astrophysics Data System (ADS)

    El Rouby, Waleed M. A.; Comesaña-Hermo, Miguel; Testa-Anta, Martín; Carbó-Argibay, Enrique; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A.

    2017-04-01

    The bioaccumulation of polycyclic aromatic compounds originating from textile processing industries is nowadays a major environmental problem worldwide. In order to tackle this situation, several inorganic semiconductors have been tested as photocatalysts for the degradation of these harmful pollutants in the search of sustainable and cost-effective solutions. Nevertheless, these semiconductor materials often involve important limitations, such as poor efficiency and selectivity, which, in the end, substantially restrict their implementation at the industrial scale. As an alternative, we herein report the fabrication and application of Au-decorated titanate nanotubes (TNTs) as high-performance architectures for the selective degradation of organic contaminants. This synthetic strategy is intended to establish a synergetic integration of the physicochemical and photocatalytic features of these hybrid nanostructures, by combining the remarkable adsorption capabilities of TNTs with the enhanced light-harvesting efficiency provided by the incorporation of a noble metal component. The obtained results evidence the great potential that rationally designed plasmonic composites may have for the development of selective environmental remediation technologies and in particular on the current challenges faced by the wastewater treatment sector.

  20. Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption.

    PubMed

    Sun, Xiaodong; Lv, Xuliang; Sui, Mingxu; Weng, Xiaodi; Li, Xiaopeng; Wang, Jijun

    2018-05-11

    To clear away the harmful effects of the increment of electromagnetic pollution, high performance absorbers with appropriate impedance matching and strong attenuation capacity are strongly desired. In this study, a chain-like PPy aerogel decorated with MOF-derived nanoporous Co/C (Co/C@PPy) has been successfully prepared by a self-assembled polymerization method. With a filler loading ratio of 10 wt %, the composite of Co/C@PPy could achieve a promising electromagnetic absorption performance both in intensity and bandwidth. An optimal reflection loss value of −44.76 dB is achieved, and the effective bandwidth (reflection loss lower than −10 dB) is as large as 6.56 GHz. Furthermore, a composite only loaded with 5 wt % Co/C@PPy also achieves an effective bandwidth of 5.20 GHz, which is even better than numerous reported electromagnetic absorption (EA) materials. The result reveals that the as-fabricated Co/C@PPy—with high absorption intensity, broad bandwidth, and light weight properties—can be utilized as a competitive absorber.

  1. Bromelain-decorated hybrid nanoparticles based on lactobionic acid-conjugated chitosan for in vitro anti-tumor study.

    PubMed

    Wei, Bing; He, Le; Wang, Xin; Yan, Guo Qing; Wang, Jun; Tang, Rupei

    2017-08-01

    In this work, lactobionic acid-modified chitosan (CLA) was chosen as an initial material to prepare tumor-targeted nanoparticles (CLA NPs). To improve the nanoparticles' tumor penetration ability, bromelain was then decorated on the surface of CLA NPs to give CLAB NPs. The micromorphology of CLA and CLAB NPs was observed by transmission electron microscopy and scanning electron microscopy. The stability of CLA and CLAB NPs was then investigated at different pH values (4.0-9.0) and physiological environment by dynamic light scattering. Doxorubicin as a model drug was successfully encapsulated into these two nanoparticles and drug release profiles were also investigated at pH 5.5, 6.5 and 7.4, respectively. Cellular uptake and MTT results against HepG2 and SH-SY5Y cells demonstrated that the LA-conjugated tumor-targeting NPs can be efficiently internalized into hepatoma carcinoma cells, leading to higher cytotoxicity than free doxorubicin. CLAB NPs show considerable cell cytotoxicity and are expected to improve the penetration ability and therapeutic effect in the subsequent in vivo studies.

  2. 41 CFR 102-42.120 - When may gifts or decorations be donated to State agencies?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts... may make the gifts or decorations available for donation to State agencies under this subpart and part...

  3. 41 CFR 102-42.120 - When may gifts or decorations be donated to State agencies?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts... may make the gifts or decorations available for donation to State agencies under this subpart and part...

  4. 41 CFR 102-42.120 - When may gifts or decorations be donated to State agencies?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts... may make the gifts or decorations available for donation to State agencies under this subpart and part...

  5. 41 CFR 102-42.120 - When may gifts or decorations be donated to State agencies?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS Donation of Foreign Gifts... may make the gifts or decorations available for donation to State agencies under this subpart and part...

  6. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  7. Low-temperature electronic transport in one-dimensional hybrid systems: Metal cluster embedded carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soldano, Caterina

    The investigation of the electronic and magnetotransport properties at low temperature in individual MWNT with embedded clusters are here presented. The majority of studies of transport in MWNT reported in literature has been carried out on arc-discharge grown tubes, generally considered "clean" and defect-free. In this project, individual MWNT grown in alumina template are used; these tubes are highly disordered compared for example to arc-discharge ones, conditions that dramatically will impact the charge transport. As-fabricated devices are in general highly resistive. A large decrease in the value of the device resistance can be achieved through a controlled and fast high-bias sweep method (HBT) across the sample. Scanning electron microscopy analysis shows that this method induces a metal (platinum) decoration of the MWNT surface as a consequence of the large amount of Joule heating developed during the sweep. Temperature dependence study (5

  8. Arc-discharge in solution: A novel synthesis method for carbon nanotubes and in situ decoration of carbon nanotubes with nanoparticles

    NASA Astrophysics Data System (ADS)

    Bera, Debasis

    2005-11-01

    During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrument is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3--4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 +/- 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except for the presence of some amorphous carbon. (Abstract shortened by UMI.)

  9. Application of Glass Fiber Reinforced Cement in Exhibition Decoration Project

    NASA Astrophysics Data System (ADS)

    Wang, Yao

    2018-02-01

    Through the study of GRC material and its application field, the aesthetic characteristics and functional characteristics of GRC materials are demonstrated. The decorative application and technology of GRC material in an art exhibition center are highlighted. The design, application and construction technology of GRC curtain wall and ceiling board in the interior and exterior decoration of art exhibition hall are discussed in detail. The unique advantages of GRC materials in exhibition engineering decoration are fully reflected. In practical design application, the application principle and method are summarized, and an application procedure is formed. The research proves that GRC materials in the art of building decoration engineering has an underrated advantage.

  10. New installation for inclined EAS investigations

    NASA Astrophysics Data System (ADS)

    Zadeba, E. A.; Ampilogov, N. V.; Barbashina, N. S.; Bogdanov, A. G.; Borisov, A. A.; Chernov, D. V.; Dushkin, L. I.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovchinnikov, V. V.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Volkov, N. S.; Vorobjev, V. S.; Yashin, I. I.

    2017-06-01

    The large-scale coordinate-tracking detector TREK for registration of inclined EAS is being developed in MEPhI. The detector is based on multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The detector will be operated as part of the experimental complex NEVOD, in particular, jointly with a Cherenkov water detector (CWD) with a volume of 2000 cubic meters and the coordinate detector DECOR. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC), representing two coordinate planes of 8 drift chambers in each, has been developed and mounted on opposite sides of the CWD. It has the same principle of joint operation with the NEVOD-DECOR triggering system and the same drift chambers alignment, so the main features of the TREK detector will be examined. Results of the CTUDC development and a joint operation with NEVOD-DECOR complex are presented.

  11. Nation Building and Social Signaling in Southern Ontario: A.D. 1350-1650.

    PubMed

    Hart, John P; Shafie, Termeh; Birch, Jennifer; Dermarkar, Susan; Williamson, Ronald F

    2016-01-01

    Pottery is a mainstay of archaeological analysis worldwide. Often, high proportions of the pottery recovered from a given site are decorated in some manner. In northern Iroquoia, late pre-contact pottery and early contact decoration commonly occur on collars-thick bands of clay that encircle a pot and extend several centimeters down from the lip. These decorations constitute signals that conveyed information about a pot's user(s). In southern Ontario the period A.D. 1350 to 1650 witnessed substantial changes in socio-political and settlement systems that included population movement, coalescence of formerly separate communities into large villages and towns, waxing and waning of regional strife, the formation of nations, and finally the development of three confederacies that each occupied distinct, constricted areas. Social network analysis demonstrates that signaling practices changed to reflect these regional patterns. Networks become more consolidated through time ultimately resulting in a "small world" network with small degrees of separation between sites reflecting the integration of communities within and between the three confederacies.

  12. A computational model of the cognitive impact of decorative elements on the perception of suspense

    NASA Astrophysics Data System (ADS)

    Delatorre, Pablo; León, Carlos; Gervás, Pablo; Palomo-Duarte, Manuel

    2017-10-01

    Suspense is a key narrative issue in terms of emotional gratification, influencing the way in which the audience experiences a story. Virtually all narrative media uses suspense as a strategy for reader engagement regardless of the technology or genre. Being such an important narrative component, computational creativity has tackled suspense in a number of automatic storytelling. These systems are mainly based on narrative theories, and in general lack a cognitive approach involving the study of empathy or emotional effect of the environment impact. With this idea in mind, this paper reports on a computational model of the influence of decorative elements on suspense. It has been developed as part of a more general proposal for plot generation based on cognitive aspects. In order to test and parameterise the model, an evaluation based on textual stories and an evaluation based on a 3D virtual environment was run. In both cases, results suggest a direct influence of emotional perception of decorative objects in the suspense of a scene.

  13. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination.

    PubMed

    Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie

    2015-12-01

    Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  15. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  16. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO 2f /SiO 2 (SiO 2f /SiO 2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO 2f /SiO 2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO 2f /SiO 2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO 2f /SiO 2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO 2f /SiO 2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  17. Top down and bottom up selection drives variations in frequency and form of a visual signal.

    PubMed

    Yeh, Chien-Wei; Blamires, Sean J; Liao, Chen-Pan; Tso, I-Min

    2015-03-30

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments.

  18. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system.

    PubMed

    Zhu, Junwu; Zeng, Guiyu; Nie, Fude; Xu, Xiaoming; Chen, Sheng; Han, Qiaofeng; Wang, Xin

    2010-06-01

    A facile chemical procedure capable of aligning CuO nanoparticles on graphene oxide (GO) in a water-isopropanol system has been described. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicate that the exfoliated GO sheets are decorated randomly by spindly or spherical CuO nanoparticle aggregates, forming well-ordered CuO:GO nanocomposites. A formation mechanism of these interesting nanocomposites is proposed as intercalation and adsorption of Cu2+ ions onto the GO sheets, followed by the nucleation and growth of the CuO crystallites, which in return resulted in the exfoliation of GO sheets. Moreover, the obtained nanocomposites exhibit a high catalytic activity for the thermal decomposition of ammonium perchlorate (AP), due to the concerted effect of CuO and GO.

  19. 78 FR 54945 - Privacy Act; System of Records: Protocol Records, State-33

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... accounting of those U.S. government officials receiving gifts and decorations from foreign governments and to....C. 2625, 22 U.S.C. 4301 et seq. PURPOSE: The information in this system of records is an accounting... public and professional institutions possessing relevant information. SYSTEMS EXEMPTED FROM CERTAIN...

  20. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes.

    PubMed

    Li, Xiu-Yuan; Li, Yong-Zhi; Yang, Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    2017-11-30

    The first strontium-based MOF possessing polar tubular channels embedded with a high density of open Lewis acidic metal sites and basic oxalamide groups was constructed, which shows not only a high CO 2 and C 2 H 6 adsorption capability and significant selectivity for CO 2 over both CH 4 and CO, and for C 2 H 6 over CH 4 , but also size-selective chemical conversion of CO 2 with epoxides producing cyclic carbonates under ambient conditions.

  1. Spacer type mediated tunable spin crossover (SCO) characteristics of pyrene decorated 2,6-bis(pyrazol-1-yl)pyridine (bpp) based Fe(ii) molecular spintronic modules.

    PubMed

    Kumar, Kuppusamy Senthil; Šalitroš, Ivan; Moreno-Pineda, Eufemio; Ruben, Mario

    2017-08-14

    A simple "isomer-like" variation of the spacer group in a set of Fe(ii) spin crossover (SCO) complexes designed to probe spin state dependence of electrical conductivity in graphene-based molecular spintronic junctions led to the observation of remarkable variations in the thermal- and light-induced magnetic characteristics, paving a simple route for the design of functional SCO complexes with different temperature switching regimes based on a 2,6-bis(pyrazol-1-yl)pyridine ligand skeleton.

  2. Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs.

    PubMed

    Hultgren, Kristin M; Stachowicz, John J

    2008-03-01

    Although camouflage is a common predator defense strategy across a wide variety of organisms, direct tests of the adaptive and ecological consequences of camouflage are rare. In this study, we demonstrated that closely related crabs in the family Epialtidae coexist in the same algal environment but use alternative forms of camouflage--decoration and color change--to protect themselves from predation. Decoration and color change are both plastic camouflage strategies in that they can be changed to match different habitats: decoration occurs on a short timescale (hours to days), while color change accompanies molting and occurs on longer timescales (months). We found that the species that decorated the most had the lowest magnitude of color change (Pugettia richii); the species that decorated the least showed the highest magnitude of color change (Pugettia producta), and a third species (Mimulus foliatus) was intermediate in both decoration and color change, suggesting a negative correlation in utilization of these strategies. This negative correlation between color change and decoration camouflage utilization mirrored the effectiveness of these camouflage strategies in reducing predation in different species. Color camouflage primarily reduced predation on P. producta, while decoration camouflage (but not color camouflage) reduced predation on P. richii. These results indicate there might be among-species trade-offs in utilization and/or effectiveness of these two forms of plastic camouflage, with important consequences for distribution of these species among habitats and the evolution of different camouflage strategies in this group.

  3. Whole high-quality light environment for humans and plants

    NASA Astrophysics Data System (ADS)

    Sharakshane, Anton

    2017-11-01

    Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index Ra and the special color rendering index R14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, Ra > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives.

  4. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation.

    PubMed

    Demir, Ulku Selcen; Shahbazi, Reza; Calamak, Semih; Ozturk, Sukru; Gultekinoglu, Merve; Ulubayram, Kezban

    2018-06-01

    Neurite outgrowth and elongation of neural cells is the most important subject that is considered in nerve tissue engineering. In this regard, aligned nanofibers have taken much attention in terms of providing guidance for newly outgrown neurites. The main objective of this study was to fabricate aligned polyurethane nanofibers by electrospinning process and decorate them with gold nanoparticles to further investigate the synergistic effects of nanotopography, biological nerve growth factor (NGF) and electrical stimulations on neurite outgrowth and elongation of pheochromocytoma (PC-12) model cells. In this regard, smooth and uniform aligned polyurethane nanofibers with the average diameter of 519 ± 56 nm were fabricated and decorated with the gold nanoparticles with the average diameter of ∼50 nm. PC-12 cells were cultured on the various nanofiber surfaces inside the bio-mimetic bioreactor system and exposed either to NGF alone or combination of NGF and electrical stimulation. It was found that 50 ng/mL NGF concentration is an optimal value for the stimulation of neurite outgrowth. After 4 days of culture under 100 mV, 10 ms electrical stimulation in 1 h/day period it was found that the gold nanoparticle decorated aligned polyurethane nanofibers increased the neurite outgrowth and elongation more with the combinational NGF and electrical stimulation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1604-1613, 2018. © 2018 Wiley Periodicals, Inc.

  5. The Role of Decorative Pictures in Learning

    ERIC Educational Resources Information Center

    Lenzner, Alwine; Schnotz, Wolfgang; Müller, Andreas

    2013-01-01

    Three experiments with students from 7th and 8th grade were performed to investigate the effects of decorative pictures in learning as compared to instructional pictures. Pictures were considered as instructional, when they were primarily informative, and as decorative, when they were primarily aesthetically appealing. The experiments…

  6. Tunable electronic properties of CdS nanoribbons by edge effects

    NASA Astrophysics Data System (ADS)

    Ma, Ruican; Zhao, Hui; Wang, Yaping; Ji, Weixiao; Li, Ping

    2017-08-01

    Based on first-principles calculations, the electronic properties of Cadmium Sulfide nanoribbons (CdSNRs) have been studied with both zigzag (Z-CdSNRs) and armchair shaped edges (A-CdSNRs). For Z-CdSNRs, the structures with both edges decorated by H or F atoms show half-metallic or semiconducting properties, respectively. Only S-dominated edge decorated by H/F atoms, Z-CdSNRs show metallic properties. Only Cd-dominated edge is hydrogenated, Z-CdSNRs can be observed from a metallic to half metallic transition. But instead of fluorinated, the structures show the metallic properties. However, either edge or both edges are hydrogenated or fluorinated, A-CdSNRs exhibit semiconducting properties, and their band gap decreases monotonically with increasing ribbons width (n). When a stress is applied on the half-hydrogenated A-CdSNRs, their band gap displays a steady decrease trend. Moreover, A-CdSNRs are more stable than Z-CdSNRs, while the hydrogenated systems are more stable than fluorinated systems. The results show that different structures of CdSNRs decorated with the different edges can play different nature as semiconducting - half-metallic - metallic properties. The research has important theoretical significance for the electronic design and assembly of CdSNRs structures, and provides a new perspective for the potential application of CdSNRs in nanoelectronics.

  7. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  8. National Apprenticeship and Training Standards for Painting and Decorating and Drywall Finishing.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Bureau of Apprenticeship and Training.

    The booklet presents the ninth edition of the national apprenticeship and training standards developed by the painting and decorating and drywall industry in cooperation with the Department of Labor's Bureau of Apprenticeship and Training. Provisions of national apprenticeship and training standards for painting and decorating and drywall…

  9. 46 CFR 116.422 - Ceilings, linings, trim, interior finish and decorations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ceilings, linings, trim, interior finish and decorations... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.422 Ceilings, linings, trim, interior finish... accommodation spaces may have a combustible veneer trim and decorations that do not meet the requirements of...

  10. 46 CFR 116.422 - Ceilings, linings, trim, interior finish and decorations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ceilings, linings, trim, interior finish and decorations... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.422 Ceilings, linings, trim, interior finish... accommodation spaces may have a combustible veneer trim and decorations that do not meet the requirements of...

  11. Top down and bottom up selection drives variations in frequency and form of a visual signal

    PubMed Central

    Yeh, Chien-Wei; Blamires, Sean J.; Liao, Chen-Pan; Tso, I.-Min

    2015-01-01

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey, selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments. PMID:25828030

  12. Tortoiseshell or Polymer? Spectroscopic Analysis to Redefine a Purported Tortoiseshell Box with Gold Decorations as a Plastic Box with Brass.

    PubMed

    Pereira, António; Caldeira, Ana Teresa; Maduro, Belmira; Vandenabeele, Peter; Candeias, António

    2016-01-01

    The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using (1)H and (13)C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate. © The Author(s) 2015.

  13. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  14. Plugging a Bipyridinium Axle into Multichromophoric Calix[6]arene Wheels Bearing Naphthyl Units at Different Rims.

    PubMed

    Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Secchi, Andrea; Arduini, Arturo

    2017-02-01

    Tris-( N -phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light-activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4 ' -bipyridinium guest activates energy- and/or electron-transfer processes that lead to non-trivial luminescence changes.

  15. 77 FR 74176 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ...) disapproved by U.S. Military are destroyed after 35 years. Approved/disapproved decorations and awards at... inventory of records systems subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended. DATES: This.... SUPPLEMENTARY INFORMATION: The Department of the Air Force's notices for systems of records subject to the...

  16. Painter and Decorator: Apprenticeship Course Outline. Apprenticeship and Industry Training. 0409

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The graduate of the Painter and Decorator apprenticeship program is a certified journeyperson who will be able to: (1) apply coatings by brush, roller and spray to surfaces of wood, metal, brick, concrete, plaster, stucco and stone for decorative and protective purposes. This occurs in residential, commercial, institutional and industrial…

  17. 41 CFR 102-42.25 - Who retains custody of gifts and decorations pending disposal?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... purchasing. (b) GSA will accept physical custody of gifts above the minimal value, which employees decline to... gifts and decorations pending disposal? 102-42.25 Section 102-42.25 Public Contracts and Property... PROPERTY 42-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS General Provisions Care...

  18. 41 CFR 102-42.40 - When is an appraisal necessary?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL OF FOREIGN GIFTS AND DECORATIONS General Provisions Appraisals § 102-42.40 When is an appraisal necessary? An appraisal is necessary when— (a) An employee indicates an interest in purchasing a gift or decoration. In this situation, the appraisal must be obtained before the gift or decoration is reported to...

  19. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    PubMed Central

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization. PMID:25391756

  20. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting.

    PubMed

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-11-13

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternatemore » hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.« less

  2. Double heterojunction nanowire photocatalysts for hydrogen generation.

    PubMed

    Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M

    2014-04-21

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.

  3. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration.

    PubMed

    Franzé, Silvia; Marengo, Alessandro; Stella, Barbara; Minghetti, Paola; Arpicco, Silvia; Cilurzo, Francesco

    2018-01-15

    The work aimed to evaluate the feasibility to design hyaluronic acid (HA) decorated flexible liposomes to enhance the skin penetration of nifedipine. Egg phosphatidylcholine (e-PC) based transfersomes (Tween 80) and transethosomes (ethanol) were prepared. HA was reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (HA-DPPE) and two molar ratios (0.5 and 3%) of conjugate with respect to e-PC were tested. The presence of HA significantly increased the packing order of the bilayer (as verified by differential scanning calorimetry), reducing both the encapsulation efficiency and the flexibility of the decorated liposomes in a dose-dependent manner. In fact, at the highest HA content the constant of deformability (K, N/mm) increased and the carriers remained on the skin surface after topical application. The stiffening effect of HA was counterbalanced by the addition of ethanol as fluidizing agent that allowed to maintain the highest HA concentration, meanwhile reducing the K value of the vesicles. HA-transethosomes allowed a suitable nifedipine permeation (J ∼ 30 ng/cm 2 /h) and significantly improved the drug penetration, favouring the formation of a drug depot in the epidermis. These data suggest the potentialities of HA-transethosomes as drug delivery systems intended for the treatment of cutaneous pathologies and underline the importance of studying the effect of surface functionalization on carrier deformability to rationalize the design of such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    PubMed

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

    PubMed

    Xu, Lixin; Huang, Lingqi; Ye, Zhibin; Meng, Nan; Shu, Yang; Gu, Zhiyong

    2017-02-01

    In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus-leaf-like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus-leaf-like superhydrophobic films with solution-grown polymer-crystal-decorated carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The effects of urbanization on trophic interactions in a desert landscape

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Trophic systems can be affected through top-down (predators) and bottom-up (resources) impacts. Human activity can alter trophic systems by causing predators to avoid areas (top-down) or by providing increased resources through irrigation and decorative plants that attra...

  7. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application.

    PubMed

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-11

    In the present work, we report on the use of organized TiO 2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe 2 O 3 nano-needles in the interspace. These α-Fe 2 O 3 decorated TiO 2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe 2 O 3 . We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm -2 compared to bare spaced NTs with a capacitance of 54 μAh cm -2 , the hierarchical decoration with secondary metal oxide, α-Fe 2 O 3 , remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe 2 O 3 decoration have an areal capacitance of 477 μAh cm -2 , i.e. they have nearly ∼8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe 2 O 3 decoration saturates at 208 μAh cm -2 , i.e. is limited to ∼3 times increase.

  8. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles.

    PubMed

    Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun

    2014-08-01

    Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    NASA Astrophysics Data System (ADS)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  10. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models.

    PubMed

    Esposito, Emilio Xavier; Hopfinger, Anton J; Shao, Chi-Yu; Su, Bo-Han; Chen, Sing-Zuo; Tseng, Yufeng Jane

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Double heterojunction nanowire photocatalysts for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.

    2014-03-01

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities. Electronic supplementary information (ESI) available: Details of NW syntheses, processing and characterization. Additional TEM images of CdS, CdSe and CdSe/CdS core/shell NWs. NW concentration and cross section estimates. Details of the Pt NP decoration. Additional TEM images of Pt NP decorated CdS, CdSe and CdSe/CdS core/shell NWs. Size distribution of Pt NPs for CdSe/Pt NP and CdSe/CdS/Pt NP NWs. Xe arc lamp spectrum. Details of H2 generation experiments. Estimated photon absorption rate. Details of TDA measurements. TDA spectra and kinetics of CdS and CdS/Pt NP NWs. Plot illustrating CdSe NW band edge bleach kinetics. Comparison of CdSe band edge bleach kinetics in CdSe/CdS core/shell NWs when excited at λexc = 387 nm and λexc = 560 nm. Comparison of CdSe band edge bleach kinetics in CdSe/Pt NP NWs when excited at λexc = 387 nm and λexc = 560 nm. Bar graph showing H2 generation efficiencies of CdS and CdS/Pt NP NWs. Bleach kinetics of CdSe/CdS/Pt NP NWs at λexc = 387 nm and λexc = 560 nm. Comparison of CdS band edge bleach kinetics in CdS/Pt NP, and CdSe/CdS core/shell NWs when excited at λexc = 387 nm. See DOI: 10.1039/c4nr00298a

  12. Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhao, Jie; Li, Yingxuan; Zhao, Wen; Zeng, Yubin; Wang, Chuanyi

    2018-07-01

    Perovskite oxide SrTiO3 is a promising semiconductor photocatalyst for CO2 reduction, which has two possible chemical surfaces-TiO2-terminated and SrO-terminated surfaces. Up to now, the effect of chemical surface and its modification on CO2 adsorption, activation and sequential photocatalytic reduction is not established. In the work, SrTiO3, surface-Ti-rich SrTiO3 and Sr(OH)2-decorated SrTiO3 were prepared and their structural, surface, and optical properties and photocatalytic activity were explored. It is found that the absorption edge of surface-Ti-rich SrTiO3 shifted toward visible-light region as compared with that of the other two photocatalysts, which is attributed to the decreased Ti 3d ground-state level at the surface. Bicarbonate- (HCO3-) and bidentate carbonate-like (b-CO3=) species are the main species for CO2 adsorption on the surface-Ti-rich SrTiO3, whereas, besides HCO3- and b-CO3=, plenty of monodentate carbonate-like species (m-CO3=) that has relatively low reactivity is present on the SrTiO3 and Sr(OH)2-decorated photocatalysts. As a result, the surface-Ti-rich SrTiO3 exhibits the highest activity for CO2 reduction. Furthermore, although Sr(OH)2-decoration and SrO-terminated surfaces facilitate CO2 fixing, the produced surface species are attached to the weakly active Sr ions, giving rise to the lower reactivity. The present work might supply a guide for designing highly active perovskite-type semiconductors for photocatalysis.

  13. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Shibin; Chang Xueting, E-mail: xuetingchang@yahoo.cn; Dong Lihua

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance thanmore » bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.« less

  14. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework.

    PubMed

    Kumar, Sandeep; Dhilip Kumar, Thogluva Janardhanan

    2017-08-30

    Porous metal-graphyne framework (MGF) made up of graphyne linker decorated with lithium has been investigated for hydrogen storage. Applying density functional theory spin-polarized generalized gradient approximation with the Perdew-Burke-Ernzerhof functional containing Grimme's diffusion parameter with double numeric polarization basis set, the structural stability, and physicochemical properties have been analyzed. Each linker binds two Li atoms over the surface of the graphyne linker forming MGF-Li 8 by Dewar coordination. On saturation with hydrogen, each Li atom physisorbs three H 2 molecules resulting in MGF-Li 8 -H 24 . H 2 and Li interact by charge polarization mechanism leading to elongation in average H-H bond length indicating physisorption. Sorption energy decreases gradually from ≈0.4 to 0.20 eV on H 2 loading. Molecular dynamics simulations and computed sorption energy range indicate the high reversibility of H 2 in the MGF-Li 8 framework with the hydrogen storage capacity of 6.4 wt %. The calculated thermodynamic practical hydrogen storage at room temperature makes the Li-decorated MGF system a promising hydrogen storage material.

  15. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    NASA Astrophysics Data System (ADS)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  16. Magnetization processes and existence of reentrant phase transitions in coupled spin-electron model on doubly decorated planar lattices

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej

    2018-04-01

    An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.

  17. Basic Cake Decorating Workbook.

    ERIC Educational Resources Information Center

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  18. Diameter-controlled and surface-modified Sb₂Se₃ nanowires and their photodetector performance.

    PubMed

    Choi, Donghyeuk; Jang, Yamujin; Lee, JeeHee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook

    2014-10-22

    Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK(-1)), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = I(light)/I(dark)) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.

  19. Localized-surface-plasmon enhanced emission from porous silicon by gold nanoparticles.

    PubMed

    Wang, Hui; An, Zhenghua; Ren, Qijun; Wang, Hengliang; Mao, Feilong; Chen, Zhanghai; Shen, Xuechu

    2011-12-01

    The porous silicon (PS) samples, decorated by Au nanoparticles (NPs) possessing localized-surface-plasmon (LSP) resonance, are prepared by the conventional anodization method. Photoluminescence (PL) is studied systematically, in particular, its dependence on the excitation power. It is found that undecorated PS samples exhibit a saturation behavior in PL intensity with increasing the pumping laser power, while the luminescence of Au-decorated PS hybrid samples have a purely linear dependence on the excitation power. In the linear response region of PS samples, addition of metal NPs layer moderately suppresses the emission while, in the saturation region, the net emission is enhanced by approximately up to 4-fold. Several possible mechanisms are discussed. We believe that the observed PL enhancement in saturation region is dominantly due to the resonant coupling between the LSP of Au NPs and the electronic excitation of PS, which inhibits the nonradiative Auger recombination process at high excitation power. These results indicate that the plasmon effect could be useful for designing even more efficient optoelectronic devices such as super bright light emitting devices and solar cells with high efficiencies. Despite many challenges, Au NPs can potentially be applied to introduce LSP resonance for the future silicon-based optoelectronics or photonics.

  20. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity

    NASA Astrophysics Data System (ADS)

    Shi, Guodong; Yang, Lin; Liu, Zhuowen; Chen, Xiao; Zhou, Jianqing; Yu, Ying

    2018-01-01

    Photocatalytic reduction of CO2 to fuel has attracted considerable attention due to the consumption of fossil fuels and serious environmental problems. Although there are many photocatalysts reported for CO2 reduction, the improvement of activity and selectivity is still in great need of. In this work, a series of Cu nanoparticle decorated g-C3N4 nanosheets with different Cu loadings were fabricated by a facile secondary calcination and subsequent microwave hydrothermal method. The designed catalysts shown good photocatalytic activity and selectivity for CO2 reduction to CO. The optimal sample exhibited a 3-fold augmentation of the CO yield in comparison with pristine g-C3N4 under visible light. It is revealed that with the loading of Cu nanoparticles, the resulting photocatalyst possessed an improved charge carrier transfer and separation efficiency as well as increased surface reactive sites, resulting in a significant enhancement of CO yield. It is anticipated that the designed Cu/C3N4 photocatalyst may provide new insights for two dimensional layer materials and non-noble particles applied to CO2 reduction.

  1. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    PubMed

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Phallic decoration in paleolithic art: genital scarification, piercing and tattoos.

    PubMed

    Angulo, Javier C; García-Díez, Marcos; Martínez, Marc

    2011-12-01

    The primitive anthropological meaning of genital ornamentation is not clearly defined and the origin of penile intervention for decorative purposes is lost in time. Corporeal decoration was practiced in the Upper Paleolithic period. We discuss the existing evidence on the practice of phallic piercing, scarring and tattooing in prehistory. We studied the archaeological and artistic evidence regarding explicit genital male representations in portable art made in Europe approximately 38,000 to 11,000 years ago with special emphasis on decorations suggesting genital ornamentation. Archaeological evidence that has survived to our day includes 42 phallic pieces, of which 30 (71.4%) show intentional marks to a different extent with a probable decorative purpose. Of these ornamental elements 18 (60%) were recovered from the upper Magdalenian period (11,000 to 12,700 years ago) in France and Spain, and 23 (76.7%) belong to the category of perforated batons. Decorations show lines (70% of objects), plaques (26.7%), dots/holes (23.3%) or even human/animal forms (13.3%). These designs most probably represent skin scarification, cutting, piercing and tattooing. Notably there are some technical similarities between the motifs represented and some designs present in symbolic cave wall art. This evidence may show the anthropological origin of current male genital piercing and tattooing. European Paleolithic art shows decoration explicitly represented in a high proportion of portable art objects with a phallic form that have survived to our day. Decorative rituals of male genital tattooing, piercing and scarification may have been practiced during Paleolithic times. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Giant photoeffect in proton transport through graphene membranes

    NASA Astrophysics Data System (ADS)

    Lozada-Hidalgo, Marcelo; Zhang, Sheng; Hu, Sheng; Kravets, Vasyl G.; Rodriguez, Francisco J.; Berdyugin, Alexey; Grigorenko, Alexander; Geim, Andre K.

    2018-04-01

    Graphene has recently been shown to be permeable to thermal protons1, the nuclei of hydrogen atoms, which sparked interest in its use as a proton-conducting membrane in relevant technologies1-4. However, the influence of light on proton permeation remains unknown. Here we report that proton transport through Pt-nanoparticle-decorated graphene can be enhanced strongly by illuminating it with visible light. Using electrical measurements and mass spectrometry, we find a photoresponsivity of ˜104 A W-1, which translates into a gain of ˜104 protons per photon with response times in the microsecond range. These characteristics are competitive with those of state-of-the-art photodetectors that are based on electron transport using silicon and novel two-dimensional materials5-7. The photo-proton effect could be important for graphene's envisaged use in fuel cells and hydrogen isotope separation. Our observations may also be of interest for other applications such as light-induced water splitting, photocatalysis and novel photodetectors.

  4. Highly emissive platinum(II) metallacages

    NASA Astrophysics Data System (ADS)

    Yan, Xuzhou; Cook, Timothy R.; Wang, Pi; Huang, Feihe; Stang, Peter J.

    2015-04-01

    Light-emitting materials, especially those with tunable wavelengths, attract considerable attention for applications in optoelectronic devices, fluorescent probes, sensors and so on. Many species evaluated for these purposes either emit as a dilute solution or on aggregation, with the former often self-quenching at high concentrations, and the latter falling dark when aggregation is disrupted. Here we preserve emissive behaviour at both low- and high-concentration regimes for two discrete supramolecular coordination complexes (SCCs). These tetragonal prismatic SCCs are self-assembled on mixing a metal acceptor, Pt(PEt3)2(OSO2CF3)2, with two organic donors, a pyridyl-decorated tetraphenylethylene and one of two benzene dicarboxylate species. The rigid organization of these fluorescence-active ligands imparts an emissive behaviour to dilute solutions of the resulting assemblies. Furthermore, on aggregation the prisms exhibit variable-wavelength visible-light emission, including rare white-light emission in tetrahydrofuran. The favourable photophysical properties and solvent-dependent aggregation behaviour provide a means to tune emission wavelengths.

  5. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Haojie; Zhou, Yawen; Mei, Jinfeng; Li, Zhongyu; Xu, Song; Yao, Chao

    2018-01-01

    The efficient charge separation action and visible-light responding could enhance the photocatalytic property of photocatalysts. In the present study, novel CdS/BiOBr nanosheets composites were synthesized by a three-step process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), diffuse reflection spectroscopy (DRS), Raman spectroscopy and photoluminescence (PL). Under visible-light irradiation, the as-prepared CdS nanoparticles decorated BiOBr nanosheets exhibited the excellent photocatalytic activity and high stability for malachite green (MG) degradation. The photodegradation achieved maximum degradation efficiency (99%) using CdS/BiOBr-3 composites as photocatalyst. Furthermore, the possible photocatalytic mechanism upon CdS/BiOBr composites was also discussed through radical and holes trapping experiments. The heterostructure between CdS and BiOBr improved photocatalytic activity dramatically, which greatly promoted migration rate of the photoinduced electrons besides limiting the recombination of photogenerated electron-hole pairs.

  6. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  7. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles

    PubMed Central

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G.; Livney, Yoav D.; Assaraf, Yehuda G.

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance. PMID:29765515

  8. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles.

    PubMed

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G; Livney, Yoav D; Assaraf, Yehuda G

    2018-04-20

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (K d = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance.

  9. New method for revealing dislocations in garnet: premelting decoration

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Xie, Zhanjun; Jin, Zhenmin; Li, Zhuoyue; Ao, Ping; Wu, Yikun

    2018-05-01

    Premelting decoration (PMD) of dislocation experiments was carried out on garnets at 1 atmosphere pressure and temperatures of 800-1000 °C. Numerous decorated lines were observed on the polished surface of heat-treated garnet grains. The results of scanning electron microscopy, laser Raman spectroscopy and transmission electron microscopy (TEM) analyses indicate that these decorated lines were generated by premelting reaction along the dislocation lines and subgrain boundaries. The constituents of decorated lines on the polished surface of garnet are hematite, magnetite, and melt. While, in the interior of garnet, their constituents changed to Al-bearing magnetite and melt. The dislocation density of a gem-quality megacrystal garnet grain by means of the PMD is similar to that obtained by TEM, which confirms that the PMD is a new reliable method for revealing dislocations in garnet. This method greatly reduces the cost and time involved in the observation of dislocation microstructures in deformed garnet.

  10. ZnO nanorods decorated with ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less

  11. Operational features of decorative concrete

    NASA Astrophysics Data System (ADS)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  12. Use Hardwoods for Building Components

    Treesearch

    Glenn A. Cooper; William W. Rice

    1968-01-01

    Describes a system for prefabricating structural units from hardwoods for use in floors, roofs, and walls of a-frame or post-and-beam type construction. The interior face of the unit is decorative paneling; the exterior face is sheathing. Use of the system could reduce prefabricated house construction costs compared to conventional construction costs.

  13. Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin.

    PubMed

    Li, Shuang; Wang, Lin; Li, Na; Liu, Yucai; Su, Hui

    2017-11-01

    The aim of the present study is to design a novel dual-ligand lipid based nanoparticle system. It is conducted by a specific ligand and pH sensitive lipid conjugate. Docetaxel (DTX) and baicalein (BA) are co-delivered by this system for combination lung cancer chemotherapy. Firstly, transferrin (Tf)-polyethylene glycol (PEG)-hydrazone (hz)-glyceryl monostearate (GMS), Tf-PEG-hz-GMS, was synthesized. Tf decorated DTX and BA loaded solid lipid nanoparticles (Tf-D/B-SLNs) were prepared by emulsification method. The capability of Tf-D/B-SLNs in suppressing lung cancer cells in vitro and in vivo was investigated. The results revealed the better antitumor efficiency of Tf-D/B-SLNs than the non-decorated SLNs and single drug loaded SLNs. Significant synergistic effects were observed in the dual drugs loaded systems. The best tumor inhibition ability and the lowest systemic toxicity also proved the pH-sensitive co-delivery nano-system could be a promising strategy for treatment of lung cancer. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host† †Electronic supplementary information (ESI) available. CCDC 1504685–1504693. See DOI: 10.1039/c6sc04343g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A.; Potter, Jonathan; Cobb, Tom M.; Yuan, Fajin

    2017-01-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(VIII) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(VIII) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N2 separation based on the ideal selectivity. PMID:28507700

  15. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery.

    PubMed

    Vancoillie, Gertjan; Hoogenboom, Richard

    2016-10-19

    Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.

  16. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery

    PubMed Central

    Vancoillie, Gertjan; Hoogenboom, Richard

    2016-01-01

    Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials. PMID:27775572

  17. Light-responsive smart surface with controllable wettability and excellent stability.

    PubMed

    Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong

    2014-10-21

    Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.

  18. 10 CFR 1050.302 - Use or disposal of gifts and decorations accepted on behalf of the United States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pending their final disposition. (b) Whenever possible, the gift or decoration shall be returned to the... adverse effect upon the United States foreign relations might result from return of the gift or decoration... possible historic or numismatic value), or is a noncash monetary gift such as a check, money order, bonds...

  19. 78 FR 16250 - Hardwood and Decorative Plywood From the People's Republic of China: Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... plywood. Hardwood and decorative plywood is a flat panel composed of an assembly of two or more layers or plies of wood veneers in combination with a core. The veneers, along with the core, are glued or otherwise bonded together to form a finished product. A hardwood and decorative plywood panel must have face...

  20. 77 FR 64955 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    .... Appendix I Scope of the Investigation Hardwood and decorative plywood is a panel composed of an assembly of two or more layers or plies of wood veneer(s) in combination with a core. The several layers, along... decorative plywood panel can be composed of one or more species of hardwoods, softwoods, or bamboo, (in...

  1. 77 FR 66436 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... Investigation Hardwood and decorative plywood is a panel composed of an assembly of two or more layers or plies of wood veneer(s) in combination with a core. The several layers, along with the core, are glued or otherwise bonded together to form a finished product. A hardwood and decorative plywood panel can be...

  2. Insignificant influence of the matrix on the melting of ice confined in decorated mesoporous silica

    NASA Astrophysics Data System (ADS)

    Xu, Yunbo; Zhao, Zhenyan; Wang, Lianwen

    2018-01-01

    For a critical examination of matrix effect on the melting of confined ice, mesoporous silica (SBA-15) are synthesised and decorated with n-Alkyl and aminopropyl groups to tune the surface hydrophobicity. Water contact angle to these decorated surfaces are estimated to be about 100° and 60°, respectively. By examining the melting of ice confined in these decorated samples, we find that the influence of the matrix is indeed not significant. The reported apparent matrix effect is more likely method effect in the determination of pore diameters as was demonstrated in our previous studies (Philos. Mag. 93 (2013), p. 1827).

  3. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  4. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    NASA Astrophysics Data System (ADS)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  5. Light metal decorated graphdiyne nanosheets for reversible hydrogen storage.

    PubMed

    Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Gollu, S R; Ahuja, R; Hussain, T

    2018-05-29

    The sensitive nature of molecular hydrogen (H 2 ) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H 2 adsorption mechanism has vital significance for fields such as H 2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H 2 molecules. The adsorption mechanism of H 2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H 2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H 2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H 2 storage materials.

  6. Whole high-quality light environment for humans and plants.

    PubMed

    Sharakshane, Anton

    2017-11-01

    Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index R a and the special color rendering index R 14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, R a  > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives. Copyright © 2017. Published by Elsevier Ltd.

  7. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  8. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules

    NASA Astrophysics Data System (ADS)

    Zeng, Huadong; Cheng, Xinlu; Wang, Wei

    2018-03-01

    The adsorption behaviors and properties of hydrazine (N2H4) molecules on pristine and Li-decorated graphene sheets were investigated by means of first-principles based on density functional theory. We systematically analyzed the optimal geometry, average binding energy, charge transfer, charge density difference and density of states of N2H4 molecules adsorbed on pristine and Li-decorated graphene sheets. It is found that the interaction between single N2H4 molecule and pristine graphene is weak physisorption with the low binding energy of -0.026 eV, suggesting that the pristine graphene sheet is insensitive to the presence of N2H4 molecule. However, it is markedly enhanced after lithium decoration with the high binding energy of -1.004 eV, verifying that the Li-decorated graphene sheet is significantly sensitive to detect N2H4 molecule. Meanwhile, the effects of the concentrations of N2H4 molecules on two different substrates were studied detailedly. For pristine graphene substrate, the average binding energy augments apparently with increasing the number of N2H4 molecules, which is mainly attributed to the van der Waals interactions and hydrogen bonds among N2H4 clusters. Li-decorated graphene sheet has still a strong affinity to N2H4 molecules despite the corresponding average binding energy emerges a contrary tendency. Overall, Li-decorated graphene sheet could be considered as a potential gas sensor in field of hydrazine molecules.

  9. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  10. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  11. Research on the Application of GRC Material in Exhibition Decoration Engineering

    NASA Astrophysics Data System (ADS)

    Cai, Yan

    2018-03-01

    Glass fiber reinforced cement (GRC) is a kind of new building material which is based on cement and take the alkali resistant glass fiber as reinforcing material. It is mainly used in building decoration project and it has many advantages like environmental protection, economical, practical modeling and others. This paper mainly studies the concrete application of GRC material in exhibition building decoration project.

  12. Fourth Annual Holiday Decorating Contest Features Sharks, Santas, Toys, and More | Poster

    Cancer.gov

    The 2017 holiday season brought cold temperatures and heated competition to NCI at Frederick as 14 groups faced off in the R&W Club of Frederick’s Fourth Annual Holiday Decorating Contest. Keeping with tradition, many of the competitors sought to outdo not just each other’s themed entries, but also their own decorations from previous years. Accordingly, this year’s themes

  13. Understanding the interface of six-shell cuboctahedral and icosahedral palladium clusters on reduced graphene oxide: experimental and theoretical study.

    PubMed

    Gracia-Espino, Eduardo; Hu, Guangzhi; Shchukarev, Andrey; Wågberg, Thomas

    2014-05-07

    Studies on noble-metal-decorated carbon nanostructures are reported almost on a daily basis, but detailed studies on the nanoscale interactions for well-defined systems are very rare. Here we report a study of reduced graphene oxide (rGOx) homogeneously decorated with palladium (Pd) nanoclusters with well-defined shape and size (2.3 ± 0.3 nm). The rGOx was modified with benzyl mercaptan (BnSH) to improve the interaction with Pd clusters, and N,N-dimethylformamide was used as solvent and capping agent during the decoration process. The resulting Pd nanoparticles anchored to the rGOx-surface exhibit high crystallinity and are fully consistent with six-shell cuboctahedral and icosahedral clusters containing ~600 Pd atoms, where 45% of these are located at the surface. According to X-ray photoelectron spectroscopy analysis, the Pd clusters exhibit an oxidized surface forming a PdO(x) shell. Given the well-defined experimental system, as verified by electron microscopy data and theoretical simulations, we performed ab initio simulations using 10 functionalized graphenes (with vacancies or pyridine, amine, hydroxyl, carboxyl, or epoxy groups) to understand the adsorption process of BnSH, their further role in the Pd cluster formation, and the electronic properties of the graphene-nanoparticle hybrid system. Both the experimental and theoretical results suggest that Pd clusters interact with functionalized graphene by a sulfur bridge while the remaining Pd surface is oxidized. Our study is of significant importance for all work related to anchoring of nanoparticles on nanocarbon-based supports, which are used in a variety of applications.

  14. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGES

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; ...

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  15. The golden age of the Neapolitan lutherie (1750-1800): new insights on the varnishes and decorations of ten historic mandolins

    NASA Astrophysics Data System (ADS)

    Rovetta, T.; Canevari, C.; Festa, L.; Licchelli, M.; Prati, S.; Malagodi, M.

    2015-01-01

    This paper reports the results of several scientific analyses carried out on ten mandolins made in the second half of the eighteenth century by the most important Neapolitan mandolin manufacturers such as the Filano, Fabricatore, Gagliano and Vinaccia families. Various elements of decoration were characterized for each mandolin: the resins of the sound hole decorations, the black wood strips of the purflings, the varnishes and the glues. Thanks to microscopy observations SEM-EDX, µFT-IR and µRaman analysis, a multi-technique approach was used in order to fully characterize and compare some of the decoration-making techniques peculiar of each family of makers. Shellac was the main organic material used both in the sound hole decorations and in the varnishes. Inorganic fillers such as aluminosilicates, particles of iron oxides/hydroxides and microfossils of diatoms were found within the false inlays. Black iron-based dyes were identified as dyes for the black wood strips of the purflings.

  16. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less

  17. One-Pot Green Synthesis of Ag-Decorated SnO2 Microsphere: an Efficient and Reusable Catalyst for Reduction of 4-Nitrophenol.

    PubMed

    Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing

    2017-12-01

    In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.

  18. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  19. Antioxidant activity against H2O2-induced cytotoxicity of the ethanol extract and compounds from Pyrola decorate leaves.

    PubMed

    Yang, Xiliang; Peng, Qingyun; Liu, Qian; Hu, Jie; Tang, Zhipeng; Cui, Lianjie; Lin, Zonghao; Xu, Bing; Lu, Kuojian; Yang, Fang; Sheng, Zhizheng; Yuan, Qiong; Liu, Song; Zhang, Jiuliang; Zhou, Xuefeng

    2017-12-01

    The leaves of Pyrola decorate H. Andr (Pyrolaceae), known as Luxiancao, have long been used for treating kidney deficiency, gastric haemorrhage and rheumatic arthritic diseases in traditional Chinese medicine. The phytochemicals and antioxidant capacities in vitro of P. decorate leaves were investigated. Ethanol, petroleum ether, acetidin, n-butyl alcohol and aqueous extracts of Pyrola decorate leaves were prepared by solvent sequential process, and then isolated and purified to obtain phytochemicals. Cell viability was measured by MTT assay. PC12 cells were pretreated for 24 h with different extractions of P. decorate leaves at concentrations of 0.1, 0.5, 1, 5 and 10 mg/mL, then H 2 O 2 of 0.4 mM was added in all samples for an additional 2 h. The antioxidant capacities of betulin, ursolic acid and monotropein were determined in PC12 cells against H 2 O 2 induced cytotoxicity in vitro as well. Nine compounds (1-9) were isolated and structurally determined by spectroscopic methods, especially 2D NMR analyses. Ethanol extract treated groups showed inhibitory activity with IC 50 value of 10.83 mg/mL. Betulin, ursolic acid and monotropein were isolated from P. decorate, and demonstrated with IC 50 values of 6.88, 6.15 and 6.13 μg/mL, respectively. In conclusion, Pyrola decorate is a potential antioxidative natural plant and worth testing for further pharmacological investigation in the treatment of oxidative stress related neurological disease.

  20. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    PubMed

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&#x0026;A &#x201C;Beautiful Math&#x201D; articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.

  1. Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles: a compositional and microstructural study

    DOE PAGES

    Hachtel, J. A.; Yu, S.; Lupini, A. R.; ...

    2016-03-11

    The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system by using scanning transmission electron microscopy (STEM) and electron energy loss (EELS) spectroscopy. A method to remove the iron oxide nanoparticles from the gold nanocrystals and somemore » insights on crystal nucleation and growth mechanisms are also provided.« less

  2. Bottom-up meets top-down: tailored raspberry-like Fe3O4-Pt nanocrystal superlattices.

    PubMed

    Qiu, Fen; Vervuurt, René H J; Verheijen, Marcel A; Zaia, Edmond W; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Bol, Ageeth A

    2018-03-29

    Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.

  3. Fire-Retardant, Decorative Inks

    NASA Technical Reports Server (NTRS)

    Kourtides, D.; Nir, Z.; Mikroyannidis, J.

    1987-01-01

    Effectiveness of fire-retardant additives evaluated. Fire retardance of decorative acrylic printing inks for aircraft interiors enhanced by certain commercial and experimental fire-retardant additives, according to study.

  4. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE PAGES

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong; ...

    2014-10-24

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  5. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  6. Nano-hetero functional materials for photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Tongying, Pornthip

    This dissertation focuses on designing nanomaterials and investigating their photocatalytic response for H2 generation. Hydrogen has gained a lot of attention as a new source of sustainable energy. It can be used to directly generate power in fuel cells and to produce liquid fuels such as methanol. Water splitting is an ideal (clean) way of producing H2 because it uses water and sunlight, two renewable resources. To explore the use of nanostructures and particularly nanostructure heterojunctions for photocatalytic H2 generation, four different systems have been synthesized: (i) CdSe nanowires (NWs), (ii) CdSe/CdS core/shell NWs, (iii) CdSe NWs decorated with Au or Pt nanoparticles, and (iv) CdSe/CdS NWs decorated with Au or Pt nanoparticles. This is motivated by (a) the fact that CdSe NWs absorb light from the UV to the near infrared (b) the NW morphology simultaneously enables us to explore the role of nanoscale dimensionality in photocatalytic processes (c) a CdS coating can enhance photogenerated carrier lifetimes, and (d) metal nanoparticles are catalytically active and can also enhance charge separation efficiencies. Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. Femtosecond transient differential absorption (TDA) spectroscopy has been used as a tool to reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. The use of this technique in concert with hydrogen evolution tests also reveal how CdS, CdSe and metal NP interact within metal NP decorated CdSe and CdSe/CdS NWs during photocatalytic hydrogen generation reactions. Electron transfer events across both semiconductor/semiconductor and metal/semiconductor heterojunctions are followed to identify where H 2 is evolved and the role each heterojunction plays in determining a system's overall efficiency. To extend my study beyond 1D CdSe NWs, 2D CdSe nanosheets (NSs) have been synthesized. The use of cation exchange allows synthesizing micrometer-sized crystalline thin CdSe nanosheets (NSs), otherwise difficult to produce directly through solution-based methods. Starting from cubic-phased Cu2-xSe NSs as a template, CdSe NSs are obtained by cation exchange of copper to cadmium. This exchange reaction preserves the 2D morphology of the starting NSs and also retains the cubic crystal structure. Resulting CdSe NSs have a lateral size up to 6 mum and an average of thickness approximately 6 nm. Such large lateral dimensions are advantageous for single sheet optical measurements and for applications in optical and electronic devices.

  7. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.

    PubMed

    Zhang, Qilu; Dong, Renfeng; Chang, Xueyi; Ren, Biye; Tong, Zhen

    2015-11-11

    The controlled self-assembly of self-propelled Janus micromotors may give the micromotors some potential applications in many fields. In this work, we design a kind of SiO2-Pt Janus catalytic micromotor functionalized by spiropyran (SP) moieties on the surface of the SiO2 hemisphere. The spiropyran-modified SiO2-Pt Janus micromotor exhibits autonomous self-propulsion in the presence of hydrogen peroxide fuel in N,N-dimethylformamide (DMF)/H2O (1:1 in volume) mixture. We demonstrate that the self-propelled Janus micromotors can dynamically assemble into multiple motors because of the electrostatic attractions and π-π stacking between MC molecules induced by UV light irradiation (λ = 365 nm) and also quickly disassemble into mono motors when the light is switched to green light (λ = 520 nm) for the first time. Furthermore, the assembled Janus motors can move together automatically with different motion patterns propelled by the hydrogen peroxide fuels upon UV irradiation. The work provides a new approach not only to the development of the potential application of Janus motors but also to the fundamental science of reversible self-assembly and disassembly of Janus micromotors.

  9. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions.

    PubMed

    Liu, Kai; Ren, Xiaokang; Sun, Jianxuan; Zou, Qianli; Yan, Xuehai

    2018-06-01

    The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn 2+ ) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H 2 ) evolution, carbon dioxide (CO 2 ) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD + ) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.

  10. Synthesis of β-AgVO3 nanowires decorated with Ag2CrO4, with improved visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ouyang, Qi; Li, Zhonghua; Liu, Jiawen

    2018-05-01

    Silver chromate‑silver vanadate (Ag2CrO4/β-AgVO3) heterojunction composites are synthesized through a facile precipitation process. The Ag2CrO4/β-AgVO3 hybrids obtained exhibit better photocatalytic activity in degradation of RhB than both pure Ag2CrO4 and β-AgVO3 under visible light irradiation. The 20 wt% Ag2CrO4/β-AgVO3 heterojunction possesses the best photocatalytic ability for degrading RhB: 24.4 times that of pristine β-AgVO3 nanowires and 3.2 times that of individual Ag2CrO4 particles. The phase of the nanocomposites was analyzed using x-ray diffraction as well as x-ray photoelectron spectroscopy. Their morphology was observed via scanning electron microscopy and transmission electron microscopy. The improvement in photocatalytic performance is chiefly ascribed to the synergies between Ag2CrO4/β-AgVO3 heterostructure, which can enhance the light absorbance ability and also accelerate the separation and transfer of photoinduced electrons and holes under visible light irradiation; this is also confirmed by UV–vis diffuse reflection spectrometry and fluorescence emission spectra.

  11. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  12. Semiconductor nanostructures for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  13. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to contribute current increase in CNT decorated anode MECs. The up regulated genes encoded to flavin also contribute to current enhancement in CNT decorated anode MECs.

  14. Fourth Annual Holiday Decorating Contest Features Sharks, Santas, Toys, and More | Poster

    Cancer.gov

    The 2017 holiday season brought cold temperatures and heated competition to NCI at Frederick as 14 groups faced off in the R&W Club of Frederick’s Fourth Annual Holiday Decorating Contest. Keeping with tradition, many of the competitors sought to outdo not just each other’s themed entries, but also their own decorations from previous years. Accordingly, this year’s themes ranged from childhood memories to local landscapes to the downright outlandish.

  15. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  16. Morphogenesis of the Terrarium

    ERIC Educational Resources Information Center

    Brinker, Andrew

    2012-01-01

    Terrariums have decorated the shelves and counters of biology offices and classrooms for centuries. Living organisms inspire students and teachers alike. These wonderful ecosystems allow for both experimentation and observation of living systems. Here, I outline a new approach to building classroom terrariums. Historically, terrariums have been…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min

    The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less

  18. Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets

    NASA Astrophysics Data System (ADS)

    Marques, Thalles M. F.; Strayer, Megan E.; Ghosh, Anupama; Silva, Alexandre; Ferreira, Odair P.; Fujisawa, Kazunori; Alves da Cunha, Jose R.; Abreu, Guilherme J. P.; Terrones, Mauricio; Mallouk, Thomas E.; Viana, Bartolomeu C.

    2017-12-01

    Hexaniobate nanosheets derived from the parent compound K4Nb6O17 have been decorated with CeO2 nanoparticles by ion exchange with aqueous cerium (IV) solution. Very homogeneous CeO2 nanoparticle decoration of the hexaniobate sheets can be achieved by this method and the resulting composites may absorb visible light. HRTEM images show that ∼3.0 nm diameter CeO2 nanoparticles adhere to hexaniobate nanosheets that are exfoliated and then restacked prior to Ce deposition. The interfacial interaction between CeO2 nanoparticles and nanosheets would be due to an electrostatic attraction mechanism. Raman and XRD measurements have given strong evidence that CeO2 nanoparticles have fluorite structure. EDS, FTIR and XPS results suggest almost complete exchange of TBA+ and K+ by Ce4+. Cerium ion exchange on the acid exchanged parent compound, H2.9K1.1Nb6O17, revealed that the extent of Ce ion exchange is much greater in case of nanosheets, which may be rationalized by the larger surface area available after exfoliation. XPS measurements show that the ratio of Ce4+/Ce3+ is around 4.4, in agreement with the formation of fluorite structure (CeO2). Thus, these CeO2 nanoparticle/nanosheet composites may be useful for catalytic processes.

  19. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S.; Kannan, R.

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% atmore » 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.« less

  20. Fabrication of copper decorated tungsten oxide-titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light

    NASA Astrophysics Data System (ADS)

    Momeni, Mohamad Mohsen

    2015-12-01

    Copper decorated WO3-TiO2 nanotubes (Cu/WTNs) with a high photocatalytic activity were prepared by anodizing and photochemical deposition. Highly ordered WO3-TiO2 nanotubes (WTNs) on pure titanium foils were successfully fabricated by electrochemical anodizing and copper deposited on these nanotubes (Cu/WTNs) by photoreduction method. The resulting samples were characterized by various methods. Only the anatase phase was detected by X-ray diffraction analysis. The presence of copper in the structure of thin films was confirmed by energy dispersive X-ray spectrometry and X-ray diffraction. The extension of optical absorption into the visible region of as-prepared films was indicated by UV/Vis spectroscopy. The degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of the obtained samples. Results showed that the photocatalytic activity of Cu/WTNs samples is higher than bare WTNs sample. Kinetic research showed that the reaction rate constant of Cu/WTNs is approximately 2.5 times higher than the apparent reaction rate constant of bare WTNs. These results not only offer an economical method for constructing Cu/WTNs photocatalysts, but also shed new insight on the rational design of a low cost and high-efficiency photocatalyst for environmental remediation.

  1. Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Fang, Jiani; Li, Yi; Liu, Huijun

    2018-06-01

    This study explores the diffusion behavior of one Pt atom on graphene as well as the interaction mechanism between two types of gas molecule (SO2 and H2S) and Pt-graphene based on density functional theory (DFT) considering a dispersion correction about van der Walls force. Results suggest that one Pt atom shows high mobility with low activation energy and Pt doped graphene exhibits relatively stronger interaction with H2S than SO2 according to adsorption energy. SO2 accepts electrons from Pt-graphene while H2S losses electrons. Both two molecules introduce obvious hybridization with Pt-graphene in density of states. The charge density difference and Electron Localization Function (ELF) configurations indicate evident changes in the distribution of electrons about Pt-graphene and gas molecule before and after gas adsorption. H2S is easy to dissociate on Pt-graphene due to the much lower energy barrier compared to SO2. The work provides quantum chemistry methods to investigate the chemical interaction between Pt decorated graphene and two typical gases to shed light on practical application of Pt-graphene in adsorbing and detecting these two kinds of gases or other types of gases.

  2. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    PubMed

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  3. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus.

    PubMed

    Kong, Lingjun; Han, Meina; Shih, Kaimin; Su, Minhua; Diao, Zenghui; Long, Jianyou; Chen, Diyun; Hou, Li'an; Peng, Yan

    2018-02-01

    Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO 3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  5. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  6. [Nose in the light of medical history].

    PubMed

    Holck, P

    2001-06-30

    Vanity, it seems, is one of the qualities that separate us from other species; indeed, we may said to possess it in excess. Decorating body and apparel with all kinds of objects in order to look attractive goes a long way back in time; even Stone Age man knew how to make himself look smart. This very human trait has not abated over the millennia, but the perception of what looks good has changed a great deal, just like fashion, and no part of the human body has probably been of such significance in this respect as the nose. This article presents a brief review of nasal fashion.

  7. Synthesis of Metal Nanoparticle-decorated Carbon Nanotubes under Ambient Conditions

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Watson, Kent A.; Ghose, Sayata; Smith, Joseph G.; Connell, John W.

    2008-01-01

    This viewgraph presentation reviews the production of Metal Nanoparticle-decorated carbon Nanotubes. Multi-walled carbon nanotubes (MWCNTs) were efficiently decorated with metal nanoparticles (e.g. Ag, Pt, etc.) using the corresponding metal acetate in a simple mixing process without the need of chemical reagents or further processing. The conversion of acetate compounds to the corresponding metal reached over 90%, forming nanoparticles with average diameters less than 10 nm under certain conditions. The process was readily scalable allowing for the convenient preparation of multi-gram quantities of metal nanoparticle-decorated MWCNTs in a matter of a few minutes. These materials are under evaluation for a variety of electrical and catalytic applications. The preparation and characterization of these materials will be presented. The microscopic views of the processed MWCNTs are shown

  8. Laminates

    NASA Astrophysics Data System (ADS)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  9. Platinum-decorated reduced graphene oxide/polyaniline:poly(4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik

    2015-02-01

    With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%). Electronic supplementary information (ESI) available: TEM images of Pr_rGOs, XRD spectra of various PANI-based hybrid materials, electrical conductivity of Pt_rGO/PANI:PSS with different Pt amounts, surface resistance changes of micropatterns, return loss of the antenna with bending deformation, and transmitted power efficiency of the antenna with bending cycles. See DOI: 10.1039/c4nr06189f

  10. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  11. A Plasmonic Colloidal Photocatalyst Composed of a Metal-Organic Framework Core and a Gold/Anatase Shell for Visible-Light-Driven Wastewater Purification from Antibiotics and Hydrogen Evolution.

    PubMed

    Tilgner, Dominic; Kempe, Rhett

    2017-03-02

    Porous coordination polymers (PCP) or metal- organic frameworks (MOF) are promising materials for the generation of photocatalytically active composite materials. Here, a novel synthesis concept is reported, which permits the formation of PCP/MOF-core-Au/anatase-shell materials. These materials are photocatalysts for wastewater purification and hydrogen generation from water under visible-light illumination. MIL-101 (Cr) is utilized as the core material, which directs the size of the core-shell compound and ensures the overall stability. In addition, its excellent reversible large molecule sorption behavior allows the materials synthesis. The crystalline anatase shell is generated stepwise under mild conditions using titanium(IV) isopropoxide as a precursor. The high degree of control of the vapor phase deposition process permits the precise anatase shell formation. The generation of plasmonic active gold particles on the TiO 2 shell leads to an efficient material for visible-light-driven photocatalysis with a higher activity than gold-decorated P25 (Degussa). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  13. Hydrogen sorption in Pd-decorated Mg-MgO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Piscopiello, E.; Montone, A.; Antisari, M. Vittori; Bonetti, E.

    2009-06-01

    Mg nanoparticles with metal-oxide core-shell morphology were synthesized by inert-gas condensation and decorated by in situ Pd deposition. Transmission electron microscopy and x-ray diffraction underline the formation of a noncontinuous layer with Pd clusters on top of the MgO shell. Even in the presence of a thick MgO interlayer, a modest (2 at. %) Pd decoration deeply enhances the hydrogen sorption properties: previously inert nanoparticles exhibit metal-hydride transformation with fast kinetics and gravimetric capacity above 5 wt %.

  14. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenzo; Cruz-Maya, Iriczalli; Altobelli, Rosaria; Khodir, W. K. Abdul; Ambrosio, Luigi; Alvarez Pèrez, Marco A.; Almaguer Flores, Argelia

    2017-12-01

    The main limitation of conventional antibiotic therapies concerns the low efficacy to fight bacteria attacks during long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs)—basically electrospinning and electrospraying—may represent an interesting route for designing nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes—i.e. sequential, simultaneous—for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone nanofibres surfaces by chitosan nano-reservoirs for the administration of Amoxicillin Trihydrate as an innovative antibacterial treatment of the periodontal pocket.

  16. 3. EXTERIOR OF FRONT ENTRY SHOWING GABLE OVER RECESSED PORCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EXTERIOR OF FRONT ENTRY SHOWING GABLE OVER RECESSED PORCH WITH RUSTIC STYLE DECORATIVE TREATMENT. WELDED STEEL PORCH RAILING ADDED IN 1972 IS VISIBLE AT PHOTO CENTER. VIEW TO SOUTHWEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  17. Morphological control of heterostructured nanowires synthesized by sol-flame method

    PubMed Central

    2013-01-01

    Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid–solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications. PMID:23924299

  18. 3. PitzerPeairs house in background. Decorative fieldstone landscape border and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Pitzer-Peairs house in background. Decorative fieldstone landscape border and surrounding landscaping in foreground. - Pitzer Ranch, Bounded by Base Line Road, Paoua & Towne Avenues, Claremont, Los Angeles County, CA

  19. 11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, EGG-AND-DART, NYMPH HEADS AND FOLIATE PATTERN AROUND WINDOWS - City Hall, Atlantic & Tennessee Avenues, Atlantic City, Atlantic County, NJ

  20. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhancement in photoluminescence performance of carbon-decorated T-ZnO

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Chen, Guozhang; Wang, Chao; Yin, Liangjun; Li, Gang; Yang, Ping; Chen, Lei; Xu, Bao; Gao, Yang; Feng, Yanyu; Tang, Hui; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Cao, Yu; Wang, Siyuan; Gao, Xin

    2015-03-01

    The facile preparation of ZnO possessing high visible luminescence intensity remains challenging due to an unclear luminescence mechanism. Here, two basic approaches are proposed to enhance the luminescent intensity based on the theoretical analysis over surface defects. Based on the deduction, we introduce a methodology for obtaining hybrid tetrapod-like zinc oxide (T-ZnO), decorated by carbon nanomarterials on T-ZnO surfaces through the catalytic chemical vapor deposition approach. The intensity of the T-ZnO green emission can be modulated by topography and the proportion of carbon. Under proper experiment conditions, the carbon decorating leads to dramatically enhanced luminescence intensity of T-ZnO from 400 to 700 nm compared with no carbon decorated, which elevates this approach to a simple and effective method for the betterment of fluorescent materials in practical applications.

  2. Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

    PubMed Central

    Alvisi, Marco; Rossi, Riccardo; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Multiwalled carbon nanotube (MWCNT)-based chemiresistors were electrochemically decorated with Au and Pd nanoparticles (NPs), resulting in an improvement in the detection of gaseous pollutants as compared to sensors based on pristine MWCNTs. Electrophoresis was used to decorate MWCNTs with preformed Au or Pd NPs, thus preserving their nanometer-sized dimensions and allowing the metal content to be tuned by simply varying the deposition time. The sensing response of unmodified and metal-decorated MWCNTs was evaluated towards different gaseous pollutants (e.g., NO2, H2S, NH3 and C4H10) at a wide range of concentrations in the operating temperature range of 45–200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses. PMID:28382249

  3. Ag nanoparticle decorated molybdenum oxide structures: growth, characterization, DFT studies and their application to enhanced field emission

    NASA Astrophysics Data System (ADS)

    Guha, Puspendu; Ghosh, Arnab; Thapa, Ranjit; Mathan Kumar, E.; Kirishwaran, Sabari; Singh, Ranveer; Satyam, Parlapalli V.

    2017-10-01

    We report a simple single step growth of α-MoO3 structures and energetically suitable site specific Ag nanoparticle (NP) decorated α-MoO3 structures on varied substrates, having almost similar morphologies and oxygen vacancies. We elucidate possible growth mechanisms in light of experimental findings and density functional theory (DFT) calculations. We experimentally establish and verified by DFT calculations that the MoO3(010) surface is a weakly interacting and stable surface compared to other orientations. From DFT study, the binding energy is found to be higher for (100) and (001) surfaces (˜-0.98 eV), compared to the (010) surface (˜-0.15 eV) and thus it is likely that Ag NP formation is not favorable on the MoO3(010) surface. The Ag decorated MoO3 (Ag-MoO3) nanostructured sample shows enhanced field emission properties with an approimately 2.1 times lower turn-on voltage of 1.67 V μm-1 and one order higher field enhancement factor (β) of 8.6 × 104 compared to the MoO3 sample without Ag incorporation. From Kelvin probe force microscopy measurements, the average local work function (Φ) is found to be approximately 0.47 eV smaller for the Ag-MoO3 sample (˜5.70 ± 0.05 eV) compared to the MoO3 sample (˜6.17 ± 0.05 eV) and the reduction in Φ can be attributed to the shifting Fermi level of MoO3 toward vacuum via electron injection from Ag NPs to MoO3. The presence of oxygen vacancies together with Ag NPs lead to the highest β and lowest turn-on field among the reported values under the MoO3 emitter category.

  4. Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport.

    PubMed

    Choi, Jongmin; Song, Seulki; Kang, Gyeongho; Park, Taiho

    2014-09-10

    We systematically investigated the charge transport properties of doubly or singly open-ended TiO2 nanotube arrays (DNT and SNT, respectively) for their utility as electrodes in dye-sensitized solar cells (DSCs). The SNT or DNT arrays were transferred in a bottom-up (B-up) or top-up (T-up) configuration onto a fluorine-doped tin oxide (FTO) substrate onto which had been deposited a 2 μm thick TiO2 nanoparticle (NP) interlayer. This process yielded four types of DSCs prepared with SNTs (B-up or T-up) or DNT (B-up or T-up). The photovoltaic performances of these DSCs were analyzed by measuring the dependence of the charge transport on the DSC geometry. High resolution scanning electron microscopy techniques were used to characterize the electrode cross sections, and electrochemical impedance spectroscopy was used to characterize the electrical connection at the interface between the NT array and the TiO2 NP interlayer. We examined the effects of decorating the DNT or SNT arrays with small NPs (sNP@DNT and sNP@SNT, respectively) in an effort to increase the extent of dye loading. The DNT arrays decorated with small NPs performed better than the decorated SNT arrays, most likely because the Ti(OH)4 precursor solution flowed freely into the array through the open ends of the NTs in the DNT case but not in the SNT case. The sNP@DNT-based DSC exhibited a better PCE (10%) compared to the sNP@SNT-based DSCs (6.8%) because the electrolyte solution flow was not restricted, direct electron transport though the NT arrays was possible, the electrical connection at the interface between the NT array and the TiO2 NP interlayer was good, and the array provided efficient light harvesting.

  5. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization

    PubMed Central

    Brune, Karl D.; Leneghan, Darren B.; Brian, Iona J.; Ishizuka, Andrew S.; Bachmann, Martin F.; Draper, Simon J.; Biswas, Sumi; Howarth, Mark

    2016-01-01

    Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices. PMID:26781591

  6. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Lee, Woo Seok; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu; Choi, Seungbok

    2018-03-01

    The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol-gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

  7. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  8. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  9. Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    NASA Technical Reports Server (NTRS)

    Elliott, Holly A.; Dudley, Kenneth L.; Smith, Joseph G.; Connell, John W.; Ghose, Sayata; Watson, Kent A.; Sun, Keun J.

    2009-01-01

    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electrical material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver(Ag), platinum(Pt) and palladium(Pd) with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The present study is focused on silver decorated MWCNTs dispersed in a polyimide matrix. The Ag-containing MWCNTs were melt mixed into Ultem(TradeMark) and the mixture extruded as ribbons. The extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electrical and electromagnetic properties at 8-12 GHz. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity (epsilon ) and loss factor (epsilon") indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offers a new class of materials with potential applications in electronics, microwave engineering and optics.

  10. Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Dudley, Kenneth L.; Elliott, Holly A.; Smith, Joseph G.; Connell, John W.

    2009-01-01

    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electric material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver, platinum and palladium with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The metal-containing MWCNTs were then melt mixed into a polymer matrix and the mixture extruded as ribbons. These extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electromagnetic properties at 8-12 GHz. The present study is focused on silver decorated MWCNTs dispersed in an Ultem polyimide matrix. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity and loss factor (?? and ??) indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offer a new class of materials with potential applications in electronics, microwave engineering and optics.

  11. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE PAGES

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-23

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  12. UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-01

    Monitoring and control of the gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such applications due to the inherent high temperature of the combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found that surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °C by an order of magnitude. Under the 254 nm UV illumination, the CO gas-sensing performance of Ga2O3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125% and the response time reduced by 30% for the La0.8Sr0.2FeO3(LSFO)-decorated sample. The UV-enhanced detection of CO might be due to the increased population of photo-induced electron-hole pairs, whereas for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of the sensitizing effect and photocurrent effect.

  13. 72. 451 MADISON AVENUE, GRAND STAIR, ZODIAC CLOCK WITH DECORATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. 451 MADISON AVENUE, GRAND STAIR, ZODIAC CLOCK WITH DECORATIVE CARVING BY STANFORD WHITE AND AUGUSTUS SAINT-GAUDENS - Villard Houses, 451-457 Madison Avenue & 24 East Fifty-first Street, New York County, NY

  14. 46 CFR 72.05-15 - Ceilings, linings, trim, and decorations in accommodation spaces and safety areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... used in corridors or stairway enclosures. (d) Combustible veneers, trim, decorations, etc., shall not... subchapter Q (Specifications) of this chapter. This includes corridors, stairway enclosures, and hidden...

  15. 11. BASRELIEF DECORATION, 'REGENERATION,' MURAL COMMEMORATING THE REBUILDING OF CHICAGO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. BAS-RELIEF DECORATION, 'REGENERATION,' MURAL COMMEMORATING THE REBUILDING OF CHICAGO AFTER THE GREAT FIRE - Chicago River Bascule Bridge, Michigan Avenue, Spanning Chicago River at North Michigan Avenue, Chicago, Cook County, IL

  16. Detail view of the terracotta antefixes that decorate the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the terra-cotta antefixes that decorate the roof of the Justice Department Building - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  17. 9. Detail of "BMT lines" tile sign, and decorative tiles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of "BMT lines" tile sign, and decorative tiles between center and east castellations of south facade. Looking north. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY

  18. 9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL POST ON UPSTREAM PARAPET WALL OF UPPER EMBANKMENT. VIEW TO SOUTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  19. Archaeological Survey of 73 Artillery Firing Points: Fort Bragg Training Area, Cumberland and Hoke Counties, North Carolina

    DTIC Science & Technology

    2006-03-01

    Figure 25. Undecorated and decorated rim sherds from 3 1HK695 52 Figure 26. Decorated porcelain cup sherds from 3 1HK695 52 Figure 27. Decorated...pressed-glass sherd and medicine/bitters bottle neck from 3 1HK695 52 Figure 28. Bisque-fired porcelain doll sherd and Prosser type buttons from 3 1HK695...quartz that varies in quality, color and crystalline structure. A single bipolar core fragment of crystal "smoky" quartz was found on the surface in

  20. Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.

    PubMed

    Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol

    2018-05-11

    Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.

  1. 13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Credit JTL: Detail, orthogonal view of Egyptian Revivial decorative motifs used typically at midpoints of diagonals - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  2. 14. Credit JTL: Detail, oblique view of Egyptian Revival decorative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Credit JTL: Detail, oblique view of Egyptian Revival decorative motifs used typically at midpoints of diagonals - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  3. The "Decorative" Female Model: Sexual Stimuli and the Recognition of Advertisements

    ERIC Educational Resources Information Center

    LaChance, Charles C.; And Others

    1977-01-01

    Examines the impact of the decorative or functionless female models in print advertising and indicates that models facilitate recognition of model/related information but do little to increase the recognition of brand names.

  4. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres

    PubMed Central

    2014-01-01

    We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595

  5. H{sub 2} adsorption in Li-decorated porous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H{sub 2}) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H{sub 2} molecules get adsorbed on each Li atom. The maximum H{sub 2} storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE’s revised target for the on-board vehicles. The average H{sub 2} adsorption binding energy is 0.535 eV/H{sub 2}, which lies between 0.2-0.6 eV/H{sub 2} that is required for achieving adsorption and desorption atmore » near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.« less

  6. Characterization of blue decorated Renaissance pottery fragments from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Crupi, V.; Interdonato, S.; Majolino, D.; Venuti, V.; Barone, G.; La Russa, M. F.; Bardelli, F.

    2008-07-01

    Renaissance blue decorated pottery fragments from the archaeological site of Caltagirone (Sicily, Italy) were analysed by scanning electron microscopy - energy dispersive X-ray spectrometry (SEM/EDS). The samples were dated back to 16th century AD on the basis of archaeological observations. The micro-chemical analyses were performed on the ceramic body and the surface decorated layer of the samples. Particularly, the investigation was addressed the characterization of the coating blue decorations. The obtained results allowed us to clearly identify smalt as pigment. Also the presence of arsenic (As) was revealed and the Co/As ratio values were calculated and related to the different process used for the pigment preparation. Further spectroscopic analyses, performed through X-ray absorbance spectroscopy (XAS), carried out at the Co K-edge, confirmed the micro-analytical results and permitted us to identify the oxidation form and the local environment of cobalt atoms.

  7. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    NASA Astrophysics Data System (ADS)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M. A.; Miah, M. M. H.; Bradley, D. A.

    2017-11-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble 'Carrara' imported from Italy is suitable to be used as radiation shielding material.

  8. Courtship display dynamics, iridescent structural color and nanostructural pattern formation in ocellated pheasants

    NASA Astrophysics Data System (ADS)

    Kane, Suzanne Amador; Dakin, Roslyn; Fang, Rui; Lu, Yabin

    Peacocks court females by tilting a fan-like array of feathers decorated with multicolored eyespots (ocelli). Previous research has shown that half of the variation in peacock mating success can be attributed to eyespot iridescence. Several closely-related pheasant species perform similar, but less complex, courtship displays using ocellated feathers with less complex coloration, patterns and underlying nanostructures. This study explores the relationship between the dynamics of male courtship behavior and optical properties and nanostructure of each species' iridescent feather ornaments. In particular, we examined videos of courting males and of individual feathers to measure how the angles used during displays compared to those corresponding to optimal eyespot reflected intensity and iridescent contrast. Bidirectional reflectance spectroscopy was used to measure how the spectrum of reflected light depends on the characteristic angles used during displays, and hence how displays stimulate the four classes of cones found in the color vision systems of these birds. This work reveals a close correlation between the complexity of the angular dependence of iridescent feather reflectance properties and that of the motions used by males of each species.

  9. Optoelectronic performance comparison of new thiophene linked benzimidazole conjugates with diverse substitution patterns

    NASA Astrophysics Data System (ADS)

    Saltan, Gözde Murat; Dinçalp, Haluk; Kırmacı, Eser; Kıran, Merve; Zafer, Ceylan

    2018-01-01

    In an approach to develop efficient organic optoelectronic devices to be used in light-driven systems, a series of three thiophene linked benzimidazole conjugates were synthesized and characterized. The combination of two thiophene rings to a benzimidazole core decorated with different functional groups (such as sbnd OCH3, sbnd N(CH3)2, sbnd CF3) resulted in donor-acceptor type molecular scaffold. The effect of the electronic behavior of the substituents on the optical, electrochemical, morphological and electron/hole transporting properties of the dyes were systematically investigated. DTBI2 dye exhibited distinct absorption properties among the other studied dyes because N,N-dimethylamino group initiated intramolecular charge transfer (ICT) process in the studied solvents. In solid state, the dyes exhibit peaks extending up to 600 nm. Depending on the solvent polarities, dyes show significant wavelength changes on their fluorescence emission spectra in the excited states. Morphological parameters of the thin films spin-coated from CHCl3 solution were investigated by using AFM instrument; furthermore photovoltaic responses are reported, even though photovoltaic performances of the fabricated solar cells with different configurations are quite low.

  10. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation*

    PubMed Central

    Azevedo, Estefania P.; Rochael, Natalia C.; Guimarães-Costa, Anderson B.; de Souza-Vieira, Thiago S.; Ganilho, Juliana; Saraiva, Elvira M.; Palhano, Fernando L.; Foguel, Debora

    2015-01-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  11. First-principles study of Au-decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ju, Weiwei; Li, Tongwei; Zhou, Qingxiao; Li, Haisheng; Li, Xiaohong

    2018-07-01

    The electronic structures and spin-orbit (SO) coupling of carbon nanotubes with adsorbed Au atoms are investigated based on density functional theory. Three kinds of zigzag single-walled CNT (8,0), (10,0) and (12,0) are selected. The Au atoms prefer to adsorb on the top of C atoms. The adsorption of Au atoms can introduce impurity states in the band gap, modifying the electronic properties of systems. Furthermore, the influence of SO coupling on these impurity states is also explored. Considerable SO splitting (∼130 meV) can be obtained. We find that the SO splitting decreases with the increase of the concentration of Au atoms, which can be ascribed to the interaction between Au atoms, suppressing the SO splitting. Our work provides imperative understanding on the electronic properties and SO coupling effect in Au-decorated CNTs.

  12. Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro.

    PubMed

    Ganassin, Rayane; Souza, Ludmilla Regina de; Py-Daniel, Karen Rapp; Longo, João Paulo Figueiró; Coelho, Janaína Moreira; Rodrigues, Mosar Correa; Jiang, Cheng-Shi; Gu, Jinsong; Morais, Paulo César de; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre

    2018-01-01

    Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

  13. Heavy Metal Contamination and Salt Efflorescence Associated With Decorative Landscaping Rocks, Las Vegas, Nevada: The Need for Regulations

    NASA Astrophysics Data System (ADS)

    Mrozek, S. A.; Buck, B. J.; Brock, A. L.

    2004-12-01

    Las Vegas, Nevada is one of the fastest growing cities in the United States. Faced with water restrictions, decorative rock xeroscaping has become a very popular form of landscaping. Currently, there are no regulations controlling the geochemistry of the decorative rocks that can be used for these purposes. In this study, we examined three sites containing two different decorative rock products. The landscaping rocks, underlying soil, and surface salt crusts were analyzed to determine their mineralogy and chemistry. Methods of analysis include scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP), thin section analysis, and laser particle size analysis (LPSA). Preliminary results indicate the presence of halite (NaCl), bloedite (Na2Mg(SO4)2 4H2O), a hydrated magnesium sulfate, and possibly copper sulfate and copper chloride mineral phases in the surface salt crusts. Both copper minerals are regarded as hazardous substances by the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA); these agencies have established minimum exposure limits for human contact with these substances. Copper sulfate and copper chloride are not naturally occurring minerals in the soils of the Las Vegas Valley, and analyses indicate that their formation may be attributed to the mineralogy of the decorative landscaping rocks. Further testing is needed to characterize this potential health hazard; however the preliminary results of this study demonstrate the need for regulations controlling the geochemistry of decorative rocks used for urban landscaping.

  14. 10. Detail view of decorative cast and wrought iron railing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view of decorative cast and wrought iron railing on pedestrian walkway. Jack Boucher, photographer, 1977 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  15. Perspective view of the front elevation (note: decorative details such ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the front elevation (note: decorative details such as the brackets underpinning the deep cornice on the porch and house) - Philip T. Berry House, 1402 Thirty-first Street, Northwest, Washington, District of Columbia, DC

  16. Detail of decorative panel featuring a monkey at Ten Mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of decorative panel featuring a monkey at Ten Mile River Playground comfort station, looking northwest. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  17. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    NASA Astrophysics Data System (ADS)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  18. Planning Hospital Library Quarters: References to Help the Librarian

    PubMed Central

    Hayne, Frances

    1965-01-01

    When a hospital planned an addition that would allow library expansion, the librarian looked into relevant literature for information on what improvements she should request for the new library. Shortly she was reading not for self-instruction alone but also to strengthen her credentials for membership on the planning team. The bibliography which resulted has been annotated and, by means of an index, classified. Topics examined in the twenty-five references range from library standards and the writing of a significant building program to attainment of happy collaboration between librarian and architect, space relationships designed to facilitate work flow, planned flexibility for the sake of the future, and heating, lighting, decoration, library equipment, and furniture. PMID:14306022

  19. An Antenna with Good Electrical Properties and Artistic Shape for Lampshade

    NASA Astrophysics Data System (ADS)

    Zhou, Chang; Yu, Yang; Ji, Chen

    2018-06-01

    An improved transparent antenna based on transparent ceramic MgAl2O4 with artistic shape which can be used as lampshade is presented in this paper. A great peak gain and good pattern can be achieved by choosing the property shape and optimizing location of the feed of the antenna. Simulation results indicate that this antenna can achieve return loss >-15dB, peak gain >8 dBi at 2 GHz and 40% relative impedance bandwidth. Both the electrical properties and artistic shape of the antenna are realized and the lampshade which made by MgAl2O4 meets the requirement for communication, decoration and high light transmission.

  20. Petra and the Nabataeans

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio; González-García, A. César

    The Nabataeans built several monuments in Petra and elsewhere displaying decoration with a certain preference for astronomical motifs. A statistical analysis of the orientation of their sacred monuments demonstrates that astronomical orientations were often part of an elaborate plan and possibly reflect traces of the astral nature of Nabataean religion. Petra and other monuments in the ancient Nabataean kingdom demonstrate the interaction between landscape features and astronomical events. Among other things, the famous Ad Deir has revealed a fascinating ensemble of light and shadow effects, perhaps connected with the bulk of Nabataean mythology, while a series of suggestive solstitial and equinoctial alignments emanate from the impressive Urn Tomb, which might have helped bring about its selection as the cathedral of the city.

  1. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  2. Cerenkov radiation-induced phototherapy for depth-independent cancer treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Achilefu, Samuel; Kotagiri, Nalinikanth

    2017-02-01

    Light emitted as the result of high-energy particle transport through biological tissues (Cerenkov radiation) can be exploited for noninvasive diagnostic imaging using high sensitivity scientific cameras. We have investigated the energy transfer potential of Cerenkov radiation, discovering a new phototherapeutic technique for treatment of localized and disseminated cancers. This technique, Cerenkov radiation-induced phototherapy (CRIT), like photodynamic therapy, requires the presence of both light and photosensitive agent together to induce cytotoxicity and effective cancer treatment. But unlike conventional phototherapy strategies in which tissue ablation or activation of photoactive molecules is limited to superficial structures, radiation-induced phototherapy enables phototherapy delivery to the tumor sites throughout the body. Titanium oxide nanoparticles, which produce cytotoxic reactive oxygen species upon irradiation with UV light, were targeted to tumor tissue by surface decoration with transferrin. Subsequent administration of tumor-avid radiotracer, 18-fluorodeoxyglucose (18FDG) provided localized UV light source via Cerenkov radiation. Treatment of tumor-bearing mice with the combination of Titanium nanoparticles and 18FDG resulted in effective reduction in tumor growth, while individual agents were not therapeutic. This new strategy in cancer therapy extends the reach of phototherapy beyond what was previously possible, with potential for treatment of cancer metastases and rescue from treatment resistance.

  3. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-01

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  4. 12. DETAIL, DECORATIVE PANEL, HEAT EXCHANGER (CROPPED PRINT FROM 21/4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL, DECORATIVE PANEL, HEAT EXCHANGER (CROPPED PRINT FROM 2-1/4 x 2-3/4 NEGATIVE) - U.S. General Services Administration, Central Heating Plant, C & D Streets between Twelfth & Thirteenth Streets Southwest, Washington, District of Columbia, DC

  5. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  6. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    NASA Astrophysics Data System (ADS)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  7. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2017-03-01

    Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.

  8. Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America "estucado" pottery

    NASA Astrophysics Data System (ADS)

    Casanova Municchia, Annalaura; Micheli, Mario; Ricci, Maria Antonietta; Toledo, Michelle; Bellatreccia, Fabio; Lo Mastro, Sergio; Sodo, Armida

    2016-03-01

    Seventeen different colored fragments from six selected pre-Columbian estucado ceramics from El Salvador have been investigated by Raman spectroscopy, scanning electron microscope coupled to an energy dispersive spectrometer (SEM/EDS) and X-ray powder diffraction (XRPD). The peculiarity of this kind of ceramics consist of the unusual presence of a white engobe, traditionally termed stucco, between the ceramic body and the decoration elements, hence the name estucado ceramics. The aim of this work was to study the unusual manufacturing technique and to identify the chemical composition of the engobe and of the pigment palette. The results showed that the stucco layer is made of clay (kaolinite) with traces of titanium oxide (anatase). Remarkably, this is the same composition of the white pigments used for the decoration layer, thus excluding an early use of natural titanium oxide as a white pigment in the estucado productions as suggested in previous investigations. Moreover, the presence of kaolinite and anatase both in the stucco and in the decoration layer suggests a cold-working or low temperature technique. The red, yellow and green decorations were realized by the use of natural ochre, while in all the blue and gray decorations Maya blue pigment was identified. Finally, an amorphous carbon pigment of vegetal origin and manganese oxide were used to obtain black pigments.

  9. Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing

    PubMed Central

    McCullough, Brannon R.; Grintsevich, Elena E.; Chen, Christine K.; Kang, Hyeran; Hutchison, Alan L.; Henn, Arnon; Cao, Wenxiang; Suarez, Cristian; Martiel, Jean-Louis; Blanchoin, Laurent; Reisler, Emil; De La Cruz, Enrique M.

    2011-01-01

    The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials. PMID:21723825

  10. Controllable Electrochemical Fabrication of KO2-Decorated Binder-Free Cathodes for Rechargeable Lithium-Oxygen Batteries.

    PubMed

    Yu, Wei; Wang, Huwei; Qin, Lei; Hu, Junyang; Liu, Liang; Li, Baohua; Zhai, Dengyun; Kang, Feiyu

    2018-05-23

    Understanding the electrochemical property of superoxides in alkali metal oxygen batteries is critical for the design of a stable oxygen battery with high capacity and long cycle performance. In this work, a KO 2 -decorated binder-free cathode is fabricated by a simple and efficient electrochemical strategy. KO 2 nanoparticles are uniformly coated on the carbon nanotube film (CNT-f) through a controllable discharge process in the K-O 2 battery, and the KO 2 -decorated CNT-f is innovatively introduced into the Li-O 2 battery as the O 2 diffusion electrode. The Li-O 2 battery based on the KO 2 -decorated CNT-f cathode can deliver enhanced discharge capacity, reduced charge overpotential, and more stable cycle performance compared with the battery in the absence of KO 2 . In situ formed KO 2 particles on the surface of CNT-f cathode assist to form Li 2 O 2 nanosheets in the Li-O 2 battery, which contributes to the improvement of discharge capacity and cycle life. Interestingly, the analysis of KO 2 -decorated CNT-f cathodes, after discharge and cycle tests, reveals that the electrochemically synthesized KO 2 seems not a conventional electrocatalyst but a partially dissolvable and decomposable promoter in Li-O 2 batteries.

  11. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  12. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.

    PubMed

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO(2) and In(2)O(3) are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. This journal is © The Royal Society of Chemistry 2011

  13. Polyaniline decorated Bi2MoO6 nanosheets with effective interfacial charge transfer as photocatalysts and optical limiters.

    PubMed

    Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin

    2017-11-01

    Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.

  14. Self-decorated Au nanoparticles on antireflective Si pyramids with improved hydrophobicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, C. P.; Barman, A.; Kanjilal, A., E-mail: aloke.kanjilal@snu.edu.in

    2016-04-07

    Post-deposition annealing mediated evolution of self-decorated Au nanoparticles (NPs) on chemically etched Si pyramids is presented. A distinct transformation of Si surfaces from hydrophilic to hydrophobic is initially found after chemical texturing, showing an increase in contact angle (CA) from 58° to 98° (±1°). Further improvement of hydrophobicity with CA up to ∼118° has been established after annealing a 10 nm thick Au-coated Si pyramids at 400 °C that led to the formation of Au NPs on Si facets along with self-ordering at the pyramid edges. Detailed x-ray diffraction studies suggest the evolution of crystalline Au NPs on strained Si facets. Microstructuralmore » studies, however, indicate no mixing of Au and Si atoms at the Au/Si interfaces, instead of forming Au nanocrystals at 400 °C. The improved hydrophobicity of Si pyramids, even with Au NPs can be explained in the light of a decrease in solid fractional surface area according to Wenzel's model. Moreover, a sharp drop in specular reflectance from Si pyramids in the range of 300–800 nm, especially in the ultraviolet region up to ∼0.4% is recorded in the presence of Au NPs by ultraviolet-visible spectroscopy, reflecting the possible use in photovoltaic devices with improved antireflection property.« less

  15. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  16. Understanding charge transfer dynamics in QDs-TiO2 nanorod array photoanodes for solar fuel generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; McClure, Joshua P.; Fu, Richard; Jiang, Rongzhong; Chu, Deryn

    2018-01-01

    Harvesting light to drive water splitting for hydrogen generation is an attractive approach to satisfy the urgent energy demands. The design and fabrication of photoelectrode materials that are able to harvest sunlight is an important scientific undertaking. In this study, a two-quantum-dot (QD) layer is developed to decorate one-dimensional TiO2 nanorod arrays, which are subsequently utilized as photoanodes to harvest the wide-spectrum sunlight for water splitting. The QD-coated TiO2 nanorod arrays extend the light absorption range from the UV into the visible region yielding increased solar-to-hydrogen efficiencies. Transient photocurrent decay measurements demonstrate that the multi-layer CdSe-CdS QDs deposited onto the TiO2 nanorod arrays result in a stepwise band alignment that not only improves the hole extraction but also facilitates electron injection from the QDs to TiO2 rods. Moreover, the multi-heterojunction photoanode introduces interfacial states that act as recombination centers to trap the photogenerated electrons.

  17. J-aggregation in porphyrin nanoparticles induced by diphenylalanine

    NASA Astrophysics Data System (ADS)

    Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin

    2017-08-01

    In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.

  18. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction.

    PubMed

    Kuang, Pan-Yong; Ran, Jing-Run; Liu, Zhao-Qing; Wang, Hong-Juan; Li, Nan; Su, Yu-Zhi; Jin, Yong-Gang; Qiao, Shi-Zhang

    2015-10-19

    The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets.

    PubMed

    Han, Guanqun; Jin, Yan-Huan; Burgess, R Alan; Dickenson, Nicholas E; Cao, Xiao-Ming; Sun, Yujie

    2017-11-08

    Photocatalytic upgrading of crucial biomass-derived intermediate chemicals (i.e., furfural alcohol, 5-hydroxymethylfurfural (HMF)) to value-added products (aldehydes and acids) was carried out on ultrathin CdS nanosheets (thickness ∼1 nm) decorated with nickel (Ni/CdS). More importantly, simultaneous H 2 production was realized upon visible light irradiation under ambient conditions utilizing these biomass intermediates as proton sources. The remarkable difference in the rates of transformation of furfural alcohol and HMF to their corresponding aldehydes in neutral water was observed and investigated. Aided by theoretical computation, it was rationalized that the slightly stronger binding affinity of the aldehyde group in HMF to Ni/CdS resulted in the lower transformation of HMF to 2,5-diformylfuran compared to that of furfural alcohol to furfural. Nevertheless, photocatalytic oxidation of furfural alcohol and HMF under alkaline conditions led to complete transformation to the respective carboxylates with concomitant production of H 2 .

  20. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  1. Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region

    NASA Astrophysics Data System (ADS)

    Putman, Annie L.; Feng, Xiahong; Sonder, Leslie J.; Posmentier, Eric S.

    2017-04-01

    In this study, precipitation isotopic variations at Barrow, AK, USA, are linked to conditions at the moisture source region, along the transport path, and at the precipitation site. Seventy precipitation events between January 2009 and March 2013 were analyzed for δ2H and deuterium excess. For each precipitation event, vapor source regions were identified with the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) air parcel tracking program in back-cast mode. The results show that the vapor source region migrated annually, with the most distal (proximal) and southerly (northerly) vapor source regions occurring during the winter (summer). This may be related to equatorial expansion and poleward contraction of the polar circulation cell and the extent of Arctic sea ice cover. Annual cycles of vapor source region latitude and δ2H in precipitation were in phase; depleted (enriched) δ2H values were associated with winter (summer) and distal (proximal) vapor source regions. Precipitation δ2H responded to variation in vapor source region as reflected by significant correlations between δ2H with the following three parameters: (1) total cooling between lifted condensation level (LCL) and precipitating cloud at Barrow, ΔTcool, (2) meteorological conditions at the evaporation site quantified by 2 m dew point, Td, and (3) whether the vapor transport path crossed the Brooks and/or Alaskan ranges, expressed as a Boolean variable, mtn. These three variables explained 54 % of the variance (p<0. 001) in precipitation δ2H with a sensitivity of -3.51 ± 0.55 ‰ °C-1 (p<0. 001) to ΔTcool, 3.23 ± 0.83 ‰ °C-1 (p<0. 001) to Td, and -32.11 ± 11.04 ‰ (p = 0. 0049) depletion when mtn is true. The magnitude of each effect on isotopic composition also varied with vapor source region proximity. For storms with proximal vapor source regions (where ΔTcool <7 °C), ΔTcool explained 3 % of the variance in δ2H, Td alone accounted for 43 %, while mtn explained 2 %. For storms with distal vapor sources (ΔTcool > 7°C), ΔTcool explained 22 %, Td explained only 1 %, and mtn explained 18 %. The deuterium excess annual cycle lagged by 2-3 months during the δ2H cycle, so the direct correlation between the two variables is weak. Vapor source region relative humidity with respect to the sea surface temperature, hss, explained 34 % of variance in deuterium excess, (-0.395 ± 0.067 ‰ %-1, p<0. 001). The patterns in our data suggest that on an annual scale, isotopic ratios of precipitation at Barrow may respond to changes in the southerly extent of the polar circulation cell, a relationship that may be applicable to interpretation of long-term climate change records like ice cores.

  2. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.

    PubMed

    Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui

    2016-04-13

    Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.

  3. Ketone-DNA: a versatile postsynthetic DNA decoration platform.

    PubMed

    Dey, S; Sheppard, T L

    2001-12-13

    [reaction: see text] A general strategy for the functional diversification of DNA oligonucleotides under physiological conditions was developed. We describe the synthesis of DNA molecules bearing ketone ports (ketone-DNA) and the efficient postsynthetic decoration of ketone-DNA with structurally diverse aminooxy compounds.

  4. Noble Metal Decoration and Alignment of Carbon Nanotubes in Carboxymethyl Cellulose

    EPA Science Inventory

    A facile microwave (MW) method is described that accomplishes alignment and decoration of noble metals on carbon nanotubes wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes (CNTs) such as single-wall (SWNT), multi-wall (MWNT) and Buckminsterfullerene (C-60) were well ...

  5. Reality Check. It Pays to Keep Your Sense of Humor.

    ERIC Educational Resources Information Center

    Whaley, Kanda W.

    1995-01-01

    A former elementary school teacher shares suggestions for decorating a classroom on a low budget. The article includes tips for decorating bulletin boards and keeping them up-to-date, organizing workspaces and storing materials, and creating appropriate seating arrangements. (SM)

  6. Inhibition of beta-adrenergic receptor trafficking in adult cardiocytes by MAP4 decoration of microtubules.

    PubMed

    Cheng, Guangmao; Qiao, Fei; Gallien, Thomas N; Kuppuswamy, Dhandapani; Cooper, George

    2005-03-01

    Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.

  7. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    PubMed

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  8. [Decorative forms of hamsters Phodopus (Mammalia, Cricetinae): an analysis of genetic lines distribution and peculiarities of hair changes].

    PubMed

    Feoktistova, N Iu; Chernova, O F; Meshcherskiĭ, I G

    2012-01-01

    Three species of dwarf hamsters (genus Phodopus, family Cricetidae) inhabit some regions of Russia, Kazakhstan, Mongolia, and China, each having quite extensive range. In recent decades, the dwarf hamsters became widely spread all over the world, initially as laboratory animals and later as popular pets. By now, there is lot of decorative breed lines and colored forms of these animals. Comparison of mtDNA nucleotide sequences of dwarf hamsters acquired in pet shops of some countries in Europe, South-East Asia and North America with distribution of mtDNA haplotypes within natural ranges showed the limitation of decorative line founders' points of origin by one region for each of the species. All haplotypes found in decorative Dzungarian hamsters (Ph. sungorus) purchased ounside Russia coincide with or are significantly close to haplotypes spread in the southern part of West Siberia (Russia) and adjacent regions of Kazakhstan; haplotypes of decorative Campbell's hamster (Ph. campbelli) belong to haplogroup of this species natural populations inhabiting South Tyva (Russia); and all studied decorative Desert hamsters (Ph. roborovskii) had one hapotype specific for South-Eastern Kazakhstan. The review of the history of researches on dwarf hamsters biology allows to determine delivery of hamsters from mentioned regions to scientific laboratories and zoos by certain expeditions and/or researchers. Unlike hamsters with natural hair color, the colored hamsters have no normal hair. Their hair is dull and straggly. The hair differentiation (presence of different hair types and their size characteristics) gets broken and results in deformation, bending, and splitting of the shaft, cracks in cuticle, change of configuration and location of medulla, uneven development of cortex. It is assumed that these destructive changes are associated with genetic characteristics of these hamsters' colored forms.

  9. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Han, Enlin; Wang, Xiaodong; Wu, Dezhen

    2017-09-01

    A new methodology to decorate the surface of polyimide (PI) fiber with carbon nanotubes (CNTs) has been developed in this study. This surface decoration was carried out through a surface alkali treatment, a carboxylation modification, surface functionalization with acyl chloride groups and then with amino groups, and a surface graft of CNTs onto PI fiber. Fourier-transform infrared and X-ray photoelectron spectroscopic characterizations confirmed that CNTs were chemically grafted onto the surface of PI fiber, and scanning electron microscopic observation demonstrated the fiber surface was uniformly and densely covered with CNTs. The surface energy and wettability of PI fiber were improved in the presence of CNTs on the fiber surface, which made a contribution to enhance the interfacial adhesion of PI fiber with other inorganic matrices when used as a reinforcing fiber. The application of CNTs-decorated PI fiber for the reinforcement of phosphoric acid-based geopolymers was investigated, and the results indicated that the geopolymeric composites gained a noticeable reinforcement. Compared to unreinforced geopolymer, the geopolymeric composites achieved a remarkable increase in compressive strength by 120% and in flexural strength by 283%. Fractography investigation demonstrated that the interaction adhesion between the fibers and matrix was enhanced due to the surface decoration of PI fiber with CNTs, which contributed to an improvement in fracture-energy dissipation by fiber pullout and fiber debonding from the matrix. As a result, a significant reinforcement effect on geopolymeric composites was achieved through a fiber-bridging mechanism. This study provided an effective methodology to improve the interracial bonding force for PI fiber and also proves a highly efficient application of CNTs-decorated PI fiber for the mechanical enhancement of geopolymeric composites.

  10. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  11. "A Reason to Write": Exploring Writing Epistemologies in Two Contexts

    ERIC Educational Resources Information Center

    Pahl, Kate

    2012-01-01

    This article argues that it is important to take account of children's epistemologies of writing when exploring writing ecologies in homes and communities. Writing as more broadly defined by children and young people might include different forms of notation, inscription systems and decoration of objects in the home. Drawing on two research…

  12. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  13. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposedmore » {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.« less

  14. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamba, Gcina; Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida; Mbianda, Xavier Yangkou

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{submore » 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.« less

  15. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    PubMed

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    PubMed

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  17. 32 CFR 507.6 - Authority to manufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Authority to manufacture. 507.6 Section 507.6... PUBLIC RELATIONS MANUFACTURE AND SALE OF DECORATIONS, MEDALS, BADGES, INSIGNIA, COMMERCIAL USE OF HERALDIC DESIGNS AND HERALDIC QUALITY CONTROL PROGRAM Manufacture and Sale of Decorations, Medals, Badges...

  18. 25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN AND THE WEIGHTS AND PENDULUM HANGING FROM THE CLOCK DESIGNED BY ARCHITECT ROBERT C. REAMER. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  19. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  20. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties.

    PubMed

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel; Šubr, Vladimír; Konvalinka, Jan

    2016-02-12

    Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named "iBodies", consist of an HPMA copolymer decorated with low-molecular-weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live-cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties

    PubMed Central

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel

    2016-01-01

    Abstract Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named “iBodies”, consist of an HPMA copolymer decorated with low‐molecular‐weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live‐cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. PMID:26749427

  2. Observation of an hexatic vortex glass in flux lattices of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1991-02-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η 6 = 0.6 ± 0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low-temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  3. Observation of an hexatic vortex glass in flux lattices of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1990-10-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η6=0.06±0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  4. Observation of a hexatic vortex glass in flux lattices of the High-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta)

    NASA Astrophysics Data System (ADS)

    Murray, C. A.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1990-05-01

    Hexatic order is observed in Abrikosov flux lattices in very clean crystals of the high-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta) by in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants, while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent eta6 = 0.06 + or - 0.01. These results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order, and that the low-temperature ordered phase of the flux lines in these systems might be a hexatic glass.

  5. Multidimensional MnO2 nanohair-decorated hybrid multichannel carbon nanofiber as an electrode material for high-performance supercapacitors.

    PubMed

    Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik

    2015-10-14

    One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g(-1) and excellent cycling performance with ∼87.3% capacitance retention over 5000 cycles.

  6. Decorating fiber nanotip with single perovskite quantum dot and other luminescent nanocrystals synthesized in oil-phase

    NASA Astrophysics Data System (ADS)

    Qian, Yu; Xing, Xing; Xu, Ya; Lu, Zhenda; Zhang, Weihua

    2017-11-01

    We report a simple yet robust method for fabricating single perovskite quantum dot (QD) decorated fiber nanotips. In this method, a single QD is directly picked up and subsequently glued on the apex of a specially fabricated cantilever fiber tip with a high success rate (approx. 70%) without using expensive close-loop feedback systems. Thanks to the flexibility and robustness of the fiber tips, no damage of the tips was observed in the process. Moreover, nanocrystal (NC) dispersing technique was developed to avoid undesired aggregations of QDs, and it guarantees that only one QD is glued each time. Finally, we demonstrate that this technique can also be applied to other oil-phase synthesized NCs, including CdSe QDs and upconversion luminescent NCs. It leads to many important applications on probing the local environment using high performance luminescent nanoprobes.

  7. Application of Oxidation to the Structural Characterization of Sic Epitaxial Films

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Petit, J. B.; Edgar, J. H.; Jenkins, I. G.; Matus, L. G.

    1991-01-01

    Both 3C-SiC and 6H-SiC single-crystal films can be grown on vicinal (0001) 6H-SiC wafers. It is found that oxidation can be a powerful diagnostic process for (1) 'color mapping' the 3C and 6H regions of these films, (2) decorating stacking faults in the films, (3) enhancing the decoration of double positioning boundaries, and (4) decorating polishing damage. Contrary to previously published oxidation results, proper oxidation conditions can yield interference colors that provide a definitive map of the polytype distribution for both the Si face and C face of SiC films.

  8. Meso-Decorated Switching-Knot Gels

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  9. In-mould decorating.

    PubMed

    Bienias, Thomas J

    2002-10-01

    Advances in plastics moulding technology and the use of in-mould decorating are giving medical device manufacturers an opportunity to expand the variety of their products and reduce the cost of the final product. Other industries have tested the waters and found them friendly. The medical device industry could be next.

  10. In Dialogue with the Decorative Arts

    ERIC Educational Resources Information Center

    Powell, Olivia

    2017-01-01

    How can museum educators create dialogical experiences with European decorative arts? This question frames my essay and stems from the challenges I have faced introducing objects whose original functions seem to overshadow their aesthetic and interpretive value. Repeated efforts to spark rich dialogue and collective interpretation around pieces of…

  11. Activities to Grow On: Friendship Links.

    ERIC Educational Resources Information Center

    Newman, Joan; And Others

    1992-01-01

    Presents a collection of Valentine's Day-related kindergarten activities designed to help friendships grow. They include making personalized place mats as a group, creating decorated mail pouches, building heart shaped bird feeders, reading a book about friendly secrets and surprises, and decorating hearts with compliments about each student. (SM)

  12. 77 FR 65172 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ..., 1997). Comments on Product Characteristics for Antidumping Questionnaires We are requesting comments from interested parties regarding the appropriate physical characteristics of hardwood and decorative... be used to identify the key physical characteristics of the merchandise under consideration in order...

  13. 78 FR 33059 - Hardwood and Decorative Plywood From the People's Republic of China: Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Plywood From the People's Republic of China: Antidumping Duty Investigation; Correction and Postponement... preliminary determination in the antidumping duty investigation of hardwood and decorative plywood from the... China: Antidumping Duty Investigation, 78 FR 25946 (May 3, 2013) (``Preliminary Determination...

  14. Spin configurations on a decorated square lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Gülistan; Mert, H. Şevki

    Spin configurations on a decorated square lattice are investigated using Bertaut’s microscopic method. We have obtained collinear and non-collinear (canted) modes for the given wave vectors in the ground state. We have found ferromagnetic and antiferromagnetic commensurate spin configurations. We have found canted incommensurate spin configurations.

  15. A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers

    PubMed Central

    Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen

    2013-01-01

    Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079

  16. Oxygen surface exchange kinetics and stability of (La,Sr) 2 CoO 4±δ/La 1-xSr xMO 3-δ (M = Co and Fe) hetero-interfaces at intermediate temperatures

    DOE PAGES

    Lee, Dongkyu; Lee, Yueh-Lin; Hong, Wesley T.; ...

    2014-11-13

    Heterostructured oxide interfaces created by decorating Ruddlesden-Popper phases (A2BO4) or perovskites on perovskites have shown not only pronounced cation segregation at the interface and in the A2BO4 structure but also much enhanced kinetics for oxygen electrocatalysis at elevated temperatures. In this study, we report and compare the time-dependent surface exchange kinetics and stability of (La 0.5Sr 0.5) 2CoO 4 -decorated (LSC 214) La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF 113) and La 0.8Sr 0.2CoO 3-δ (LSC 113) thin films. While LSC 214 decoration on LSC 113 greatly reduced the degradation in the surface exchange kinetics as a function of timemore » relative to LSC 113, LSCF 113 with LSC 214 coverage showed comparable surface exchange kinetics and stability to LSCF 113. This difference can be explained by greater surface stability of LSCF 113 than LSC 113 under testing conditions, and that LSC 214 decoration on LSC 113 reduced the decomposition of LSC 113 to form secondary phases that impedes oxygen exchange kinetics, and thus resulted in enhanced stability. This hypothesis is supported by the observations that annealing at 550 °C led to the formation of Sr-rich secondary particles on LSC 113 while no such particles were observed on LSCF 113. Density functional theory (DFT) computation provides further support, which revealed greater capacity of surface Sr segregation for LSCF 113 having SrO termination than LSC 113 having (La 0.25Sr 0.75)O termination for the experimental conditions, and lower energy gain to move Sr from LSCF 113 into LSC 214 relative to the LSC 214-LSC 113 system.« less

  17. Spatially controlled carbon sponge for targeting internalized radioactive materials in human body.

    PubMed

    Hong, Jin-Yong; Oh, Wan-Kyu; Shin, Keun-Young; Kwon, Oh Seok; Son, Suim; Jang, Jyongsik

    2012-07-01

    Carbon sponge, an adsorbent with spatially controlled structure is demonstrated for targeting internalized radiocesium and other radionuclides in human body. Three dimensionally ordered macroporous (3DOM) carbons derived from inverse opal replicas of colloidal-crystal template exhibit large surface area and high porosity, resulting in highly efficient adsorbents for radionuclides. It is also possible to enhance binding affinity and selectivity to radionuclide targets by decoration of 3DOM carbon surfaces with Prussian blue (PB) nanoparticles, and synthesized PB nanoparticles reveal low toxicity toward macrophage cells with potential advantages over oral administration. It is noteworthy that the maximum (133)Cs adsorption capacity of PB-decorated 3DOM carbons is 40.07 mmol g(-1) which is ca. 30 and 200 times higher than that of commercialized medicine Radiogardase(®) and bulk PB, respectively. Further, adsorption kinetics study indicates that the PB-decorated 3DOM carbons have the homogenous surface for (133)Cs ion adsorption and all sites have equal adsorption energies in terms of ion exchange between the cyano groups of the PB-decorated 3DOM carbons and radionuclides. As a concept of the oral-administrable "carbon sponge", the PB-decorated 3DOM carbons offer useful implications in the separation science of radioactive materials and important insight for designing novel materials for treatment of patients or suspected internal contamination with radioactive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  19. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine. Electronic supplementary information (ESI) available: Further information on the characterization of nanoparticles and additional live-cell imaging studies. See DOI: 10.1039/c5nr08419a

  20. 32 CFR 507.9 - Articles not authorized for manufacture or sale.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Articles not authorized for manufacture or sale... CIVIL AUTHORITIES AND PUBLIC RELATIONS MANUFACTURE AND SALE OF DECORATIONS, MEDALS, BADGES, INSIGNIA, COMMERCIAL USE OF HERALDIC DESIGNS AND HERALDIC QUALITY CONTROL PROGRAM Manufacture and Sale of Decorations...

  1. 32 CFR 507.8 - Articles authorized for manufacture and sale.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Articles authorized for manufacture and sale. 507... CIVIL AUTHORITIES AND PUBLIC RELATIONS MANUFACTURE AND SALE OF DECORATIONS, MEDALS, BADGES, INSIGNIA, COMMERCIAL USE OF HERALDIC DESIGNS AND HERALDIC QUALITY CONTROL PROGRAM Manufacture and Sale of Decorations...

  2. Anthropomorphism in Decorative Pictures: Benefit or Harm for Learning?

    ERIC Educational Resources Information Center

    Schneider, Sascha; Nebel, Steve; Beege, Maik; Rey, Günter Daniel

    2018-01-01

    When people attribute human characteristics to nonhuman objects they are amenable to anthropomorphism. For example, human faces or the insertion of personalized labels are found to trigger anthropomorphism. Two studies examine the effects of these features when included in decorative pictures in multimedia learning materials. In a first…

  3. 21 CFR 109.16 - Ornamental and decorative ceramicware.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Ornamental and decorative ceramicware. 109.16 Section 109.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION UNAVOIDABLE CONTAMINANTS IN FOOD FOR HUMAN CONSUMPTION AND FOOD...

  4. 21 CFR 109.16 - Ornamental and decorative ceramicware.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Ornamental and decorative ceramicware. 109.16 Section 109.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION UNAVOIDABLE CONTAMINANTS IN FOOD FOR HUMAN CONSUMPTION AND FOOD...

  5. VIEW OF RECESSED FRONT ENTRY SHOWING DECORATIVE CONCRETE MASONRY UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF RECESSED FRONT ENTRY SHOWING DECORATIVE CONCRETE MASONRY UNIT WALL. VIEW FACING NORTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Four-Bedroom, Single-Family Type 10, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  6. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  7. 21 CFR 109.16 - Ornamental and decorative ceramicware.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Ornamental and decorative ceramicware. 109.16 Section 109.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION UNAVOIDABLE CONTAMINANTS IN FOOD FOR HUMAN CONSUMPTION AND FOOD...

  8. 21 CFR 109.16 - Ornamental and decorative ceramicware.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Ornamental and decorative ceramicware. 109.16 Section 109.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION UNAVOIDABLE CONTAMINANTS IN FOOD FOR HUMAN CONSUMPTION AND FOOD...

  9. 21 CFR 109.16 - Ornamental and decorative ceramicware.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Ornamental and decorative ceramicware. 109.16 Section 109.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION UNAVOIDABLE CONTAMINANTS IN FOOD FOR HUMAN CONSUMPTION AND FOOD...

  10. 77 FR 73428 - Hardwood and Decorative Plywood From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-987] Hardwood and Decorative Plywood From the People's Republic of China: Postponement of Preliminary Determination in the Countervailing Duty Investigation AGENCY: Import Administration, International Trade Administration, Department of Commerce. FOR FURTHER INFORMATION CONTACT:...

  11. The mechanism by which arabinoxylanases can recognize highly decorated xylans

    USDA-ARS?s Scientific Manuscript database

    The enzymatic degradation of plant cell walls is an important biological process of increasing environmental and industrial significance. Xylan, a major component of the plant cell wall, consists of a backbone of beta 1,4-xylose (Xylp) units that are often decorated with arabinofuranose (Araf) side ...

  12. 77 FR 7655 - Culturally Significant Objects Imported for Exhibition Determinations: “Inventing the Modern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... DEPARTMENT OF STATE [Public Notice 7795] Culturally Significant Objects Imported for Exhibition Determinations: ``Inventing the Modern World: Decorative Arts at the World's Fairs, 1851-1939'' SUMMARY: Notice... objects to be included in the exhibition ``Inventing the Modern World: Decorative Arts at the World's...

  13. 22 CFR 3.7 - Decorations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Decorations. 3.7 Section 3.7 Foreign Relations... Office of Congressional and Public Liaison (for domestic employees), and by the Director of Area Offices... designated depository office of the employing agency a request for review of the case. This request should...

  14. --No Title--

    Science.gov Websites

    ; } .stage .controls a:link, .stage .controls a:visited { color:#000000; display:block; border:1px solid #ccc ; background-color:#fff; padding:1em 1em; text-align:center; text-decoration:none; } .stage .controls a:hover { background-color:#ccc; text-decoration:none; } .stage .controls a.active { background-color:#ccc; } .stage

  15. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    NASA Astrophysics Data System (ADS)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  16. Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity

    NASA Astrophysics Data System (ADS)

    T, T. T., Vi; Lue, S. J.

    2016-11-01

    A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.

  17. Directional budding of human immunodeficiency virus from monocytes.

    PubMed Central

    Perotti, M E; Tan, X; Phillips, D M

    1996-01-01

    Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells. PMID:8709212

  18. 77 FR 58219 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ..., and control technologies) no less frequently than every 8 years. Section 112(f)(2) of the CAA requires... Classification System. \\2\\ Maximum Achievable Control Technology. C. Where can I get a copy of this document and... areas of air pollution control. Additional information is available on the residual risk and technology...

  19. Technological study of ancient ceramics produced in Casteldurante (central Italy) during the Renaissance

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.

    In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.

  20. First-principles study of Li decorated coronene graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Cheng, Xinlu

    2017-11-01

    We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage of Li decorated coronene graphene. Our result indicates that single Li atom can adsorb three H2 molecules and the adsorption energy per H2 is -0.224 eV. When four Li atoms doped, the largest hydrogen gravimetric density is 6.82 wt.% and this is higher than the 2017 target by the US department of energy (DOE). Meanwhile, the adsorption energy per H2 is -0.220 eV, which is suitable for H2 molecules to store. Therefore, Li decorated coronene graphene will be a candidate for hydrogen storage materials in the future.

Top