Sample records for decoupled processors architecture

  1. Recent advances in nuclear magnetic resonance quantum information processing.

    PubMed

    Criger, Ben; Passante, Gina; Park, Daniel; Laflamme, Raymond

    2012-10-13

    Quantum information processors have the potential to drastically change the way we communicate and process information. Nuclear magnetic resonance (NMR) has been one of the first experimental implementations of quantum information processing (QIP) and continues to be an excellent testbed to develop new QIP techniques. We review the recent progress made in NMR QIP, focusing on decoupling, pulse engineering and indirect nuclear control. These advances have enhanced the capabilities of NMR QIP, and have useful applications in both traditional NMR and other QIP architectures.

  2. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  3. DFT algorithms for bit-serial GaAs array processor architectures

    NASA Technical Reports Server (NTRS)

    Mcmillan, Gary B.

    1988-01-01

    Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.

  4. The design of dual-mode complex signal processors based on quadratic modular number codes

    NASA Astrophysics Data System (ADS)

    Jenkins, W. K.; Krogmeier, J. V.

    1987-04-01

    It has been known for a long time that quadratic modular number codes admit an unusual representation of complex numbers which leads to complete decoupling of the real and imaginary channels, thereby simplifying complex multiplication and providing error isolation between the real and imaginary channels. This paper first presents a tutorial review of the theory behind the different types of complex modular rings (fields) that result from particular parameter selections, and then presents a theory for a 'dual-mode' complex signal processor based on the choice of augmented power-of-2 moduli. It is shown how a diminished-1 binary code, used by previous designers for the realization of Fermat number transforms, also leads to efficient realizations for dual-mode complex arithmetic for certain augmented power-of-2 moduli. Then a design is presented for a recursive complex filter based on a ROM/ACCUMULATOR architecture and realized in an augmented power-of-2 quadratic code, and a computer-generated example of a complex recursive filter is shown to illustrate the principles of the theory.

  5. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    NASA Astrophysics Data System (ADS)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  6. Multiple Embedded Processors for Fault-Tolerant Computing

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy

    2005-01-01

    A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan

    We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less

  8. A novel anti-windup framework for cascade control systems: an application to underactuated mechanical systems.

    PubMed

    Mehdi, Niaz; Rehan, Muhammad; Malik, Fahad Mumtaz; Bhatti, Aamer Iqbal; Tufail, Muhammad

    2014-05-01

    This paper describes the anti-windup compensator (AWC) design methodologies for stable and unstable cascade plants with cascade controllers facing actuator saturation. Two novel full-order decoupling AWC architectures, based on equivalence of the overall closed-loop system, are developed to deal with windup effects. The decoupled architectures have been developed, to formulate the AWC synthesis problem, by assuring equivalence of the coupled and the decoupled architectures, instead of using an analogy, for cascade control systems. A comparison of both AWC architectures from application point of view is provided to consolidate their utilities. Mainly, one of the architecture is better in terms of computational complexity for implementation, while the other is suitable for unstable cascade systems. On the basis of the architectures for cascade systems facing stability and performance degradation problems in the event of actuator saturation, the global AWC design methodologies utilizing linear matrix inequalities (LMIs) are developed. These LMIs are synthesized by application of the Lyapunov theory, the global sector condition and the ℒ2 gain reduction of the uncertain decoupled nonlinear component of the decoupled architecture. Further, an LMI-based local AWC design methodology is derived by utilizing a local sector condition by means of a quadratic Lyapunov function to resolve the windup problem for unstable cascade plants under saturation. To demonstrate effectiveness of the proposed AWC schemes, an underactuated mechanical system, the ball-and-beam system, is considered, and details of the simulation and practical implementation results are described. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. WATERLOPP V2/64: A highly parallel machine for numerical computation

    NASA Astrophysics Data System (ADS)

    Ostlund, Neil S.

    1985-07-01

    Current technological trends suggest that the high performance scientific machines of the future are very likely to consist of a large number (greater than 1024) of processors connected and communicating with each other in some as yet undetermined manner. Such an assembly of processors should behave as a single machine in obtaining numerical solutions to scientific problems. However, the appropriate way of organizing both the hardware and software of such an assembly of processors is an unsolved and active area of research. It is particularly important to minimize the organizational overhead of interprocessor comunication, global synchronization, and contention for shared resources if the performance of a large number ( n) of processors is to be anything like the desirable n times the performance of a single processor. In many situations, adding a processor actually decreases the performance of the overall system since the extra organizational overhead is larger than the extra processing power added. The systolic loop architecture is a new multiple processor architecture which attemps at a solution to the problem of how to organize a large number of asynchronous processors into an effective computational system while minimizing the organizational overhead. This paper gives a brief overview of the basic systolic loop architecture, systolic loop algorithms for numerical computation, and a 64-processor implementation of the architecture, WATERLOOP V2/64, that is being used as a testbed for exploring the hardware, software, and algorithmic aspects of the architecture.

  10. Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture

    DOEpatents

    Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.

    2006-10-03

    This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.

  11. Managing Power Heterogeneity

    NASA Astrophysics Data System (ADS)

    Pruhs, Kirk

    A particularly important emergent technology is heterogeneous processors (or cores), which many computer architects believe will be the dominant architectural design in the future. The main advantage of a heterogeneous architecture, relative to an architecture of identical processors, is that it allows for the inclusion of processors whose design is specialized for particular types of jobs, and for jobs to be assigned to a processor best suited for that job. Most notably, it is envisioned that these heterogeneous architectures will consist of a small number of high-power high-performance processors for critical jobs, and a larger number of lower-power lower-performance processors for less critical jobs. Naturally, the lower-power processors would be more energy efficient in terms of the computation performed per unit of energy expended, and would generate less heat per unit of computation. For a given area and power budget, heterogeneous designs can give significantly better performance for standard workloads. Moreover, even processors that were designed to be homogeneous, are increasingly likely to be heterogeneous at run time: the dominant underlying cause is the increasing variability in the fabrication process as the feature size is scaled down (although run time faults will also play a role). Since manufacturing yields would be unacceptably low if every processor/core was required to be perfect, and since there would be significant performance loss from derating the entire chip to the functioning of the least functional processor (which is what would be required in order to attain processor homogeneity), some processor heterogeneity seems inevitable in chips with many processors/cores.

  12. Evaluation of fault-tolerant parallel-processor architectures over long space missions

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1989-01-01

    The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration.

  13. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  14. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  15. The computational structural mechanics testbed architecture. Volume 2: The interface

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the third set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 3 describes the CLIP-Processor interface and related topics. It is intended only for processor developers.

  16. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  17. An architecture for real-time vision processing

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong

    1994-01-01

    To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.

  18. Announcement/Subscription/Publication: Message Based Communication for Heterogeneous Mobile Environments

    NASA Astrophysics Data System (ADS)

    Ristau, Henry

    Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.

  19. Study of a unified hardware and software fault-tolerant architecture

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart

    1989-01-01

    A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.

  20. A GaAs vector processor based on parallel RISC microprocessors

    NASA Astrophysics Data System (ADS)

    Misko, Tim A.; Rasset, Terry L.

    A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.

  1. Application of Advanced Multi-Core Processor Technologies to Oceanographic Research

    DTIC Science & Technology

    2013-09-30

    STM32 NXP LPC series No Proprietary Microchip PIC32/DSPIC No > 500 mW; < 5 W ARM Cortex TI OMAP TI Sitara Broadcom BCM2835 Varies FPGA...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Application of Advanced Multi-Core Processor Technologies...state-of-the-art information processing architectures. OBJECTIVES Next-generation processor architectures (multi-core, multi-threaded) hold the

  2. Development for SSV on a parallel processing system (PARAGON)

    NASA Astrophysics Data System (ADS)

    Gothard, Benny M.; Allmen, Mark; Carroll, Michael J.; Rich, Dan

    1995-12-01

    A goal of the surrogate semi-autonomous vehicle (SSV) program is to have multiple vehicles navigate autonomously and cooperatively with other vehicles. This paper describes the process and tools used in porting UGV/SSV (unmanned ground vehicle) autonomous mobility and target recognition algorithms from a SISD (single instruction single data) processor architecture (i.e., a Sun SPARC workstation running C/UNIX) to a MIMD (multiple instruction multiple data) parallel processor architecture (i.e., PARAGON-a parallel set of i860 processors running C/UNIX). It discusses the gains in performance and the pitfalls of such a venture. It also examines the merits of this processor architecture (based on this conceptual prototyping effort) and programming paradigm to meet the final SSV demonstration requirements.

  3. Optical linear algebra processors - Architectures and algorithms

    NASA Technical Reports Server (NTRS)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  4. Distributed processor allocation for launching applications in a massively connected processors complex

    DOEpatents

    Pedretti, Kevin

    2008-11-18

    A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.

  5. Instruction-level performance modeling and characterization of multimedia applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Cameron, K.W.

    1999-06-01

    One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic parameters directly related to a processor`s architectural features. Based onmore » microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. The biggest advantage of this new characterization technique is a better understanding of processor utilization efficiency and architectural bottleneck for each application. This technique also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper the authors also attempt to model architectural effect on processor utilization without memory influence. They derive formulas for calculating CPI{sub 0}, CPI without memory effect, and they quantify utilization of architectural parameters. These equations are architecturally diagnostic and predictive in nature. Results provide promise in code characterization, and empirical/analytical modeling.« less

  6. Performances of multiprocessor multidisk architectures for continuous media storage

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Messerli, Vincent; Hersch, Roger D.

    1996-03-01

    Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of data with strict synchronicity and isochronicity requirements. In order to fulfill these requirements, we consider a parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation and simulation the behavior of two multi-processor multi-disk architectures: a point-to-point architecture and a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two architectures on the basis of two multimedia algorithms: the compute-bound frame resizing by resampling and the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local memories located closely to their respective processors could partially remove this bottleneck. The point- to-point architecture is scalable and able to sustain high throughputs for simultaneous compute- bound and data-bound operations.

  7. Fault-tolerant onboard digital information switching and routing for communications satellites

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  8. Advanced computer architecture specification for automated weld systems

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.

  9. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  10. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  11. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    NASA Astrophysics Data System (ADS)

    Barr, David R. W.; Dudek, Piotr

    2009-12-01

    We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  12. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  13. Eigensolution of finite element problems in a completely connected parallel architecture

    NASA Technical Reports Server (NTRS)

    Akl, F.; Morel, M.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm is successfully implemented on a tightly coupled MIMD parallel processor. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts, and the dimension of the subspace on the performance of the algorithm is investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18, and 3.61 are achieved on two, four, six, and eight processors, respectively.

  14. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    PubMed

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.

  15. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  16. Solving the Cauchy-Riemann equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    Discussed is the implementation of a single algorithm on three parallel-vector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-Riemann equations; a set of coupled first order partial differential equations. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, and SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The machine architectures are briefly described. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Conclusions are presented.

  17. The architecture of a video image processor for the space station

    NASA Technical Reports Server (NTRS)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  18. Software reconfigurable processor technologies: the key to long-life infrastructure for future space missions

    NASA Technical Reports Server (NTRS)

    Srinivasan, J.; Farrington, A.; Gray, A.

    2001-01-01

    They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.

  19. Mobile Thread Task Manager

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin J.

    2013-01-01

    The Mobile Thread Task Manager (MTTM) is being applied to parallelizing existing flight software to understand the benefits and to develop new techniques and architectural concepts for adapting software to multicore architectures. It allocates and load-balances tasks for a group of threads that migrate across processors to improve cache performance. In order to balance-load across threads, the MTTM augments a basic map-reduce strategy to draw jobs from a global queue. In a multicore processor, memory may be "homed" to the cache of a specific processor and must be accessed from that processor. The MTTB architecture wraps access to data with thread management to move threads to the home processor for that data so that the computation follows the data in an attempt to avoid L2 cache misses. Cache homing is also handled by a memory manager that translates identifiers to processor IDs where the data will be homed (according to rules defined by the user). The user can also specify the number of threads and processors separately, which is important for tuning performance for different patterns of computation and memory access. MTTM efficiently processes tasks in parallel on a multiprocessor computer. It also provides an interface to make it easier to adapt existing software to a multiprocessor environment.

  20. A novel VLSI processor architecture for supercomputing arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.

    1993-01-01

    Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.

  1. Design considerations of CareWindows, a Windows 3.0-based graphical front end to a Medical Information Management System using a pass-through-requester architecture.

    PubMed Central

    Ward, R. E.; Purves, T.; Feldman, M.; Schiffman, R. M.; Barry, S.; Christner, M.; Kipa, G.; McCarthy, B. D.; Stiphout, R.

    1991-01-01

    The Care Windows development project demonstrated the feasibility of an approach designed to add the benefits of an event-driven, graphically-oriented user interface to an existing Medical Information Management System (MIMS) without overstepping economic and logistic constraints. The design solution selected for the Care Windows project incorporates three important design features: (1) the effective de-coupling of severs from requesters, permitting the use of an extensive pre-existing library of MIMS servers, (2) the off-loading of program control functions of the requesters to the workstation processor, reducing the load per transaction on central resources and permitting the use of object-oriented development environments available for microcomputers, (3) the selection of a low end, GUI-capable workstation consisting of a PC-compatible personal computer running Microsoft Windows 3.0, and (4) the development of a highly layered, modular workstation application, permitting the development of interchangeable modules to insure portability and adaptability. PMID:1807665

  2. The MasPar MP-1 As a Computer Arithmetic Laboratory

    PubMed Central

    Anuta, Michael A.; Lozier, Daniel W.; Turner, Peter R.

    1996-01-01

    This paper is a blueprint for the use of a massively parallel SIMD computer architecture for the simulation of various forms of computer arithmetic. The particular system used is a DEC/MasPar MP-1 with 4096 processors in a square array. This architecture has many advantages for such simulations due largely to the simplicity of the individual processors. Arithmetic operations can be spread across the processor array to simulate a hardware chip. Alternatively they may be performed on individual processors to allow simulation of a massively parallel implementation of the arithmetic. Compromises between these extremes permit speed-area tradeoffs to be examined. The paper includes a description of the architecture and its features. It then summarizes some of the arithmetic systems which have been, or are to be, implemented. The implementation of the level-index and symmetric level-index, LI and SLI, systems is described in some detail. An extensive bibliography is included. PMID:27805123

  3. Scalable architecture for a room temperature solid-state quantum information processor.

    PubMed

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  4. Design of a massively parallel computer using bit serial processing elements

    NASA Technical Reports Server (NTRS)

    Aburdene, Maurice F.; Khouri, Kamal S.; Piatt, Jason E.; Zheng, Jianqing

    1995-01-01

    A 1-bit serial processor designed for a parallel computer architecture is described. This processor is used to develop a massively parallel computational engine, with a single instruction-multiple data (SIMD) architecture. The computer is simulated and tested to verify its operation and to measure its performance for further development.

  5. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  6. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  7. Array processor architecture

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  8. Thermal Hotspots in CPU Die and It's Future Architecture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hu, Fu-Yuan

    Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.

  9. Green Secure Processors: Towards Power-Efficient Secure Processor Design

    NASA Astrophysics Data System (ADS)

    Chhabra, Siddhartha; Solihin, Yan

    With the increasing wealth of digital information stored on computer systems today, security issues have become increasingly important. In addition to attacks targeting the software stack of a system, hardware attacks have become equally likely. Researchers have proposed Secure Processor Architectures which utilize hardware mechanisms for memory encryption and integrity verification to protect the confidentiality and integrity of data and computation, even from sophisticated hardware attacks. While there have been many works addressing performance and other system level issues in secure processor design, power issues have largely been ignored. In this paper, we first analyze the sources of power (energy) increase in different secure processor architectures. We then present a power analysis of various secure processor architectures in terms of their increase in power consumption over a base system with no protection and then provide recommendations for designs that offer the best balance between performance and power without compromising security. We extend our study to the embedded domain as well. We also outline the design of a novel hybrid cryptographic engine that can be used to minimize the power consumption for a secure processor. We believe that if secure processors are to be adopted in future systems (general purpose or embedded), it is critically important that power issues are considered in addition to performance and other system level issues. To the best of our knowledge, this is the first work to examine the power implications of providing hardware mechanisms for security.

  10. Enabling Future Robotic Missions with Multicore Processors

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.

    2011-01-01

    Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.

  11. Optical chirp z-transform processor with a simplified architecture.

    PubMed

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  12. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  13. System on chip module configured for event-driven architecture

    DOEpatents

    Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.

    2017-10-17

    A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.

  14. MBASIC batch processor architectural overview

    NASA Technical Reports Server (NTRS)

    Reynolds, S. M.

    1978-01-01

    The MBASIC (TM) batch processor, a language translator designed to operate in the MBASIC (TM) environment is described. Features include: (1) a CONVERT TO BATCH command, usable from the ready mode; and (2) translation of the users program in stages through several levels of intermediate language and optimization. The processor is to be designed and implemented in both machine-independent and machine-dependent sections. The architecture is planned so that optimization processes are transparent to the rest of the system and need not be included in the first design implementation cycle.

  15. A High Performance VLSI Computer Architecture For Computer Graphics

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  16. Array processor architecture connection network

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1982-01-01

    A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use.

  17. Hypercluster Parallel Processor

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela

    1992-01-01

    Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.

  18. GASP-PL/I Simulation of Integrated Avionic System Processor Architectures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brent, G. A.

    1978-01-01

    A development study sponsored by NASA was completed in July 1977 which proposed a complete integration of all aircraft instrumentation into a single modular system. Instead of using the current single-function aircraft instruments, computers compiled and displayed inflight information for the pilot. A processor architecture called the Team Architecture was proposed. This is a hardware/software approach to high-reliability computer systems. A follow-up study of the proposed Team Architecture is reported. GASP-PL/1 simulation models are used to evaluate the operating characteristics of the Team Architecture. The problem, model development, simulation programs and results at length are presented. Also included are program input formats, outputs and listings.

  19. Hardware Architecture Study for NASA's Space Software Defined Radios

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John

    2008-01-01

    This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  20. Space Telecommunications Radio Systems (STRS) Hardware Architecture Standard: Release 1.0 Hardware Section

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen

    2008-01-01

    This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  1. Networked Workstations and Parallel Processing Utilizing Functional Languages

    DTIC Science & Technology

    1993-03-01

    program . This frees the programmer to concentrate on what the program is to do, not how the program is...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially pro- grammed, single processor approach to problem...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially programmed , single processor approach to

  2. The computational structural mechanics testbed architecture. Volume 1: The language

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the first set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP, and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 1 presents the basic elements of the CLAMP language and is intended for all users.

  3. Multi-level Hierarchical Poly Tree computer architectures

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Gute, Doug

    1990-01-01

    Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.

  4. The computational structural mechanics testbed architecture. Volume 2: Directives

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the second of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 2 describes the CLIP directives in detail. It is intended for intermediate and advanced users.

  5. Companion Chip: Building a Segregated Hardware Architecture

    NASA Astrophysics Data System (ADS)

    Pareaud, Thomas; Houelle, Alain; Vaucher, Niolas; Albinet, Mathieu; Honvault, Christophe

    2011-08-01

    Partitioning is a more and more mature concept in Space industry. It aims at assuring that some error propagation modes are not possible. This paper gives an overview of an analysis conducted in the frame of a research and technology study performed in 2010/2011. The "Java Companion Chip" study addresses an interesting approach to partitioning using hardware concepts: a SoC architecture integrates a master processor, a companion chip and additional hardware functions aiming at enforcing the time and space segregation between the master processor and the slave one.This paper discusses the benefits and the main challenges of the proposed approach. In addition, it presents an application of these concepts to a case study: a Leon/Java processor architecture able to concurrently execute native and Java applications.

  6. FFT Computation with Systolic Arrays, A New Architecture

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The use of the Cooley-Tukey algorithm for computing the l-d FFT lends itself to a particular matrix factorization which suggests direct implementation by linearly-connected systolic arrays. Here we present a new systolic architecture that embodies this algorithm. This implementation requires a smaller number of processors and a smaller number of memory cells than other recent implementations, as well as having all the advantages of systolic arrays. For the implementation of the decimation-in-frequency case, word-serial data input allows continuous real-time operation without the need of a serial-to-parallel conversion device. No control or data stream switching is necessary. Computer simulation of this architecture was done in the context of a 1024 point DFT with a fixed point processor, and CMOS processor implementation has started.

  7. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  8. Embedded Data Processor and Portable Computer Technology testbeds

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.

    1993-01-01

    Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.

  9. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

  10. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  11. Dual-scale topology optoelectronic processor.

    PubMed

    Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H

    1991-12-15

    The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.

  12. Computer Sciences and Data Systems, volume 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: data storage; information network architecture; VHSIC technology; fiber optics; laser applications; distributed processing; spaceborne optical disk controller; massively parallel processors; and advanced digital SAR processors.

  13. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  14. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  15. A message passing kernel for the hypercluster parallel processing test bed

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Quealy, Angela; Cole, Gary L.

    1989-01-01

    A Message-Passing Kernel (MPK) for the Hypercluster parallel-processing test bed is described. The Hypercluster is being developed at the NASA Lewis Research Center to support investigations of parallel algorithms and architectures for computational fluid and structural mechanics applications. The Hypercluster resembles the hypercube architecture except that each node consists of multiple processors communicating through shared memory. The MPK efficiently routes information through the Hypercluster, using a message-passing protocol when necessary and faster shared-memory communication whenever possible. The MPK also interfaces all of the processors with the Hypercluster operating system (HYCLOPS), which runs on a Front-End Processor (FEP). This approach distributes many of the I/O tasks to the Hypercluster processors and eliminates the need for a separate I/O support program on the FEP.

  16. The computational structural mechanics testbed architecture. Volume 4: The global-database manager GAL-DBM

    NASA Technical Reports Server (NTRS)

    Wright, Mary A.; Regelbrugge, Marc E.; Felippa, Carlos A.

    1989-01-01

    This is the fourth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 4 describes the nominal-record data management component of the NICE software. It is intended for all users.

  17. Development of Improved Modeling and Analysis Techniques for Dynamics of Shell Structures

    DTIC Science & Technology

    1991-07-24

    Engineering Sciences and Center for Space Structures and Control University of Colorado,Campus Box 429 Boulder, Colorado 80309 Accesion :or -.... ... i...system architecture ; third, to implement a decomposi- tion/mapping procedure that matches as far as possible the layout of the processors to the...element computations. In particular. we address issues that are related to the processor memory size. to the SIMD architecture and to the fast

  18. Parallel architecture for rapid image generation and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerheim, R.J.

    1987-01-01

    A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less

  19. A high performance parallel computing architecture for robust image features

    NASA Astrophysics Data System (ADS)

    Zhou, Renyan; Liu, Leibo; Wei, Shaojun

    2014-03-01

    A design of parallel architecture for image feature detection and description is proposed in this article. The major component of this architecture is a 2D cellular network composed of simple reprogrammable processors, enabling the Hessian Blob Detector and Haar Response Calculation, which are the most computing-intensive stage of the Speeded Up Robust Features (SURF) algorithm. Combining this 2D cellular network and dedicated hardware for SURF descriptors, this architecture achieves real-time image feature detection with minimal software in the host processor. A prototype FPGA implementation of the proposed architecture achieves 1318.9 GOPS general pixel processing @ 100 MHz clock and achieves up to 118 fps in VGA (640 × 480) image feature detection. The proposed architecture is stand-alone and scalable so it is easy to be migrated into VLSI implementation.

  20. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Method of implementation of optoelectronic multiparametric signal processing systems based on multivalued-logic principles

    NASA Astrophysics Data System (ADS)

    Arestova, M. L.; Bykovskii, A. Yu

    1995-10-01

    An architecture is proposed for a specialised optoelectronic multivalued logic processor based on the Allen—Givone algebra. The processor is intended for multiparametric processing of data arriving from a large number of sensors or for tackling spectral analysis tasks. The processor architecture makes it possible to obtain an approximate general estimate of the state of an object being diagnosed on a p-level scale. Optoelectronic systems are proposed for MAXIMUM, MINIMUM, and LITERAL logic gates, based on optical-frequency encoding of logic levels. Corresponding logic gates form a complete set of logic functions in the Allen—Givone algebra.

  1. Frequency-multiplexed and pipelined iterative optical systolic array processors

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Jackson, J.; Neuman, C.

    1983-01-01

    Optical matrix processors using acoustooptic transducers are described, with emphasis on new systolic array architectures using frequency multiplexing in addition to space and time multiplexing. A Kalman filtering application is considered in a case study from which the operations required on such a system can be defined. This also serves as a new and powerful application for iterative optical processors. The importance of pipelining the data flow and the ordering of the operations performed in a specific application of such a system are also noted. Several examples of how to effectively achieve this are included. A new technique for handling bipolar data on such architectures is also described.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Learn, Mark Walter

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not availablemore » to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.« less

  3. Robust, High-Speed Network Design for Large-Scale Multiprocessing

    DTIC Science & Technology

    1993-09-01

    3.17 Left: Non-expansive Wiring of Processors to First Stage Routing Elements . ... 38 3.18 Right: Expansive Wiring of Processors to First Stage...162 8.2 RNI Micro -architecture ........ .............................. 163 8.3 Packaged RN I IC...169 11.1 MLUNK Message Formats ........ .............................. 173 12.1 Routing Board Arrangement for 64- processor Machine

  4. Digital Hardware Architecture Implementation

    DTIC Science & Technology

    1993-02-15

    of micro - MOTOROLA 63.7 50MHZ 64 BIT 2092 N/A processors during quarterly re- INTEL 42 50MHz 64 BIT 1092 N/A views and monthly reports. The 186o XP...27 3.2.1 Signal Processor (SP) Analysis...31 3.2.1.11 MasPar Software Statements ........................................................ 32 3.2.2 Data Processor

  5. A debugger-interpreter with setup facilities for assembly programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinskii, I.S.; Zisel`man, I.M.; Belotskii, S.L.

    1995-11-01

    In this paper a software program allowing one to introduce and debug the descriptions of the von Nuemann architecture processors and their assemblers, efficiently debug assembly programs, and investigate the instruction sets of the described processors is considered. For a description of the processor sematics and assembler syntax, a metassembly language is suggested.

  6. Stanford Hardware Development Program

    NASA Technical Reports Server (NTRS)

    Peterson, A.; Linscott, I.; Burr, J.

    1986-01-01

    Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.

  7. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  8. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  9. Soft-core processor study for node-based architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less

  10. Report of the Defense Science Board Task Force on Military Software

    DTIC Science & Technology

    1987-09-01

    training commitment from others. (The same thing is true of processor architectures.) 3. DoD should be aggressively looking for opportunities to buy...resource or training commitment from others. (The same thing is true of processor architectures.) 3. DoD should be aggressively looking for opportunities to...are uuifying principles to be found, whether in quarks or in unified field theorie.. Einstein repeatedly argued that there must eventually be

  11. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive.

    PubMed

    Goldman-Rakic, P S

    1996-10-29

    The functional architecture of prefrontal cortex is central to our understanding of human mentation and cognitive prowess. This region of the brain is often treated as an undifferentiated structure, on the one hand, or as a mosaic of psychological faculties, on the other. This paper focuses on the working memory processor as a specialization of prefrontal cortex and argues that the different areas within prefrontal cortex represent iterations of this function for different information domains, including spatial cognition, object cognition and additionally, in humans, semantic processing. According to this parallel processing architecture, the 'central executive' could be considered an emergent property of multiple domain-specific processors operating interactively. These processors are specializations of different prefrontal cortical areas, each interconnected both with the domain-relevant long-term storage sites in posterior regions of the cortex and with appropriate output pathways.

  12. A Survey of Architectural Techniques For Improving Cache Power Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    Modern processors are using increasingly larger sized on-chip caches. Also, with each CMOS technology generation, there has been a significant increase in their leakage energy consumption. For this reason, cache power management has become a crucial research issue in modern processor design. To address this challenge and also meet the goals of sustainable computing, researchers have proposed several techniques for improving energy efficiency of cache architectures. This paper surveys recent architectural techniques for improving cache power efficiency and also presents a classification of these techniques based on their characteristics. For providing an application perspective, this paper also reviews several real-worldmore » processor chips that employ cache energy saving techniques. The aim of this survey is to enable engineers and researchers to get insights into the techniques for improving cache power efficiency and motivate them to invent novel solutions for enabling low-power operation of caches.« less

  13. Efficient Sorting on the Tilera Manycore Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Tumeo, Antonino; Villa, Oreste

    e present an efficient implementation of the radix sort algo- rithm for the Tilera TILEPro64 processor. The TILEPro64 is one of the first successful commercial manycore processors. It is com- posed of 64 tiles interconnected through multiple fast Networks- on-chip and features a fully coherent, shared distributed cache. The architecture has a large degree of flexibility, and allows various optimization strategies. We describe how we mapped the algorithm to this architecture. We present an in-depth analysis of the optimizations for each phase of the algorithm with respect to the processor’s sustained performance. We discuss the overall throughput reached by ourmore » radix sort implementation (up to 132 MK/s) and show that it provides comparable or better performance-per-watt with respect to state-of-the art implemen- tations on x86 processors and graphic processing units.« less

  14. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    The implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  15. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    In this paper the implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are the MPP, an SIMD machine with 16-Kbit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the Flex/32 and Cray/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally conclusions are presented.

  16. The computational structural mechanics testbed architecture. Volume 5: The Input-Output Manager DMGASP

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.

  17. System on a chip with MPEG-4 capability

    NASA Astrophysics Data System (ADS)

    Yassa, Fathy; Schonfeld, Dan

    2002-12-01

    Current products supporting video communication applications rely on existing computer architectures. RISC processors have been used successfully in numerous applications over several decades. DSP processors have become ubiquitous in signal processing and communication applications. Real-time applications such as speech processing in cellular telephony rely extensively on the computational power of these processors. Video processors designed to implement the computationally intensive codec operations have also been used to address the high demands of video communication applications (e.g., cable set-top boxes and DVDs). This paper presents an overview of a system-on-chip (SOC) architecture used for real-time video in wireless communication applications. The SOC specifications answer to the system requirements imposed by the application environment. A CAM-based video processor is used to accelerate data intensive video compression tasks such as motion estimations and filtering. Other components are dedicated to system level data processing and audio processing. A rich set of I/Os allows the SOC to communicate with other system components such as baseband and memory subsystems.

  18. Mapping a battlefield simulation onto message-passing parallel architectures

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1987-01-01

    Perhaps the most critical problem in distributed simulation is that of mapping: without an effective mapping of workload to processors the speedup potential of parallel processing cannot be realized. Mapping a simulation onto a message-passing architecture is especially difficult when the computational workload dynamically changes as a function of time and space; this is exactly the situation faced by battlefield simulations. This paper studies an approach where the simulated battlefield domain is first partitioned into many regions of equal size; typically there are more regions than processors. The regions are then assigned to processors; a processor is responsible for performing all simulation activity associated with the regions. The assignment algorithm is quite simple and attempts to balance load by exploiting locality of workload intensity. The performance of this technique is studied on a simple battlefield simulation implemented on the Flex/32 multiprocessor. Measurements show that the proposed method achieves reasonable processor efficiencies. Furthermore, the method shows promise for use in dynamic remapping of the simulation.

  19. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  20. The CSM testbed matrix processors internal logic and dataflow descriptions

    NASA Technical Reports Server (NTRS)

    Regelbrugge, Marc E.; Wright, Mary A.

    1988-01-01

    This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444, Computational Structural Mechanics (CSM) Research. This report contains a detailed description of the coded workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are studied and documented. Items examined include: details of the data structures, interdependence of data structures, data-blocking logic in the data structures, processor data flow and architecture, and processor algorithmic logic flow.

  1. Development of a Novel, Two-Processor Architecture for a Small UAV Autopilot System,

    DTIC Science & Technology

    2006-07-26

    is, and the control laws the user implements to control it. The flight control system board will contain the processor selected for this system...Unit (IMU). The IMU contains solid-state gyros and accelerometers and uses these to determine the attitude of the UAV within the three dimensions of...multiple-UAV swarming for combat support operations. The mission processor board will contain the processor selected to execute the mission

  2. A Simple and Affordable TTL Processor for the Classroom

    ERIC Educational Resources Information Center

    Feinberg, Dave

    2007-01-01

    This paper presents a simple 4 bit computer processor design that may be built using TTL chips for less than $65. In addition to describing the processor itself in detail, we discuss our experience using the laboratory kit and its associated machine instruction set to teach computer architecture to high school students. (Contains 3 figures and 5…

  3. Architectural Techniques For Managing Non-volatile Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    As chip power dissipation becomes a critical challenge in scaling processor performance, computer architects are forced to fundamentally rethink the design of modern processors and hence, the chip-design industry is now at a major inflection point in its hardware roadmap. The high leakage power and low density of SRAM poses serious obstacles in its use for designing large on-chip caches and for this reason, researchers are exploring non-volatile memory (NVM) devices, such as spin torque transfer RAM, phase change RAM and resistive RAM. However, since NVMs are not strictly superior to SRAM, effective architectural techniques are required for making themmore » a universal memory solution. This book discusses techniques for designing processor caches using NVM devices. It presents algorithms and architectures for improving their energy efficiency, performance and lifetime. It also provides both qualitative and quantitative evaluation to help the reader gain insights and motivate them to explore further. This book will be highly useful for beginners as well as veterans in computer architecture, chip designers, product managers and technical marketing professionals.« less

  4. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  5. Ssip-a processor interconnection simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navaux, P.; Weber, R.; Prezzi, J.

    1982-01-01

    Recent growing interest in multiple processor architectures has given rise to the study of procesor-memory interconnections for the determination of better architectures. This paper concerns the development of the SSIP-sistema simulador de interconexao de processadores (processor interconnection simulating system) which allows the evaluation of different interconnection structures comparing its performance in order to provide parameters which would help the designer to define an architcture. A wide spectrum of systems may be evaluated, and their behaviour observed due to the features incorporated into the simulator program. The system modelling and the simulator program implementation are described. Some results that can bemore » obtained are shown, along with the discussion of their usefulness. 12 references.« less

  6. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  7. Fault tolerant onboard packet switch architecture for communication satellites: Shared memory per beam approach

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.

    1994-01-01

    The NASA Lewis Research Center is developing a multichannel communication signal processing satellite (MCSPS) system which will provide low data rate, direct to user, commercial communications services. The focus of current space segment developments is a flexible, high-throughput, fault tolerant onboard information switching processor. This information switching processor (ISP) is a destination-directed packet switch which performs both space and time switching to route user information among numerous user ground terminals. Through both industry study contracts and in-house investigations, several packet switching architectures were examined. A contention-free approach, the shared memory per beam architecture, was selected for implementation. The shared memory per beam architecture, fault tolerance insertion, implementation, and demonstration plans are described.

  8. Matrix-vector multiplication using digital partitioning for more accurate optical computing

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.

  9. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    PubMed

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  10. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  11. Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations

    DOEpatents

    Gschwind, Michael K [Chappaqua, NY

    2011-03-01

    Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

  12. A Cost Effective System Design Approach for Critical Space Systems

    NASA Technical Reports Server (NTRS)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically designed for convection cooling methods.

  13. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.

  14. Accelerating molecular dynamic simulation on the cell processor and Playstation 3.

    PubMed

    Luttmann, Edgar; Ensign, Daniel L; Vaidyanathan, Vishal; Houston, Mike; Rimon, Noam; Øland, Jeppe; Jayachandran, Guha; Friedrichs, Mark; Pande, Vijay S

    2009-01-30

    Implementation of molecular dynamics (MD) calculations on novel architectures will vastly increase its power to calculate the physical properties of complex systems. Herein, we detail algorithmic advances developed to accelerate MD simulations on the Cell processor, a commodity processor found in PlayStation 3 (PS3). In particular, we discuss issues regarding memory access versus computation and the types of calculations which are best suited for streaming processors such as the Cell, focusing on implicit solvation models. We conclude with a comparison of improved performance on the PS3's Cell processor over more traditional processors. (c) 2008 Wiley Periodicals, Inc.

  15. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  16. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  17. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  18. Diversification of Processors Based on Redundancy in Instruction Set

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shuichi; Sawada, Takashi; Hata, Hisashi

    By diversifying processor architecture, computer software is expected to be more resistant to plagiarism, analysis, and attacks. This study presents a new method to diversify instruction set architecture (ISA) by utilizing the redundancy in the instruction set. Our method is particularly suited for embedded systems implemented with FPGA technology, and realizes a genuine instruction set randomization, which has not been provided by the preceding studies. The evaluation results on four typical ISAs indicate that our scheme can provide a far larger degree of freedom than the preceding studies. Diversified processors based on MIPS architecture were actually implemented and evaluated with Xilinx Spartan-3 FPGA. The increase of logic scale was modest: 5.1% in Specialized design and 3.6% in RAM-mapped design. The performance overhead was also modest: 3.4% in Specialized design and 11.6% in RAM-mapped design. From these results, our scheme is regarded as a practical and promising way to secure FPGA-based embedded systems.

  19. Northeast Parallel Architectures Center (NPAC)

    DTIC Science & Technology

    1992-07-01

    Computational Techniques: Mapping receptor units to processors , using NEWS communication to model interaction in the inhibitory field Goal of the Research...algorithms for classical problems to take advantage of multiple processors . Experiments in probability that have been too time consuming on serial...machine and achieved speedups of 4 to 5 times with 11 processors . It is believed that a slightly better speedup is achievable. In the case of stuck

  20. Architectural Specialization for Inter-Iteration Loop Dependence Patterns

    DTIC Science & Technology

    2015-10-01

    Architectural Specialization for Inter-Iteration Loop Dependence Patterns Christopher Batten Computer Systems Laboratory School of Electrical and...Trends in Computer Architecture Transistors (Thousands) Frequency (MHz) Typical Power (W) MIPS R2K Intel P4 DEC Alpha 21264 Data collected by M...T as ks p er Jo ule ) Simple Processor Design Power Constraint High-Performance Architectures Embedded Architectures Design Performance

  1. Data flow language and interpreter for a reconfigurable distributed data processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, A.D.; Heath, J.R.

    1982-01-01

    An analytic language and an interpreter whereby an applications data flow graph may serve as an input to a reconfigurable distributed data processor is proposed. The architecture considered consists of a number of loosely coupled computing elements (CES) which may be linked to data and file memories through fully nonblocking interconnect networks. The real-time performance of such an architecture depends upon its ability to alter its topology in response to changes in application, asynchronous data rates and faults. Such a data flow language enhances the versatility of a reconfigurable architecture by allowing the user to specify the machine's topology atmore » a very high level. 11 references.« less

  2. Authenticating cache

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tyler Barratt; Urrea, Jorge Mario

    2012-06-01

    The aim of the Authenticating Cache architecture is to ensure that machine instructions in a Read Only Memory (ROM) are legitimate from the time the ROM image is signed (immediately after compilation) to the time they are placed in the cache for the processor to consume. The proposed architecture allows the detection of ROM image modifications during distribution or when it is loaded into memory. It also ensures that modified instructions will not execute in the processor-as the cache will not be loaded with a page that fails an integrity check. The authenticity of the instruction stream can also bemore » verified in this architecture. The combination of integrity and authenticity assurance greatly improves the security profile of a system.« less

  3. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.

    PubMed

    Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A

    2012-04-13

    Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.

  4. FPGA-Based, Self-Checking, Fault-Tolerant Computers

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2004-01-01

    A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.

  5. Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture

    NASA Astrophysics Data System (ADS)

    Etchells, R. D.; Grinberg, J.; Nudd, G. R.

    1981-12-01

    This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.

  6. Multiple core computer processor with globally-accessible local memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalf, John; Donofrio, David; Oliker, Leonid

    A multi-core computer processor including a plurality of processor cores interconnected in a Network-on-Chip (NoC) architecture, a plurality of caches, each of the plurality of caches being associated with one and only one of the plurality of processor cores, and a plurality of memories, each of the plurality of memories being associated with a different set of at least one of the plurality of processor cores and each of the plurality of memories being configured to be visible in a global memory address space such that the plurality of memories are visible to two or more of the plurality ofmore » processor cores.« less

  7. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  8. Architectures for reasoning in parallel

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.

    1989-01-01

    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN.

  9. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  10. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  11. Eigensolution of finite element problems in a completely connected parallel architecture

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Morel, Michael R.

    1989-01-01

    A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively.

  12. Right-Brain/Left-Brain Integrated Associative Processor Employing Convertible Multiple-Instruction-Stream Multiple-Data-Stream Elements

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hitoshi; Ogawa, Makoto; Shibata, Tadashi

    2005-04-01

    A very large scale integrated circuit (VLSI) architecture for a multiple-instruction-stream multiple-data-stream (MIMD) associative processor has been proposed. The processor employs an architecture that enables seamless switching from associative operations to arithmetic operations. The MIMD element is convertible to a regular central processing unit (CPU) while maintaining its high performance as an associative processor. Therefore, the MIMD associative processor can perform not only on-chip perception, i.e., searching for the vector most similar to an input vector throughout the on-chip cache memory, but also arithmetic and logic operations similar to those in ordinary CPUs, both simultaneously in parallel processing. Three key technologies have been developed to generate the MIMD element: associative-operation-and-arithmetic-operation switchable calculation units, a versatile register control scheme within the MIMD element for flexible operations, and a short instruction set for minimizing the memory size for program storage. Key circuit blocks were designed and fabricated using 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. As a result, the full-featured MIMD element is estimated to be 3 mm2, showing the feasibility of an 8-parallel-MIMD-element associative processor in a single chip of 5 mm× 5 mm.

  13. A Parallel Rendering Algorithm for MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.; Orloff, Tobias

    1991-01-01

    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.

  14. Highly parallel reconfigurable computer architecture for robotic computation having plural processor cells each having right and left ensembles of plural processors

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1994-01-01

    In a computer having a large number of single-instruction multiple data (SIMD) processors, each of the SIMD processors has two sets of three individual processor elements controlled by a master control unit and interconnected among a plurality of register file units where data is stored. The register files input and output data in synchronism with a minor cycle clock under control of two slave control units controlling the register file units connected to respective ones of the two sets of processor elements. Depending upon which ones of the register file units are enabled to store or transmit data during a particular minor clock cycle, the processor elements within an SIMD processor are connected in rings or in pipeline arrays, and may exchange data with the internal bus or with neighboring SIMD processors through interface units controlled by respective ones of the two slave control units.

  15. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, Michael S.; Strip, David R.

    1996-01-01

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.

  16. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  17. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  18. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  19. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  20. Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  1. The design of an adaptive predictive coder using a single-chip digital signal processor

    NASA Astrophysics Data System (ADS)

    Randolph, M. A.

    1985-01-01

    A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  4. Programmable architecture for pixel level processing tasks in lightweight strapdown IR seekers

    NASA Astrophysics Data System (ADS)

    Coates, James L.

    1993-06-01

    Typical processing tasks associated with missile IR seeker applications are described, and a straw man suite of algorithms is presented. A fully programmable multiprocessor architecture is realized on a multimedia video processor (MVP) developed by Texas Instruments. The MVP combines the elements of RISC, floating point, advanced DSPs, graphics processors, display and acquisition control, RAM, and external memory. Front end pixel level tasks typical of missile interceptor applications, operating on 256 x 256 sensor imagery, can be processed at frame rates exceeding 100 Hz in a single MVP chip.

  5. Design and analysis of microcontroller system using AMBA-Lite bus

    NASA Astrophysics Data System (ADS)

    Suan, Wang Hang; Bahari Jambek, Asral

    2017-11-01

    Advanced Microcontroller Bus Architecture (AMBA) is one of the well-designed on chip communication system. It is designed for right first-time development with many processor and peripherals. In this paper, the different family of AMBA architecture such as AXI, APB, AHB are reviewed. In this work, the AMBA-Lite is used and implemented with a few peripherals and an ARM processor. The work is simulated using Synopsys and demonstrated on the Digilent Nexys4 DDR board and the software use to synthesis the design is Vivado 2016.2.

  6. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  7. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    NASA Astrophysics Data System (ADS)

    Hristov, Ivan; Goranov, Goran; Hristova, Radoslava

    2018-02-01

    We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named "Ivy Bridge-EP") in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named "Knights Landing" (KNL). The results show 2 times better performance on KNL processor.

  8. Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results

    NASA Astrophysics Data System (ADS)

    Muller-Wilm, Uwe; Louis, Jerome; Richter, Rudolf; Gascon, Ferran; Niezette, Marc

    2013-12-01

    Sen2Core is a prototype processor for Sentinel-2 Level 2A product processing and formatting. The processor is developed for and with ESA and performs the tasks of Atmospheric Correction and Scene Classification of Level 1C input data. Level 2A outputs are: Bottom-Of- Atmosphere (BOA) corrected reflectance images, Aerosol Optical Thickness-, Water Vapour-, Scene Classification maps and Quality indicators, including cloud and snow probabilities. The Level 2A Product Formatting performed by the processor follows the specification of the Level 1C User Product.

  9. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  10. All-memristive neuromorphic computing with level-tuned neurons

    NASA Astrophysics Data System (ADS)

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-01

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  11. All-memristive neuromorphic computing with level-tuned neurons.

    PubMed

    Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos

    2016-09-02

    In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

  12. The Tera Multithreaded Architecture and Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  13. SALT: The Simulator for the Analysis of LWP Timing

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.; Rodrigues, Arun; Brockman, Jay

    2006-01-01

    With the emergence of new processor architectures that are highly multithreaded, and support features such as full/empty memory semantics and split-phase memory transactions, the need for a processor simulator to handle these features becomes apparent. This paper describes such a simulator, called SALT.

  14. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  15. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  16. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  17. Integrated 3-D vision system for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Hou, Kun M.; Shawky, Mohamed; Tu, Xiaowei

    1992-03-01

    Nowadays, autonomous vehicles have become a multidiscipline field. Its evolution is taking advantage of the recent technological progress in computer architectures. As the development tools became more sophisticated, the trend is being more specialized, or even dedicated architectures. In this paper, we will focus our interest on a parallel vision subsystem integrated in the overall system architecture. The system modules work in parallel, communicating through a hierarchical blackboard, an extension of the 'tuple space' from LINDA concepts, where they may exchange data or synchronization messages. The general purpose processing elements are of different skills, built around 40 MHz i860 Intel RISC processors for high level processing and pipelined systolic array processors based on PLAs or FPGAs for low-level processing.

  18. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  19. Rational calculation accuracy in acousto-optical matrix-vector processor

    NASA Astrophysics Data System (ADS)

    Oparin, V. V.; Tigin, Dmitry V.

    1994-01-01

    The high speed of parallel computations for a comparatively small-size processor and acceptable power consumption makes the usage of acousto-optic matrix-vector multiplier (AOMVM) attractive for processing of large amounts of information in real time. The limited accuracy of computations is an essential disadvantage of such a processor. The reduced accuracy requirements allow for considerable simplification of the AOMVM architecture and the reduction of the demands on its components.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D.A.; Grunwald, D.C.

    The spectrum of parallel processor designs can be divided into three sections according to the number and complexity of the processors. At one end there are simple, bit-serial processors. Any one of thee processors is of little value, but when it is coupled with many others, the aggregate computing power can be large. This approach to parallel processing can be likened to a colony of termites devouring a log. The most notable examples of this approach are the NASA/Goodyear Massively Parallel Processor, which has 16K one-bit processors, and the Thinking Machines Connection Machine, which has 64K one-bit processors. At themore » other end of the spectrum, a small number of processors, each built using the fastest available technology and the most sophisticated architecture, are combined. An example of this approach is the Cray X-MP. This type of parallel processing is akin to four woodmen attacking the log with chainsaws.« less

  1. National Airspace System (NAS) open system architecture and protocols

    DOT National Transportation Integrated Search

    2003-08-14

    This standard establishes the open systems data communications architecture and authorized protocol standards for the National Airspace System (NAS). The NAS will consist of various types of processors and communications networks procured from a vari...

  2. High-speed, automatic controller design considerations for integrating array processor, multi-microprocessor, and host computer system architectures

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.

    1985-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.

  3. Hierarchical algorithms for modeling the ocean on hierarchical architectures

    NASA Astrophysics Data System (ADS)

    Hill, C. N.

    2012-12-01

    This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.

  4. The science of computing - Parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1985-01-01

    Although parallel computation architectures have been known for computers since the 1920s, it was only in the 1970s that microelectronic components technologies advanced to the point where it became feasible to incorporate multiple processors in one machine. Concommitantly, the development of algorithms for parallel processing also lagged due to hardware limitations. The speed of computing with solid-state chips is limited by gate switching delays. The physical limit implies that a 1 Gflop operational speed is the maximum for sequential processors. A computer recently introduced features a 'hypercube' architecture with 128 processors connected in networks at 5, 6 or 7 points per grid, depending on the design choice. Its computing speed rivals that of supercomputers, but at a fraction of the cost. The added speed with less hardware is due to parallel processing, which utilizes algorithms representing different parts of an equation that can be broken into simpler statements and processed simultaneously. Present, highly developed computer languages like FORTRAN, PASCAL, COBOL, etc., rely on sequential instructions. Thus, increased emphasis will now be directed at parallel processing algorithms to exploit the new architectures.

  5. Multiprocessor architectural study

    NASA Technical Reports Server (NTRS)

    Kosmala, A. L.; Stanten, S. F.; Vandever, W. H.

    1972-01-01

    An architectural design study was made of a multiprocessor computing system intended to meet functional and performance specifications appropriate to a manned space station application. Intermetrics, previous experience, and accumulated knowledge of the multiprocessor field is used to generate a baseline philosophy for the design of a future SUMC* multiprocessor. Interrupts are defined and the crucial questions of interrupt structure, such as processor selection and response time, are discussed. Memory hierarchy and performance is discussed extensively with particular attention to the design approach which utilizes a cache memory associated with each processor. The ability of an individual processor to approach its theoretical maximum performance is then analyzed in terms of a hit ratio. Memory management is envisioned as a virtual memory system implemented either through segmentation or paging. Addressing is discussed in terms of various register design adopted by current computers and those of advanced design.

  6. A microprocessor based high speed packet switch for satellite communications

    NASA Technical Reports Server (NTRS)

    Arozullah, M.; Crist, S. C.

    1980-01-01

    The architectures of a single processor, a three processor, and a multiple processor system are described. The hardware circuits, and software routines required for implementing the three and multiple processor designs are presented. A bit-slice microprocessor was designed and microprogrammed. Maximum throughput was calculated for all three designs. Queue theoretic models for these three designs were developed and utilized to obtain analytical expressions for the average waiting times, overall average response times and average queue sizes. From these expressions, graphs were obtained showing the effect on the system performance of a number of design parameters.

  7. Design of a MIMD neural network processor

    NASA Astrophysics Data System (ADS)

    Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.

    1994-03-01

    The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.

  8. Scan line graphics generation on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1988-01-01

    Described here is how researchers implemented a scan line graphics generation algorithm on the Massively Parallel Processor (MPP). Pixels are computed in parallel and their results are applied to the Z buffer in large groups. To perform pixel value calculations, facilitate load balancing across the processors and apply the results to the Z buffer efficiently in parallel requires special virtual routing (sort computation) techniques developed by the author especially for use on single-instruction multiple-data (SIMD) architectures.

  9. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

  10. Reconfigurable tree architectures using subtree oriented fault tolerance

    NASA Technical Reports Server (NTRS)

    Lowrie, Matthew B.

    1987-01-01

    An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.

  11. Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.D.; Keyes, D.E.

    1988-03-01

    The authors discuss the parallel implementation of preconditioned conjugate gradient (PCG)-based domain decomposition techniques for self-adjoint elliptic partial differential equations in two dimensions on several architectures. The complexity of these methods is described on a variety of message-passing parallel computers as a function of the size of the problem, number of processors and relative communication speeds of the processors. They show that communication startups are very important, and that even the small amount of global communication in these methods can significantly reduce the performance of many message-passing architectures.

  12. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  13. Advanced computer architecture for large-scale real-time applications.

    DOT National Transportation Integrated Search

    1973-04-01

    Air traffic control automation is identified as a crucial problem which provides a complex, real-time computer application environment. A novel computer architecture in the form of a pipeline associative processor is conceived to achieve greater perf...

  14. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, M.S.; Strip, D.R.

    1996-01-30

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.

  15. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  16. Processor Emulator with Benchmark Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, G. Scott; Pearce, Roger; Gokhale, Maya

    2015-11-13

    A processor emulator and a suite of benchmark applications have been developed to assist in characterizing the performance of data-centric workloads on current and future computer architectures. Some of the applications have been collected from other open source projects. For more details on the emulator and an example of its usage, see reference [1].

  17. Sentient networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A bettermore » idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.« less

  18. Programmable Remapper with Single Flow Architecture

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E. (Inventor)

    1993-01-01

    An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.

  19. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.

    PubMed

    Zierke, Stephanie; Bakos, Jason D

    2010-04-12

    Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).

  20. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  1. Electro-Optic Computing Architectures. Volume I

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW

  2. Image Understanding Architecture

    DTIC Science & Technology

    1991-09-01

    architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers

  3. Rapid recovery from transient faults in the fault-tolerant processor with fault-tolerant shared memory

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Butler, Bryan P.

    1990-01-01

    The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.

  4. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  5. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  6. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  7. Dense and Sparse Matrix Operations on the Cell Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid

    2005-05-01

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, usingmore » a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.« less

  8. VLSI processors for signal detection in SETI

    NASA Technical Reports Server (NTRS)

    Duluk, J. F.; Linscott, I. R.; Peterson, A. M.; Burr, J.; Ekroot, B.; Twicken, J.

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  9. VLSI processors for signal detection in SETI.

    PubMed

    Duluk, J F; Linscott, I R; Peterson, A M; Burr, J; Ekroot, B; Twicken, J

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  10. Parallel eigenanalysis of finite element models in a completely connected architecture

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Morel, M. R.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.

  11. System support software for the Space Ultrareliable Modular Computer (SUMC)

    NASA Technical Reports Server (NTRS)

    Hill, T. E.; Hintze, G. C.; Hodges, B. C.; Austin, F. A.; Buckles, B. P.; Curran, R. T.; Lackey, J. D.; Payne, R. E.

    1974-01-01

    The highly transportable programming system designed and implemented to support the development of software for the Space Ultrareliable Modular Computer (SUMC) is described. The SUMC system support software consists of program modules called processors. The initial set of processors consists of the supervisor, the general purpose assembler for SUMC instruction and microcode input, linkage editors, an instruction level simulator, a microcode grid print processor, and user oriented utility programs. A FORTRAN 4 compiler is undergoing development. The design facilitates the addition of new processors with a minimum effort and provides the user quasi host independence on the ground based operational software development computer. Additional capability is provided to accommodate variations in the SUMC architecture without consequent major modifications in the initial processors.

  12. ORNL Cray X1 evaluation status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, P.K.; Alexander, R.A.; Apra, E.

    2004-05-01

    On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of themore » architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of photon echo run 8 times faster than previously achieved. Even at 256 processors, the Cray X1 system is already outperforming other supercomputers with thousands of processors for a certain class of applications such as climate modeling and some fusion applications. This evaluation is the outcome of a number of meetings with both high-performance computing (HPC) system vendors and application experts over the past 9 months and has received broad-based support from the scientific community and other agencies.« less

  13. The GF-3 SAR Data Processor

    PubMed Central

    Han, Bing; Ding, Chibiao; Zhong, Lihua; Liu, Jiayin; Qiu, Xiaolan; Hu, Yuxin; Lei, Bin

    2018-01-01

    The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format. PMID:29534464

  14. Real time processor for array speckle interferometry

    NASA Astrophysics Data System (ADS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  15. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  16. The Minerva Multi-Microprocessor.

    DTIC Science & Technology

    A multiprocessor system is described which is an experiment in low cost, extensible, multiprocessor architectures. Global issues such as inclusion of a central bus, design of the bus arbiter, and methods of interrupt handling are considered. The system initially includes two processor types, based on microprocessors, and these are discussed. Methods for reducing processor demand for the central bus are described.

  17. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  18. The AIS-5000 parallel processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, L.A.; Wilson, S.S.

    1988-05-01

    The AIS-5000 is a commercially available massively parallel processor which has been designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. This architecture has superior cost/performance characteristics than two-dimensional mesh-connected systems. The design of the processing elements and their interconnections as well as the software used to program the system allow a wide variety of algorithms and applications to be implemented. In thismore » paper, the overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is presented. This model is supported by the AIS-5000 hardware and software and allows the system to be treated as a full-image-size, two-dimensional, mesh-connected parallel processor. Performance bench marks are given for certain simple and complex functions.« less

  19. Manyscale Computing for Sensor Processing in Support of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.

    2014-09-01

    Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.

  20. Performance Evaluation of an Intel Haswell- and Ivy Bridge-Based Supercomputer Using Scientific and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John

    2016-01-01

    We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.

  1. Performance prediction: A case study using a multi-ring KSR-1 machine

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhu, Jianping

    1995-01-01

    While computers with tens of thousands of processors have successfully delivered high performance power for solving some of the so-called 'grand-challenge' applications, the notion of scalability is becoming an important metric in the evaluation of parallel machine architectures and algorithms. In this study, the prediction of scalability and its application are carefully investigated. A simple formula is presented to show the relation between scalability, single processor computing power, and degradation of parallelism. A case study is conducted on a multi-ring KSR1 shared virtual memory machine. Experimental and theoretical results show that the influence of topology variation of an architecture is predictable. Therefore, the performance of an algorithm on a sophisticated, heirarchical architecture can be predicted and the best algorithm-machine combination can be selected for a given application.

  2. Novel processor architecture for onboard infrared sensors

    NASA Astrophysics Data System (ADS)

    Hihara, Hiroki; Iwasaki, Akira; Tamagawa, Nobuo; Kuribayashi, Mitsunobu; Hashimoto, Masanori; Mitsuyama, Yukio; Ochi, Hiroyuki; Onodera, Hidetoshi; Kanbara, Hiroyuki; Wakabayashi, Kazutoshi; Tada, Munehiro

    2016-09-01

    Infrared sensor system is a major concern for inter-planetary missions that investigate the nature and the formation processes of planets and asteroids. The infrared sensor system requires signal preprocessing functions that compensate for the intensity of infrared image sensors to get high quality data and high compression ratio through the limited capacity of transmission channels towards ground stations. For those implementations, combinations of Field Programmable Gate Arrays (FPGAs) and microprocessors are employed by AKATSUKI, the Venus Climate Orbiter, and HAYABUSA2, the asteroid probe. On the other hand, much smaller size and lower power consumption are demanded for future missions to accommodate more sensors. To fulfill this future demand, we developed a novel processor architecture which consists of reconfigurable cluster cores and programmable-logic cells with complementary atom switches. The complementary atom switches enable hardware programming without configuration memories, and thus soft-error on logic circuit connection is completely eliminated. This is a noteworthy advantage for space applications which cannot be found in conventional re-writable FPGAs. Almost one-tenth of lower power consumption is expected compared to conventional re-writable FPGAs because of the elimination of configuration memories. The proposed processor architecture can be reconfigured by behavioral synthesis with higher level language specification. Consequently, compensation functions are implemented in a single chip without accommodating program memories, which is accompanied with conventional microprocessors, while maintaining the comparable performance. This enables us to embed a processor element on each infrared signal detector output channel.

  3. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  4. A fast, programmable hardware architecture for the processing of spaceborne SAR data

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1984-01-01

    The development of high-throughput SAR processors (HTSPs) for the spaceborne SARs being planned by NASA, ESA, DFVLR, NASDA, and the Canadian Radarsat Project is discussed. The basic parameters and data-processing requirements of the SARs are listed in tables, and the principal problems are identified as real-operations rates in excess of 2 x 10 to the 9th/sec, I/O rates in excess of 8 x 10 to the 6th samples/sec, and control computation loads (as for range cell migration correction) as high as 1.4 x 10 to the 6th instructions/sec. A number of possible HTSP architectures are reviewed; host/array-processor (H/AP) and distributed-control/data-path (DCDP) architectures are examined in detail and illustrated with block diagrams; and a cost/speed comparison of these two architectures is presented. The H/AP approach is found to be adequate and economical for speeds below 1/200 of real time, while DCDP is more cost-effective above 1/50 of real time.

  5. The ATLAS Level-1 Calorimeter Trigger: PreProcessor implementation and performance

    NASA Astrophysics Data System (ADS)

    Åsman, B.; Achenbach, R.; Allbrooke, B. M. M.; Anders, G.; Andrei, V.; Büscher, V.; Bansil, H. S.; Barnett, B. M.; Bauss, B.; Bendtz, K.; Bohm, C.; Bracinik, J.; Brawn, I. P.; Brock, R.; Buttinger, W.; Caputo, R.; Caughron, S.; Cerrito, L.; Charlton, D. G.; Childers, J. T.; Curtis, C. J.; Daniells, A. C.; Davis, A. O.; Davygora, Y.; Dorn, M.; Eckweiler, S.; Edmunds, D.; Edwards, J. P.; Eisenhandler, E.; Ellis, K.; Ermoline, Y.; Föhlisch, F.; Faulkner, P. J. W.; Fedorko, W.; Fleckner, J.; French, S. T.; Gee, C. N. P.; Gillman, A. R.; Goeringer, C.; Hülsing, T.; Hadley, D. R.; Hanke, P.; Hauser, R.; Heim, S.; Hellman, S.; Hickling, R. S.; Hidvégi, A.; Hillier, S. J.; Hofmann, J. I.; Hristova, I.; Ji, W.; Johansen, M.; Keller, M.; Khomich, A.; Kluge, E.-E.; Koll, J.; Laier, H.; Landon, M. P. J.; Lang, V. S.; Laurens, P.; Lepold, F.; Lilley, J. N.; Linnemann, J. T.; Müller, F.; Müller, T.; Mahboubi, K.; Martin, T. A.; Mass, A.; Meier, K.; Meyer, C.; Middleton, R. P.; Moa, T.; Moritz, S.; Morris, J. D.; Mudd, R. D.; Narayan, R.; zur Nedden, M.; Neusiedl, A.; Newman, P. R.; Nikiforov, A.; Ohm, C. C.; Perera, V. J. O.; Pfeiffer, U.; Plucinski, P.; Poddar, S.; Prieur, D. P. F.; Qian, W.; Rieck, P.; Rizvi, E.; Sankey, D. P. C.; Schäfer, U.; Scharf, V.; Schmitt, K.; Schröder, C.; Schultz-Coulon, H.-C.; Schumacher, C.; Schwienhorst, R.; Silverstein, S. B.; Simioni, E.; Snidero, G.; Staley, R. J.; Stamen, R.; Stock, P.; Stockton, M. C.; Tan, C. L. A.; Tapprogge, S.; Thomas, J. P.; Thompson, P. D.; Thomson, M.; True, P.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Weber, P.; Wessels, M.; Wiglesworth, C.; Williams, S. L.

    2012-12-01

    The PreProcessor system of the ATLAS Level-1 Calorimeter Trigger (L1Calo) receives about 7200 analogue signals from the electromagnetic and hadronic components of the calorimetric detector system. Lateral division results in cells which are pre-summed to so-called Trigger Towers of size 0.1 × 0.1 along azimuth (phi) and pseudorapidity (η). The received calorimeter signals represent deposits of transverse energy. The system consists of 124 individual PreProcessor modules that digitise the input signals for each LHC collision, and provide energy and timing information to the digital processors of the L1Calo system, which identify physics objects forming much of the basis for the full ATLAS first level trigger decision. This paper describes the architecture of the PreProcessor, its hardware realisation, functionality, and performance.

  6. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.

  7. Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    NASA Technical Reports Server (NTRS)

    Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.

    1984-01-01

    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.

  8. Scheduling time-critical graphics on multiple processors

    NASA Technical Reports Server (NTRS)

    Meyer, Tom W.; Hughes, John F.

    1995-01-01

    This paper describes an algorithm for the scheduling of time-critical rendering and computation tasks on single- and multiple-processor architectures, with minimal pipelining. It was developed to manage scientific visualization scenes consisting of hundreds of objects, each of which can be computed and displayed at thousands of possible resolution levels. The algorithm generates the time-critical schedule using progressive-refinement techniques; it always returns a feasible schedule and, when allowed to run to completion, produces a near-optimal schedule which takes advantage of almost the entire multiple-processor system.

  9. Software-defined reconfigurable microwave photonics processor.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José

    2015-06-01

    We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.

  10. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  11. Optimal processor assignment for pipeline computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Simha, Rahul; Choudhury, Alok N.; Narahari, Bhagirath

    1991-01-01

    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered.

  12. A wideband software reconfigurable modem

    NASA Astrophysics Data System (ADS)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  13. Efficient parallel architecture for highly coupled real-time linear system applications

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo

    1988-01-01

    A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.

  14. Evolutionary Telemetry and Command Processor (TCP) architecture

    NASA Technical Reports Server (NTRS)

    Schneider, John R.

    1992-01-01

    A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.

  15. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  16. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  17. Gilgamesh: A Multithreaded Processor-In-Memory Architecture for Petaflops Computing

    NASA Technical Reports Server (NTRS)

    Sterling, T. L.; Zima, H. P.

    2002-01-01

    Processor-in-Memory (PIM) architectures avoid the von Neumann bottleneck in conventional machines by integrating high-density DRAM and CMOS logic on the same chip. Parallel systems based on this new technology are expected to provide higher scalability, adaptability, robustness, fault tolerance and lower power consumption than current MPPs or commodity clusters. In this paper we describe the design of Gilgamesh, a PIM-based massively parallel architecture, and elements of its execution model. Gilgamesh extends existing PIM capabilities by incorporating advanced mechanisms for virtualizing tasks and data and providing adaptive resource management for load balancing and latency tolerance. The Gilgamesh execution model is based on macroservers, a middleware layer which supports object-based runtime management of data and threads allowing explicit and dynamic control of locality and load balancing. The paper concludes with a discussion of related research activities and an outlook to future work.

  18. An efficient optical architecture for sparsely connected neural networks

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  19. Integrated optical circuits for numerical computation

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  20. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, wemore » introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.« less

  1. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.

    PubMed

    Bhandarkar, S M; Chirravuri, S; Arnold, J

    1996-01-01

    Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.

  2. Simulink/PARS Integration Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacaliuc, B.; Nakhaee, N.

    2013-12-18

    The state of the art for signal processor hardware has far out-paced the development tools for placing applications on that hardware. In addition, signal processors are available in a variety of architectures, each uniquely capable of handling specific types of signal processing efficiently. With these processors becoming smaller and demanding less power, it has become possible to group multiple processors, a heterogeneous set of processors, into single systems. Different portions of the desired problem set can be assigned to different processor types as appropriate. As software development tools do not keep pace with these processors, especially when multiple processors ofmore » different types are used, a method is needed to enable software code portability among multiple processors and multiple types of processors along with their respective software environments. Sundance DSP, Inc. has developed a software toolkit called “PARS”, whose objective is to provide a framework that uses suites of tools provided by different vendors, along with modeling tools and a real time operating system, to build an application that spans different processor types. The software language used to express the behavior of the system is a very high level modeling language, “Simulink”, a MathWorks product. ORNL has used this toolkit to effectively implement several deliverables. This CRADA describes this collaboration between ORNL and Sundance DSP, Inc.« less

  3. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.; Lam, Phil; Jaffray, David A.

    2012-02-01

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMAR_GET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.

  4. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  5. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  6. Multitask neurovision processor with extensive feedback and feedforward connections

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1991-11-01

    A multi-task neuro-vision parameter which performs a variety of information processing operations associated with the early stages of biological vision is presented. The network architecture of this neuro-vision processor, called the positive-negative (PN) neural processor, is loosely based on the neural activity fields exhibited by thalamic and cortical nervous tissue layers. The computational operation performed by the processor arises from the strength of the recurrent feedback among the numerous positive and negative neural computing units. By adjusting the feedback connections it is possible to generate diverse dynamic behavior that may be used for short-term visual memory (STVM), spatio-temporal filtering (STF), and pulse frequency modulation (PFM). The information attributes that are to be processes may be regulated by modifying the feedforward connections from the signal space to the neural processor.

  7. Petri net model for analysis of concurrently processed complex algorithms

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1986-01-01

    This paper presents a Petri-net model suitable for analyzing the concurrent processing of computationally complex algorithms. The decomposed operations are to be processed in a multiple processor, data driven architecture. Of particular interest is the application of the model to both the description of the data/control flow of a particular algorithm, and to the general specification of the data driven architecture. A candidate architecture is also presented.

  8. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  9. Document Image Parsing and Understanding using Neuromorphic Architecture

    DTIC Science & Technology

    2015-03-01

    processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel

  10. 30/20 GHz communications systems baseband processor development

    NASA Astrophysics Data System (ADS)

    Brown, L.; Sabourin, D.; Stilwell, J.; McCallister, R.; Borota, M.

    The architecture and system design concepts for a commercial satellite communications system planned for the 1990's has been developed. The system provides data communications between the individual users via trunking and customer premise service terminals utilizing a central switching satellite operating in a time-division multiple-access mode. Baseband processing is employed to route and control traffic on an individual message basis while providing significant advantages in improved link margins and system flexibility. Key technology developments required to prove the flight readiness of the baseband processor design are being verified in the baseband processor proof-of-concept model described herein.

  11. 30/20 GHz communications systems baseband processor development

    NASA Technical Reports Server (NTRS)

    Brown, L.; Sabourin, D.; Stilwell, J.; Mccallister, R.; Borota, M.

    1982-01-01

    The architecture and system design concepts for a commercial satellite communications system planned for the 1990's has been developed. The system provides data communications between the individual users via trunking and customer premise service terminals utilizing a central switching satellite operating in a time-division multiple-access mode. Baseband processing is employed to route and control traffic on an individual message basis while providing significant advantages in improved link margins and system flexibility. Key technology developments required to prove the flight readiness of the baseband processor design are being verified in the baseband processor proof-of-concept model described herein.

  12. Study of a programmable high speed processor for use on-board satellites

    NASA Astrophysics Data System (ADS)

    Degavre, J. Cl.; Okkes, R.; Gaillat, G.

    The availability of VLSI programmable devices will significantly enhance satellite on-board data processing capabilities. A case study is presented which indicates that computation-intensive processing applications requiring the execution of 100 megainstructions/sec are within the CD power constraints of satellites. It is noted that the current progress in semicustom design technique development and in achievable gate array densities, together with the recent announcement of improved monochip processors, are encouraging the development of an on-board programmable processor architecture able to associate the devices that will appear in communication and military markets.

  13. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple-input gates, and sequential and non-sequential Boolean expressions are presented and discussed. The operation of each design is simply understood by a bullet train traveling at the speed of light on a railroad system preconditioned by the crossover states predetermined by the control inputs. The presented designs allow for optical processing of the information eliminating the need to convert it, back and forth, to an electronic signal for processing purposes. All gates with a truth table, including for example Fredkin, Toffoli, testable reversible logic, and threshold logic gates, can be designed and implemented using the railroad architecture. That includes any future gates not known today. Those designs and the quantum gates are not discussed in this paper.

  14. Stencils and problem partitionings: Their influence on the performance of multiple processor systems

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Adams, L. M.; Patrick, M. L.

    1986-01-01

    Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.

  15. Hierarchial parallel computer architecture defined by computational multidisciplinary mechanics

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Gute, Doug; Johnson, Keith

    1989-01-01

    The goal is to develop an architecture for parallel processors enabling optimal handling of multi-disciplinary computation of fluid-solid simulations employing finite element and difference schemes. The goals, philosphical and modeling directions, static and dynamic poly trees, example problems, interpolative reduction, the impact on solvers are shown in viewgraph form.

  16. Multi-Rate Secure Processor Terminal Architecture Study. Volume 1. Terminal Architecture.

    DTIC Science & Technology

    1981-06-01

    together because of the intimate relationship that must be established between the KG devices and the control of those devices to satisy security...9.6 kilobit for ti’.:., pass filter funtion because it’s time span is larger. The resultdot loading is estimated at 260 microseconds out of 833

  17. A Survey of Some Approaches to Distributed Data Base & Distributed File System Architecture.

    DTIC Science & Technology

    1980-01-01

    BUS POD A DD A 12 12 A = A Cell D = D Cell Figure 7-1: MUFFIN logical architecture - 45 - MUFI January 1980 ".-.Bus Interface V Conventional Processor...and Applied Mathematics (14), * December, 1966. [Kimbleton 791 Kimbleton, Stephen; Wang, Pearl; and Fong, Elizabeth. XNDM: An Experimental Network

  18. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  19. Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.

  20. Optimal expression evaluation for data parallel architectures

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    A data parallel machine represents an array or other composite data structure by allocating one processor (at least conceptually) per data item. A pointwise operation can be performed between two such arrays in unit time, provided their corresponding elements are allocated in the same processors. If the arrays are not aligned in this fashion, the cost of moving one or both of them is part of the cost of the operation. The choice of where to perform the operation then affects this cost. If an expression with several operands is to be evaluated, there may be many choices of where to perform the intermediate operations. An efficient algorithm is given to find the minimum-cost way to evaluate an expression, for several different data parallel architectures. This algorithm applies to any architecture in which the metric describing the cost of moving an array is robust. This encompasses most of the common data parallel communication architectures, including meshes of arbitrary dimension and hypercubes. Remarks are made on several variations of the problem, some of which are solved and some of which remain open.

  1. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  2. Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR

    NASA Astrophysics Data System (ADS)

    Carroll-Nellenback, Jonathan J.; Shroyer, Brandon; Frank, Adam; Ding, Chen

    2013-03-01

    Current adaptive mesh refinement (AMR) simulations require algorithms that are highly parallelized and manage memory efficiently. As compute engines grow larger, AMR simulations will require algorithms that achieve new levels of efficient parallelization and memory management. We have attempted to employ new techniques to achieve both of these goals. Patch or grid based AMR often employs ghost cells to decouple the hyperbolic advances of each grid on a given refinement level. This decoupling allows each grid to be advanced independently. In AstroBEAR we utilize this independence by threading the grid advances on each level with preference going to the finer level grids. This allows for global load balancing instead of level by level load balancing and allows for greater parallelization across both physical space and AMR level. Threading of level advances can also improve performance by interleaving communication with computation, especially in deep simulations with many levels of refinement. While we see improvements of up to 30% on deep simulations run on a few cores, the speedup is typically more modest (5-20%) for larger scale simulations. To improve memory management we have employed a distributed tree algorithm that requires processors to only store and communicate local sections of the AMR tree structure with neighboring processors. Using this distributed approach we are able to get reasonable scaling efficiency (>80%) out to 12288 cores and up to 8 levels of AMR - independent of the use of threading.

  3. Design of RISC Processor Using VHDL and Cadence

    NASA Astrophysics Data System (ADS)

    Moslehpour, Saeid; Puliroju, Chandrasekhar; Abu-Aisheh, Akram

    The project deals about development of a basic RISC processor. The processor is designed with basic architecture consisting of internal modules like clock generator, memory, program counter, instruction register, accumulator, arithmetic and logic unit and decoder. This processor is mainly used for simple general purpose like arithmetic operations and which can be further developed for general purpose processor by increasing the size of the instruction register. The processor is designed in VHDL by using Xilinx 8.1i version. The present project also serves as an application of the knowledge gained from past studies of the PSPICE program. The study will show how PSPICE can be used to simplify massive complex circuits designed in VHDL Synthesis. The purpose of the project is to explore the designed RISC model piece by piece, examine and understand the Input/ Output pins, and to show how the VHDL synthesis code can be converted to a simplified PSPICE model. The project will also serve as a collection of various research materials about the pieces of the circuit.

  4. Fault tolerant, radiation hard, high performance digital signal processor

    NASA Technical Reports Server (NTRS)

    Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke

    1990-01-01

    An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.

  5. Two-dimensional acousto-optic processor using circular antenna array with a Butler matrix

    NASA Astrophysics Data System (ADS)

    Lee, Jim P.

    1992-09-01

    A two-dimensional acousto-optic signal processor is shown to be useful for providing simultaneous spectrum analysis and direction finding of radar signals over an instantaneous field of view of 360 deg. A system analysis with emphasis on the direction-finding aspect of this new architecture is presented. The peak location of the optical pattern provides a direct measure of bearing, independent of signal frequency. In addition, the sidelobe levels of the pattern can be effectively reduced using amplitude weighting. Performance parameters, such as mainlobe beamwidth, peak-sidelobe level, and pointing error, are analyzed as a function of the Gaussian laser illumination profile and the number of channels. Finally, a comparison with a linear antenna array architecture is also discussed.

  6. Techniques for the rapid display and manipulation of 3-D biomedical data.

    PubMed

    Goldwasser, S M; Reynolds, R A; Talton, D A; Walsh, E S

    1988-01-01

    The use of fully interactive 3-D workstations with true real-time performance will become increasingly common as technology matures and economical commercial systems become available. This paper provides a comprehensive introduction to high speed approaches to the display and manipulation of 3-D medical objects obtained from tomographic data acquisition systems such as CT, MR, and PET. A variety of techniques are outlined including the use of software on conventional minicomputers, hardware assist devices such as array processors and programmable frame buffers, and special purpose computer architecture for dedicated high performance systems. While both algorithms and architectures are addressed, the major theme centers around the utilization of hardware-based approaches including parallel processors for the implementation of true real-time systems.

  7. High-performance multiprocessor architecture for a 3-D lattice gas model

    NASA Technical Reports Server (NTRS)

    Lee, F.; Flynn, M.; Morf, M.

    1991-01-01

    The lattice gas method has recently emerged as a promising discrete particle simulation method in areas such as fluid dynamics. We present a very high-performance scalable multiprocessor architecture, called ALGE, proposed for the simulation of a realistic 3-D lattice gas model, Henon's 24-bit FCHC isometric model. Each of these VLSI processors is as powerful as a CRAY-2 for this application. ALGE is scalable in the sense that it achieves linear speedup for both fixed and increasing problem sizes with more processors. The core computation of a lattice gas model consists of many repetitions of two alternating phases: particle collision and propagation. Functional decomposition by symmetry group and virtual move are the respective keys to efficient implementation of collision and propagation.

  8. Spacecraft on-board SAR image generation for EOS-type missions

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.; Assal, H. M.; Vesecky, J. F.

    1987-01-01

    Spacecraft on-board synthetic aperture radar (SAR) image generation is an extremely difficult problem because of the requirements for high computational rates (usually on the order of Giga-operations per second), high reliability (some missions last up to 10 years), and low power dissipation and mass (typically less than 500 watts and 100 Kilograms). Recently, a JPL study was performed to assess the feasibility of on-board SAR image generation for EOS-type missions. This paper summarizes the results of that study. Specifically, it proposes a processor architecture using a VLSI time-domain parallel array for azimuth correlation. Using available space qualifiable technology to implement the proposed architecture, an on-board SAR processor having acceptable power and mass characteristics appears feasible for EOS-type applications.

  9. Support for Diagnosis of Custom Computer Hardware

    NASA Technical Reports Server (NTRS)

    Molock, Dwaine S.

    2008-01-01

    The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units. The software is designed to be used on diverse NASA projects, and can be customized for use with different processors and interfaces. The routines are supported, regardless of the architecture of a processor that one seeks to diagnose. The present version of the software is configured for Coldfire processors on the Subsystem Data Node processor boards of the Solar Dynamics Observatory. There is also support for the software with respect to Mongoose V, RAD750, and PPC405 processors or their equivalents.

  10. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  11. Assessing Server Fault Tolerance and Disaster Recovery Implementation in Thin Client Architectures

    DTIC Science & Technology

    2007-09-01

    server • Windows 2003 server Processor AMD Geode GX Memory 512MB Flash/256MB DDR RAM I/O/Peripheral Support • VGA-type video output (DB-15...2000 Advanced Server Processor AMD Geode NX 1500 Memory • 256MB or 512MB or 1GB DDR SDRAM • 1GB or 512MB Flash I/O/Peripheral Support • SiS741 GX

  12. Computer-Aided Fabrication of Integrated Circuits

    DTIC Science & Technology

    1989-09-30

    baseline CMOS process. One result of this effort was the identification of several residual bugs in the PATRAN graphics processor . The vendor promises...virtual memory. The internal Nubus architecture uses a 32-bit LISP processor running at 10 megahertz (100 ns clock period). An ethernet controller is...For different patterns, we need different masks for the photo step, and for dif- ferent micro -structures of the wafers, we need different etching

  13. High performance, low cost, self-contained, multipurpose PC based ground systems

    NASA Technical Reports Server (NTRS)

    Forman, Michael; Nickum, William; Troendly, Gregory

    1993-01-01

    The use of embedded processors greatly enhances the capabilities of personal computers when used for telemetry processing and command control center functions. Parallel architectures based on the use of transputers are shown to be very versatile and reusable, and the synergism between the PC and the embedded processor with transputers results in single unit, low cost workstations of 20 less than MIPS less than or equal to 1000.

  14. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  15. Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel® Xeon Phi™ Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Jacquelin, Mathias; De Jong, Wibe A.

    2017-10-20

    Ab-initio Molecular Dynamics (AIMD) methods are an important class of algorithms, as they enable scientists to understand the chemistry and dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. Many-core architectures such as the Intel® Xeon Phi™ processor are an interesting and promising target for these algorithms, as they can provide the computational power that is needed to solve interesting problems in chemistry. In this paper, we describe the efforts of refactoring the existing AIMD plane-wave method of NWChem from an MPI-only implementation to a scalable, hybrid code that employs MPI and OpenMP tomore » exploit the capabilities of current and future many-core architectures. We describe the optimizations required to get close to optimal performance for the multiplication of the tall-and-skinny matrices that form the core of the computational algorithm. We present strong scaling results on the complete AIMD simulation for a test case that simulates 256 water molecules and that strong-scales well on a cluster of 1024 nodes of Intel Xeon Phi processors. We compare the performance obtained with a cluster of dual-socket Intel® Xeon® E5–2698v3 processors.« less

  16. Parallel machine architecture for production rule systems

    DOEpatents

    Allen, Jr., John D.; Butler, Philip L.

    1989-01-01

    A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.

  17. Unaligned instruction relocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less

  18. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  19. Unaligned instruction relocation

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2018-01-23

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.

  20. Parallel processor for real-time structural control

    NASA Astrophysics Data System (ADS)

    Tise, Bert L.

    1993-07-01

    A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-to-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection to host computer, parallelizing code generator, and look- up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating- point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An OpenWindows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.

  1. Parallelizing ATLAS Reconstruction and Simulation: Issues and Optimization Solutions for Scaling on Multi- and Many-CPU Platforms

    NASA Astrophysics Data System (ADS)

    Leggett, C.; Binet, S.; Jackson, K.; Levinthal, D.; Tatarkhanov, M.; Yao, Y.

    2011-12-01

    Thermal limitations have forced CPU manufacturers to shift from simply increasing clock speeds to improve processor performance, to producing chip designs with multi- and many-core architectures. Further the cores themselves can run multiple threads as a zero overhead context switch allowing low level resource sharing (Intel Hyperthreading). To maximize bandwidth and minimize memory latency, memory access has become non uniform (NUMA). As manufacturers add more cores to each chip, a careful understanding of the underlying architecture is required in order to fully utilize the available resources. We present AthenaMP and the Atlas event loop manager, the driver of the simulation and reconstruction engines, which have been rewritten to make use of multiple cores, by means of event based parallelism, and final stage I/O synchronization. However, initial studies on 8 andl6 core Intel architectures have shown marked non-linearities as parallel process counts increase, with as much as 30% reductions in event throughput in some scenarios. Since the Intel Nehalem architecture (both Gainestown and Westmere) will be the most common choice for the next round of hardware procurements, an understanding of these scaling issues is essential. Using hardware based event counters and Intel's Performance Tuning Utility, we have studied the performance bottlenecks at the hardware level, and discovered optimization schemes to maximize processor throughput. We have also produced optimization mechanisms, common to all large experiments, that address the extreme nature of today's HEP code, which due to it's size, places huge burdens on the memory infrastructure of today's processors.

  2. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  3. A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures

    ERIC Educational Resources Information Center

    Ziwisky, Michael; Persohn, Kyle; Brylow, Dennis

    2013-01-01

    We present "Xipx," the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives…

  4. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  5. Mapping of H.264 decoding on a multiprocessor architecture

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.; Gelderblom, Rob H.

    2003-05-01

    Due to the increasing significance of development costs in the competitive domain of high-volume consumer electronics, generic solutions are required to enable reuse of the design effort and to increase the potential market volume. As a result from this, Systems-on-Chip (SoCs) contain a growing amount of fully programmable media processing devices as opposed to application-specific systems, which offered the most attractive solutions due to a high performance density. The following motivates this trend. First, SoCs are increasingly dominated by their communication infrastructure and embedded memory, thereby making the cost of the functional units less significant. Moreover, the continuously growing design costs require generic solutions that can be applied over a broad product range. Hence, powerful programmable SoCs are becoming increasingly attractive. However, to enable power-efficient designs, that are also scalable over the advancing VLSI technology, parallelism should be fully exploited. Both task-level and instruction-level parallelism can be provided by means of e.g. a VLIW multiprocessor architecture. To provide the above-mentioned scalability, we propose to partition the data over the processors, instead of traditional functional partitioning. An advantage of this approach is the inherent locality of data, which is extremely important for communication-efficient software implementations. Consequently, a software implementation is discussed, enabling e.g. SD resolution H.264 decoding with a two-processor architecture, whereas High-Definition (HD) decoding can be achieved with an eight-processor system, executing the same software. Experimental results show that the data communication considerably reduces up to 65% directly improving the overall performance. Apart from considerable improvement in memory bandwidth, this novel concept of partitioning offers a natural approach for optimally balancing the load of all processors, thereby further improving the overall speedup.

  6. Hot Chips and Hot Interconnects for High End Computing Systems

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  7. Multiprocessor shared-memory information exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoline, L.L.; Bowers, M.D.; Crew, A.W.

    1989-02-01

    In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, ismore » designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange.« less

  8. Measurements of the LHCb software stack on the ARM architecture

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-06-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86_64 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance - this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed - these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and generic improvements.

  9. Verified OS Interface Code Synthesis

    DTIC Science & Technology

    2016-12-01

    in this case we are using the ARMv7 processor architecture ). The application accomplishes this task by issuing the swi (“software interrupt...manual version 4.0.0) on the ARM architecture . To alleviate this problem,we developed an XML-based domain specific language (DSL) in which each...Untyped Retype Table 2.1: seL4 Architecture Independent System Calls. of r2, r3, r4 and r5 into the message registers of the thread’s IPC buffer and

  10. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  11. Gigaflop architecture, a hardware perspective

    NASA Technical Reports Server (NTRS)

    Feierbach, G. F.

    1978-01-01

    Any super computer built in the early 1980s will use components that are available by fall 1978. The architecture of such a system cannot depart radically from current super computers if the software experience painfully acquired from these computers in the 70's is to apply. Given the above constraints, 10 billion floating point operations per second (BFLOPS) are attainable and a problem memory of 512 million (64 bit) words could be supported by the technology of the time. In contrast to this, industry is likely to respond with commercially available machines with a performance of less than 150 MFLOPS. This is due to self-imposed constraints on the manufacturers to provide upward compatible architectures (same instruction set) and systems which can be sold in significant volumes. Since this computing speed is inadequate to meet the demands of computational fluid dynamics, a special processor is required. Issues which are felt to be significant in the pursuit of maximum compute capability in this special processor are discussed.

  12. A pipelined architecture for real time correction of non-uniformity in infrared focal plane arrays imaging system using multiprocessors

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan

    2010-07-01

    This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.

  13. Production Level CFD Code Acceleration for Hybrid Many-Core Architectures

    NASA Technical Reports Server (NTRS)

    Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.

    2012-01-01

    In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.

  14. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  15. GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing

    NASA Astrophysics Data System (ADS)

    Johl, John T.; Baker, Nick C.

    1988-10-01

    The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.

  16. Communication-Driven Codesign for Multiprocessor Systems

    DTIC Science & Technology

    2004-01-01

    processors, FPGA or ASIC subsystems, mi- croprocessors, and microcontrollers. When a processor is embedded within a SLOT architecture, one or more...Broderson, Low-power CMOS digital design, IEEE Journal of Solid-State Circuits 27 (1992), no. 4, 473–484. [25] L. Chao and E. Sha , Scheduling data-flow...1997), 239– 256 . [82] P. K. Murthy, E. G. Cohen, and S. Rowland, System Canvas: A new design en- vironment for embedded DSP and telecommunications

  17. Processor tradeoffs in distributed real-time systems

    NASA Technical Reports Server (NTRS)

    Krishna, C. M.; Shin, Kang G.; Bhandari, Inderpal S.

    1987-01-01

    The problem of the optimization of the design of real-time distributed systems is examined with reference to a class of computer architectures similar to the continuously reconfigurable multiprocessor flight control system structure, CM2FCS. Particular attention is given to the impact of processor replacement and the burn-in time on the probability of dynamic failure and mean cost. The solution is obtained numerically and interpreted in the context of real-time applications.

  18. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  19. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  20. Fault-Tolerant Software-Defined Radio on Manycore

    NASA Technical Reports Server (NTRS)

    Ricketts, Scott

    2015-01-01

    Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.

  1. Design and evaluation of an architecture for a digital signal processor for instrumentation applications

    NASA Astrophysics Data System (ADS)

    Fellman, Ronald D.; Kaneshiro, Ronald T.; Konstantinides, Konstantinos

    1990-03-01

    The authors present the design and evaluation of an architecture for a monolithic, programmable, floating-point digital signal processor (DSP) for instrumentation applications. An investigation of the most commonly used algorithms in instrumentation led to a design that satisfies the requirements for high computational and I/O (input/output) throughput. In the arithmetic unit, a 16- x 16-bit multiplier and a 32-bit accumulator provide the capability for single-cycle multiply/accumulate operations, and three format adjusters automatically adjust the data format for increased accuracy and dynamic range. An on-chip I/O unit is capable of handling data block transfers through a direct memory access port and real-time data streams through a pair of parallel I/O ports. I/O operations and program execution are performed in parallel. In addition, the processor includes two data memories with independent addressing units, a microsequencer with instruction RAM, and multiplexers for internal data redirection. The authors also present the structure and implementation of a design environment suitable for the algorithmic, behavioral, and timing simulation of a complete DSP system. Various benchmarking results are reported.

  2. A Programming Framework for Scientific Applications on CPU-GPU Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, John

    2013-03-24

    At a high level, my research interests center around designing, programming, and evaluating computer systems that use new approaches to solve interesting problems. The rapid change of technology allows a variety of different architectural approaches to computationally difficult problems, and a constantly shifting set of constraints and trends makes the solutions to these problems both challenging and interesting. One of the most important recent trends in computing has been a move to commodity parallel architectures. This sea change is motivated by the industry’s inability to continue to profitably increase performance on a single processor and instead to move to multiplemore » parallel processors. In the period of review, my most significant work has been leading a research group looking at the use of the graphics processing unit (GPU) as a general-purpose processor. GPUs can potentially deliver superior performance on a broad range of problems than their CPU counterparts, but effectively mapping complex applications to a parallel programming model with an emerging programming environment is a significant and important research problem.« less

  3. Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -

    NASA Technical Reports Server (NTRS)

    Chen, Paul Peichuan

    1993-01-01

    Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.

  4. Vectorized program architectures for supercomputer-aided circuit design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzoli, V.; Ferlito, M.; Neri, A.

    1986-01-01

    Vector processors (supercomputers) can be effectively employed in MIC or MMIC applications to solve problems of large numerical size such as broad-band nonlinear design or statistical design (yield optimization). In order to fully exploit the capabilities of a vector hardware, any program architecture must be structured accordingly. This paper presents a possible approach to the ''semantic'' vectorization of microwave circuit design software. Speed-up factors of the order of 50 can be obtained on a typical vector processor (Cray X-MP), with respect to the most powerful scaler computers (CDC 7600), with cost reductions of more than one order of magnitude. Thismore » could broaden the horizon of microwave CAD techniques to include problems that are practically out of the reach of conventional systems.« less

  5. Parallel processor for real-time structural control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tise, B.L.

    1992-01-01

    A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection tomore » host computer, parallelizing code generator, and look-up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating-point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An Open Windows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.« less

  6. FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.

    PubMed

    Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora

    2013-09-01

    In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.

  7. AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program

    NASA Astrophysics Data System (ADS)

    Gothard, Benny M.

    2002-02-01

    One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.

  8. New On-board Microprocessors

    NASA Astrophysics Data System (ADS)

    Weigand, R.

    Two new processor devices have been developed for the use on board of spacecrafts. An 8-bit 8032-microcontroller targets typical controlling applications in instruments and sub-systems, or could be used as a main processor on small satellites, whereas the LEON 32-bit SPARC processor can be used for high performance controlling and data processing tasks. The ADV80S32 is fully compliant to the Intel 80x1 architecture and instruction set, extended by additional peripherals, 512 bytes on-chip RAM and a bootstrap PROM, which allows downloading the application software using the CCSDS PacketWire pro- tocol. The memory controller provides a de-multiplexed address/data bus, and allows to access up to 16 MB data and 8 MB program RAM. The peripherals have been de- signed for the specific needs of a spacecraft, such as serial interfaces compatible to RS232, PacketWire and TTC-B-01, counters/timers for extended duration and a CRC calculation unit accelerating the CCSDS TM/TC protocol. The 0.5 um Atmel manu- facturing technology (MG2RT) provides latch-up and total dose immunity; SEU fault immunity is implemented by using SEU hardened Flip-Flops and EDAC protection of internal and external memories. The maximum clock frequency of 20 MHz allows a processing power of 3 MIPS. Engineering samples are available. For SW develop- ment, various SW packages for the 8051 architecture are on the market. The LEON processor implements a 32-bit SPARC V8 architecture, including all the multiply and divide instructions, complemented by a floating-point unit (FPU). It includes several standard peripherals, such as timers/watchdog, interrupt controller, UARTs, parallel I/Os and a memory controller, allowing to use 8, 16 and 32 bit PROM, SRAM or memory mapped I/O. With on-chip separate instruction and data caches, almost one instruction per clock cycle can be reached in some applications. A 33-MHz 32-bit PCI master/target interface and a PCI arbiter allow operating the device in a plug-in card (for SW development on PC etc.), or to consider using it as a PCI master controller in an on-board system. Advanced SEU fault tolerance is in- troduced by design, using triple modular redundancy (TMR) flip-flops for all registers and EDAC protection for all memories. The device will be manufactured in a radia- tion hard Atmel 0.25 um technology, targeting 100 MHz processor clock frequency. The non fault-tolerant LEON processor VHDL model is available as free source code, and the SPARC architecture is a well-known industry standard. Therefore, know-how, software tools and operating systems are widely available.

  9. Recursive computer architecture for VLSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treleaven, P.C.; Hopkins, R.P.

    1982-01-01

    A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.

  10. Fast Interrupt Priority Management in Operating System Kernels

    DTIC Science & Technology

    1993-05-01

    We present results for the Mach 3.0 microkernel operating system, although the technique is applicable to other kernel architectures, both micro and...protection in the Mach 3.0 microkernel for several different processor architectures. For example, on the Omron Luna88k, we observed a 50% reduction in...general interrupt mask raise/lower pair within the Mach 3.0 microkernel on a variety of architectures. DTIC QUALM i.N1’R%.*1IMD 5 k81tltC Avail andl

  11. Architecture Of High Speed Image Processing System

    NASA Astrophysics Data System (ADS)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  12. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  13. Application of a VLSI vector quantization processor to real-time speech coding

    NASA Technical Reports Server (NTRS)

    Davidson, G.; Gersho, A.

    1986-01-01

    Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.

  14. An Evaluation of an Ada Implementation of the Rete Algorithm for Embedded Flight Processors

    DTIC Science & Technology

    1990-12-01

    computers was desired. The VAX VMS operating system has many built-in methods for determining program performance (including VAX PCA), but these methods... overviev , of the target environment-- the MIL-STD-1750A VHSIC Avionic Modular Processor ( VA.IP, running under the Ada Avionics Real-Time Software (AARTS... computers . Mil-STD-1750A, the Air Force’s standard flight computer architecture, however, places severe constraints on applications software processing

  15. A Methodolgy, Based on Analytical Modeling, for the Design of Parallel and Distributed Architectures for Relational Database Query Processors.

    DTIC Science & Technology

    1987-12-01

    Application Programs Intelligent Disk Database Controller Manangement System Operating System Host .1’ I% Figure 2. Intelligent Disk Controller Application...8217. /- - • Database Control -% Manangement System Disk Data Controller Application Programs Operating Host I"" Figure 5. Processor-Per- Head data. Therefore, the...However. these ad- ditional properties have been proven in classical set and relation theory [75]. These additional properties are described here

  16. Microlens array processor with programmable weight mask and direct optical input

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Lueder, Ernst H.; Bader, Gerhard; Maier, Gert; Siegordner, Jochen

    1999-03-01

    We present an optical feature extraction system with a microlens array processor. The system is suitable for online implementation of a variety of transforms such as the Walsh transform and DCT. Operating with incoherent light, our processor accepts direct optical input. Employing a sandwich- like architecture, we obtain a very compact design of the optical system. The key elements of the microlens array processor are a square array of 15 X 15 spherical microlenses on acrylic substrate and a spatial light modulator as transmissive mask. The light distribution behind the mask is imaged onto the pixels of a customized a-Si image sensor with adjustable gain. We obtain one output sample for each microlens image and its corresponding weight mask area as summation of the transmitted intensity within one sensor pixel. The resulting architecture is very compact and robust like a conventional camera lens while incorporating a high degree of parallelism. We successfully demonstrate a Walsh transform into the spatial frequency domain as well as the implementation of a discrete cosine transform with digitized gray values. We provide results showing the transformation performance for both synthetic image patterns and images of natural texture samples. The extracted frequency features are suitable for neural classification of the input image. Other transforms and correlations can be implemented in real-time allowing adaptive optical signal processing.

  17. Implementation of context independent code on a new array processor: The Super-65

    NASA Technical Reports Server (NTRS)

    Colbert, R. O.; Bowhill, S. A.

    1981-01-01

    The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.

  18. System analysis of graphics processor architecture using virtual prototyping

    NASA Astrophysics Data System (ADS)

    Hancock, William R.; Groat, Jeff; Steeves, Todd; Spaanenburg, Henk; Shackleton, John

    1995-06-01

    Honeywell has been actively involved in the definition of the next generation display processors for military and commercial cockpits. A major concern is how to achieve super graphics workstation performance in avionics application. Most notable are requirements for low volume, low power, harsh environmental conditions, real-time performance and low cost. This paper describes the application of VHDL to the system analysis tasks associated with achieving these goals in a cost effective manner. The paper will describe the top level architecture identified to provide the graphical and video processing power needed to drive future high resolution display devices and to generate more natural panoramic 3D formats. The major discussion, however, will be on the use of VHDL to model the processing elements and customized pipelines needed to realize the architecture and for doing the complex system tradeoff studies necessary to achieve a cost effective implementation. New software tools have been developed to allow 'virtual' prototyping in the VHDL environment. This results in a hardware/software codesign using VHDL performance and functional models. This unique architectural tool allows simulation and tradeoffs within a standard and tightly integrated toolset, which eventually will be used to specify and design the entire system from the top level requirements and system performance to the lowest level individual ASICs. New processing elements, algorithms, and standard graphical inputs can be designed, tested and evaluated without the costly hardware prototyping using the innovative 'virtual' prototyping techniques which are evolving on this project. In addition, virtual prototyping of the display processor does not bind the preliminary design to point solutions as a physical prototype will. when the development schedule is known, one can extrapolate processing elements performance and design the system around the most current technology.

  19. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  20. Computing Systemic Risk Using Multiple Behavioral and Keystone Networks: The Emergence of a Crisis in Primate Societies and Banks*

    PubMed Central

    Fushing, Hsieh; Jordà, Òscar; Beisner, Brianne; McCowan, Brenda

    2015-01-01

    What do the behavior of monkeys in captivity and the financial system have in common? The nodes in such social systems relate to each other through multiple and keystone networks, not just one network. Each network in the system has its own topology, and the interactions among the system’s networks change over time. In such systems, the lead into a crisis appears to be characterized by a decoupling of the networks from the keystone network. This decoupling can also be seen in the crumbling of the keystone’s power structure toward a more horizontal hierarchy. This paper develops nonparametric methods for describing the joint model of the latent architecture of interconnected networks in order to describe this process of decoupling, and hence provide an early warning system of an impending crisis. PMID:26056422

  1. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    NASA Astrophysics Data System (ADS)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development, simulation, and synthesis of two different OBP architectures, we have proven the feasibility and efficacy of an OBP for planetary ice-penetrating radars.

  2. Self-checking self-repairing computer nodes using the mirror processor

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval

    1992-01-01

    Circuitry added to fault-tolerant systems for concurrent error deduction usually reduces performance. Using a technique called micro rollback, it is possible to eliminate most of the performance penalty of concurrent error detection. Error detection is performed in parallel with intermodule communication, and erroneous state changes are later undone. The author reports on the design and implementation of a VLSI RISC microprocessor, called the Mirror Processor (MP), which is capable of micro rollback. In order to achieve concurrent error detection, two MP chips operate in lockstep, comparing external signals and a signature of internal signals every clock cycle. If a mismatch is detected, both processors roll back to the beginning of the cycle when the error occurred. In some cases the erroneous state is corrected by copying a value from the fault-free processor to the faulty processor. The architecture, microarchitecture, and VLSI implementation of the MP, emphasizing its error-detection, error-recovery, and self-diagnosis capabilities, are described.

  3. Power estimation on functional level for programmable processors

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Blume, H.; Noll, T. G.

    2004-05-01

    In diesem Beitrag werden verschiedene Ansätze zur Verlustleistungsschätzung von programmierbaren Prozessoren vorgestellt und bezüglich ihrer Übertragbarkeit auf moderne Prozessor-Architekturen wie beispielsweise Very Long Instruction Word (VLIW)-Architekturen bewertet. Besonderes Augenmerk liegt hierbei auf dem Konzept der sogenannten Functional-Level Power Analysis (FLPA). Dieser Ansatz basiert auf der Einteilung der Prozessor-Architektur in funktionale Blöcke wie beispielsweise Processing-Unit, Clock-Netzwerk, interner Speicher und andere. Die Verlustleistungsaufnahme dieser Bl¨ocke wird parameterabhängig durch arithmetische Modellfunktionen beschrieben. Durch automatisierte Analyse von Assemblercodes des zu schätzenden Systems mittels eines Parsers können die Eingangsparameter wie beispielsweise der erzielte Parallelitätsgrad oder die Art des Speicherzugriffs gewonnen werden. Dieser Ansatz wird am Beispiel zweier moderner digitaler Signalprozessoren durch eine Vielzahl von Basis-Algorithmen der digitalen Signalverarbeitung evaluiert. Die ermittelten Schätzwerte für die einzelnen Algorithmen werden dabei mit physikalisch gemessenen Werten verglichen. Es ergibt sich ein sehr kleiner maximaler Schätzfehler von 3%. In this contribution different approaches for power estimation for programmable processors are presented and evaluated concerning their capability to be applied to modern digital signal processor architectures like e.g. Very Long InstructionWord (VLIW) -architectures. Special emphasis will be laid on the concept of so-called Functional-Level Power Analysis (FLPA). This approach is based on the separation of the processor architecture into functional blocks like e.g. processing unit, clock network, internal memory and others. The power consumption of these blocks is described by parameter dependent arithmetic model functions. By application of a parser based automized analysis of assembler codes of the systems to be estimated the input parameters of the Correspondence to: H. Blume (blume@eecs.rwth-aachen.de) arithmetic functions like e.g. the achieved degree of parallelism or the kind and number of memory accesses can be computed. This approach is exemplarily demonstrated and evaluated applying two modern digital signal processors and a variety of basic algorithms of digital signal processing. The resulting estimation values for the inspected algorithms are compared to physically measured values. A resulting maximum estimation error of 3% is achieved.

  4. HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor

    NASA Technical Reports Server (NTRS)

    Gilliland, M. C.; Smith, B. J.; Calvert, W.

    1976-01-01

    The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.

  5. Vascular system modeling in parallel environment - distributed and shared memory approaches

    PubMed Central

    Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne

    2011-01-01

    The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891

  6. Parallel solution of high-order numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Lin, Avi; Liou, May-Fun; Blech, Richard A.

    1993-01-01

    A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained.

  7. Microcomputer array processor system. [design for electronic warfare

    NASA Technical Reports Server (NTRS)

    Slezak, K. D.

    1980-01-01

    The microcomputer array system is discussed with specific attention given to its electronic warware applications. Several aspects of the system architecture are described as well as some of its distinctive characteristics.

  8. SpaceCubeX: A Framework for Evaluating Hybrid Multi-Core CPU FPGA DSP Architectures

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Weisz, Gabriel; French, Matthew; Flatley, Thomas; Villalpando, Carlos Y.

    2017-01-01

    The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100-1,000 more than those of previous Earth Science missions for standard processing, compression, storage, and downlink operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabilities across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.

  9. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  10. Trust-Management, Intrusion-Tolerance, Accountability, and Reconstitution Architecture (TIARA)

    DTIC Science & Technology

    2009-12-01

    Tainting, tagged, metadata, architecture, hardware, processor, microkernel , zero-kernel, co-design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... microkernels (e.g., [27]) embraced the idea that it was beneficial to reduce the ker- nel, separating out services as separate processes isolated from...limited adoption. More recently Tanenbaum [72] notes the security virtues of microkernels and suggests the modern importance of security makes it

  11. A MIMO-Inspired Rapidly Switchable Photonic Interconnect Architecture (Postprint)

    DTIC Science & Technology

    2009-07-01

    capabilities of future systems. Highspeed optical processing has been looked to as a means for eliminating this interconnect bottleneck. Presented...here are the results of a study for a novel optical (integrated photonic) processor which would allow for a high-speed, secure means for arbitrarily...regarded as a Multiple Input Multiple Output (MIMO) architecture. 15. SUBJECT TERMS Free-space optical interconnects, Optical Phased Arrays, High-Speed

  12. NASA Workshop on Computational Structural Mechanics 1987, part 2

    NASA Technical Reports Server (NTRS)

    Sykes, Nancy P. (Editor)

    1989-01-01

    Advanced methods and testbed/simulator development topics are discussed. Computational Structural Mechanics (CSM) testbed architecture, engine structures simulation, applications to laminate structures, and a generic element processor are among the topics covered.

  13. A pluggable framework for parallel pairwise sequence search.

    PubMed

    Archuleta, Jeremy; Feng, Wu-chun; Tilevich, Eli

    2007-01-01

    The current and near future of the computing industry is one of multi-core and multi-processor technology. Most existing sequence-search tools have been designed with a focus on single-core, single-processor systems. This discrepancy between software design and hardware architecture substantially hinders sequence-search performance by not allowing full utilization of the hardware. This paper presents a novel framework that will aid the conversion of serial sequence-search tools into a parallel version that can take full advantage of the available hardware. The framework, which is based on a software architecture called mixin layers with refined roles, enables modules to be plugged into the framework with minimal effort. The inherent modular design improves maintenance and extensibility, thus opening up a plethora of opportunities for advanced algorithmic features to be developed and incorporated while routine maintenance of the codebase persists.

  14. A novel parallel architecture for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan

    2005-07-01

    Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.

  15. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    NASA Astrophysics Data System (ADS)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  16. Performance of VPIC on Sequoia

    NASA Astrophysics Data System (ADS)

    Nystrom, William

    2014-10-01

    Sequoia is a major DOE computing resource which is characteristic of future resources in that it has many threads per compute node, 64, and the individual processor cores are simpler and less powerful than cores on previous processors like Intel's Sandy Bridge or AMD's Opteron. An effort is in progress to port VPIC to the Blue Gene Q architecture of Sequoia and evaluate its performance. Results of this work will be presented on single node performance of VPIC as well as multi-node scaling.

  17. Vigilante: Ultrafast Smart Sensor for Target Recognition and Precision Tracking in a Simulated CMD Scenario

    NASA Technical Reports Server (NTRS)

    Uldomkesmalee, Suraphol; Suddarth, Steven C.

    1997-01-01

    VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.

  18. FANTOM: Algorithm-Architecture Codesign for High-Performance Embedded Signal and Image Processing Systems

    DTIC Science & Technology

    2013-05-25

    graphics processors by IBM, AMD, and nVIDIA . They are between general-purpose pro- cessors and special-purpose processors. In Phase II. 3.10 Measure of...particular, Dr. Kevin Irick started a company Silicon Scapes and he has been the CEO. 5 Implications for Related/Future Research We speculate that...final project report in Jan. 2011. At the test and validation stage of the project. FANTOM’s partner at Raytheon quit from his company and hence from

  19. Heterogeneous Concurrent Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture)

    DTIC Science & Technology

    2008-04-01

    file (EPS) suitable for inclusion in word processors. The image in figure 7.3 is such an EPS file imported into FrameMaker . At this time, the EPS...can be imported into word processors. This figure was imported into FrameMaker . 152 Ptolemy II Plot Package 7.2.4 Modifying the format You can control...FixToken class 57 FrameMaker 149 full name 4 function closures 59 function dependency 48 FunctionDependency class 48 FunctionToken 122 FunctionToken

  20. Options for Parallelizing a Planning and Scheduling Algorithm

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.

    2011-01-01

    Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.

  1. Programming for 1.6 Millon cores: Early experiences with IBM's BG/Q SMP architecture

    NASA Astrophysics Data System (ADS)

    Glosli, James

    2013-03-01

    With the stall in clock cycle improvements a decade ago, the drive for computational performance has continues along a path of increasing core counts on a processor. The multi-core evolution has been expressed in both a symmetric multi processor (SMP) architecture and cpu/GPU architecture. Debates rage in the high performance computing (HPC) community which architecture best serves HPC. In this talk I will not attempt to resolve that debate but perhaps fuel it. I will discuss the experience of exploiting Sequoia, a 98304 node IBM Blue Gene/Q SMP at Lawrence Livermore National Laboratory. The advantages and challenges of leveraging the computational power BG/Q will be detailed through the discussion of two applications. The first application is a Molecular Dynamics code called ddcMD. This is a code developed over the last decade at LLNL and ported to BG/Q. The second application is a cardiac modeling code called Cardioid. This is a code that was recently designed and developed at LLNL to exploit the fine scale parallelism of BG/Q's SMP architecture. Through the lenses of these efforts I'll illustrate the need to rethink how we express and implement our computational approaches. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    PubMed

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  3. Avionics architecture studies for the entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.

    1989-01-01

    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.

  4. Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.

    2012-01-01

    A novel cognitive computing architecture is conceptualized for processing multiple channels of multi-modal sensory data streams simultaneously, and fusing the information in real time to generate intelligent reaction sequences. This unique architecture is capable of assimilating parallel data streams that could be analog, digital, synchronous/asynchronous, and could be programmed to act as a knowledge synthesizer and/or an "intelligent perception" processor. In this architecture, the bio-inspired models of visual pathway and olfactory receptor processing are combined as processing components, to achieve the composite function of "searching for a source of food while avoiding the predator." The architecture is particularly suited for scene analysis from visual data and odorant.

  5. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  6. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.

  7. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE PAGES

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  8. Control structures for high speed processors

    NASA Technical Reports Server (NTRS)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  9. CPU architecture for a fast and energy-saving calculation of convolution neural networks

    NASA Astrophysics Data System (ADS)

    Knoll, Florian J.; Grelcke, Michael; Czymmek, Vitali; Holtorf, Tim; Hussmann, Stephan

    2017-06-01

    One of the most difficult problem in the use of artificial neural networks is the computational capacity. Although large search engine companies own specially developed hardware to provide the necessary computing power, for the conventional user only remains the state of the art method, which is the use of a graphic processing unit (GPU) as a computational basis. Although these processors are well suited for large matrix computations, they need massive energy. Therefore a new processor on the basis of a field programmable gate array (FPGA) has been developed and is optimized for the application of deep learning. This processor is presented in this paper. The processor can be adapted for a particular application (in this paper to an organic farming application). The power consumption is only a fraction of a GPU application and should therefore be well suited for energy-saving applications.

  10. System Architecture For High Speed Sorting Of Potatoes

    NASA Astrophysics Data System (ADS)

    Marchant, J. A.; Onyango, C. M.; Street, M. J.

    1989-03-01

    This paper illustrates an industrial application of vision processing in which potatoes are sorted according to their size and shape at speeds of up to 40 objects per second. The result is a multi-processing approach built around the VME bus. A hardware unit has been designed and constructed to encode the boundary of the potatoes, to reducing the amount of data to be processed. A master 68000 processor is used to control this unit and to handle data transfers along the bus. Boundary data is passed to one of three 68010 slave processors each responsible for a line of potatoes across a conveyor belt. The slave processors calculate attributes such as shape, size and estimated weight of each potato and the master processor uses this data to operate the sorting mechanism. The system has been interfaced with a commercial grading machine and performance trials are now in progress.

  11. Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Taylor, Arthur C., III

    1994-01-01

    This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.

  12. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S.

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  13. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  14. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  15. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  16. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.

    PubMed

    Kim, Lok-Won

    2018-05-01

    Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).

  17. Space Telecommunications Radio System Software Architecture Concepts and Analysis

    NASA Technical Reports Server (NTRS)

    Handler, Louis M.; Hall, Charles S.; Briones, Janette C.; Blaser, Tammy M.

    2008-01-01

    The Space Telecommunications Radio System (STRS) project investigated various Software Defined Radio (SDR) architectures for Space. An STRS architecture has been selected that separates the STRS operating environment from its various waveforms and also abstracts any specialized hardware to limit its effect on the operating environment. The design supports software evolution where new functionality is incorporated into the radio. Radio hardware functionality has been moving from hardware based ASICs into firmware and software based processors such as FPGAs, DSPs and General Purpose Processors (GPPs). Use cases capture the requirements of a system by describing how the system should interact with the users or other systems (the actors) to achieve a specific goal. The Unified Modeling Language (UML) is used to illustrate the Use Cases in a variety of ways. The Top Level Use Case diagram shows groupings of the use cases and how the actors are involved. The state diagrams depict the various states that a system or object may be in and the transitions between those states. The sequence diagrams show the main flow of activity as described in the use cases.

  18. Associative architecture for image processing

    NASA Astrophysics Data System (ADS)

    Adar, Rutie; Akerib, Avidan

    1997-09-01

    This article presents a new generation in parallel processing architecture for real-time image processing. The approach is implemented in a real time image processor chip, called the XiumTM-2, based on combining a fully associative array which provides the parallel engine with a serial RISC core on the same die. The architecture is fully programmable and can be programmed to implement a wide range of color image processing, computer vision and media processing functions in real time. The associative part of the chip is based on patented pending methodology of Associative Computing Ltd. (ACL), which condenses 2048 associative processors, each of 128 'intelligent' bits. Each bit can be a processing bit or a memory bit. At only 33 MHz and 0.6 micron manufacturing technology process, the chip has a computational power of 3 billion ALU operations per second and 66 billion string search operations per second. The fully programmable nature of the XiumTM-2 chip enables developers to use ACL tools to write their own proprietary algorithms combined with existing image processing and analysis functions from ACL's extended set of libraries.

  19. Design of an Elliptic Curve Cryptography processor for RFID tag chips.

    PubMed

    Liu, Zilong; Liu, Dongsheng; Zou, Xuecheng; Lin, Hui; Cheng, Jian

    2014-09-26

    Radio Frequency Identification (RFID) is an important technique for wireless sensor networks and the Internet of Things. Recently, considerable research has been performed in the combination of public key cryptography and RFID. In this paper, an efficient architecture of Elliptic Curve Cryptography (ECC) Processor for RFID tag chip is presented. We adopt a new inversion algorithm which requires fewer registers to store variables than the traditional schemes. A new method for coordinate swapping is proposed, which can reduce the complexity of the controller and shorten the time of iterative calculation effectively. A modified circular shift register architecture is presented in this paper, which is an effective way to reduce the area of register files. Clock gating and asynchronous counter are exploited to reduce the power consumption. The simulation and synthesis results show that the time needed for one elliptic curve scalar point multiplication over GF(2163) is 176.7 K clock cycles and the gate area is 13.8 K with UMC 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) technology. Moreover, the low power and low cost consumption make the Elliptic Curve Cryptography Processor (ECP) a prospective candidate for application in the RFID tag chip.

  20. Design of an Elliptic Curve Cryptography Processor for RFID Tag Chips

    PubMed Central

    Liu, Zilong; Liu, Dongsheng; Zou, Xuecheng; Lin, Hui; Cheng, Jian

    2014-01-01

    Radio Frequency Identification (RFID) is an important technique for wireless sensor networks and the Internet of Things. Recently, considerable research has been performed in the combination of public key cryptography and RFID. In this paper, an efficient architecture of Elliptic Curve Cryptography (ECC) Processor for RFID tag chip is presented. We adopt a new inversion algorithm which requires fewer registers to store variables than the traditional schemes. A new method for coordinate swapping is proposed, which can reduce the complexity of the controller and shorten the time of iterative calculation effectively. A modified circular shift register architecture is presented in this paper, which is an effective way to reduce the area of register files. Clock gating and asynchronous counter are exploited to reduce the power consumption. The simulation and synthesis results show that the time needed for one elliptic curve scalar point multiplication over GF(2163) is 176.7 K clock cycles and the gate area is 13.8 K with UMC 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) technology. Moreover, the low power and low cost consumption make the Elliptic Curve Cryptography Processor (ECP) a prospective candidate for application in the RFID tag chip. PMID:25264952

  1. Architecture of security management unit for safe hosting of multiple agents

    NASA Astrophysics Data System (ADS)

    Gilmont, Tanguy; Legat, Jean-Didier; Quisquater, Jean-Jacques

    1999-04-01

    In such growing areas as remote applications in large public networks, electronic commerce, digital signature, intellectual property and copyright protection, and even operating system extensibility, the hardware security level offered by existing processors is insufficient. They lack protection mechanisms that prevent the user from tampering critical data owned by those applications. Some devices make exception, but have not enough processing power nor enough memory to stand up to such applications (e.g. smart cards). This paper proposes an architecture of secure processor, in which the classical memory management unit is extended into a new security management unit. It allows ciphered code execution and ciphered data processing. An internal permanent memory can store cipher keys and critical data for several client agents simultaneously. The ordinary supervisor privilege scheme is replaced by a privilege inheritance mechanism that is more suited to operating system extensibility. The result is a secure processor that has hardware support for extensible multitask operating systems, and can be used for both general applications and critical applications needing strong protection. The security management unit and the internal permanent memory can be added to an existing CPU core without loss of performance, and do not require it to be modified.

  2. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).

    PubMed

    Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo

    2018-02-01

    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.

  3. Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)

    NASA Astrophysics Data System (ADS)

    Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook

    1997-05-01

    This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.

  4. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  5. Processor design optimization methodology for synthetic vision systems

    NASA Astrophysics Data System (ADS)

    Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.

    1997-06-01

    Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.

  6. Proceedings of the International Conference on Parallel Architectures and Compilation Techniques Held 24-26 August 1994 in Montreal, Canada

    DTIC Science & Technology

    1994-08-26

    an Itegrated Circuit Global Router. In Proc. of PPEARS 88, pages 138-145, 1988. [7] S. Sakai, Y. Yamaguchi, K. Hiraki , Y. Kodama, and T. Yuba. An...Computer Architecture, 1992. [5] S. Sakai, Y. Yamaguchi, K. Hiraki , Y. Kodama, and T. Yuba. An architecture of a data-flow single chip processor. In Int...EM-4 and sparing time for tech- nical discussions. We also thank Prof. Kei Hiraki at the Univ. of Tokyo for his helpful comments. Hidehiko Masuhara’s

  7. Reconfigurable signal processor designs for advanced digital array radar systems

    NASA Astrophysics Data System (ADS)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  8. Key Technologies of Phone Storage Forensics Based on ARM Architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Che, Shengbing

    2018-03-01

    Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.

  9. Application of parallelized software architecture to an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  10. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  11. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  12. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    PubMed Central

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  13. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  14. Data preprocessing for determining outer/inner parallelization in the nested loop problem using OpenMP

    NASA Astrophysics Data System (ADS)

    Handhika, T.; Bustamam, A.; Ernastuti, Kerami, D.

    2017-07-01

    Multi-thread programming using OpenMP on the shared-memory architecture with hyperthreading technology allows the resource to be accessed by multiple processors simultaneously. Each processor can execute more than one thread for a certain period of time. However, its speedup depends on the ability of the processor to execute threads in limited quantities, especially the sequential algorithm which contains a nested loop. The number of the outer loop iterations is greater than the maximum number of threads that can be executed by a processor. The thread distribution technique that had been found previously only be applied by the high-level programmer. This paper generates a parallelization procedure for low-level programmer in dealing with 2-level nested loop problems with the maximum number of threads that can be executed by a processor is smaller than the number of the outer loop iterations. Data preprocessing which is related to the number of the outer loop and the inner loop iterations, the computational time required to execute each iteration and the maximum number of threads that can be executed by a processor are used as a strategy to determine which parallel region that will produce optimal speedup.

  15. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  16. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  17. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    NASA Astrophysics Data System (ADS)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  18. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1989-01-01

    Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.

  19. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Arvind, Dorai, Kavita

    2018-02-01

    We embarked upon the task of experimental protection of different classes of tripartite entangled states, namely, the maximally entangled Greenberger-Horne-Zeilinger (GHZ) and W states and the tripartite entangled state called the W W ¯ state, using dynamical decoupling. The states were created on a three-qubit NMR quantum information processor and allowed to evolve in the naturally noisy NMR environment. Tripartite entanglement was monitored at each time instant during state evolution, using negativity as an entanglement measure. It was found that the W state is most robust while the GHZ-type states are most fragile against the natural decoherence present in the NMR system. The W W ¯ state, which is in the GHZ class yet stores entanglement in a manner akin to the W state, surprisingly turned out to be more robust than the GHZ state. The experimental data were best modeled by considering the main noise channel to be an uncorrelated phase damping channel acting independently on each qubit, along with a generalized amplitude damping channel. Using dynamical decoupling, we were able to achieve a significant protection of entanglement for GHZ states. There was a marginal improvement in the state fidelity for the W state (which is already robust against natural system decoherence), while the W W ¯ state showed a significant improvement in fidelity and protection against decoherence.

  20. High coherence plane breaking packaging for superconducting qubits.

    PubMed

    Bronn, Nicholas T; Adiga, Vivekananda P; Olivadese, Salvatore B; Wu, Xian; Chow, Jerry M; Pappas, David P

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  1. High coherence plane breaking packaging for superconducting qubits

    NASA Astrophysics Data System (ADS)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  2. Developing software to use parallel processing effectively. Final report, June-December 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Center, J.

    1988-10-01

    This report describes the difficulties involved in writing efficient parallel programs and describes the hardware and software support currently available for generating software that utilizes processing effectively. Historically, the processing rate of single-processor computers has increased by one order of magnitude every five years. However, this pace is slowing since electronic circuitry is coming up against physical barriers. Unfortunately, the complexity of engineering and research problems continues to require ever more processing power (far in excess of the maximum estimated 3 Gflops achievable by single-processor computers). For this reason, parallel-processing architectures are receiving considerable interest, since they offer high performancemore » more cheaply than a single-processor supercomputer, such as the Cray.« less

  3. The role of neuroimaging in the discovery of processing stages. A review.

    PubMed

    Mulder, G; Wijers, A A; Lange, J J; Buijink, B M; Mulder, L J; Willemsen, A T; Paans, A M

    1995-11-01

    In this contribution we show how neuroimaging methods can augment behavioural methods to discover processing stages. Event Related Brain Potentials (ERPs), Brain Electrical Source Analysis (BESA) and regional changes in cerebral blood flow (rCBF) do not necessarily require behavioural responses. With the aid of rCBF we are able to discover several cortical and subcortical brain systems (processors) active in selective attention and memory search tasks. BESA describes cortical activity with high temporal resolution in terms of a limited number of neural generators within these brain systems. The combination of behavioural methods and neuroimaging provides a picture of the functional architecture of the brain. The review is organized around three processors: the Visual, Cognitive and Manual Motor Processors.

  4. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. J.

    1993-01-01

    The theoretical constraints inherent in the design of multivariable control systems were defined and investigated. These constraints are manifested by the system transmission zeros that limit or bound the areas in which closed loop poles and individual transfer function zeros may be placed. These constraints were investigated primarily in the context of system decoupling or non-interaction. It was proven that decoupling requires the placement of closed loop poles at the system transmission zeros. Therefore, the system transmission zeros must be minimum phase to guarantee a stable decoupled system. Once decoupling has been accomplished, the remaining part of the system exhibits transmission zeros at infinity, so nearly complete design freedom is possible in terms of placing both poles and zeros of individual closed loop transfer functions. A general, dynamic inversion model following system architecture was developed that encompasses both the implicit and explicit configuration. Robustness properties are developed along with other attributes of this type of system. Finally, a direct design is developed for the longitudinal-vertical degrees of freedom of aircraft motion to show how a direct lift flap can be used to improve the pitch-heave maneuvering coordination for enhanced flying qualities.

  5. Parallel processing architecture for H.264 deblocking filter on multi-core platforms

    NASA Astrophysics Data System (ADS)

    Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao

    2012-03-01

    Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.

  6. Distributed Processor/Memory Architectures Design Program

    DTIC Science & Technology

    1975-02-01

    Event Scheduling Plo 31 Globat LAl Message Input Event Sicheduling Fhou ..... ............... 106 32 It tc Iata Representation...298 138 GEX LEX Scheduling Phlmophy ....... ...................... 300 139 Executive Comirol Herarchy... Scheduler Subroutine lnterrelatiomhips . ..... ................. 312 145 Task Scheduler Message Scatuer. . ...... ....................... 315 146

  7. Unstructured Adaptive Grid Computations on an Array of SMPs

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Pramanick, Ira; Sohn, Andrew; Simon, Horst D.

    1996-01-01

    Dynamic load balancing is necessary for parallel adaptive methods to solve unsteady CFD problems on unstructured grids. We have presented such a dynamic load balancing framework called JOVE, in this paper. Results on a four-POWERnode POWER CHALLENGEarray demonstrated that load balancing gives significant performance improvements over no load balancing for such adaptive computations. The parallel speedup of JOVE, implemented using MPI on the POWER CHALLENCEarray, was significant, being as high as 31 for 32 processors. An implementation of JOVE that exploits 'an array of SMPS' architecture was also studied; this hybrid JOVE outperformed flat JOVE by up to 28% on the meshes and adaption models tested. With large, realistic meshes and actual flow-solver and adaption phases incorporated into JOVE, hybrid JOVE can be expected to yield significant advantage over flat JOVE, especially as the number of processors is increased, thus demonstrating the scalability of an array of SMPs architecture.

  8. A Locality-Based Threading Algorithm for the Configuration-Interaction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; Johnson, Calvin

    The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less

  9. A Locality-Based Threading Algorithm for the Configuration-Interaction Method

    DOE PAGES

    Shan, Hongzhang; Williams, Samuel; Johnson, Calvin; ...

    2017-07-03

    The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less

  10. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  11. Evaluation of the Intel iWarp parallel processor for space flight applications

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Fong, Terrence W.

    1993-01-01

    The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.

  12. Automation of Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  13. Study of Thread Level Parallelism in a Video Encoding Application for Chip Multiprocessor Design

    NASA Astrophysics Data System (ADS)

    Debes, Eric; Kaine, Greg

    2002-11-01

    In media applications there is a high level of available thread level parallelism (TLP). In this paper we study the intra TLP in a video encoder. We show that a well-distributed highly optimized encoder running on a symmetric multiprocessor (SMP) system can run 3.2 faster on a 4-way SMP machine than on a single processor. The multithreaded encoder running on an SMP system is then used to understand the requirements of a chip multiprocessor (CMP) architecture, which is one possible architectural direction to better exploit TLP. In the framework of this study, we use a software approach to evaluate the dataflow between processors for the video encoder running on an SMP system. An estimation of the dataflow is done with L2 cache miss event counters using Intel® VTuneTM performance analyzer. The experimental measurements are compared to theoretical results.

  14. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  15. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  16. An efficient ASIC implementation of 16-channel on-line recursive ICA processor for real-time EEG system.

    PubMed

    Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2014-01-01

    This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.

  17. Electromagnetic physics models for parallel computing architectures

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less

  18. An Energy-Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture for Big Data Applications.

    PubMed

    Park, Seong-Wook; Park, Junyoung; Bong, Kyeongryeol; Shin, Dongjoo; Lee, Jinmook; Choi, Sungpill; Yoo, Hoi-Jun

    2015-12-01

    Deep Learning algorithm is widely used for various pattern recognition applications such as text recognition, object recognition and action recognition because of its best-in-class recognition accuracy compared to hand-crafted algorithm and shallow learning based algorithms. Long learning time caused by its complex structure, however, limits its usage only in high-cost servers or many-core GPU platforms so far. On the other hand, the demand on customized pattern recognition within personal devices will grow gradually as more deep learning applications will be developed. This paper presents a SoC implementation to enable deep learning applications to run with low cost platforms such as mobile or portable devices. Different from conventional works which have adopted massively-parallel architecture, this work adopts task-flexible architecture and exploits multiple parallelism to cover complex functions of convolutional deep belief network which is one of popular deep learning/inference algorithms. In this paper, we implement the most energy-efficient deep learning and inference processor for wearable system. The implemented 2.5 mm × 4.0 mm deep learning/inference processor is fabricated using 65 nm 8-metal CMOS technology for a battery-powered platform with real-time deep inference and deep learning operation. It consumes 185 mW average power, and 213.1 mW peak power at 200 MHz operating frequency and 1.2 V supply voltage. It achieves 411.3 GOPS peak performance and 1.93 TOPS/W energy efficiency, which is 2.07× higher than the state-of-the-art.

  19. Feasibility study of a microprocessor based oculometer system

    NASA Technical Reports Server (NTRS)

    Varanasi, M. R.

    1981-01-01

    The elimination of redundancy in data to maximize processing speed and minimize storage requirements were objectives in a feasibility study of a microprocessor based oculometer system that would be portable in size and flexible in use. The appropriate architectural design of the signal processor, improved optics, and the reduction of size, weight, and power to the system were investigated. A flow chart is presented showing the strategy of the design. The simulation for developing microroutines for the high speed algorithmic processor subsystem is discussed as well as the Karhunen-Loeve transform technique for data compression.

  20. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  1. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  2. Computing NLTE Opacities -- Node Level Parallel Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Daniel

    Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.

  3. Electronic neural network for solving traveling salesman and similar global optimization problems

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Moopenn, Alexander W. (Inventor); Duong, Tuan A. (Inventor); Eberhardt, Silvio P. (Inventor)

    1993-01-01

    This invention is a novel high-speed neural network based processor for solving the 'traveling salesman' and other global optimization problems. It comprises a novel hybrid architecture employing a binary synaptic array whose embodiment incorporates the fixed rules of the problem, such as the number of cities to be visited. The array is prompted by analog voltages representing variables such as distances. The processor incorporates two interconnected feedback networks, each of which solves part of the problem independently and simultaneously, yet which exchange information dynamically.

  4. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    PubMed

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  6. PCOS - An operating system for modular applications

    NASA Technical Reports Server (NTRS)

    Tharp, V. P.

    1986-01-01

    This paper is an introduction to the PCOS operating system for the MC68000 family processors. Topics covered are: development history; development support; rational for development of PCOS and salient characteristics; architecture; and a brief comparison of PCOS to UNIX.

  7. Accelerated Adaptive Integration Method

    PubMed Central

    2015-01-01

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  8. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  9. Neural simulations on multi-core architectures.

    PubMed

    Eichner, Hubert; Klug, Tobias; Borst, Alexander

    2009-01-01

    Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical change in personal computer technology emerges with the establishment of multi-cores: high-density, explicitly parallel processor architectures for both high performance as well as standard desktop computers. This work introduces strategies for the parallelization of biophysically realistic neural simulations based on the compartmental modeling technique and results of such an implementation, with a strong focus on multi-core architectures and automation, i.e. user-transparent load balancing.

  10. Neural Simulations on Multi-Core Architectures

    PubMed Central

    Eichner, Hubert; Klug, Tobias; Borst, Alexander

    2009-01-01

    Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical change in personal computer technology emerges with the establishment of multi-cores: high-density, explicitly parallel processor architectures for both high performance as well as standard desktop computers. This work introduces strategies for the parallelization of biophysically realistic neural simulations based on the compartmental modeling technique and results of such an implementation, with a strong focus on multi-core architectures and automation, i.e. user-transparent load balancing. PMID:19636393

  11. Rio: a dynamic self-healing services architecture using Jini networking technology

    NASA Astrophysics Data System (ADS)

    Clarke, James B.

    2002-06-01

    Current mainstream distributed Java architectures offer great capabilities embracing conventional enterprise architecture patterns and designs. These traditional systems provide robust transaction oriented environments that are in large part focused on data and host processors. Typically, these implementations require that an entire application be deployed on every machine that will be used as a compute resource. In order for this to happen, the application is usually taken down, installed and started with all systems in-sync and knowing about each other. Static environments such as these present an extremely difficult environment to setup, deploy and administer.

  12. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  13. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  14. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.

    PubMed

    Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

  15. Phase space simulation of collisionless stellar systems on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    White, Richard L.

    1987-01-01

    A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.

  16. Formal design and verification of a reliable computing platform for real-time control. Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.; Butler, Ricky W.; Caldwell, James L.

    1990-01-01

    A high-level design is presented for a reliable computing platform for real-time control applications. Design tradeoffs and analyses related to the development of the fault-tolerant computing platform are discussed. The architecture is formalized and shown to satisfy a key correctness property. The reliable computing platform uses replicated processors and majority voting to achieve fault tolerance. Under the assumption of a majority of processors working in each frame, it is shown that the replicated system computes the same results as a single processor system not subject to failures. Sufficient conditions are obtained to establish that the replicated system recovers from transient faults within a bounded amount of time. Three different voting schemes are examined and proved to satisfy the bounded recovery time conditions.

  17. Spacelab output processing system architectural study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two different system architectures are presented. The two architectures are derived from two different data flows within the Spacelab Output Processing System. The major differences between these system architectures are in the position of the decommutation function (the first architecture performs decommutation in the latter half of the system and the second architecture performs that function in the front end of the system). In order to be examined, the system was divided into five stand-alone subsystems; Work Assembler, Mass Storage System, Output Processor, Peripheral Pool, and Resource Monitor. The work load of each subsystem was estimated independent of the specific devices to be used. The candidate devices were surveyed from a wide sampling of off-the-shelf devices. Analytical expressions were developed to quantify the projected workload in conjunction with typical devices which would adequately handle the subsystem tasks. All of the study efforts were then directed toward preparing performance and cost curves for each architecture subsystem.

  18. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  19. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.

    1991-01-01

    The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

  20. Algorithms and Libraries

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our inquiry into algorithms and applications that would benefit by latency tolerant approach to algorithm building, including the construction of new algorithms where appropriate. In a multithreaded execution, when a processor reaches a point where remote memory access is necessary, the request is sent out on the network and a context--switch occurs to a new thread of computation. This effectively masks a long and unpredictable latency due to remote loads, thereby providing tolerance to remote access latency. We began to develop standards to profile various algorithm and application parameters, such as the degree of parallelism, granularity, precision, instruction set mix, interprocessor communication, latency etc. These tools will continue to develop and evolve as the Information Power Grid environment matures. To provide a richer context for this research, the project also focused on issues of fault-tolerance and computation migration of numerical algorithms and software. During the initial phase we tried to increase our understanding of the bottlenecks in single processor performance. Our work began by developing an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. Based on the results we achieved in this study we are planning to study other architectures of interest, including development of cost models, and developing code generators appropriate to these architectures.

  1. Mapping of MPEG-4 decoding on a flexible architecture platform

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.

    2001-12-01

    In the field of consumer electronics, the advent of new features such as Internet, games, video conferencing, and mobile communication has triggered the convergence of television and computers technologies. This requires a generic media-processing platform that enables simultaneous execution of very diverse tasks such as high-throughput stream-oriented data processing and highly data-dependent irregular processing with complex control flows. As a representative application, this paper presents the mapping of a Main Visual profile MPEG-4 for High-Definition (HD) video onto a flexible architecture platform. A stepwise approach is taken, going from the decoder application toward an implementation proposal. First, the application is decomposed into separate tasks with self-contained functionality, clear interfaces, and distinct characteristics. Next, a hardware-software partitioning is derived by analyzing the characteristics of each task such as the amount of inherent parallelism, the throughput requirements, the complexity of control processing, and the reuse potential over different applications and different systems. Finally, a feasible implementation is proposed that includes amongst others a very-long-instruction-word (VLIW) media processor, one or more RISC processors, and some dedicated processors. The mapping study of the MPEG-4 decoder proves the flexibility and extensibility of the media-processing platform. This platform enables an effective HW/SW co-design yielding a high performance density.

  2. Design of the Protocol Processor for the ROBUS-2 Communication System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.

    2005-01-01

    The ROBUS-2 Protocol Processor (RPP) is a custom-designed hardware component implementing the functionality of the ROBUS-2 fault-tolerant communication system. The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault tolerant integrated modular architecture currently under development at NASA Langley Research Center. ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedule update, time reference (clock synchronization), and distributed diagnosis (group membership). ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 tolerates internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. ROBUS consists of RPPs connected to each other by a lower-level physical communication network. The RPP has a pipelined architecture and the design is parameterized in the behavioral and structural domains. The design of the RPP enables the bus to achieve a PE-message throughput that approaches the available bandwidth at the physical layer.

  3. Architecture for Control of the K9 Rover

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  4. System-on-chip architecture and validation for real-time transceiver optimization: APC implementation on FPGA

    NASA Astrophysics Data System (ADS)

    Suarez, Hernan; Zhang, Yan R.

    2015-05-01

    New radar applications need to perform complex algorithms and process large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression for real-time transceiver optimization are presented, they are based on a System-on-Chip architecture for Xilinx devices. This study also evaluates the performance of dedicated coprocessor as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through the high performance AXI buses, to perform floating-point operations, control the processing blocks, and communicate with external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band tested together with a low-cost channel emulator for different types of waveforms.

  5. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  6. Software-Reconfigurable Processors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey

    2005-01-01

    A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).

  7. Optimization of image processing algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  8. GPU: the biggest key processor for AI and parallel processing

    NASA Astrophysics Data System (ADS)

    Baji, Toru

    2017-07-01

    Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.

  9. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    PubMed

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  10. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    PubMed

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  11. Simulator for heterogeneous dataflow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    1993-01-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  12. Cache Energy Optimization Techniques For Modern Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, Corie L.; Solberg, Scott E.

    3-dimensional (3D) electrode architectures have been explored as a means to decouple power and energy trade-offs in thick battery electrodes. Limited work has been published which systematically examines the impact of these architectures at the pouch cell level. This paper conducts an analysis on the potential capacity gains that can be realized with thick co-extruded electrodes in a pouch cell. Moreover, our findings show that despite lower active material composition for each cathode layer, the effective gain in thickness and active material loading enables pouch cell capacity gains greater than 10% with a Lithium Nickel Manganese Cobalt Oxide (NMC) materialsmore » system.« less

  14. The deployment of routing protocols in distributed control plane of SDN.

    PubMed

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  15. Multicore Education through Simulation

    ERIC Educational Resources Information Center

    Ozturk, O.

    2011-01-01

    A project-oriented course for advanced undergraduate and graduate students is described for simulating multiple processor cores. Simics, a free simulator for academia, was utilized to enable students to explore computer architecture, operating systems, and hardware/software cosimulation. Motivation for including this course in the curriculum is…

  16. Bottom-up construction of artificial molecules for superconducting quantum processors

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Rigetti, Chad; Gambetta, Jay M.; Merkel, Seth; Chow, Jerry M.; Corcoles, Antonio D.; Smolin, John A.; Rozen, Jim R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    Recent experiments on transmon qubits capacitively coupled to superconducting 3-dimensional cavities have shown coherence times much longer than transmons coupled to more traditional planar resonators. For the implementation of a quantum processor this approach has clear advantages over traditional techniques but it poses the challenge of scalability. We are currently implementing multi-qubits experiments based on a bottom-up scaling approach. First, transmon qubits are fabricated on individual chips and are independently characterized. Second, an artificial molecule is assembled by selecting a particular set of previously characterized single-transmon chips. We present recent data on a two-qubit artificial molecule constructed in this way. The two qubits are chosen to generate a strong Z-Z interaction by matching the 0-1 transition energy of one qubit with the 1-2 transition of the other. Single qubit manipulations and state tomography cannot be done with ``traditional'' single tone microwave pulses but instead specifically shaped pulses have to be simultaneously applied on both qubits. Coherence times, coupling strength, and optimal pulses for decoupling the two qubits and perform state tomography are presented

  17. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  18. Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bolosky, William Joseph

    1993-01-01

    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.

  19. Dynamically programmable cache

    NASA Astrophysics Data System (ADS)

    Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas

    1998-10-01

    Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).

  20. Coding for parallel execution of hardware-in-the-loop millimeter-wave scene generation models on multicore SIMD processor architectures

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2013-05-01

    Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.

  1. Distributed digital signal processors for multi-body structures

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K.

    1990-01-01

    Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.

  2. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    PubMed Central

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  3. A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.

    PubMed

    Liu, Xin; Zheng, Yuan Jin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiao Jun

    2010-01-01

    In this paper, a miniature low-power Electrocardiogram (ECG) signal processing application specific integrated circuit (ASIC) chip is proposed. This chip provides multiple critical functions for ECG analysis using a systematic wavelet transform algorithm and a novel SRAM-based ASIC architecture, while achieves low cost and high performance. Using 0.18 µm CMOS technology and 1 V power supply, this ASIC chip consumes only 29 µW and occupies an area of 3 mm(2). This on-chip ECG processor is highly suitable for reliable real-time cardiac status monitoring applications.

  4. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  5. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  6. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  7. Hardware-Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur

    NASA Astrophysics Data System (ADS)

    Flatt, H.; Tarnowsky, A.; Blume, H.; Pirsch, P.

    2010-10-01

    Dieser Beitrag behandelt die Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur. Die Architektur besteht aus mehreren dedizierten Recheneinheiten zur parallelen Verarbeitung rechenintensiver Bildverarbeitungsverfahren und ist mit einem RISC-Prozessor verbunden. Eine konfigurierbare Architekturerweiterung um eine Recheneinheit zur Auswertung von Winkelhistogrammen von Objekten ermöglicht in Verbindung mit dem RISC eine echtzeitfähige Klassifikation. Je nach Konfiguration sind für die Architekturerweiterung auf einem Xilinx Virtex-5-FPGA zwischen 3300 und 12 000 Lookup-Tables erforderlich. Bei einer Taktfrequenz von 100 MHz können unabhängig von der Bildauflösung pro Einzelbild in einem 25-Hz-Videodatenstrom bis zu 100 Objekte der Größe 256×256 Pixel analysiert werden. This paper presents the mapping of a video-based approach for real-time evaluation of angular histograms on a modular coprocessor architecture. The architecture comprises several dedicated processing elements for parallel processing of computation-intensive image processing tasks and is coupled with a RISC processor. A configurable architecture extension, especially a processing element for evaluating angular histograms of objects in conjunction with a RISC processor, provides a real-time classification. Depending on the configuration of the architecture extension, 3 300 to 12 000 look-up tables are required for a Xilinx Virtex-5 FPGA implementation. Running at a clock frequency of 100 MHz and independently of the image resolution per frame, 100 objects of size 256×256 pixels are analyzed in a 25 Hz video stream by the architecture.

  8. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Cameron, K.W.

    1998-11-24

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less

  9. Smart photonic networks and computer security for image data

    NASA Astrophysics Data System (ADS)

    Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.

    1998-02-01

    Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.

  10. Three Program Architecture for Design Optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    In this presentation, I would like to review historical perspective on the program architecture used to build design optimization capabilities based on mathematical programming and other numerical search techniques. It is rather straightforward to classify the program architecture in three categories as shown above. However, the relative importance of each of the three approaches has not been static, instead dynamically changing as the capabilities of available computational resource increases. For example, we considered that the direct coupling architecture would never be used for practical problems, but availability of such computer systems as multi-processor. In this presentation, I would like to review the roles of three architecture from historical as well as current and future perspective. There may also be some possibility for emergence of hybrid architecture. I hope to provide some seeds for active discussion where we are heading to in the very dynamic environment for high speed computing and communication.

  11. The TurboLAN project. Phase 1: Protocol choices for high speed local area networks. Phase 2: TurboLAN Intelligent Network Adapter Card, (TINAC) architecture

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.

  12. Acoustic transient classification with a template correlation processor.

    PubMed

    Edwards, R T

    1999-10-01

    I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.

  13. Evaluating and optimizing the NERSC workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T; Cook, B; Deslippe, J

    2017-01-30

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  14. Evaluating and Optimizing the NERSC Workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Taylor; Cook, Brandon; Doerfler, Douglas

    2016-01-01

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  15. Algorithms and software for solving finite element equations on serial and parallel architectures

    NASA Technical Reports Server (NTRS)

    Chu, Eleanor; George, Alan

    1988-01-01

    The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the Computational Structural Mechanics (MSC) testbed. One of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A brief overview of the CSM Testbed software and its usage is presented. An overview of the sparse matrix research for the Testbed currently employed in the CSM Testbed is given. An interface which was designed and implemented as a research tool for installing and appraising new matrix processors in the CSM Testbed is described. The results of numerical experiments performed in solving a set of testbed demonstration problems using the processor SPK and other experimental processors are contained.

  16. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 1: A case study in theorem prover-based verification

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam; Bickford, Mark

    1991-01-01

    The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  17. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    NASA Technical Reports Server (NTRS)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  18. Kalman filter tracking on parallel architectures

    NASA Astrophysics Data System (ADS)

    Cerati, G.; Elmer, P.; Krutelyov, S.; Lantz, S.; Lefebvre, M.; McDermott, K.; Riley, D.; Tadel, M.; Wittich, P.; Wurthwein, F.; Yagil, A.

    2017-10-01

    We report on the progress of our studies towards a Kalman filter track reconstruction algorithm with optimal performance on manycore architectures. The combinatorial structure of these algorithms is not immediately compatible with an efficient SIMD (or SIMT) implementation; the challenge for us is to recast the existing software so it can readily generate hundreds of shared-memory threads that exploit the underlying instruction set of modern processors. We show how the data and associated tasks can be organized in a way that is conducive to both multithreading and vectorization. We demonstrate very good performance on Intel Xeon and Xeon Phi architectures, as well as promising first results on Nvidia GPUs.

  19. FPGA implementation of digital down converter using CORDIC algorithm

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashok; Lakshmi, Boppana

    2013-01-01

    In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.

  20. Multichannel Baseband Processor for Wideband CDMA

    NASA Astrophysics Data System (ADS)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  1. Design Methodology for Multiple Microcomputer Architectures.

    DTIC Science & Technology

    1982-07-01

    multimicro design knowledge is true both in industry and in university environments. In the industrial environment, it reduces productivity and increases...Real-Time Processor Problems," Proc. of ELECTRO-81 Tercer Seminario de Ingenieria Electronica, Nov. 9-13, 1981. 14 1981 "D Flip/Flop Substracts

  2. Gregory Hayman | NREL

    Science.gov Websites

    -7024 Greg's expertise is in the design and development of software for engineering applications. His experience includes project management, software architectural design, various software development the pre- and post-processors used in the analysis of data from both land-based and offshore wind

  3. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  4. The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

    NASA Astrophysics Data System (ADS)

    Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter

    2014-06-01

    In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.

  5. Advanced data management system architectures testbed

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1990-01-01

    The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.

  6. A research on the application of software defined networking in satellite network architecture

    NASA Astrophysics Data System (ADS)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  7. The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters

    NASA Technical Reports Server (NTRS)

    Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)

    1998-01-01

    We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.

  8. A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.

    1989-01-01

    A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.

  9. Thin-film decoupling capacitors for multi-chip modules

    NASA Astrophysics Data System (ADS)

    Dimos, D.; Lockwood, S. J.; Schwartz, R. W.; Rogers, M. S.

    Thin-film decoupling capacitors based on ferroelectric lead lanthanum zirconate titanate (PLZT) films are being developed for use in advanced packages, such as multi-chip modules. These thin-film decoupling capacitors are intended to replace multi-layer ceramic capacitors for certain applications, since they can be more fully integrated into the packaging architecture. The increased integration that can be achieved should lead to decreased package volume and improved high-speed performance, due to a decrease in interconnect inductance. PLZT films are fabricated by spin coating using metal carboxylate/alkoxide solutions. These films exhibit very high dielectric constants ((var epsilon) greater than or equal to 900), low dielectric losses (tan(delta) = 0.01), excellent insulation resistances (rho greater than 10(exp 13) (Omega)-cm at 125 C), and good breakdown field strengths (E(sub B) = 900 kV/cm). For integrated circuit applications, the PLZT dielectric is less than 1 micron thick, which results in a large capacitance/area (8-9 nF/sq mm). The thin-film geometry and processing conditions also make these capacitors suitable for direct incorporation onto integrated circuits and for packages that require embedded components.

  10. Automatic maintenance payload on board of a Mexican LEO microsatellite

    NASA Astrophysics Data System (ADS)

    Vicente-Vivas, Esaú; García-Nocetti, Fabián; Mendieta-Jiménez, Francisco

    2006-02-01

    Few research institutions from Mexico work together to finalize the integration of a technological demonstration microsatellite called Satex, aiming the launching of the first ever fully designed and manufactured domestic space vehicle. The project is based on technical knowledge gained in previous space experiences, particularly in developing GASCAN automatic experiments for NASA's space shuttle, and in some support obtained from the local team which assembled the México-OSCAR-30 microsatellites. Satex includes three autonomous payloads and a power subsystem, each one with a local microcomputer to provide intelligent and dedicated control. It also contains a flight computer (FC) with a pair of full redundancies. This enables the remote maintenance of processing boards from the ground station. A fourth communications payload depends on the flight computer for control purposes. A fifth payload was decided to be developed for the satellite. It adds value to the available on-board computers and extends the opportunity for a developing country to learn and to generate domestic space technology. Its aim is to provide automatic maintenance capabilities for the most critical on-board computer in order to achieve continuous satellite operations. This paper presents the virtual computer architecture specially developed to provide maintenance capabilities to the flight computer. The architecture is periodically implemented by software with a small amount of physical processors (FC processors) and virtual redundancies (payload processors) to emulate a hybrid redundancy computer. Communications among processors are accomplished over a fault-tolerant LAN. This allows a versatile operating behavior in terms of data communication as well as in terms of distributed fault tolerance. Obtained results, payload validation and reliability results are also presented.

  11. Using all of your CPU's in HIPE

    NASA Astrophysics Data System (ADS)

    Jacobson, J. D.; Fadda, D.

    2012-09-01

    Modern computer architectures increasingly feature multi-core CPU's. For example, the MacbookPro features the Intel quad-core i7 processors. Through the use of hyper-threading, where each core can execute two threads simultaneously, the quad-core i7 can support eight simultaneous processing threads. All this on your laptop! This CPU power can now be put into service by scientists to perform data reduction tasks, but only if the software has been designed to take advantage of the multiple processor architectures. Up to now, software written for Herschel data reduction (HIPE), written in Jython and JAVA, is single-threaded and can only utilize a single processor. Users of HIPE do not get any advantage from the additional processors. Why not put all of the CPU resources to work reducing your data? We present a multi-threaded software application that corrects long-term transients in the signal from the PACS unchopped spectroscopy line scan mode. In this poster, we present a multi-threaded software framework to achieve performance improvements from parallel execution. We will show how a task to correct transients in the PACS Spectroscopy Pipeline for the un-chopped line scan mode, has been threaded. This computation-intensive task uses either a one-parameter or a three parameter exponential function, to characterize the transient. The task uses a JAVA implementation of Minpack, translated from the C (Moshier) and IDL (Markwardt) by the authors, to optimize the correction parameters. We also explain how to determine if a task can benefit from threading (Amdahl's Law), and if it is safe to thread. The design and implementation, using the JAVA concurrency package completions service is described. Pitfalls, timing bugs, thread safety, resource control, testing and performance improvements are described and plotted.

  12. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    PubMed Central

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458

  13. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  14. Integrated Payload Data Handling Systems Using Software Partitioning

    NASA Astrophysics Data System (ADS)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  15. Optimization of the Multi-Spectral Euclidean Distance Calculation for FPGA-based Spaceborne Systems

    NASA Technical Reports Server (NTRS)

    Cristo, Alejandro; Fisher, Kevin; Perez, Rosa M.; Martinez, Pablo; Gualtieri, Anthony J.

    2012-01-01

    Due to the high quantity of operations that spaceborne processing systems must carry out in space, new methodologies and techniques are being presented as good alternatives in order to free the main processor from work and improve the overall performance. These include the development of ancillary dedicated hardware circuits that carry out the more redundant and computationally expensive operations in a faster way, leaving the main processor free to carry out other tasks while waiting for the result. One of these devices is SpaceCube, a FPGA-based system designed by NASA. The opportunity to use FPGA reconfigurable architectures in space allows not only the optimization of the mission operations with hardware-level solutions, but also the ability to create new and improved versions of the circuits, including error corrections, once the satellite is already in orbit. In this work, we propose the optimization of a common operation in remote sensing: the Multi-Spectral Euclidean Distance calculation. For that, two different hardware architectures have been designed and implemented in a Xilinx Virtex-5 FPGA, the same model of FPGAs used by SpaceCube. Previous results have shown that the communications between the embedded processor and the circuit create a bottleneck that affects the overall performance in a negative way. In order to avoid this, advanced methods including memory sharing, Native Port Interface (NPI) connections and Data Burst Transfers have been used.

  16. Implementation of digital equality comparator circuit on memristive memory crossbar array using material implication logic

    NASA Astrophysics Data System (ADS)

    Haron, Adib; Mahdzair, Fazren; Luqman, Anas; Osman, Nazmie; Junid, Syed Abdul Mutalib Al

    2018-03-01

    One of the most significant constraints of Von Neumann architecture is the limited bandwidth between memory and processor. The cost to move data back and forth between memory and processor is considerably higher than the computation in the processor itself. This architecture significantly impacts the Big Data and data-intensive application such as DNA analysis comparison which spend most of the processing time to move data. Recently, the in-memory processing concept was proposed, which is based on the capability to perform the logic operation on the physical memory structure using a crossbar topology and non-volatile resistive-switching memristor technology. This paper proposes a scheme to map digital equality comparator circuit on memristive memory crossbar array. The 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit of equality comparator circuit are mapped on memristive memory crossbar array by using material implication logic in a sequential and parallel method. The simulation results show that, for the 64-bit word size, the parallel mapping exhibits 2.8× better performance in total execution time than sequential mapping but has a trade-off in terms of energy consumption and area utilization. Meanwhile, the total crossbar area can be reduced by 1.2× for sequential mapping and 1.5× for parallel mapping both by using the overlapping technique.

  17. Parallel optimization algorithms and their implementation in VLSI design

    NASA Technical Reports Server (NTRS)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  18. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS

    PubMed Central

    Fu, Zhisong; Kirby, Robert M.; Whitaker, Ross T.

    2014-01-01

    Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers. PMID:25221418

  19. A Distributed Prognostic Health Management Architecture

    NASA Technical Reports Server (NTRS)

    Bhaskar, Saha; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.

  20. VASP-4096: a very high performance programmable device for digital media processing applications

    NASA Astrophysics Data System (ADS)

    Krikelis, Argy

    2001-03-01

    Over the past few years, technology drivers for microprocessors have changed significantly. Media data delivery and processing--such as telecommunications, networking, video processing, speech recognition and 3D graphics--is increasing in importance and will soon dominate the processing cycles consumed in computer-based systems. This paper presents the architecture of the VASP-4096 processor. VASP-4096 provides high media performance with low energy consumption by integrating associative SIMD parallel processing with embedded microprocessor technology. The major innovations in the VASP-4096 is the integration of thousands of processing units in a single chip that are capable of support software programmable high-performance mathematical functions as well as abstract data processing. In addition to 4096 processing units, VASP-4096 integrates on a single chip a RISC controller that is an implementation of the SPARC architecture, 128 Kbytes of Data Memory, and I/O interfaces. The SIMD processing in VASP-4096 implements the ASProCore architecture, which is a proprietary implementation of SIMD processing, operates at 266 MHz with program instructions issued by the RISC controller. The device also integrates a 64-bit synchronous main memory interface operating at 133 MHz (double-data rate), and a 64- bit 66 MHz PCI interface. VASP-4096, compared with other processors architectures that support media processing, offers true performance scalability, support for deterministic and non-deterministic data processing on a single device, and software programmability that can be re- used in future chip generations.

  1. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  2. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  3. Multimedia architectures: from desktop systems to portable appliances

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Vasudev; Konstantinides, Konstantinos; Natarajan, Balas R.

    1997-01-01

    Future desktop and portable computing systems will have as their core an integrated multimedia system. Such a system will seamlessly combine digital video, digital audio, computer animation, text, and graphics. Furthermore, such a system will allow for mixed-media creation, dissemination, and interactive access in real time. Multimedia architectures that need to support these functions have traditionally required special display and processing units for the different media types. This approach tends to be expensive and is inefficient in its use of silicon. Furthermore, such media-specific processing units are unable to cope with the fluid nature of the multimedia market wherein the needs and standards are changing and system manufacturers may demand a single component media engine across a range of products. This constraint has led to a shift towards providing a single-component multimedia specific computing engine that can be integrated easily within desktop systems, tethered consumer appliances, or portable appliances. In this paper, we review some of the recent architectural efforts in developing integrated media systems. We primarily focus on two efforts, namely the evolution of multimedia-capable general purpose processors and a more recent effort in developing single component mixed media co-processors. Design considerations that could facilitate the migration of these technologies to a portable integrated media system also are presented.

  4. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    PubMed Central

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395

  5. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    NASA Astrophysics Data System (ADS)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.

  6. Web surveillance system using platform-based design

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Yo; Tsai, Tsung-Han

    2004-04-01

    A revolutionary methodology of SOPC platform-based design environment for multimedia communications will be developed. We embed a softcore processor to perform the image compression in FPGA. Then, we plug-in an Ethernet daughter board in the SOPC development platform system. Afterward, a web surveillance platform system is presented. The web surveillance system consists of three parts: image capture, web server and JPEG compression. In this architecture, user can control the surveillance system by remote. By the IP address configures to Ethernet daughter board, the user can access the surveillance system via browser. When user access the surveillance system, the CMOS sensor presently capture the remote image. After that, it will feed the captured image with the embedded processor. The embedded processor immediately performs the JPEG compression. Afterward, the user receives the compressed data via Ethernet. To sum up of the above mentioned, the all system will be implemented on APEX20K200E484-2X device.

  7. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  8. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  9. High order parallel numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.

    1992-01-01

    The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.

  10. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  11. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  12. An investigation of potential applications of OP-SAPS: Operational sampled analog processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1976-01-01

    The impact of charge-coupled device (CCD) processors on future instrumentation was investigated. The CCD devices studied process sampled analog data and are referred to as OP-SAPS - operational sampled analog processors. Preliminary studies into various architectural configurations for systems composed of OP-SAPS show that they have potential in such diverse applications as pattern recognition and automatic control. It appears probable that OP-SAPS may be used to construct computing structures which can serve as special peripherals to large-scale computer complexes used in real time flight simulation. The research was limited to the following benchmark programs: (1) face recognition, (2) voice command and control, (3) terrain classification, and (4) terrain identification. A small amount of effort was spent on examining a method by which OP-SAPS may be used to decrease the limiting ground sampling distance encountered in remote sensing from satellites.

  13. Workload - An examination of the concept

    NASA Technical Reports Server (NTRS)

    Gopher, Daniel; Donchin, Emanuel

    1986-01-01

    The relations between task difficulty and workload and workload and performance are examined. The architecture and limitations of the central processor are discussed. Various procedures for measuring workload are described and evaluated. Consideration is given to normative and descriptive approaches; subjective, performance, and arousal measures; performance operating characteristics; and psychophysiological measures of workload.

  14. Neuromorphic Computing: A Post-Moore's Law Complementary Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Birdwell, John Douglas; Dean, Mark

    2016-01-01

    We describe our approach to post-Moore's law computing with three neuromorphic computing models that share a RISC philosophy, featuring simple components combined with a flexible and programmable structure. We envision these to be leveraged as co-processors, or as data filters to provide in situ data analysis in supercomputing environments.

  15. Expert Systems on Multiprocessor Architectures. Volume 2. Technical Reports

    DTIC Science & Technology

    1991-06-01

    Report RC 12936 (#58037). IBM T. J. Wartson Reiearch Center. July 1987. � Alan Jay Smith. Cache memories. Coniputing Sitrry., 1.1(3): I.3-5:30...basic-shared is an instrument for ashared memory design. The components panels are processor- qload-scrolling-bar-panel, memory-qload-scrolling-bar-panel

  16. Reliability and performance of a system-on-a-chip by predictive wear-out based activation of functional components

    DOEpatents

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-01

    A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.

  17. Enhancing data locality by using terminal propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, B.; Leland, R.; Van Driessche, R.

    1995-12-31

    Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitionsmore » generated by more familiar techniques.« less

  18. Does the Intel Xeon Phi processor fit HEP workloads?

    NASA Astrophysics Data System (ADS)

    Nowak, A.; Bitzes, G.; Dotti, A.; Lazzaro, A.; Jarp, S.; Szostek, P.; Valsan, L.; Botezatu, M.; Leduc, J.

    2014-06-01

    This paper summarizes the five years of CERN openlab's efforts focused on the Intel Xeon Phi co-processor, from the time of its inception to public release. We consider the architecture of the device vis a vis the characteristics of HEP software and identify key opportunities for HEP processing, as well as scaling limitations. We report on improvements and speedups linked to parallelization and vectorization on benchmarks involving software frameworks such as Geant4 and ROOT. Finally, we extrapolate current software and hardware trends and project them onto accelerators of the future, with the specifics of offline and online HEP processing in mind.

  19. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Grout, Ray W

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less

  20. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  1. Supporting shared data structures on distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.

  2. Design of a modular digital computer system, CDRL no. D001, final design plan

    NASA Technical Reports Server (NTRS)

    Easton, R. A.

    1975-01-01

    The engineering breadboard implementation for the CDRL no. D001 modular digital computer system developed during design of the logic system was documented. This effort followed the architecture study completed and documented previously, and was intended to verify the concepts of a fault tolerant, automatically reconfigurable, modular version of the computer system conceived during the architecture study. The system has a microprogrammed 32 bit word length, general register architecture and an instruction set consisting of a subset of the IBM System 360 instruction set plus additional fault tolerance firmware. The following areas were covered: breadboard packaging, central control element, central processing element, memory, input/output processor, and maintenance/status panel and electronics.

  3. Large-Scale Calculations for Material Sciences Using Accelerators to Improve Time- and Energy-to-Solution

    DOE PAGES

    Eisenbach, Markus

    2017-01-01

    A major impediment to deploying next-generation high-performance computational systems is the required electrical power, often measured in units of megawatts. The solution to this problem is driving the introduction of novel machine architectures, such as those employing many-core processors and specialized accelerators. In this article, we describe the use of a hybrid accelerated architecture to achieve both reduced time to solution and the associated reduction in the electrical cost for a state-of-the-art materials science computation.

  4. Polymorphous Computing Architecture (PCA) Kernel Benchmark Measurements on the MIT Raw Microprocessor

    DTIC Science & Technology

    2006-06-14

    Robert Graybill . A Raw hoard for the use of this project was provided by the Computer Architecture Croup at the Massachusetts Institute of Technology...simulator is presented by MIT as being an accurate model of the Raw chip, we have found that it does not accurately model the board. Our comparison...G4 processor, model 7410. with a 32 kbyte level-1 cache on-chip and a 2 Mbyte L2 cache connected through a 250 MH/ bus [12]. Each node has 256 Mbyte

  5. Roofline model toolkit: A practical tool for architectural and program analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Yu Jung; Williams, Samuel; Van Straalen, Brian

    We present preliminary results of the Roofline Toolkit for multicore, many core, and accelerated architectures. This paper focuses on the processor architecture characterization engine, a collection of portable instrumented micro benchmarks implemented with Message Passing Interface (MPI), and OpenMP used to express thread-level parallelism. These benchmarks are specialized to quantify the behavior of different architectural features. Compared to previous work on performance characterization, these microbenchmarks focus on capturing the performance of each level of the memory hierarchy, along with thread-level parallelism, instruction-level parallelism and explicit SIMD parallelism, measured in the context of the compilers and run-time environments. We also measuremore » sustained PCIe throughput with four GPU memory managed mechanisms. By combining results from the architecture characterization with the Roofline model based solely on architectural specifications, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we instrument three applications and plot their resultant performance on the corresponding Roofline model when run on a Blue Gene/Q architecture.« less

  6. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  7. Data flow machine for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1988-07-22

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information from an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ''fire'' signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  8. Data flow machine for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor G.

    1995-01-01

    A data flow computer which of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  9. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  10. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  11. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  12. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  13. Integrating Computer Architectures into the Design of High-Performance Controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William

    1986-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.

  14. Generalized hypercube structures and hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Young, Steven D.

    1992-01-01

    This paper discusses an ongoing study that uses a recent development in communication control technology to implement hybrid hypercube structures. These architectures are similar to binary hypercubes, but they also provide added connectivity between the processors. This added connectivity increases communication reliability while decreasing the latency of interprocessor message passing. Because these factors directly determine the speed that can be obtained by multiprocessor systems, these architectures are attractive for applications such as remote exploration and experimentation, where high performance and ultrareliability are required. This paper describes and enumerates these architectures and discusses how they can be implemented with a modified version of the hyperswitch communication network (HCN). The HCN is analyzed because it has three attractive features that enable these architectures to be effective: speed, fault tolerance, and the ability to pass multiple messages simultaneously through the same hyperswitch controller.

  15. The Cognitive Architecture for Chaining of Two Mental Operations

    ERIC Educational Resources Information Center

    Sackur, Jerome; Dehaene, Stanislas

    2009-01-01

    A simple view, which dates back to Turing, proposes that complex cognitive operations are composed of serially arranged elementary operations, each passing intermediate results to the next. However, whether and how such serial processing is achieved with a brain composed of massively parallel processors, remains an open question. Here, we study…

  16. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  17. Respecting Relations: Memory Access and Antecedent Retrieval in Incremental Sentence Processing

    ERIC Educational Resources Information Center

    Kush, Dave W.

    2013-01-01

    This dissertation uses the processing of anaphoric relations to probe how linguistic information is encoded in and retrieved from memory during real-time sentence comprehension. More specifically, the dissertation attempts to resolve a tension between the demands of a linguistic processor implemented in a general-purpose cognitive architecture and…

  18. Scalable Vector Media-processors for Embedded Systems

    DTIC Science & Technology

    2002-05-01

    Set Architecture for Multimedia “When you do the common things in life in an uncommon way, you will command the attention of the world.” George ...Bibliography [ABHS89] M. August, G. Brost , C. Hsiung, and C. Schiffleger. Cray X-MP: The Birth of a Super- computer. IEEE Computer, 22(1):45–52, January

  19. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  20. Cache write generate for parallel image processing on shared memory architectures.

    PubMed

    Wittenbrink, C M; Somani, A K; Chen, C H

    1996-01-01

    We investigate cache write generate, our cache mode invention. We demonstrate that for parallel image processing applications, the new mode improves main memory bandwidth, CPU efficiency, cache hits, and cache latency. We use register level simulations validated by the UW-Proteus system. Many memory, cache, and processor configurations are evaluated.

Top