Sample records for decoy quantum key

  1. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution.

    PubMed

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-10-14

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate.

  2. An improved scheme on decoy-state method for measurement-device-independent quantum key distribution

    PubMed Central

    Wang, Dong; Li, Mo; Guo, Guang-Can; Wang, Qin

    2015-01-01

    Quantum key distribution involving decoy-states is a significant application of quantum information. By using three-intensity decoy-states of single-photon-added coherent sources, we propose a practically realizable scheme on quantum key distribution which approaches very closely the ideal asymptotic case of an infinite number of decoy-states. We make a comparative study between this scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final key generation rate. PMID:26463580

  3. Practical decoy state for quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Qi Bing; Zhao Yi

    2005-07-15

    Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD). Here, we present a general theory of the decoy state protocol based on only two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states - the vacuum and a weak decoy state - asymptotically approaches the theoretical limit of the most general type of decoy state protocol (with an infinite numbermore » of decoy states). We also present a one-decoy-state protocol. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long-distance (larger than 100 km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical.« less

  4. Finite-key analysis for the 1-decoy state QKD protocol

    NASA Astrophysics Data System (ADS)

    Rusca, Davide; Boaron, Alberto; Grünenfelder, Fadri; Martin, Anthony; Zbinden, Hugo

    2018-04-01

    It has been shown that in the asymptotic case of infinite-key length, the 2-decoy state Quantum Key Distribution (QKD) protocol outperforms the 1-decoy state protocol. Here, we present a finite-key analysis of the 1-decoy method. Interestingly, we find that for practical block sizes of up to 108 bits, the 1-decoy protocol achieves for almost all experimental settings higher secret key rates than the 2-decoy protocol. Since using only one decoy is also easier to implement, we conclude that it is the best choice for QKD, in most common practical scenarios.

  5. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  6. Making the decoy-state measurement-device-independent quantum key distribution practically useful

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin

    2016-04-01

    The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.

  7. Optimized decoy state QKD for underwater free space communication

    NASA Astrophysics Data System (ADS)

    Lopes, Minal; Sarwade, Nisha

    Quantum cryptography (QC) is envisioned as a solution for global key distribution through fiber optic, free space and underwater optical communication due to its unconditional security. In view of this, this paper investigates underwater free space quantum key distribution (QKD) model for enhanced transmission distance, secret key rates and security. It is reported that secure underwater free space QKD is feasible in the clearest ocean water with the sifted key rates up to 207kbps. This paper extends this work by testing performance of optimized decoy state QKD protocol with underwater free space communication model. The attenuation of photons, quantum bit error rate and the sifted key generation rate of underwater quantum communication is obtained with vector radiative transfer theory and Monte Carlo method. It is observed from the simulations that optimized decoy state QKD evidently enhances the underwater secret key transmission distance as well as secret key rates.

  8. Getting something out of nothing in the measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tan, Yong-Gang; Cai, Qing-Yu; Yang, Hai-Feng; Hu, Yao-Hua

    2015-11-01

    Because of the monogamy of entanglement, the measurement-device-independent quantum key distribution is immune to the side-information leaking of the measurement devices. When the correlated measurement outcomes are generated from the dark counts, no entanglement is actually obtained. However, secure key bits can still be proven to be generated from these measurement outcomes. Especially, we will give numerical studies on the contributions of dark counts to the key generation rate in practical decoy state MDI-QKD where a signal source, a weaker decoy source and a vacuum decoy source are used by either legitimate key distributer.

  9. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    PubMed Central

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-01-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808

  10. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  11. Decoy-state quantum key distribution with biased basis choice.

    PubMed

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.

  12. Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources.

    PubMed

    Chen, RuiKe; Bao, WanSu; Zhou, Chun; Li, Hongwei; Wang, Yang; Bao, HaiZe

    2016-03-21

    In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 1011 to 1013 signals) it is possible to perform secure MDI-QCC over reasonable distances.

  13. Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources.

    PubMed

    Zhang, Chun-Hui; Zhang, Chun-Mei; Guo, Guang-Can; Wang, Qin

    2018-02-19

    At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.

  14. Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method.

    PubMed

    Mao, Chen-Chen; Zhou, Xing-Yu; Zhu, Jian-Rong; Zhang, Chun-Hui; Zhang, Chun-Mei; Wang, Qin

    2018-05-14

    Recently Zhang et al [ Phys. Rev. A95, 012333 (2017)] developed a new approach to estimate the failure probability for the decoy-state BB84 QKD system when taking finite-size key effect into account, which offers security comparable to Chernoff bound, while results in an improved key rate and transmission distance. Based on Zhang et al's work, now we extend this approach to the case of the measurement-device-independent quantum key distribution (MDI-QKD), and for the first time implement it onto the four-intensity decoy-state MDI-QKD system. Moreover, through utilizing joint constraints and collective error-estimation techniques, we can obviously increase the performance of practical MDI-QKD systems compared with either three- or four-intensity decoy-state MDI-QKD using Chernoff bound analysis, and achieve much higher level security compared with those applying Gaussian approximation analysis.

  15. Simple scheme to implement decoy-state reference-frame-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Zhu, Jianrong; Wang, Qin

    2018-06-01

    We propose a simple scheme to implement decoy-state reference-frame-independent quantum key distribution (RFI-QKD), where signal states are prepared in Z, X, and Y bases, decoy states are prepared in X and Y bases, and vacuum states are set to no bases. Different from the original decoy-state RFI-QKD scheme whose decoy states are prepared in Z, X and Y bases, in our scheme decoy states are only prepared in X and Y bases, which avoids the redundancy of decoy states in Z basis, saves the random number consumption, simplifies the encoding device of practical RFI-QKD systems, and makes the most of the finite pulses in a short time. Numerical simulations show that, considering the finite size effect with reasonable number of pulses in practical scenarios, our simple decoy-state RFI-QKD scheme exhibits at least comparable or even better performance than that of the original decoy-state RFI-QKD scheme. Especially, in terms of the resistance to the relative rotation of reference frames, our proposed scheme behaves much better than the original scheme, which has great potential to be adopted in current QKD systems.

  16. Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources.

    PubMed

    Liu, Li; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2017-09-12

    Measurement-device-independent quantum key distribution (MDI-QKD) with the active decoy state method can remove all detector loopholes, and resist the imperfections of sources. But it may lead to side channel attacks and break the security of QKD system. In this paper, we apply the passive decoy state method to the MDI-QKD based on polarization encoding mode. Not only all attacks on detectors can be removed, but also the side channel attacks on sources can be overcome. We get that the MDI-QKD with our passive decoy state method can have a performance comparable to the protocol with the active decoy state method. To fit for the demand of practical application, we discuss intensity fluctuation in the security analysis of MDI-QKD protocol using passive decoy state method, and derive the key generation rate for our protocol with intensity fluctuation. It shows that intensity fluctuation has an adverse effect on the key generation rate which is non-negligible, especially in the case of small data size of total transmitting signals and long distance transmission. We give specific simulations on the relationship between intensity fluctuation and the key generation rate. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account.

  17. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  18. Quantum key distribution with passive decoy state selection

    NASA Astrophysics Data System (ADS)

    Mauerer, Wolfgang; Silberhorn, Christine

    2007-05-01

    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.

  19. Beating the photon-number-splitting attack in practical quantum cryptography.

    PubMed

    Wang, Xiang-Bin

    2005-06-17

    We propose an efficient method to verify the upper bound of the fraction of counts caused by multiphoton pulses in practical quantum key distribution using weak coherent light, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for the decoy pulse. Our verified upper bound is sufficiently tight for quantum key distribution with a very lossy channel, in both the asymptotic and nonasymptotic case. So far our protocol is the only decoy-state protocol that works efficiently for currently existing setups.

  20. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  1. Decoy-state quantum key distribution with polarized photons over 200 km.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Jian; Cai, Wen-Qi; Wan, Xu; Chen, Luo-Kan; Wang, Jin-Hong; Liu, Shu-Bin; Liang, Hao; Yang, Lin; Peng, Cheng-Zhi; Chen, Kai; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-04-12

    We report an implementation of decoy-state quantum key distribution (QKD) over 200 km optical fiber cable through photon polarization encoding. This is achieved by constructing the whole QKD system operating at 320 MHz repetition rate, and developing high-speed transmitter and receiver modules. A novel and economic way of synchronization method is designed and incorporated into the system, which allows to work at a low frequency of 40kHz and removes the use of highly precise clock. A final key rate of 15 Hz is distributed within the experimental time of 3089 seconds, by using super-conducting single photon detectors. This is longest decoy-state QKD yet demonstrated up to date. It helps to make a significant step towards practical secure communication in long-distance scope.

  2. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  3. Field test of a practical secure communication network with decoy-state quantum cryptography.

    PubMed

    Chen, Teng-Yun; Liang, Hao; Liu, Yang; Cai, Wen-Qi; Ju, Lei; Liu, Wei-Yue; Wang, Jian; Yin, Hao; Chen, Kai; Chen, Zeng-Bing; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-04-13

    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.

  4. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei

    2017-04-01

    Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

  5. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  6. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  7. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2009-03-01

    The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).

  8. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  9. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber.

    PubMed

    Yin, Hua-Lei; Chen, Teng-Yun; Yu, Zong-Wen; Liu, Hui; You, Li-Xing; Zhou, Yi-Heng; Chen, Si-Jing; Mao, Yingqiu; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Hao; Li, Ming Jun; Nolan, Daniel; Zhou, Fei; Jiang, Xiao; Wang, Zhen; Zhang, Qiang; Wang, Xiang-Bin; Pan, Jian-Wei

    2016-11-04

    Measurement-device-independent quantum key distribution (MDIQKD) with the decoy-state method negates security threats of both the imperfect single-photon source and detection losses. Lengthening the distance and improving the key rate of quantum key distribution (QKD) are vital issues in practical applications of QKD. Herein, we report the results of MDIQKD over 404 km of ultralow-loss optical fiber and 311 km of a standard optical fiber while employing an optimized four-intensity decoy-state method. This record-breaking implementation of the MDIQKD method not only provides a new distance record for both MDIQKD and all types of QKD systems but also, more significantly, achieves a distance that the traditional Bennett-Brassard 1984 QKD would not be able to achieve with the same detection devices even with ideal single-photon sources. This work represents a significant step toward proving and developing feasible long-distance QKD.

  10. Passive decoy-state quantum key distribution with practical light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curty, Marcos; Ma, Xiongfeng; Qi, Bing

    2010-02-15

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simplemore » threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.« less

  11. Simple 2.5 GHz time-bin quantum key distribution

    NASA Astrophysics Data System (ADS)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Rusca, Davide; Gray, Stuart; Li, Ming-Jun; Nolan, Daniel; Martin, Anthony; Zbinden, Hugo

    2018-04-01

    We present a 2.5 GHz quantum key distribution setup with the emphasis on a simple experimental realization. It features a three-state time-bin protocol based on a pulsed diode laser and a single intensity modulator. Implementing an efficient one-decoy scheme and finite-key analysis, we achieve record breaking secret key rates of 1.5 kbps over 200 km of standard optical fibers.

  12. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2008-05-01

    The security of a standard bidirectional “plug-and-play” quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we solve this question directly by presenting the quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard Bennett-Brassard 1984 protocol, weak+vacuum decoy state protocol, and one-decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source.

  13. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  14. Decoy-state quantum key distribution with more than three types of photon intensity pulses

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2018-04-01

    The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.

  15. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  16. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization.

    PubMed

    Tanaka, Akihiro; Fujiwara, Mikio; Nam, Sae W; Nambu, Yoshihiro; Takahashi, Seigo; Maeda, Wakako; Yoshino, Ken-ichiro; Miki, Shigehito; Baek, Burm; Wang, Zhen; Tajima, Akio; Sasaki, Masahide; Tomita, Akihisa

    2008-07-21

    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78- 0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

  17. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2011-04-15

    In this paper, we consider continuous-variable quantum-key-distribution (QKD) protocols which use non-Gaussian modulations. These specific modulation schemes are compatible with very efficient error-correction procedures, hence allowing the protocols to outperform previous protocols in terms of achievable range. In their simplest implementation, these protocols are secure for any linear quantum channels (hence against Gaussian attacks). We also show how the use of decoy states makes the protocols secure against arbitrary collective attacks, which implies their unconditional security in the asymptotic limit.

  18. Prefixed-threshold real-time selection method in free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Wenyuan; Xu, Feihu; Lo, Hoi-Kwong

    2018-03-01

    Free-space quantum key distribution allows two parties to share a random key with unconditional security, between ground stations, between mobile platforms, and even in satellite-ground quantum communications. Atmospheric turbulence causes fluctuations in transmittance, which further affect the quantum bit error rate and the secure key rate. Previous postselection methods to combat atmospheric turbulence require a threshold value determined after all quantum transmission. In contrast, here we propose a method where we predetermine the optimal threshold value even before quantum transmission. Therefore, the receiver can discard useless data immediately, thus greatly reducing data storage requirements and computing resources. Furthermore, our method can be applied to a variety of protocols, including, for example, not only single-photon BB84 but also asymptotic and finite-size decoy-state BB84, which can greatly increase its practicality.

  19. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss

    NASA Astrophysics Data System (ADS)

    Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Hübel, Hannes; Jennewein, Thomas

    2011-12-01

    Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.

  20. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  1. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  2. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  3. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2014-07-25

    link in a free- space channel through a marine environment (such as loss, noise and turbulence) and (2) parametrically calculating the secret key rate...width. Parametric calculations of the expected secret key rate As can be seen in Figure 6, the secret key rate of the BB84 protocol in the presence...Figure 9 shows the effect of various detriments on the secret -kay rate, for laser-decoy BB84. Figure 9: Effects of detriments on secret-key rate

  4. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin

    2018-01-01

    Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.

  5. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    PubMed

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  6. Finite-data-size study on practical universal blind quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Li, Qiong

    2018-07-01

    The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.

  7. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  8. Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

    NASA Astrophysics Data System (ADS)

    Jiang, Dong-Huan; Xu, Guang-Bao

    2018-07-01

    Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.

  9. Feasibility of satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Tomaello, A.; Da Deppo, V.; Naletto, G.; Villoresi, P.

    2009-04-01

    In this paper, we present a novel analysis of the feasibility of quantum key distribution between a LEO satellite and a ground station. First of all, we study signal propagation through a turbulent atmosphere for uplinks and downlinks, discussing the contribution of beam spreading and beam wandering. Then we introduce a model for the background noise of the channel during night-time and day-time, calculating the signal-to-noise ratio for different configurations. We also discuss the expected error-rate due to imperfect polarization compensation in the channel. Finally, we calculate the expected key generation rate of a secure key for different configurations (uplink, downlink) and for different protocols (BB84 with and without decoy states, entanglement-based Ekert91 protocol).

  10. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  11. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  12. Satellite-to-ground quantum key distribution.

    PubMed

    Liao, Sheng-Kai; Cai, Wen-Qi; Liu, Wei-Yue; Zhang, Liang; Li, Yang; Ren, Ji-Gang; Yin, Juan; Shen, Qi; Cao, Yuan; Li, Zheng-Ping; Li, Feng-Zhi; Chen, Xia-Wei; Sun, Li-Hua; Jia, Jian-Jun; Wu, Jin-Cai; Jiang, Xiao-Jun; Wang, Jian-Feng; Huang, Yong-Mei; Wang, Qiang; Zhou, Yi-Lin; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Zhang, Qiang; Chen, Yu-Ao; Liu, Nai-Le; Wang, Xiang-Bin; Zhu, Zhen-Cai; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.

  13. Revealing of photon-number splitting attack on quantum key distribution system by photon-number resolving devices

    NASA Astrophysics Data System (ADS)

    Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.

    2016-08-01

    Quantum cryptography allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source of quantum states. In order to prevent actions of an eavesdropper, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. In this paper, we describe an alternative method based on monitoring photon number statistics after detection. We provide a useful rule of thumb to estimate approximate order of difference of expected distribution and distribution in case of attack. Formula for calculating a minimum value of total pulses or time-gaps to resolve attack is shown. Also formulas for actual fraction of raw key known to Eve were derived. This method can therefore be used with any system and even combining with mentioned special protocols.

  14. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  15. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  16. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the Innovation Program of Graduate Education of Jiangsu Province, China (Grant No. KYLX0810). Gong Long-Yan is partially supported by Qinglan Project of Jiangsu Province, China.

  17. Satellite-Relayed Intercontinental Quantum Network.

    PubMed

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  18. Satellite-Relayed Intercontinental Quantum Network

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  19. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  20. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

  1. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    PubMed Central

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-01-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. PMID:26404010

  2. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  3. Decoy state method for quantum cryptography based on phase coding into faint laser pulses

    NASA Astrophysics Data System (ADS)

    Kulik, S. P.; Molotkov, S. N.

    2017-12-01

    We discuss the photon number splitting attack (PNS) in systems of quantum cryptography with phase coding. It is shown that this attack, as well as the structural equations for the PNS attack for phase encoding, differs physically from the analogous attack applied to the polarization coding. As far as we know, in practice, in all works to date processing of experimental data has been done for phase coding, but using formulas for polarization coding. This can lead to inadequate results for the length of the secret key. These calculations are important for the correct interpretation of the results, especially if it concerns the criterion of secrecy in quantum cryptography.

  4. Strong light illumination on gain-switched semiconductor lasers helps the eavesdropper in practical quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi

    2018-07-01

    The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.

  5. One-sided measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai

    2018-01-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.

  6. Decoy-state quantum key distribution with a leaky source

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Curty, Marcos; Lucamarini, Marco

    2016-06-01

    In recent years, there has been a great effort to prove the security of quantum key distribution (QKD) with a minimum number of assumptions. Besides its intrinsic theoretical interest, this would allow for larger tolerance against device imperfections in the actual implementations. However, even in this device-independent scenario, one assumption seems unavoidable, that is, the presence of a protected space devoid of any unwanted information leakage in which the legitimate parties can privately generate, process and store their classical data. In this paper we relax this unrealistic and hardly feasible assumption and introduce a general formalism to tackle the information leakage problem in most of existing QKD systems. More specifically, we prove the security of optical QKD systems using phase and intensity modulators in their transmitters, which leak the setting information in an arbitrary manner. We apply our security proof to cases of practical interest and show key rates similar to those obtained in a perfectly shielded environment. Our work constitutes a fundamental step forward in guaranteeing implementation security of quantum communication systems.

  7. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-08-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  8. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  9. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-05-01

    Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.

  10. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; MengYi, Deng

    2018-03-01

    The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.

  11. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.

    PubMed

    Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S

    2016-02-08

    A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters.

  12. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    DOE PAGES

    Qi, Bing

    2015-02-25

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. One of the main advantages of MDI-QKD is that the security can be proved without making any assumptions about how the measurement device works. The price to pay is the relatively low secure key rate comparing with conventional quantum key distribution (QKD), such as the decoy-state BB84 protocol. Recently a new QKD protocol, aiming at bridging the strong security of MDI-QKD with the high e ciency of conventional QKD, has been proposed. In this protocol, the legitimate receiver employs a trusted linear opticsmore » network to encode information on photons received from an insecure quantum channel, and then performs a Bell state measurement (BSM) using untrusted detectors. One crucial assumption made in most of these studies is that the untrusted BSM located inside the receiver's laboratory cannot send any unwanted information to the outside. Here in this paper, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow Eve to gain information of the quantum key without being detected. Ultimately, to prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.« less

  13. Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Li, Jian; Zhu, Jian-Rong; Zhang, Chun-Mei; Wang, Qin

    2017-12-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 61475197, 61590932, 11774180, and 61705110), the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant Nos. 15KJA120002 and 17KJB140016), the Outstanding Youth Project of Jiangsu Province, China (Grant No. BK20150039), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170902), and the Science Fund from the Nanjing University of Posts and Telecommunications, China (Grant No. NY217006).

  14. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  15. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    NASA Astrophysics Data System (ADS)

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa

    2018-03-01

    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.

  16. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  17. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  18. Adaptive spatial filtering for daytime satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  19. Effectiveness Evaluation Method of Anti-Radiation Missile against Active Decoy

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Cao, Fei; Li, Sijia

    2017-06-01

    In the problem of anti-radiation missile against active decoy, whether the ARM can effectively kill the target radiation source and bait is an important index for evaluating the operational effectiveness of the missile. Aiming at this problem, this paper proposes a method to evaluate the effect of ARM against active decoy. Based on the calculation of ARM’s ability to resist the decoy, the paper proposes a method to evaluate the decoy resistance based on the key components of the hitting radar. The method has the advantages of scientific and reliability.

  20. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGES

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; ...

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  1. A decoy trap for breeding-season mallards in North Dakota

    USGS Publications Warehouse

    Sharp, D.E.; Lokemoen, J.T.

    1987-01-01

    A modified decoy trap was effective for capturing wild adult male and female mallards (Anas platyrhynchos) during the 1980-81 breeding seasons in North Dakota. Key features contributing to the trap's success included a central decoy cylinder, large capture compartments with spring-door openings, an adjustable trigger mechanism with a balanced door attachment that was resistant to trap movement, and the use of F1, wild-stock or game-farm female decoys.

  2. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  3. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    NASA Astrophysics Data System (ADS)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  4. A Quantum-Based Similarity Method in Virtual Screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2015-10-02

    One of the most widely-used techniques for ligand-based virtual screening is similarity searching. This study adopted the concepts of quantum mechanics to present as state-of-the-art similarity method of molecules inspired from quantum theory. The representation of molecular compounds in mathematical quantum space plays a vital role in the development of quantum-based similarity approach. One of the key concepts of quantum theory is the use of complex numbers. Hence, this study proposed three various techniques to embed and to re-represent the molecular compounds to correspond with complex numbers format. The quantum-based similarity method that developed in this study depending on complex pure Hilbert space of molecules called Standard Quantum-Based (SQB). The recall of retrieved active molecules were at top 1% and top 5%, and significant test is used to evaluate our proposed methods. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiment show that the effectiveness of SQB method was significantly increased due to the role of representational power of molecular compounds in complex numbers forms compared to Tanimoto benchmark similarity measure.

  5. Cytokine Decoy and Scavenger Receptors as Key Regulators of Immunity and Inflammation

    PubMed Central

    Bonecchi, Raffaella; Garlanda, Cecilia; Mantovani, Alberto; Riva, Federica

    2017-01-01

    IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors. PMID:27498604

  6. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution.

    PubMed

    Ma, Jian; Bai, Bing; Wang, Liu-Jun; Tong, Cun-Zhu; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2016-09-20

    InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.

  7. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking

    PubMed Central

    2012-01-01

    A key metric to assess molecular docking remains ligand enrichment against challenging decoys. Whereas the directory of useful decoys (DUD) has been widely used, clear areas for optimization have emerged. Here we describe an improved benchmarking set that includes more diverse targets such as GPCRs and ion channels, totaling 102 proteins with 22886 clustered ligands drawn from ChEMBL, each with 50 property-matched decoys drawn from ZINC. To ensure chemotype diversity, we cluster each target’s ligands by their Bemis–Murcko atomic frameworks. We add net charge to the matched physicochemical properties and include only the most dissimilar decoys, by topology, from the ligands. An online automated tool (http://decoys.docking.org) generates these improved matched decoys for user-supplied ligands. We test this data set by docking all 102 targets, using the results to improve the balance between ligand desolvation and electrostatics in DOCK 3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org. PMID:22716043

  8. Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications.

    PubMed

    Cheng, Chia-Ying; Tsai, Chia-Feng; Chen, Yu-Ju; Sung, Ting-Yi; Hsu, Wen-Lian

    2013-05-03

    As spectral library searching has received increasing attention for peptide identification, constructing good decoy spectra from the target spectra is the key to correctly estimating the false discovery rate in searching against the concatenated target-decoy spectral library. Several methods have been proposed to construct decoy spectral libraries. Most of them construct decoy peptide sequences and then generate theoretical spectra accordingly. In this paper, we propose a method, called precursor-swap, which directly constructs decoy spectral libraries directly at the "spectrum level" without generating decoy peptide sequences by swapping the precursors of two spectra selected according to a very simple rule. Our spectrum-based method does not require additional efforts to deal with ion types (e.g., a, b or c ions), fragment mechanism (e.g., CID, or ETD), or unannotated peaks, but preserves many spectral properties. The precursor-swap method is evaluated on different spectral libraries and the results of obtained decoy ratios show that it is comparable to other methods. Notably, it is efficient in time and memory usage for constructing decoy libraries. A software tool called Precursor-Swap-Decoy-Generation (PSDG) is publicly available for download at http://ms.iis.sinica.edu.tw/PSDG/.

  9. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  10. Quantum communications system with integrated photonic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson

    Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on themore » Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.« less

  11. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  12. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  13. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less

  14. Metropolitan all-pass and inter-city quantum communication network.

    PubMed

    Chen, Teng-Yun; Wang, Jian; Liang, Hao; Liu, Wei-Yue; Liu, Yang; Jiang, Xiao; Wang, Yuan; Wan, Xu; Cai, Wei-Qi; Ju, Lei; Chen, Luo-Kan; Wang, Liu-Jun; Gao, Yuan; Chen, Kai; Peng, Cheng-Zhi; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-12-20

    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.

  15. Multiparty Quantum English Auction Scheme Using Single Photons as Message Carrier

    NASA Astrophysics Data System (ADS)

    Liu, Ge; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-03-01

    In this paper, a secure and economic multiparty english auction protocol using the single photons as message carrier of bids is proposed. In order to achieve unconditional security, fairness, undeniability and so on, we adopt the decoy photon checking technique and quantum encryption algorithm. Analysis result shows that our protocol satisfies all the characteristics of traditional english auction, meanwhile, it can resist malicious attacks.

  16. An Efficient Multiparty Quantum Secret Sharing Protocol Based on Bell States in the High Dimension Hilbert Space

    NASA Astrophysics Data System (ADS)

    Gao, Gan; Wang, Li-Ping

    2010-11-01

    We propose a quantum secret sharing protocol, in which Bell states in the high dimension Hilbert space are employed. The biggest advantage of our protocol is the high source capacity. Compared with the previous secret sharing protocol, ours has the higher controlling efficiency. In addition, as decoy states in the high dimension Hilbert space are used, we needn’t destroy quantum entanglement for achieving the goal to check the channel security.

  17. Revisiting Deng et al.'s Multiparty Quantum Secret Sharing Protocol

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Hwang, Cheng-Chieh; Yang, Chun-Wei; Li, Chuan-Ming

    2011-09-01

    The multiparty quantum secret sharing protocol [Deng et al. in Chin. Phys. Lett. 23: 1084-1087, 2006] is revisited in this study. It is found that the performance of Deng et al.'s protocol can be much improved by using the techniques of block-transmission and decoy single photons. As a result, the qubit efficiency is improved 2.4 times and only one classical communication, a public discussion, and two quantum communications between each agent and the secret holder are needed rather than n classical communications, n public discussions, and 3n/2 quantum communications required in the original scheme.

  18. Examination of China’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques

    PubMed Central

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China’s quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001–2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China’s QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China’s performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China’s performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China’s H-index (a normalized indicator) has surpassed all other countries’ over the last several years. The second phase of analysis shows how China’s main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China’s QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research. PMID:29385151

  19. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    PubMed

    Olijnyk, Nicholas V

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China's H-index (a normalized indicator) has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research.

  20. Semi-quantum Dialogue Based on Single Photons

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu; Ye, Chong-Qiang

    2018-02-01

    In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

  1. EDITORIAL: Focus on Quantum Cryptography: Theory and Practice FOCUS ON QUANTUM CRYPTOGRAPHY: THEORY AND PRACTICE

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, N.; Shields, A. J.

    2009-04-01

    Quantum cryptography, and especially quantum key distribution (QKD), is steadily progressing to become a viable tool for cryptographic services. In recent years we have witnessed a dramatic increase in the secure bit rate of QKD, as well as its extension to ever longer fibre- and air-based links and the emergence of metro-scale trusted networks. In the foreseeable future even global-scale communications may be possible using quantum repeaters or Earth-satellite links. A handful of start-ups and some bigger companies are already active in the field. The launch of an initiative to form industrial standards for QKD, under the auspices of the European Telecommunication Standards Institute, described in the paper by Laenger and Lenhart in this Focus Issue, can be taken as a sign of the growing commercial interest. Recent progress has seen an increase in the secure bit rate of QKD links, by orders of magnitude, to over 1 Mb s-1. This has resulted mainly from an improvement in the detection technology. Here changes in the way conventional semiconductor detectors are gated, as well as the development of novel devices based on non-linear processes and superconducting materials, are leading the way. Additional challenges for QKD at GHz clock rates include the design of high speed electronics, remote synchronization and high rate random number generation. Substantial effort is being devoted to increasing the range of individual links, which is limited by attenuation and other losses in optical fibres and air links. An important advance in the past few years has been the introduction of protocols with the same scaling as an ideal single-photon set-up. The good news is that these schemes use standard optical devices, such as weak laser pulses. Thanks to these new protocols and improvements in the detection technology, the range of a single fibre link can exceed a few hundred km. Outstanding issues include proving the unconditional security of some of the schemes. Much of the work done to date relates to point-to-point links. Another recent advance has been the development of trusted networks for QKD. This is important for further increasing the range of the technology, and for overcoming denial-of-service attacks on an individual link. It is interesting to see that the optimization of QKD devices differs for point-to-point and network applications. Network operation is essential for widespread adoption of the technology, as it can dramatically reduce the deployment costs and allow connection flexibility. Also important is the multiplexing of the quantum signals with conventional network traffic. For the future, quantum repeaters should be developed for longer range links. On the theoretical side, different approaches to security proofs have recently started to converge, offering several paradigms of the same basic idea. Our improved theoretical understanding places more stringent demands on the QKD devices. We are aware by now that finite size effects in key generation arise not only from parameter estimation. It will not be possible to generate a key from just a few hundred received signals. It is a stimulating challenge for the theory of security proofs to develop lean proof strategies that work with finite signal block sizes. As QKD advances to a real-world cryptographic solution, side channel attacks must be carefully analysed. Theoretical security proofs for QKD schemes are so far based on physical models of these devices. It is in the nature of models that any real implementation will deviate from this model, creating a potential weakness for an eavesdropper to exploit. There are two solutions to this problem: the traditional path of refining the models to reduce the deviations, or the radically different approach of device-independent security proofs, in which none or only a few well controlled assumptions about the devices are made. Clearly, it is desirable to find security proofs that require only minimal or fairly general model descriptions and are based on observable tests during the run of QKD sessions. It is now 25 years since the first proposal for QKD was published and 20 since the first experimental realization. The intervening years have brought several technological and theoretical advances, which have driven new insights into the application of quantum theory to the wider field of information technology. We are looking forward to the new twists and turns this field will take in the next 25 years! Focus on Quantum Cryptography: Theory and Practice Contents Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space A Leverrier, E Karpov, P Grangier and N J Cerf Optical networking for quantum key distribution and quantum communications T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L Mercer and H Dardy Proof-of-concept of real-world quantum key distribution with quantum frames I Lucio-Martinez, P Chan, X Mo, S Hosier and W Tittel Composability in quantum cryptography Jörn Müller-Quade and Renato Renner Distributed authentication for randomly compromised networks Travis R Beals, Kevin P Hynes and Barry C Sanders Feasibility of 300 km quantum key distribution with entangled states Thomas Scheidl, Rupert Ursin, Alessandro Fedrizzi, Sven Ramelow, Xiao-Song Ma, Thomas Herbst, Robert Prevedel, Lothar Ratschbacher, Johannes Kofler, Thomas Jennewein and Anton Zeilinger Decoy-state quantum key distribution with both source errors and statistical fluctuations Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng and Jian-Wei Pan High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres D Stucki, N Walenta, F Vannel, R T Thew, N Gisin, H Zbinden, S Gray, C R Towery and S Ten Topological optimization of quantum key distribution networks R Alléaume, F Roueff, E Diamanti and N Lütkenhaus The SECOQC quantum key distribution network in Vienna M Peev, C Pacher, R Alléaume, C Barreiro, J Bouda, W Boxleitner, T Debuisschert, E Diamanti, M Dianati, J F Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Yuan, H Zbinden and A Zeilinger Stable quantum key distribution with active polarization control based on time-division multiplexing J Chen, G Wu, L Xu, X Gu, E Wu and H Zeng Controlling passively quenched single photon detectors by bright light Vadim Makarov Information leakage via side channels in freespace BB84 quantum cryptography Sebastian Nauerth, Martin Fürst, Tobias Schmitt-Manderbach, Henning Weier and Harald Weinfurter Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD Thomas Länger and Gaby Lenhart Entangled quantum key distribution with a biased basis choice Chris Erven, Xiongfeng Ma, Raymond Laflamme and Gregor Weihs Finite-key analysis for practical implementations of quantum key distribution Raymond Y Q Cai and Valerio Scarani Field test of a continuous-variable quantum key distribution prototype S Fossier, E Diamanti, T Debuisschert, A Villing, R Tualle-Brouri and P Grangier Physics and application of photon number resolving detectors based on superconducting parallel nanowires F Marsili, D Bitauld, A Gaggero, S Jahanmirinejad, R Leoni, F Mattioli and A Fiore Device-independent quantum key distribution secure against collective attacks Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar and Valerio Scarani 1310 nm differential-phase-shift QKD system using superconducting single-photon detectors Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang Practical gigahertz quantum key distribution based on avalanche photodiodes Z L Yuan, A R Dixon, J F Dynes, A W Sharpe and A J Shields Simple security proof of quantum key distribution based on complementarity M Koashi Feasibility of satellite quantum key distribution C Bonato, A Tomaello, V Da Deppo, G Naletto and P Villoresi Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation G B Xavier, N Walenta, G Vilela de Faria, G P Temporão, N Gisin, H Zbinden and J P von der Weid Feasibility of free space quantum key distribution with coherent polarization states D Elser, T Bartley, B Heim, Ch Wittmann, D Sych and G Leuchs A fully automated entanglement-based quantum cryptography system for telecom fiber networks Alexander Treiber, Andreas Poppe, Michael Hentschel, Daniele Ferrini, Thomas Lorünser, Edwin Querasser, Thomas Matyus, Hannes Hübel and Anton Zeilinger Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments N A Peters, P Toliver, T E Chapuran, R J Runser, S R McNown, C G Peterson, D Rosenberg, N Dallmann, R J Hughes, K P McCabe, J E Nordholt and K T Tyagi Clock synchronization by remote detection of correlated photon pairs Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Megabits secure key rate quantum key distribution Q Zhang, H Takesue, T Honjo, K Wen, T Hirohata, M Suyama, Y Takiguchi, H Kamada, Y Tokura, O Tadanaga, Y Nishida, M Asobe and Y Yamamoto Practical long-distance quantum key distribution system using decoy levels D Rosenberg, C G Peterson, J W Harrington, P R Rice, N Dallmann, K T Tyagi, K P McCabe, S Nam, B Baek, R H Hadfield, R J Hughes and J E Nordholt Detector decoy quantum key distribution Tobias Moroder, Marcos Curty and Norbert Lütkenhaus Daylight operation of a free space, entanglement-based quantum key distribution system Matthew P Peloso, Ilja Gerhardt, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes Benjamin Miquel and Hiroki Takesue

  2. Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di

    2016-09-01

    The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.

  3. NF-κB Decoy Oligodeoxynucleotide Enhanced Osteogenesis in Mesenchymal Stem Cells Exposed to Polyethylene Particle

    PubMed Central

    Lin, Tzu-Hua; Sato, Taishi; Barcay, Katherine R.; Waters, Heather; Loi, Florence; Zhang, Ruth; Pajarinen, Jukka; Egashira, Kensuke; Yao, Zhenyu

    2015-01-01

    Excessive generation of wear particles after total joint replacement may lead to local inflammation and periprosthetic osteolysis. Modulation of the key transcription factor NF-κB in immune cells could potentially mitigate the osteolytic process. We previously showed that local delivery of ultrahigh-molecular-weight polyethylene (UHMWPE) particles recruited osteoprogenitor cells and reduced osteolysis. However, the biological effects of modulating the NF-κB signaling pathway on osteoprogenitor/mesenchymal stem cells (MSCs) remain unclear. Here we showed that decoy oligodeoxynucleotide (ODN) increased cell viability when primary murine MSCs were exposed to UHMWPE particles, but had no effects on cellular apoptosis. Decoy ODN increased transforming growth factor-beta 1 (TGF-β1) and osteoprotegerin (OPG) in MSCs exposed to UHMWPE particles. Mechanistic studies showed that decoy ODN upregulated OPG expression through a TGF-β1-dependent pathway. By measuring the alkaline phosphatase activity, osteocalcin levels, Runx2 and osteopontin expression, and performing a bone mineralization assay, we found that decoy ODN increased MSC osteogenic ability when the cells were exposed to UHMWPE particles. Furthermore, the cellular response to decoy ODN and UHMWPE particles with regard to cell phenotype, cell viability, and osteogenic ability was confirmed using primary human MSCs. Our results suggest that modulation of wear particle-induced inflammation by NF-κB decoy ODN had no adverse effects on MSCs and may potentially further mitigate periprosthetic osteolysis by protecting MSC viability and osteogenic ability. PMID:25518013

  4. Three-party quantum secure direct communication against collective noise

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    2017-10-01

    Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.

  5. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  6. Faithful One-way Trip Deterministic Secure Quantum Communication Scheme Against Collective Rotating Noise Based on Order Rearrangement of Photon Pairs

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong

    2014-08-01

    We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.

  7. Inconclusive quantum measurements and decisions under uncertainty

    NASA Astrophysics Data System (ADS)

    Yukalov, Vyacheslav; Sornette, Didier

    2016-04-01

    We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.

  8. Quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-07-15

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less

  9. Effects of intratracheal administration of nuclear factor-kappaB decoy oligodeoxynucleotides on long-term cigarette smoke-induced lung inflammation and pathology in mice

    PubMed Central

    2009-01-01

    To determine if nuclear factor-κB (NF-κB) activation may be a key factor in lung inflammation and respiratory dysfunction, we investigated whether NF-κB can be blocked by intratracheal administration of NF-κB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-mediated NF-κB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction, and improve pathological alteration in the small airways and lung parenchyma in the long-term smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo, the transfection efficiency of NF-κB decoy ODNs to alveolar macrophages in BALF was measured by fluorescein isothiocyanate (FITC)-labeled NF-κB decoy ODNs and flow cytometry post intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and pathological changes were assessed using histology and the pathological Mias software. NF-κB and activator protein 1(AP-1) activity was detected by the electrophoretic motility shift assay (EMSA). Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates, respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected alveolar macrophages was 30.00 ± 3.30%. Analysis of respiratory function indicated that transfection of NF-κB decoy ODNs significantly impacted peak expiratory flow (PEF), and bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways compared to normal saline-treated or scramble NF-κB decoy ODNs smoke exposed mice. NF-κB decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) 1α and monocyte chemoattractant protein 1(MCP-1) in lung homogenates compared to normal saline-treated smoke exposed mice. In contrast, these NF-κB decoy ODNs-treated mice showed significant increase in the level of tumor necrosis factor-α(TNF-α) and pro-MMP-9(pro-matrix metalloproteinase-9) in mice BALF. Further measurement revealed administration of NF-κB decoy ODNs did not prevent pathological changes. These findings indicate that NF-κB activation play an important role on the recruitment of macrophages and pulmonary dysfunction in smoke-induced chronic lung inflammation, and with the exception of NF-κB pathway, there might be complex mechanism governing molecular dynamics of pro-inflammatory cytokines expression and structural changes in small airways and pulmonary parenchyma in vivo. PMID:19706153

  10. Controlled quantum secure direct communication by entanglement distillation or generalized measurement

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoqing; Zhang, Xiaoqian

    2016-05-01

    We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

  11. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds.

    PubMed

    Simkovic, Felix; Thomas, Jens M H; Keegan, Ronan M; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2016-07-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions ('decoys'), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue-residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  12. Simple and high-speed polarization-based QKD

    NASA Astrophysics Data System (ADS)

    Grünenfelder, Fadri; Boaron, Alberto; Rusca, Davide; Martin, Anthony; Zbinden, Hugo

    2018-01-01

    We present a simplified BB84 protocol with only three quantum states and one decoy-state level. We implement this scheme using the polarization degree of freedom at telecom wavelength. Only one pulsed laser is used in order to reduce possible side-channel attacks. The repetition rate of 625 MHz and the achieved secret bit rate of 23 bps over 200 km of standard fiber are the actual state of the art.

  13. Threshold quantum secret sharing based on single qubit

    NASA Astrophysics Data System (ADS)

    Lu, Changbin; Miao, Fuyou; Meng, Keju; Yu, Yue

    2018-03-01

    Based on unitary phase shift operation on single qubit in association with Shamir's ( t, n) secret sharing, a ( t, n) threshold quantum secret sharing scheme (or ( t, n)-QSS) is proposed to share both classical information and quantum states. The scheme uses decoy photons to prevent eavesdropping and employs the secret in Shamir's scheme as the private value to guarantee the correctness of secret reconstruction. Analyses show it is resistant to typical intercept-and-resend attack, entangle-and-measure attack and participant attacks such as entanglement swapping attack. Moreover, it is easier to realize in physic and more practical in applications when compared with related ones. By the method in our scheme, new ( t, n)-QSS schemes can be easily constructed using other classical ( t, n) secret sharing.

  14. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets.

    PubMed

    Cereto-Massagué, Adrià; Guasch, Laura; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-06-15

    Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.

  15. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    PubMed Central

    Simkovic, Felix; Thomas, Jens M. H.; Keegan, Ronan M.; Winn, Martyn D.; Mayans, Olga; Rigden, Daniel J.

    2016-01-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (‘decoys’), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing. PMID:27437113

  16. RADER: a RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening.

    PubMed

    Wang, Ling; Pang, Xiaoqian; Li, Yecheng; Zhang, Ziying; Tan, Wen

    2017-04-15

    Evaluation of the capacity for separating actives from challenging decoys is a crucial metric of performance related to molecular docking or a virtual screening workflow. The Directory of Useful Decoys (DUD) and its enhanced version (DUD-E) provide a benchmark for molecular docking, although they only contain a limited set of decoys for limited targets. DecoyFinder was released to compensate the limitations of DUD or DUD-E for building target-specific decoy sets. However, desirable query template design, generation of multiple decoy sets of similar quality, and computational speed remain bottlenecks, particularly when the numbers of queried actives and retrieved decoys increases to hundreds or more. Here, we developed a program suite called RApid DEcoy Retriever (RADER) to facilitate the decoy-based assessment of virtual screening. This program adopts a novel database-management regime that supports rapid and large-scale retrieval of decoys, enables high portability of databases, and provides multifaceted options for designing initial query templates from a large number of active ligands and generating subtle decoy sets. RADER provides two operational modes: as a command-line tool and on a web server. Validation of the performance and efficiency of RADER was also conducted and is described. RADER web server and a local version are freely available at http://rcidm.org/rader/ . lingwang@scut.edu.cn or went@scut.edu.cn . Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Quantum state sharing against the controller's cheating

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng

    2013-08-01

    Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.

  18. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction

    PubMed Central

    2013-01-01

    Background Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured. Methods We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima. Results and conclusions Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions. PMID:24565020

  19. Using decoy effects to influence an online brand choice: the role of price-quality trade-offs.

    PubMed

    Hsu, Huei-Chen; Liu, Wen-Liang

    2011-04-01

    This research aims to investigate decoy effects on online brand choices. To assess the influence of decoys, we test decoy effects on three constructs-product involvement, judgment conditions, and decoy conditions-within an online experiment. A survey of 635 Internet users and a 2 × 2 × 3 ANOVA between-subjects experimental design is used to guide the research design and the systematic analysis procedure. A major finding of this study is that a standard decoy seems to have a significant effect on an advertised (target) brand for high-involvement products; from the survey, it is also apparent that competitors can also use inferior decoys to increase brand preference for low-involvement products.

  20. Development of novel decoy oligonucleotides: advantages of circular dumb-bell decoy.

    PubMed

    Tomita, Naruya; Tomita, Tetsuya; Yuyama, Kazuhiko; Tougan, Takahiro; Tajima, Tsuyoshi; Ogihara, Toshio; Morishita, Ryuichi

    2003-04-01

    The inhibition of specific transcription regulatory proteins is a novel approach to regulate gene expression. The transcriptional activities of DNA binding proteins can be inhibited by the use of double-stranded oligonucleotides (ODNs) that compete for binding to their specific target sequences in promoters and enhancers. Transfection of this cis-element double-stranded ODN, referred to as decoy ODN, has been reported to be a powerful tool that provides a new class of anti-gene strategies to gene therapy and permits examination of specific gene regulation. We have demonstrated the usefulness of this decoy ODN strategy in animal models of restenosis, myocardial infarction, glomerulonephritis and rheumatoid arthritis. However, one of the major limitations of decoy ODN technology is the rapid degradation of phosphodiester ODNs by intracellular nucleases. To date, several different types of double-stranded decoy ODNs have been developed to overcome this issue. Circular dumb-bell (CD) double-stranded decoy ODNs that were developed to resolve this issue have attracted a high level of interest. In this review, the applications of decoy ODN strategy and the advantages of modified CD double-stranded decoy ODNs will be discussed.

  1. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130+/-5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell's inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-pair experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

  2. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  3. CyClus: a fast, comprehensive cylindrical interface approximation clustering/reranking method for rigid-body protein-protein docking decoys.

    PubMed

    Omori, Satoshi; Kitao, Akio

    2013-06-01

    We propose a fast clustering and reranking method, CyClus, for protein-protein docking decoys. This method enables comprehensive clustering of whole decoys generated by rigid-body docking using cylindrical approximation of the protein-proteininterface and hierarchical clustering procedures. We demonstrate the clustering and reranking of 54,000 decoy structures generated by ZDOCK for each complex within a few minutes. After parameter tuning for the test set in ZDOCK benchmark 2.0 with the ZDOCK and ZRANK scoring functions, blind tests for the incremental data in ZDOCK benchmark 3.0 and 4.0 were conducted. CyClus successfully generated smaller subsets of decoys containing near-native decoys. For example, the number of decoys required to create subsets containing near-native decoys with 80% probability was reduced from 22% to 50% of the number required in the original ZDOCK. Although specific ZDOCK and ZRANK results were demonstrated, the CyClus algorithm was designed to be more general and can be applied to a wide range of decoys and scoring functions by adjusting just two parameters, p and T. CyClus results were also compared to those from ClusPro. Copyright © 2013 Wiley Periodicals, Inc.

  4. An improved method to detect correct protein folds using partial clustering.

    PubMed

    Zhou, Jianjun; Wishart, David S

    2013-01-16

    Structure-based clustering is commonly used to identify correct protein folds among candidate folds (also called decoys) generated by protein structure prediction programs. However, traditional clustering methods exhibit a poor runtime performance on large decoy sets. We hypothesized that a more efficient "partial" clustering approach in combination with an improved scoring scheme could significantly improve both the speed and performance of existing candidate selection methods. We propose a new scheme that performs rapid but incomplete clustering on protein decoys. Our method detects structurally similar decoys (measured using either C(α) RMSD or GDT-TS score) and extracts representatives from them without assigning every decoy to a cluster. We integrated our new clustering strategy with several different scoring functions to assess both the performance and speed in identifying correct or near-correct folds. Experimental results on 35 Rosetta decoy sets and 40 I-TASSER decoy sets show that our method can improve the correct fold detection rate as assessed by two different quality criteria. This improvement is significantly better than two recently published clustering methods, Durandal and Calibur-lite. Speed and efficiency testing shows that our method can handle much larger decoy sets and is up to 22 times faster than Durandal and Calibur-lite. The new method, named HS-Forest, avoids the computationally expensive task of clustering every decoy, yet still allows superior correct-fold selection. Its improved speed, efficiency and decoy-selection performance should enable structure prediction researchers to work with larger decoy sets and significantly improve their ab initio structure prediction performance.

  5. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy.

    PubMed

    Miyake, Tetsuo; Miyake, Takashi; Sakaguchi, Makoto; Nankai, Hirokazu; Nakazawa, Takahiro; Morishita, Ryuichi

    2018-03-02

    Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6). Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4), IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An improved method to detect correct protein folds using partial clustering

    PubMed Central

    2013-01-01

    Background Structure-based clustering is commonly used to identify correct protein folds among candidate folds (also called decoys) generated by protein structure prediction programs. However, traditional clustering methods exhibit a poor runtime performance on large decoy sets. We hypothesized that a more efficient “partial“ clustering approach in combination with an improved scoring scheme could significantly improve both the speed and performance of existing candidate selection methods. Results We propose a new scheme that performs rapid but incomplete clustering on protein decoys. Our method detects structurally similar decoys (measured using either Cα RMSD or GDT-TS score) and extracts representatives from them without assigning every decoy to a cluster. We integrated our new clustering strategy with several different scoring functions to assess both the performance and speed in identifying correct or near-correct folds. Experimental results on 35 Rosetta decoy sets and 40 I-TASSER decoy sets show that our method can improve the correct fold detection rate as assessed by two different quality criteria. This improvement is significantly better than two recently published clustering methods, Durandal and Calibur-lite. Speed and efficiency testing shows that our method can handle much larger decoy sets and is up to 22 times faster than Durandal and Calibur-lite. Conclusions The new method, named HS-Forest, avoids the computationally expensive task of clustering every decoy, yet still allows superior correct-fold selection. Its improved speed, efficiency and decoy-selection performance should enable structure prediction researchers to work with larger decoy sets and significantly improve their ab initio structure prediction performance. PMID:23323835

  7. Amelioration of collagen-induced arthritis using antigen-loaded dendritic cells modified with NF-κB decoy oligodeoxynucleotides

    PubMed Central

    Jiang, Hongmei; Hu, Henggui; Zhang, Yali; Yue, Ping; Ning, Lichang; Zhou, Yan; Shi, Ping; Yuan, Rui

    2017-01-01

    Dendritic cells (DCs) play an important role in the initiation of autoimmunity in rheumatoid arthritis (RA); therefore, the use of DCs needs to be explored to develop new therapeutic approaches for RA. Here, we investigated the therapeutic effect of bovine type II collagen (BIIC)-loaded DCs modified with NF-κB decoy oligodeoxynucleotides (ODNs) on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. DCs treated with BIIC and NF-κB decoy ODNs exhibited features of immature DCs with low levels of costimulatory molecule (CD80 and CD86) expression. The development of arthritis in rats with CIA injected with BIIC + NF-κB decoy ODN-propagated DCs (BIIC–decoy DCs) was significantly ameliorated compared to that in rats injected with BIIC-propagated DCs or phosphate-buffered saline. We also found that the BIIC–decoy DCs exerted antiarthritis effects by inhibiting self-lymphocyte proliferative response and suppressing IFN-γ and anti-BIIC antibody production and inducing IL-10 antibody production. Additionally, antihuman serum antibodies were successfully produced in the rats treated with BIIC–decoy DCs but not in those treated with NF-κB decoy ODN-propagated DCs; moreover, the BIIC–decoy DCs did not affect immune function in the normal rats. These findings suggested that NF-κB decoy ODN-modified DCs loaded with a specific antigen might offer a practical method for the treatment of human RA. PMID:29075103

  8. Decoy Oligonucleotide Rescues IGF1R Expression from MicroRNA-223 Suppression

    PubMed Central

    Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong

    2013-01-01

    A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3’ untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5’, central or 3’ region of mature miR-223 suppressed miR-223 targeting the 3’UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3’UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3’UTRs have similar binding sites for miR-223 with IGF1R 3’UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting. PMID:24324762

  9. Decoy oligonucleotide rescues IGF1R expression from MicroRNA-223 suppression.

    PubMed

    Wu, Li Hui; Cai, Qian Qian; Dong, Yi Wei; Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong

    2013-01-01

    A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3' untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5', central or 3' region of mature miR-223 suppressed miR-223 targeting the 3'UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3'UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3'UTRs have similar binding sites for miR-223 with IGF1R 3'UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting.

  10. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    NASA Astrophysics Data System (ADS)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  11. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    PubMed Central

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  12. New glycoproteomics software, GlycoPep Evaluator, generates decoy glycopeptides de novo and enables accurate false discovery rate analysis for small data sets.

    PubMed

    Zhu, Zhikai; Su, Xiaomeng; Go, Eden P; Desaire, Heather

    2014-09-16

    Glycoproteins are biologically significant large molecules that participate in numerous cellular activities. In order to obtain site-specific protein glycosylation information, intact glycopeptides, with the glycan attached to the peptide sequence, are characterized by tandem mass spectrometry (MS/MS) methods such as collision-induced dissociation (CID) and electron transfer dissociation (ETD). While several emerging automated tools are developed, no consensus is present in the field about the best way to determine the reliability of the tools and/or provide the false discovery rate (FDR). A common approach to calculate FDRs for glycopeptide analysis, adopted from the target-decoy strategy in proteomics, employs a decoy database that is created based on the target protein sequence database. Nonetheless, this approach is not optimal in measuring the confidence of N-linked glycopeptide matches, because the glycopeptide data set is considerably smaller compared to that of peptides, and the requirement of a consensus sequence for N-glycosylation further limits the number of possible decoy glycopeptides tested in a database search. To address the need to accurately determine FDRs for automated glycopeptide assignments, we developed GlycoPep Evaluator (GPE), a tool that helps to measure FDRs in identifying glycopeptides without using a decoy database. GPE generates decoy glycopeptides de novo for every target glycopeptide, in a 1:20 target-to-decoy ratio. The decoys, along with target glycopeptides, are scored against the ETD data, from which FDRs can be calculated accurately based on the number of decoy matches and the ratio of the number of targets to decoys, for small data sets. GPE is freely accessible for download and can work with any search engine that interprets ETD data of N-linked glycopeptides. The software is provided at https://desairegroup.ku.edu/research.

  13. Fine-scale features on bioreplicated decoys of the emerald ash borer provide necessary visual verisimilitude

    NASA Astrophysics Data System (ADS)

    Domingue, Michael J.; Pulsifer, Drew P.; Narkhede, Mahesh S.; Engel, Leland G.; Martín-Palma, Raúl J.; Kumar, Jayant; Baker, Thomas C.; Lakhtakia, Akhlesh

    2014-03-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive tree-killing pest in North America. Like other buprestid beetles, it has an iridescent coloring, produced by a periodically layered cuticle whose reflectance peaks at 540 nm wavelength. The males perform a visually mediated ritualistic mating flight directly onto females poised on sunlit leaves. We attempted to evoke this behavior using artificial visual decoys of three types. To fabricate decoys of the first type, a polymer sheet coated with a Bragg-stack reflector was loosely stamped by a bioreplicating die. For decoys of the second type, a polymer sheet coated with a Bragg-stack reflector was heavily stamped by the same die and then painted green. Every decoy of these two types had an underlying black absorber layer. Decoys of the third type were produced by a rapid prototyping machine and painted green. Fine-scale features were absent on the third type. Experiments were performed in an American ash forest infested with EAB, and a European oak forest home to a similar pest, the two-spotted oak borer (TSOB), Agrilus biguttatus. When pinned to leaves, dead EAB females, dead TSOB females, and bioreplicated decoys of both types often evoked the complete ritualized flight behavior. Males also initiated approaches to the rapidly prototyped decoy, but would divert elsewhere without making contact. The attraction of the bioreplicated decoys was also demonstrated by providing a high dc voltage across the decoys that stunned and killed approaching beetles. Thus, true bioreplication with fine-scale features is necessary to fully evoke ritualized visual responses in insects, and provides an opportunity for developing insecttrapping technologies.

  14. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  15. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction.

    PubMed

    Akhter, Nasrin; Shehu, Amarda

    2018-01-19

    Due to the essential role that the three-dimensional conformation of a protein plays in regulating interactions with molecular partners, wet and dry laboratories seek biologically-active conformations of a protein to decode its function. Computational approaches are gaining prominence due to the labor and cost demands of wet laboratory investigations. Template-free methods can now compute thousands of conformations known as decoys, but selecting native conformations from the generated decoys remains challenging. Repeatedly, research has shown that the protein energy functions whose minima are sought in the generation of decoys are unreliable indicators of nativeness. The prevalent approach ignores energy altogether and clusters decoys by conformational similarity. Complementary recent efforts design protein-specific scoring functions or train machine learning models on labeled decoys. In this paper, we show that an informative consideration of energy can be carried out under the energy landscape view. Specifically, we leverage local structures known as basins in the energy landscape probed by a template-free method. We propose and compare various strategies of basin-based decoy selection that we demonstrate are superior to clustering-based strategies. The presented results point to further directions of research for improving decoy selection, including the ability to properly consider the multiplicity of native conformations of proteins.

  16. Targeting a KH-domain protein with RNA decoys.

    PubMed

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-09-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.

  17. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  18. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.

    PubMed

    Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W

    2015-04-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Significance of increased expression of decoy receptor 3 in chronic liver disease.

    PubMed

    Kim, S; Kotoula, V; Hytiroglou, P; Zardavas, D; Zhang, L

    2009-08-01

    Considerable evidence has indicated that apoptosis plays an important role in hepatocyte death in chronic liver disease. However, the cellular and molecular mechanisms underlying liver regeneration in these diseases are largely unknown. Plausibly, certain molecules expressed to counteract apoptosis might provide survival advantage of certain liver cells. Therefore, we investigated a possible expression of decoy receptor 3 of the tumour necrosis factor receptor family in chronic liver diseases since decoy receptor 3 is known to inhibit apoptosis mediated by pro-apoptotic tumour necrosis factor family ligands including Fas ligand. A series of liver biopsies from patients with different stages of fibrosis were subjected to immunohistochemistry and in situ hybridization. Both decoy receptor 3 protein and mRNA were mainly expressed in biliary epithelial cells and infiltrating lymphocytes in the diseased livers. Most noticeably, intense decoy receptor 3 expression was observed in newly developing biliary ductules in regenerative nodules as well as dysplastic nodules of cirrhotic livers. In addition, decoy receptor 3 secretion in hepatocellular carcinoma cells in culture was via the activation of mitogen-activated protein kinases. Decoy receptor 3 was specifically expressed in chronic liver diseases and hepatocellular carcinoma cells, and decoy receptor 3 might facilitate the survival of liver cells by exerting its anti-apoptotic activity during the progression of liver cirrhosis and hepatocarcinogenesis.

  20. Placental expression of D6 decoy receptor in preeclampsia

    PubMed Central

    Cho, Geum Joon; Lee, Eun Sung; Jin, Hye Mi; Lee, Ji Hye; Kim, Yeun Sun; Seol, Hyun-Joo; Hong, Soon-Cheol; Kim, Hai-Joong

    2015-01-01

    Objective The purpose of this study was to investigate the expression of the D6 decoy receptor that can bind chemokines and target them for degradation, resulting in inhibition of inflammation in placentas from preeclamptic and normal pregnancies. Methods The current study was carried out in 35 pregnant women (23 patients with preeclampsia and 12 healthy, normotensive pregnant women) during the third trimester of pregnancy. The expressions of D6 decoy receptor in the placenta were determined with real time reverse transcriptase polymerase chain reaction and western blotting. Results The mRNA and protein of D6 decoy receptor were detected in all of placentas from preeclamptic and normal pregnancies. Placental D6 decoy receptor mRNA expression was significantly lower in patients with preeclampsia than in patients with normal pregnancies. Western blot analyses revealed decreased protein expression in cases of preeclampsia. Conclusion The expression of the D6 decoy receptor in preeclamptic placentas was significantly lower than in normal placentas. Further studies are needed to clarify the underlying mechanisms that link decreased expression of placental D6 decoy receptor and preeclampsia. PMID:26430656

  1. The Decoy Effect as a Nudge: Boosting Hand Hygiene With a Worse Option.

    PubMed

    Li, Meng; Sun, Yan; Chen, Hui

    2018-05-01

    This article provides the first test of the decoy effect as a nudge to influence real-world behavior. The decoy effect is the phenomenon that an additional but worse option can boost the appeal of an existing option. It has been widely demonstrated in hypothetical choices, but its usefulness in real-world settings has been subject to debate. In three longitudinal experiments in food-processing factories, we tested two decoy sanitation options that were worse than the existing sanitizer spray bottle. Results showed that the presence of a decoy, but not an additional copy of the original sanitizer bottle in a different color, drastically increased food workers' hand sanitizer use from the original sanitizer bottle and, consequently, improved workers' passing rate in hand sanitary tests from 60% to 70% to above 90% for 20 days. These findings indicate that the decoy effect can be a powerful nudge technique to influence real-world behavior.

  2. A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    PubMed Central

    2011-01-01

    Background The transcription factor STAT3 (signal transducer and activator of transcription 3) is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS) one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN) that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear. Results The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death. Conclusions The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is suggested whereby this entrapment is due to STAT3-decoy ODN's inhibition of active STAT3/importin interaction. These observations point to the high potential of STAT3-decoy ODN as a reagent and to STAT3 nucleo-cytoplasmic shuttling in tumor cells as a potential target for effective anti-cancer compounds. PMID:21486470

  3. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection

    PubMed Central

    Di Liberto, Diana; Locati, Massimo; Caccamo, Nadia; Vecchi, Annunciata; Meraviglia, Serena; Salerno, Alfredo; Sireci, Guido; Nebuloni, Manuela; Caceres, Neus; Cardona, Pere-Joan; Dieli, Francesco; Mantovani, Alberto

    2008-01-01

    D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6−/− mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6−/− infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6−/− mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection. PMID:18695004

  4. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  5. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  6. Ultrasound microbubble-mediated transfection of NF-κB decoy oligodeoxynucleotide into gingival tissues inhibits periodontitis in rats in vivo

    PubMed Central

    Yamaguchi, Hiroyuki; Hosomichi, Jun; Suzuki, Jun-ichi; Hatano, Kasumi; Usumi-Fujita, Risa; Shimizu, Yasuhiro; Kaneko, Sawa; Ono, Takashi

    2017-01-01

    Periodontitis is a chronic infectious disease for which the fundamental treatment is to reduce the load of subgingival pathogenic bacteria by debridement. However, previous investigators attempted to implement a nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) as a suppressor of periodontitis progression. Although we recently reported the effectiveness of the ultrasound-microbubble method as a tool for transfecting the NF-κB decoy ODN into healthy rodent gingival tissue, this technique has not yet been applied to the pathological gingiva of periodontitis animal models. Therefore, the aim of this study was to investigate the effectiveness of the technique in transfecting the NF-κB decoy ODN into rats with ligature-induced periodontitis. Micro computed tomography (micro-CT) analysis demonstrated a significant reduction in alveolar bone loss following treatment with the NF-κB decoy ODN in the experimental group. RT-PCR showed that NF-κB decoy ODN treatment resulted in significantly reduced expression of inflammatory cytokine transcripts within rat gingival tissues. Thus, we established a transcutaneous transfection model of NF-κB decoy ODN treatment of periodontal tissues using the ultrasound-microbubble technique. Our findings suggest that the NF-κB decoy ODN could be used as a significant suppressor of gingival inflammation and periodontal disease progression. PMID:29091721

  7. Prediction of Early BK Virus Infection in Kidney Transplant Recipients by the Number of Cells With Intranuclear Inclusion Bodies (Decoy Cells)

    PubMed Central

    Yamada, Yoshiteru; Tsuchiya, Tomohiro; Inagaki, Isao; Seishima, Mitsuru; Deguchi, Takashi

    2018-01-01

    Background BK virus (BKV) is the cause of nephropathy. Because BKV nephropathy can progress to graft loss, early diagnosis of BKV infection is very important. In this study, we aimed to investigate the utility of quantifying cells with intranuclear inclusion bodies (decoy cells) in urinary sediment for the screening and monitoring of BKV infection in renal transplant recipients at our hospital. Methods This was a retrospective single-center study. Urine sediment examination was performed at each outpatient visit, and the number of decoy cells was measured in the whole microscopic field. Patients (n = 41) were divided into the BK viremia group (blood positive for BKV DNA by polymerase chain reaction [PCR]) and non-BK viremia group (blood negative for BKV DNA by PCR), and the decoy cell count in urinary sediments was examined. Results The maximum decoy cell count was significantly higher (P = 0.04) in the BK viremia group than in the non-BK viremia group. In the receiver operating characteristic curve for the maximum decoy cells, the cutoff value was 507 cells. The area under the receiver operating characteristic curve was 0.8774 (95% confidence interval, 0.7739-0.9810). The number of decoy cells at the time of appearance in the BK viremia group was not significantly different from that in the non-BK viremia group. However, the BK viremia group showed an increasing trend, whereas the non-BK viremia group showed a decreasing trend, in the number of decoy cells. There was a positive correlation between the number of decoy cells and the data from the urine BKV-DNA PCR quantification (correlation coefficient [r] = 0.74). Conclusions Measurement of decoy cells in urinary sediments may predict early BKV infection, and if performed quickly, it may be useful for screening and continuous monitoring of BKV infection in renal transplant recipients. PMID:29464201

  8. The Decoy Effect Within Alcohol Purchasing Decisions.

    PubMed

    Monk, Rebecca L; Qureshi, Adam W; Leatherbarrow, Thomas; Hughes, Annalise

    2016-08-23

    The decoy effect is the phenomenon where the introduction of a third choice to a decision dyad changes the distribution of preferences between options. Examine whether this effect exists in alcohol purchasing decisions and whether testing context impacts this. Fifty-two participants tested in either a bar or library context and were asked to choose one of a series of beer and water deals presented for timed intervals. In some cases, two options were presented (with similar attractiveness) and in other cases a third, less preferable, decoy option was added. A basic decoy effect in both alcohol and water purchasing decisions. Specifically, there were reductions in the selection of both the original options when the decoy was added into choice dyads. A significant interaction demonstrated in the bar context there was a significant difference such that there was a slight increase in participants selecting the most cost effective option when the decoy was added, and a simultaneous decrease in those choosing the moderately cost effective option. There were no such differences observed in the library condition. The same product may be perceived differently across contexts and, as such, consumers in a pub environment may be particularly vulnerable to the decoy effect.

  9. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    PubMed

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  10. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model.

    PubMed

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2009-07-01

    Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.

  11. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  12. 'Decoy' and 'non-decoy' functions of DcR3 promote malignant potential in human malignant fibrous histiocytoma cells.

    PubMed

    Toda, Mitsunori; Kawamoto, Teruya; Ueha, Takeshi; Kishimoto, Kenta; Hara, Hitomi; Fukase, Naomasa; Onishi, Yasuo; Harada, Risa; Minoda, Masaya; Kurosaka, Masahiro; Akisue, Toshihiro

    2013-09-01

    Decoy receptor 3 (DcR3) is a soluble secreted protein that belongs to the tumor necrosis factor receptor (TNFR) superfamily. DcR3 inhibits the Fas ligand (FasL)/Fas apoptotic pathway by binding to FasL, competitively with Fas receptor. Previous studies have reported that overexpression of DcR3 has been detected in various human malignancies and that DcR3 functions as a 'decoy' for FasL to inhibit FasL-induced apoptosis. In addition, recent studies have revealed that DcR3 has 'non-decoy' functions to promote tumor cell migration and invasion, suggesting that DcR3 may play important roles in tumor progression by decoy and non-decoy functions. We have previously reported that overexpression of DcR3 was observed in human malignant fibrous histiocytoma (MFH), however, the roles of DcR3 in MFH have not been studied. In the present study, to elucidate the roles of DcR3 in tumor progression of MFH, we examined the effects of DcR3 inhibition on cell apoptosis, migration and invasion in human MFH cells. siRNA knockdown of DcR3 enhanced the FasL-induced apoptotic activity and significantly decreased cell migration and invasion with a decrease in the activation of phosphatidylinositol 3 kinase (PI3K)/Akt and matrix metalloproteinase (MMP)-2. The findings in this study strongly suggest that DcR3 plays important roles in tumor progression of human MFH by decoy as well as non-decoy functions and that DcR3 may serve as a potent therapeutic target for human MFH.

  13. DEKOIS: demanding evaluation kits for objective in silico screening--a versatile tool for benchmarking docking programs and scoring functions.

    PubMed

    Vogel, Simon M; Bauer, Matthias R; Boeckler, Frank M

    2011-10-24

    For widely applied in silico screening techniques success depends on the rational selection of an appropriate method. We herein present a fast, versatile, and robust method to construct demanding evaluation kits for objective in silico screening (DEKOIS). This automated process enables creating tailor-made decoy sets for any given sets of bioactives. It facilitates a target-dependent validation of docking algorithms and scoring functions helping to save time and resources. We have developed metrics for assessing and improving decoy set quality and employ them to investigate how decoy embedding affects docking. We demonstrate that screening performance is target-dependent and can be impaired by latent actives in the decoy set (LADS) or enhanced by poor decoy embedding. The presented method allows extending and complementing the collection of publicly available high quality decoy sets toward new target space. All present and future DEKOIS data sets will be made accessible at www.dekois.com.

  14. Target-decoy Based False Discovery Rate Estimation for Large-scale Metabolite Identification.

    PubMed

    Wang, Xusheng; Jones, Drew R; Shaw, Timothy I; Cho, Ji-Hoon; Wang, Yuanyuan; Tan, Haiyan; Xie, Boer; Zhou, Suiping; Li, Yuxin; Peng, Junmin

    2018-05-23

    Metabolite identification is a crucial step in mass spectrometry (MS)-based metabolomics. However, it is still challenging to assess the confidence of assigned metabolites. In this study, we report a novel method for estimating false discovery rate (FDR) of metabolite assignment with a target-decoy strategy, in which the decoys are generated through violating the octet rule of chemistry by adding small odd numbers of hydrogen atoms. The target-decoy strategy was integrated into JUMPm, an automated metabolite identification pipeline for large-scale MS analysis, and was also evaluated with two other metabolomics tools, mzMatch and mzMine 2. The reliability of FDR calculation was examined by false datasets, which were simulated by altering MS1 or MS2 spectra. Finally, we used the JUMPm pipeline coupled with the target-decoy strategy to process unlabeled and stable-isotope labeled metabolomic datasets. The results demonstrate that the target-decoy strategy is a simple and effective method for evaluating the confidence of high-throughput metabolite identification.

  15. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  16. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy

    PubMed Central

    Sen, Malabika; Thomas, Sufi. M.; Kim, Seungwon; Yeh, Joanne I.; Ferris, Robert L.; Johnson, Jonas T.; Duvvuri, Umamaheswar; Lee, Jessica; Sahu, Nivedita; Joyce, Sonali; Freilino, Maria L.; Shi, Haibin; Li, Changyou; Ly, Danith; Rapireddy, Srinivas; Etter, Jonathan P.; Li, Pui-Kai; Wang, Lin; Chiosea, Simion; Seethala, Raja R.; Gooding, William. E.; Chen, Xiaomin; Kaminski, Naftali; Pandit, Kusum; Johnson, Daniel. E.; Grandis, Jennifer R.

    2013-01-01

    Despite evidence implicating transcription factors, including STAT3, in oncogenesis, these proteins have been regarded as “undruggable”. We developed a decoy targeting STAT3 and performed a phase 0 trial. Expression levels of STAT3 target genes were decreased in the head and neck cancers following injection with the STAT3 decoy compared with tumors receiving saline control. Decoys have not been amenable to systemic administration due to instability. To overcome this barrier, we linked the oligonucleotide strands using hexa-ethyleneglycol spacers. This cyclic STAT3 decoy bound with high affinity to STAT3 protein, reduced cellular viability, and suppressed STAT3 target gene expression in cancer cells. Intravenous injection of the cyclic STAT3 decoy inhibited xenograft growth and downregulated STAT3 target genes in the tumors. These results provide the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development. PMID:22719020

  17. Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.; Gunter, Willem H.; February, Faith J.

    2017-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and gate the selected target to further improve tracker performance. Similarly, a key component in any soft-kill response to an incoming guided missile is the flare/chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes the recent improvements to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). Efforts to analyse and match the 3D flare particle model against actual IR measurements of the Chemring TALOS IR round resulted in further refinement of the 3D flare particle distribution. The changes in the flare model characteristics were significant enough to require an overhaul to the adaptive track gate (ATG) algorithm in the way it detects the presence of flare decoys and reacquires the target after flare separation. A series of test scenarios are used to demonstrate the impact of the new flare and ATG on IR tactics simulation.

  18. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    PubMed

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H L; Wang, Jun; Mawji, Nasrin R; Sadar, Marianne D

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  19. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  20. Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights

    PubMed Central

    Domingue, Michael J.; Lakhtakia, Akhlesh; Pulsifer, Drew P.; Hall, Loyal P.; Badding, John V.; Bischof, Jesse L.; Martín-Palma, Raúl J.; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C.; Hazen, Missy; Baker, Thomas C.

    2014-01-01

    Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle’s wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359

  1. STAT3 Oligonucleotide Inhibits Tumor Angiogenesis in Preclinical Models of Squamous Cell Carcinoma

    PubMed Central

    Klein, Jonah D.; Sano, Daisuke; Sen, Malabika; Myers, Jeffrey N.; Grandis, Jennifer R.; Kim, Seungwon

    2014-01-01

    Purpose Signal transducer and activator of transcription 3 (STAT3) has shown to play a critical role in head and neck squamous cell carcinoma (HNSCC) and we have recently completed clinical trials of STAT3 decoy oligonucleotide in patients with recurrent or metastatic HNSCC. However, there is limited understanding of the role of STAT3 in modulating other aspects of tumorigenesis such as angiogenesis. In this study, we aimed to examine the effects of STAT3 decoy oligonucleotide on tumor angiogenesis. Experimental Design A STAT3 decoy oligonucleotide and small interfering RNA (siRNA) were used to inhibit STAT3 in endothelial cells in vitro and in vivo. The biochemical effects of STAT3 inhibition were examined in conjunction with the consequences on proliferation, migration, apoptotic staining, and tubule formation. Additionally, we assessed the effects of STAT3 inhibition on tumor angiogenesis using murine xenograft models. Results STAT3 decoy oligonucleotide decreased proliferation, induces apoptosis, decreased migration, and decreased tubule formation of endothelial cells in vitro. The STAT3 decoy oligonucleotide also inhibited tumor angiogenesis in murine tumor xenografts. Lastly, our data suggest that the antiangiogenic effects of STAT3 decoy oligonucleotide were mediatedthrough the inhibition of both STAT3 and STAT1. Conclusions The STAT3 decoy oligonucleotidewas found to be an effective antiangiogenic agent, which is likely to contribute to the overall antitumor effects of this agent in solid tumors.Taken together with the previously demonstrated antitumor activity of this agent, STAT3 decoy oligonucleotide represents a promising single agent approach to targeting both the tumor and vascular compartments in various malignancies. PMID:24404126

  2. Airborne target tracking algorithm against oppressive decoys in infrared imagery

    NASA Astrophysics Data System (ADS)

    Sun, Xiechang; Zhang, Tianxu

    2009-10-01

    This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.

  3. A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence

    PubMed Central

    Camerer, Colin

    2012-01-01

    Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms, we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models, the computational resource required by our range-normalization model does not increase exponentially as the set size increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in the brain. PMID:22829761

  4. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    PubMed

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  5. Antitumor effect of nuclear factor-κB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites

    PubMed Central

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment. PMID:24850474

  6. Systemic Administration of a Cyclic Signal Transducer and Activator of Transcription 3 (STAT3) Decoy Oligonucleotide Inhibits Tumor Growth without Inducing Toxicological Effects

    PubMed Central

    Sen, Malabika; Paul, Kathleen; Freilino, Maria L; Li, Hua; Li, Changyou; Johnson, Daniel E; Wang, Lin; Eiseman, Julie; Grandis, Jennifer R

    2014-01-01

    Hyperactivation of signal transducer and activator of transcription 3 (STAT3) has been linked to tumorigenesis in most malignancies, including head and neck squamous cell carcinoma. Intravenous delivery of a chemically modified cyclic STAT3 decoy oligonucleotide with improved serum and thermal stability demonstrated antitumor efficacy in conjunction with downmodulation of STAT3 target gene expression such as cyclin D1 and Bcl-XL in a mouse model of head and neck squamous cell carcinoma. The purpose of the present study was to determine the toxicity and dose-dependent antitumor efficacy of the cyclic STAT3 decoy after multiple intravenous doses in Foxn1 nu mice in anticipation of clinical translation. The two doses (5 and 10 mg/kg) of cyclic STAT3 decoy demonstrated a significant decrease in tumor volume compared with the control groups (mutant cyclic STAT3 decoy or saline) in conjunction with downmodulation of STAT3 target gene expression. There was no dose-dependent effect of cyclic STAT3 decoy on tumor volume or STAT3 target gene expression. There were no significant changes in body weights between the groups during the dosing period, after the dosing interval or on the day of euthanasia. No hematology or clinical chemistry parameters suggested toxicity of the cyclic STAT3 decoy compared with saline control. No gross or histological pathological abnormalities were noted at necropsy in any of the animals. These findings suggest a lack of toxicity of intravenous administration of a cyclic STAT3 decoy oligonucleotide. In addition, comparable antitumor effects indicate a lack of dose response at the two dose levels investigated. PMID:24395569

  7. SCUD: fast structure clustering of decoys using reference state to remove overall rotation.

    PubMed

    Li, Hongzhi; Zhou, Yaoqi

    2005-08-01

    We developed a method for fast decoy clustering by using reference root-mean-squared distance (rRMSD) rather than commonly used pairwise RMSD (pRMSD) values. For 41 proteins with 2000 decoys each, the computing efficiency increases nine times without a significant change in the accuracy of near-native selections. Tests on additional protein decoys based on different reference conformations confirmed this result. Further analysis indicates that the pRMSD and rRMSD values are highly correlated (with an average correlation coefficient of 0.82) and the clusters obtained from pRMSD and rRMSD values are highly similar (the representative structures of the top five largest clusters from the two methods are 74% identical). SCUD (Structure ClUstering of Decoys) with an automatic cutoff value is available at http://theory.med.buffalo.edu. (c) 2005 Wiley Periodicals, Inc.

  8. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  9. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    PubMed

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Orthopaedic wear particle-induced bone loss and exogenous macrophage infiltration is mitigated by local infusion of NF-κB decoy oligodeoxynucleotide.

    PubMed

    Lin, Tzuhua; Pajarinen, Jukka; Nabeshima, Akira; Córdova, Luis A; Loi, Florence; Gibon, Emmanuel; Lu, Laura; Nathan, Karthik; Jämsen, Eemeli; Yao, Zhenyu; Goodman, Stuart B

    2017-11-01

    Excessive production of wear particles from total joint replacements induces chronic inflammation, macrophage infiltration, and consequent bone loss (periprosthetic osteolysis). This inflammation and bone remodeling are critically regulated by the transcription factor NF-κB. We previously demonstrated that inhibition of NF-κB signaling by using the decoy oligodeoxynucleotide (ODN) mitigates polyethylene wear particle-induced bone loss using in vitro and in vivo models. However, the mechanisms of NF-κB decoy ODN action, and in particular its impact on systemic macrophage recruitment, remain unknown. In the current study, this systemic macrophage infiltration was examined in our established murine femoral continuous particle infusion model. RAW264.7 murine macrophages expressing a luciferase reporter gene were injected into the systemic circulation. Quantification of bioluminescence showed that NF-κB decoy ODN reduced the homing of these reporter macrophages into the distal femurs exposed to continuous particle delivery. Particle-induced reduction in bone mineral density at the distal diaphysis of the femur was also mitigated by infusion of decoy ODN. Histological staining showed that the decoy ODN infusion decreased osteoclast and macrophage numbers, but had no significant effects on osteoblasts. Local infusion of NF-κB decoy ODN reduced systemic macrophage infiltration and mitigated particle-induced bone loss, thus providing a potential strategy to treat periprosthetic osteolysis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3169-3175, 2017. © 2017 Wiley Periodicals, Inc.

  11. Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning.

    PubMed

    Mirzaei, Shokoufeh; Sidi, Tomer; Keasar, Chen; Crivelli, Silvia

    2016-08-24

    The function of a protein is determined by its structure, which creates a need for efficient methods of protein structure determination to advance scientific and medical research. Because current experimental structure determination methods carry a high price tag, computational predictions are highly desirable. Given a protein sequence, computational methods produce numerous 3D structures known as decoys. However, selection of the best quality decoys is challenging as the end users can handle only a few ones. Therefore, scoring functions are central to decoy selection. They combine measurable features into a single number indicator of decoy quality. Unfortunately, current scoring functions do not consistently select the best decoys. Machine learning techniques offer great potential to improve decoy scoring. This paper presents two machine-learning based scoring functions to predict the quality of proteins structures, i.e., the similarity between the predicted structure and the experimental one without knowing the latter. We use different metrics to compare these scoring functions against three state-of-the-art scores. This is a first attempt at comparing different scoring functions using the same non-redundant dataset for training and testing and the same features. The results show that adding informative features may be more significant than the method used.

  12. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein.

    PubMed

    Boado, Ruben J; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Zhou, Qing-Hui; Pardridge, William M

    2010-03-01

    Decoy receptors, such as the human tumor necrosis factor receptor (TNFR), are potential new therapies for brain disorders. However, decoy receptors are large molecule drugs that are not transported across the blood-brain barrier (BBB). To enable BBB transport of a TNFR decoy receptor, the human TNFR-II extracellular domain was re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the TNFR therapeutic decoy receptor across the BBB. The HIRMAb-TNFR fusion protein was expressed in stably transfected CHO cells, and was analyzed with electrophoresis, Western blotting, size exclusion chromatography, and binding assays for the HIR and TNFalpha. The HIRMAb-TNFR fusion protein was radio-labeled by trititation, in parallel with the radio-iodination of recombinant TNFR:Fc fusion protein, and the proteins were co-injected in the adult Rhesus monkey. The TNFR:Fc fusion protein did not cross the primate BBB in vivo, but the uptake of the HIRMAb-TNFR fusion protein was high and 3% of the injected dose was taken up by the primate brain. The TNFR was selectively targeted to brain, relative to peripheral organs, following fusion to the HIRMAb. This study demonstrates that decoy receptors may be re-engineered as IgG fusion proteins with a BBB molecular Trojan horse that selectively targets the brain, and enables penetration of the BBB in vivo. IgG-decoy receptor fusion proteins represent a new class of human neurotherapeutics. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*

    PubMed Central

    Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.

    2013-01-01

    Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274

  14. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules.

    PubMed

    Crinelli, Rita; Carloni, Elisa; Menotta, Michele; Giacomini, Elisa; Bianchi, Marzia; Ambrosi, Gianluca; Giorgi, Luca; Magnani, Mauro

    2010-05-25

    Oligonucleotide (ODN) decoys are synthetic ODNs containing the DNA binding sequence of a transcription factor. When delivered to cells, these molecules can compete with endogenous sequences for binding the transcription factor, thus inhibiting its ability to activate the expression of target genes. Modulation of gene expression by decoy ODNs against nuclear factor-kappaB (NF-kappaB), a transcription factor regulating many genes involved in immunity, has been achieved in a variety of immune/inflammatory disorders. However, the successful use of transcription factor decoys depends on an efficient means to bring the synthetic DNA to target cells. It is known that single-walled carbon nanotubes (SWCNTs), under certain conditions, are able to cross the cell membrane. Thus, we have evaluated the possibility to functionalize SWCNTs with decoy ODNs against NF-kappaB in order to improve their intracellular delivery. To couple ODNs to CNTs, we have exploited the carbodiimide chemistry which allows covalent binding of amino-modified ODNs to carboxyl groups introduced onto SWCNTs through oxidation. The effective binding of ODNs to nanotubes has been demonstrated by a combination of microscopic, spectroscopic, and electrophoretic techniques. The uptake and subcellular distribution of ODN decoys bound to SWCNTs was analyzed by fluorescence microscopy. ODNs were internalized into macrophages and accumulated in the cytosol. Moreover, no cytotoxicity associated with SWCNT administration was observed. Finally, NF-kappaB-dependent gene expression was significantly reduced in cells receiving nanomolar concentrations of SWCNT-NF-kappaB decoys compared to cells receiving SWCNTs or SWCNTs functionalized with a nonspecific ODN sequence, demonstrating both efficacy and specificity of the approach.

  15. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  16. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer.

    PubMed

    Lin, Wan-Wan; Hsieh, Shie-Liang

    2011-04-01

    Recently, several decoy molecules belonging to tumor necrosis factor receptor superfamily (TNFRSF) have been identified, including decoy receptor 1 (DcR1), decoy receptor 2 (DcR2), and decoy receptor 3 (DcR3). One of the tumor necrosis factor superfamily (TNFSF) members, TNF-related apoptosis-inducing ligand (TRAIL), binds to DcR1 and DcR2, which are membranous receptors with a truncated cytoplasmic domain, thus unable to transduce TRAIL-mediated signaling. In contrast to DcR1 and DcR2, DcR3 is a soluble receptor capable of neutralizing the biological effects of three other TNFSF members: Fas ligand (FasL/TNFSF6/CD95L), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A/TNFSF15). Since FasL is a potent apoptosis- and inflammation-inducing factor, LIGHT is involved in apoptosis and inflammation, and TL1A is a T cell costimulator and is involved in gut inflammation, DcR3 can be defined as an immunomodulator on the basis of its neutralizing effects on FasL, LIGHT, and TL1A. Initial studies demonstrated that DcR3 expression is elevated in tumors cells; however, later work showed that DcR3 expression is also upregulated in inflammatory diseases, where serum DcR3 levels correlate with disease progression. In addition to its neutralizing effect, DcR3 also acts as an effector molecule to modulate cell function via 'non-decoy' activities. This review focuses on the immunomodulatory effects of DcR3 via 'decoy' and 'non-decoy' functions, and discusses the potential of DcR3 as a biomarker to predict cancer invasion and inflammation progression. We also discuss the possible utility of recombinant DcR3 as a therapeutic agent to control autoimmune diseases, as well as the potential to attenuate tumor progression by inhibiting DcR3 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 'Decoy peptide' region (RIFLKRMPSI) of prorenin prosegment plays a crucial role in prorenin binding to the (pro)renin receptor.

    PubMed

    Nabi, A H M Nurun; Biswas, Kazal Boron; Nakagawa, Tsutomu; Ichihara, Atsuhiro; Inagami, Tadashi; Suzuki, Fumiaki

    2009-07-01

    This study investigated a role of decoy peptide region (R10PIFLKRMPSI19P) in prorenin prosegment for prorenin binding to the (pro)renin receptor using the surface plasmon resonance technique. Three kinds of anti-receptor antibodies labeled as anti-107/121, anti-221/235 and anti-His tag antibody were prepared. The respective antigens D107SVANSIHSLFSEET121 (close to the N-terminal side of receptor), E221IGKRYGEDSEQFRD235 (N-terminal side of the transmembrane part of receptor) and 10xHis sequence (C-terminus) were designed based on the sequence of the receptor. These antibodies were immobilized on the CM5 sensor chip by amine coupling and allowed to bind to the receptor. Human prorenin, renin and the decoy bound to the receptor associated with antibodies. Their association (ka) and dissociation (kd) rate constants were measured and the dissociation constants (KD) were determined using Langmuir 1:1 kinetic binding model. The KD for interaction of prorenin and receptor associated to anti-107/121, anti-221/235 and anti-His tag antibodies were 2.9, 1.2 and 7.8 nM, respectively and for renin they were 9.3, 4.4 and 7.1 nM. The decoy bound to the respective immobilized receptor-antibody complexes at KD's of 6.2, 3.5 and 15.2 nM. Prorenin, renin and decoy had lower KD at the nanomolar ranges compared to those of L1PPTD4P in the prorenin prosegment and A248KKRLFDYVV257 in the C-domain of mature renin. The decoy reduced the binding of not only prorenin but also renin to (P)RR. These data are direct evidence that prorenin, renin and the peptides bind to (P)RR and the decoy reduces prorenin binding, supporting our hypothesis that decoy peptide region has a crucial role in prorenin binding.

  18. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  19. Scalable quantum information processing with photons and atoms

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO) coupling and topological bands with ultracold bosonic atoms. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observe. On the other hand, utilizing a two-dimensional spin-dependent optical superlattice and a single layer of atom cloud, we directly observed the four-body ring-exchange coupling and the Anyonic fractional statistics.

  20. Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

    DTIC Science & Technology

    2016-12-12

    From - To) 12/12/2016 Final 07/01/2015-08/31/2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Design and Implementation of Decoy Enhanced Dynamic...TELEPHONE NUMBER (Include area code) 703-993-1715 Standard Form 298 (Rev . 8/98) Prescribed by ANSI Std . Z39.18 " Design and Implementation of...8 2 Design and Implementation ofDecoy Enhanced Dynamic Virtualization Networks 1 Major Goals The relatively static configurations of networks and

  1. Mitigating the Backlash: US Airpower as a Military Instrument of Policy

    DTIC Science & Technology

    2003-06-01

    maintain their preeminence by employing strategies based more on benevolence than coercion.”31 This is a key point , as it marks a line of departure...weapons are easily defeated with smoke or fire in the target area (to defeat laser designators and thermal imaging), by adequate concealment and...create decoy surface-to-air missiles (SAMs) and radars, some quite sophisticated, and to employ previously “strategic” (immobile, point -defense

  2. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  3. Robust scoring functions for protein-ligand interactions with quantum chemical charge models.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J

    2011-10-24

    Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).

  4. Monitoring of West Nile virus, Usutu virus and Meaban virus in waterfowl used as decoys and wild raptors in southern Spain.

    PubMed

    Jurado-Tarifa, E; Napp, S; Lecollinet, S; Arenas, A; Beck, C; Cerdà-Cuéllar, M; Fernández-Morente, M; García-Bocanegra, I

    2016-12-01

    In the last decade, the number of emerging flaviviruses described worldwide has increased considerably, with wild birds acting as the main reservoir hosts of these viruses. We carried out an epidemiological survey to determine the seroprevalence of antigenically related flaviviruses, particularly West Nile virus (WNV), Usutu virus (USUV) and Meaban virus (MBV), in waterfowl used as decoys and wild raptors in Andalusia (southern Spain), the region considered to have the highest risk of flaviviruses circulation in Spain. The overall flaviviruses seroprevalence according to bELISA was 13.0% in both in decoys (n=1052) and wild raptors (n=123). Specific antibodies against WNV, USUV and MBV were confirmed by micro virus neutralization tests in 12, 38 and 4 of the seropositive decoys, respectively. This is the first study on WNV and USUV infections in decoys and the first report of MBV infections in waterfowl and raptors. Moreover we report the first description of WNV infections in short-toed snake eagle (Circaetus gallicus) and Montagu's harrier (Circus pygargus). The seropositivity obtained indicates widespread but not homogeneous distribution of WNV and USUV in Andalusia. The results also confirm endemic circulation of WNV, USUV and MBV in both decoys and wild raptors in southern Spain. Our results highlight the need to implement surveillance and control programs not only for WNV but also for other related flaviviruses. Further research is needed to determine the eco-epidemiological role that waterfowl and wild raptors play in the transmission of emerging flaviviruses, especially in decoys, given their close interactions with humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Intrathecal administration of AYX2 DNA decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9, and KLF15 transcription factors

    PubMed Central

    Klukinov, Michael; Harris, Scott; Manning, Donald C; Xie, Simon; Pascual, Conrado; Taylor, Bradley K; Donahue, Renee R; Yeomans, David C

    2017-01-01

    Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain. PMID:28814144

  6. Decoy trapping and rocket-netting for northern pintails in spring

    USGS Publications Warehouse

    Grand, James B.; Fondell, Thomas F.

    1994-01-01

    Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.

  7. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins

    PubMed Central

    Kemme, Catherine A.; Marquez, Rolando; Luu, Ross H.

    2017-01-01

    Abstract Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. PMID:28486614

  8. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction

    PubMed Central

    Klaus, Miriam; Prokoph, Nina; Girbig, Mathias; Wang, Xuecong; Huang, Yong-Heng; Srivastava, Yogesh; Hou, Linlin; Narasimhan, Kamesh; Kolatkar, Prasanna R.; Francois, Mathias; Jauch, Ralf

    2016-01-01

    The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis. PMID:26939885

  9. Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

    PubMed Central

    Keich, Uri; Noble, William Stafford

    2017-01-01

    Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, “Partial Calibration” utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and “Averaged TDC” (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with “Progressive Calibration” (PC), which attempts to find the “right” number of decoys required for calibration we see substantial impact in real datasets: when analyzing the Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that “full calibration” yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database. PMID:29326989

  10. Deception Algorithm. Appendices

    DTIC Science & Technology

    1994-06-30

    NOT. THE RAIN AND MUD MADE QUITE SLIPPERY. COULDHAVE BEEN QUITE A FEW INJURIES WHEN LUGGING THE DECOY AROUND. 1111 37106 HF7A HFCMT IN MOPP4 IT WAS... 10 TIMES. 1009 35115 HF5A FFCMT THE TARGET BACKGROUND HELPED GIVE AWAY THE DECOYS BECAUSE THEY WERE PUT UP ON THE SIDE OF A HILL. COLOR WAS DARKER...FFENGCMT I ENGAGED TARGETS THAT I THOUGHT WERE DECOYS APPROXIMATELY 10 TIMES BECAUSE OF RANGE TO TARGET. I COULD NOT ID MOST OF THE TIME AT NIGHT AT LONG

  11. Two New Tools for Glycopeptide Analysis Researchers: A Glycopeptide Decoy Generator and a Large Data Set of Assigned CID Spectra of Glycopeptides.

    PubMed

    Lakbub, Jude C; Su, Xiaomeng; Zhu, Zhikai; Patabandige, Milani W; Hua, David; Go, Eden P; Desaire, Heather

    2017-08-04

    The glycopeptide analysis field is tightly constrained by a lack of effective tools that translate mass spectrometry data into meaningful chemical information, and perhaps the most challenging aspect of building effective glycopeptide analysis software is designing an accurate scoring algorithm for MS/MS data. We provide the glycoproteomics community with two tools to address this challenge. The first tool, a curated set of 100 expert-assigned CID spectra of glycopeptides, contains a diverse set of spectra from a variety of glycan types; the second tool, Glycopeptide Decoy Generator, is a new software application that generates glycopeptide decoys de novo. We developed these tools so that emerging methods of assigning glycopeptides' CID spectra could be rigorously tested. Software developers or those interested in developing skills in expert (manual) analysis can use these tools to facilitate their work. We demonstrate the tools' utility in assessing the quality of one particular glycopeptide software package, GlycoPep Grader, which assigns glycopeptides to CID spectra. We first acquired the set of 100 expert assigned CID spectra; then, we used the Decoy Generator (described herein) to generate 20 decoys per target glycopeptide. The assigned spectra and decoys were used to test the accuracy of GlycoPep Grader's scoring algorithm; new strengths and weaknesses were identified in the algorithm using this approach. Both newly developed tools are freely available. The software can be downloaded at http://glycopro.chem.ku.edu/GPJ.jar.

  12. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  13. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins.

    PubMed

    Kemme, Catherine A; Marquez, Rolando; Luu, Ross H; Iwahara, Junji

    2017-07-27

    Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  15. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  16. Decoys Selection in Benchmarking Datasets: Overview and Perspectives

    PubMed Central

    Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Lagarde, Nathalie; Montes, Matthieu

    2018-01-01

    Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e., compounds capable of interacting with a given target and potentially modulate its activity, out of large compound collections. Among the variety of methodologies, it is crucial to select the protocol that is the most adapted to the query/target system under study and that yields the most reliable output. To this aim, the performance of VS methods is commonly evaluated and compared by computing their ability to retrieve active compounds in benchmarking datasets. The benchmarking datasets contain a subset of known active compounds together with a subset of decoys, i.e., assumed non-active molecules. The composition of both the active and the decoy compounds subsets is critical to limit the biases in the evaluation of the VS methods. In this review, we focus on the selection of decoy compounds that has considerably changed over the years, from randomly selected compounds to highly customized or experimentally validated negative compounds. We first outline the evolution of decoys selection in benchmarking databases as well as current benchmarking databases that tend to minimize the introduction of biases, and secondly, we propose recommendations for the selection and the design of benchmarking datasets. PMID:29416509

  17. Notch Decoys that Selectively Block Dll/Notch or Jagged/Notch Disrupt Angiogenesis by Unique Mechanisms to Inhibit Tumor Growth

    PubMed Central

    Kangsamaksin, Thaned; Murtomaki, Aino; Kofler, Natalie M.; Cuervo, Henar; Chaudhri, Reyhaan A.; Tattersall, Ian W.; Rosenstiel, Paul E.; Shawber, Carrie J.; Kitajewski, Jan

    2015-01-01

    A pro-angiogenic role for Jagged-dependent activation of Notch signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of DLL-class and JAG-class ligand/receptor interactions, and developed Notch decoys that function as ligand-specific Notch inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro and retinal angiogenesis, demonstrating JAG-dependent Notch signal activation promotes angiogenesis. In tumors, N110-24 decoy reduced angiogenic sprouting, vessel perfusion, pericyte coverage, and tumor growth. JAG/NOTCH signaling uniquely inhibited expression of anti-angiogenic sVEFGFR-1/sFlt-1. N11-13 decoy interfered with DLL1/DLL4-mediated NOTCH1 signaling and caused endothelial hypersprouting in vitro, in retinal angiogenesis and in tumors. Thus, blockade of JAG- or DLL-mediated Notch signaling inhibits angiogenesis by distinct mechanisms. JAG/Notch signaling positively regulates angiogenesis by suppressing sVEGFR-1/sFlt-1 and promoting mural/endothelial cell interactions. Blockade of JAG-class ligands represents a novel, viable therapeutic approach to block tumor angiogenesis and growth. PMID:25387766

  18. Relativistic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: molotkov@issp.ac.ru

    2011-03-15

    A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.

  19. Public-key quantum digital signature scheme with one-time pad private-key

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Lin; Liu, Wan-Fang; Chen, Su-Gen; Wang, Zhi-Hua

    2018-01-01

    A quantum digital signature scheme is firstly proposed based on public-key quantum cryptosystem. In the scheme, the verification public-key is derived from the signer's identity information (such as e-mail) on the foundation of identity-based encryption, and the signature private-key is generated by one-time pad (OTP) protocol. The public-key and private-key pair belongs to classical bits, but the signature cipher belongs to quantum qubits. After the signer announces the public-key and generates the final quantum signature, each verifier can verify publicly whether the signature is valid or not with the public-key and quantum digital digest. Analysis results show that the proposed scheme satisfies non-repudiation and unforgeability. Information-theoretic security of the scheme is ensured by quantum indistinguishability mechanics and OTP protocol. Based on the public-key cryptosystem, the proposed scheme is easier to be realized compared with other quantum signature schemes under current technical conditions.

  20. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells

    PubMed Central

    Porciani, David; Tedeschi, Lorena; Marchetti, Laura; Citti, Lorenzo; Piazza, Vincenzo; Beltram, Fabio; Signore, Giovanni

    2015-01-01

    Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells. PMID:25919089

  1. Quantum exhaustive key search with simplified-DES as a case study.

    PubMed

    Almazrooie, Mishal; Samsudin, Azman; Abdullah, Rosni; Mutter, Kussay N

    2016-01-01

    To evaluate the security of a symmetric cryptosystem against any quantum attack, the symmetric algorithm must be first implemented on a quantum platform. In this study, a quantum implementation of a classical block cipher is presented. A quantum circuit for a classical block cipher of a polynomial size of quantum gates is proposed. The entire work has been tested on a quantum mechanics simulator called libquantum. First, the functionality of the proposed quantum cipher is verified and the experimental results are compared with those of the original classical version. Then, quantum attacks are conducted by using Grover's algorithm to recover the secret key. The proposed quantum cipher is used as a black box for the quantum search. The quantum oracle is then queried over the produced ciphertext to mark the quantum state, which consists of plaintext and key qubits. The experimental results show that for a key of n-bit size and key space of N such that [Formula: see text], the key can be recovered in [Formula: see text] computational steps.

  2. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.

  3. Distinguishability of quantum states and shannon complexity in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Arbekov, I. M.; Molotkov, S. N.

    2017-07-01

    The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.

  4. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  5. Multiparty Quantum Key Agreement Based on Quantum Search Algorithm

    PubMed Central

    Cao, Hao; Ma, Wenping

    2017-01-01

    Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610

  6. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics.

    PubMed

    Keich, Uri; Kertesz-Farkas, Attila; Noble, William Stafford

    2015-08-07

    Interpreting the potentially vast number of hypotheses generated by a shotgun proteomics experiment requires a valid and accurate procedure for assigning statistical confidence estimates to identified tandem mass spectra. Despite the crucial role such procedures play in most high-throughput proteomics experiments, the scientific literature has not reached a consensus about the best confidence estimation methodology. In this work, we evaluate, using theoretical and empirical analysis, four previously proposed protocols for estimating the false discovery rate (FDR) associated with a set of identified tandem mass spectra: two variants of the target-decoy competition protocol (TDC) of Elias and Gygi and two variants of the separate target-decoy search protocol of Käll et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover, the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target identifications.

  7. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics

    PubMed Central

    2016-01-01

    Interpreting the potentially vast number of hypotheses generated by a shotgun proteomics experiment requires a valid and accurate procedure for assigning statistical confidence estimates to identified tandem mass spectra. Despite the crucial role such procedures play in most high-throughput proteomics experiments, the scientific literature has not reached a consensus about the best confidence estimation methodology. In this work, we evaluate, using theoretical and empirical analysis, four previously proposed protocols for estimating the false discovery rate (FDR) associated with a set of identified tandem mass spectra: two variants of the target-decoy competition protocol (TDC) of Elias and Gygi and two variants of the separate target-decoy search protocol of Käll et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover, the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target identifications. PMID:26152888

  8. A mouse model study of toxicity and biodistribution of a replication defective adenovirus serotype 5 virus with its genome engineered to contain a decoy hyper binding site to sequester and suppress oncogenic HMGA1 as a new cancer treatment therapy.

    PubMed

    Hassan, Faizule; Lossie, Sarah L; Kasik, Ellen P; Channon, Audrey M; Ni, Shuisong; Kennedy, Michael A

    2018-01-01

    The HGMA1 architectural transcription factor is highly overexpressed in many human cancers. Because HMGA1 is a hub for regulation of many oncogenes, its overexpression in cancer plays a central role in cancer progression and therefore HMGA1 is gaining increasing attention as a target for development of therapeutic approaches to suppress either its expression or action in cancer cells. We have developed the strategy of introducing decoy hyper binding sites for HMGA1 into the nucleus of cancer cells with the goal of competetively sequestering overexpressed HMGA1 and thus suppressing its oncogenic action. Towards achieving this goal, we have introduced an HMGA1 decoy hyper binding site composed of six copies of a high affinity HMGA1 binding site into the genome of the replication defective adenovirus serotype 5 genome and shown that the engineered virus effectively reduces the viability of human pancreatic and cancer cells. Here we report the first pre-clinical measures of toxicity and biodistribution of the engineered virus in C57BL/6J Black 6 mice. The immune response to exposure of the engineered virus was determined by assaying the serum levels of key cytokines, IL-6 and TNF-α. Toxicity due to exposure to the virus was determined by measuring the serum levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase. Biodistribution was measured following direct injection into the pancreas or liver by quantifying viral loads in the pancreas, liver, spleen and brain.

  9. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  10. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  11. Does life history predict risk-taking behavior of wintering dabbling ducks?

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eadie, J.M.; Moore, T.G.

    2006-01-01

    Life-history theory predicts that longer-lived, less fecund species should take fewer risks when exposed to predation than shorter-lived, more fecund species. We tested this prediction for seven species of dabbling ducks (Anas) by measuring the approach behavior (behavior of ducks when approaching potential landing sites) of 1099 duck flocks during 37 hunting trials and 491 flocks during 13 trials conducted immediately after the 1999-2000 waterfowl hunting season in California, USA. We also experimentally manipulated the attractiveness of the study site by using two decoy treatments: (1) traditional, stationary decoys only, and (2) traditional decoys in conjunction with a mechanical spinning-wing decoy. Approach behavior of ducks was strongly correlated with their life history. Minimum approach distance was negatively correlated with reproductive output during each decoy treatment and trial type. Similarly, the proportion of flocks taking risk (approaching landing sites to within 45 m) was positively correlated with reproductive output. We found similar patterns of approach behavior in relation to other life-history parameters (i.e., adult female body mass and annual adult female survival rate). Thus, species characterized by a slower life-history strategy (e.g., Northern Pintail [A. acuta]) were more risk-averse than species with a faster life-history strategy (e.g., Cinnamon Teal [A. cyanoptera]). Furthermore, although we were able to reduce risk-averseness using the spinning-wing decoy, we were unable to override the influence of life history on risk-taking behavior. Alternative explanations did not account for the observed correlation between approach behavior and life-history parameters. These results suggest that life history influences the risk-taking behavior of dabbling ducks and provide an explanation for the differential vulnerability of waterfowl to harvest. ?? The Cooper Ornithological Society 2006.

  12. Discrimination of Native-like States of Membrane Proteins with Implicit Membrane-based Scoring Functions.

    PubMed

    Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael

    2017-06-13

    A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).

  13. An Unbiased Method To Build Benchmarking Sets for Ligand-Based Virtual Screening and its Application To GPCRs

    PubMed Central

    2015-01-01

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the “artificial enrichment” and “analogue bias” of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD. PMID:24749745

  14. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.

    PubMed

    Xia, Jie; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren; Wang, Xiang Simon

    2014-05-27

    Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the "artificial enrichment" and "analogue bias" of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.

  15. Clinical Utility of Urinary Cytology to Detect BK Viral Nephropathy.

    PubMed

    Nankivell, Brian J; Renthawa, Jasveen; Jeoffreys, Neisha; Kable, Kathy; O'Connell, Philip J; Chapman, Jeremy R; Wong, Germaine; Sharma, Raghwa N

    2015-08-01

    Reactivation of BK polyoma virus can result in destructive viral allograft nephropathy (BKVAN) with limited treatment options. Screening programs using surrogate markers of viral replication are important preventive strategies, guiding immunosuppression reduction. We prospectively evaluated the diagnostic test performance of urinary decoy cells and urinary SV40T immunochemistry of exfoliated cells, to screen for BKVAN, (defined by reference histology with SV40 immunohistochemistry, n = 704 samples), compared with quantitative viremia, from 211 kidney and 141 kidney-pancreas transplant recipients. The disease prevalence of BKVAN was 2.6%. Decoy cells occurred in 95 of 704 (13.5%) samples, with a sensitivity of 66.7%, specificity of 88.6%, positive predictive value (PPV) of 11.7%, and negative predictive value of 98.5% to predict histologically proven BKVAN. Quantification of decoy cells improved the PPV to 32.1% (10 ≥ cells threshold). Immunohistochemical staining of urinary exfoliated cells for SV40T improved sensitivity to 85.7%, detecting atypical or degenerate infected cells (specificity of 92.3% and PPV of 33.3%), but was hampered by technical failures. Viremia occurred in 90 of 704 (12.8%) with sensitivity of 96.3%, specificity of 90.3%, PPV of 31.5%, and negative predictive value of 99.8%. The receiver-operator curve performance of quantitative viremia surpassed decoy cells (area under the curve of 0.95 and 0.79, respectively, P = 0.0018 for differences). Combining decoy cell and BK viremia in a diagnostic matrix improved prediction of BKVAN and diagnostic risk stratification, especially for high-level positive results. Although quantified decoy cells are acceptable surrogate markers of BK viral replication with unexceptional test performances, quantitative viremia displayed superior test characteristics and is suggested as the screening test of choice.

  16. An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis

    DOE PAGES

    Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; ...

    2014-09-21

    Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound tomore » Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.« less

  17. Countermeasure effectiveness against an intelligent imaging infrared anti-ship missile

    NASA Astrophysics Data System (ADS)

    Gray, Greer J.; Aouf, Nabil; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2013-02-01

    Ship self defense against heat-seeking anti-ship missiles is of great concern to modern naval forces. One way of protecting ships against these threats is to use infrared (IR) offboard countermeasures. These decoys need precise placement to maximize their effectiveness, and simulation is an invaluable tool used in determining optimum deployment strategies. To perform useful simulations, high-fidelity models of missiles are required. We describe the development of an imaging IR anti-ship missile model for use in countermeasure effectiveness simulations. The missile model's tracking algorithm is based on a target recognition system that uses a neural network to discriminate between ships and decoys. The neural network is trained on shape- and intensity-based features extracted from simulated imagery. The missile model is then used within ship-decoy-missile engagement simulations, to determine how susceptible it is to the well-known walk-off seduction countermeasure technique. Finally, ship survivability is improved by adjusting the decoy model to increase its effectiveness against the tracker.

  18. Security of a single-state semi-quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Mateus, Paulo

    2018-06-01

    Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.

  19. Why Do Irrelevant Alternatives Matter? An fMRI-TMS Study of Context-Dependent Preferences.

    PubMed

    Chung, Hui-Kuan; Sjöström, Tomas; Lee, Hsin-Ju; Lu, Yi-Ta; Tsuo, Fu-Yun; Chen, Tzai-Shuen; Chang, Chi-Fu; Juan, Chi-Hung; Kuo, Wen-Jui; Huang, Chen-Ying

    2017-11-29

    Both humans and animals are known to exhibit a violation of rationality known as "decoy effect": introducing an irrelevant option (a decoy) can influence choices among other (relevant) options. Exactly how and why decoys trigger this effect is not known. It may be an example of fast heuristic decision-making, which is adaptive in natural environments, but may lead to biased choices in certain markets or experiments. We used fMRI and transcranial magnetic stimulation to investigate the neural underpinning of the decoy effect of both sexes. The left ventral striatum was more active when the chosen option dominated the decoy. This is consistent with the hypothesis that the presence of a decoy option influences the valuation of other options, making valuation context-dependent even when choices appear fully rational. Consistent with the idea that control is recruited to prevent heuristics from producing biased choices, the right inferior frontal gyrus, often implicated in inhibiting prepotent responses, connected more strongly with the striatum when subjects successfully overrode the decoy effect and made unbiased choices. This is further supported by our transcranial magnetic stimulation experiment: subjects whose right inferior frontal gyrus was temporarily disrupted made biased choices more often than a control group. Our results suggest that the neural basis of the decoy effect could be the context-dependent activation of the valuation area. But the differential connectivity from the frontal area may indicate how deliberate control monitors and corrects errors and biases in decision-making. SIGNIFICANCE STATEMENT Standard theories of rational decision-making assume context-independent valuations of available options. Motivated by the importance of this basic assumption, we used fMRI to study how the human brain assigns values to available options. We found activity in the valuation area to be consistent with the hypothesis that values depend on irrelevant aspects of the environment, even for subjects whose choices appear fully rational. Such context-dependent valuations may lead to biased decision-making. We further found differential connectivity from the frontal area to the valuation area depending on whether biases were successfully overcome. This suggests a mechanism for making rational choices despite the potential bias. Further support was obtained by a transcranial magnetic stimulation experiment, where subjects whose frontal control was temporarily disrupted made biased choices more often than a control group. Copyright © 2017 the authors 0270-6474/17/3711647-15$15.00/0.

  20. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  1. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    PubMed

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Changes to Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki; Tanaka, Hidema

    Quantum cryptography has become a subject of widespread interest. In particular, quantum key distribution, which provides a secure key agreement by using quantum systems, is believed to be the most important application of quantum cryptography. Quantum key distribution has the potential to achieve the “unconditionally” secure infrastructure. We also have many cryptographic tools that are based on “modern cryptography” at the present time. They are being used in an effort to guarantee secure communication over open networks such as the Internet. Unfortunately, their ultimate efficacy is in doubt. Quantum key distribution systems are believed to be close to practical and commercial use. In this paper, we discuss what we should do to apply quantum cryptography to our communications. We also discuss how quantum key distribution can be combined with or used to replace cryptographic tools based on modern cryptography.

  3. Quantum key distribution without the wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

  4. Evidence For A Sex Pheromone in Bark Beetle Parasitoid Roptrocerus xylophagorum

    Treesearch

    Brian T. Sullivan

    2002-01-01

    Male Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Pteromalidae) exhibited courtship and mating behaviors including wing fanning, antennation, mounting, and copulation attempts when exposed to glass bulb decoys coated with a whole-body extract of females in hexane, acetone, or methanol. Activity of extract-treated decoys declined gradually over...

  5. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  6. Security Standards and Best Practice Considerations for Quantum Key Distribution (QKD)

    DTIC Science & Technology

    2012-03-01

    SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD) THESIS...protection in the United States. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY

  7. Empirical Analysis of Optical Attenuator Performance in Quantum Key Distribution Systems Using a Particle Model

    DTIC Science & Technology

    2012-03-01

    EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution

  8. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less

  9. Security of Y-00 and Similar Quantum Cryptographic Protocols

    DTIC Science & Technology

    2004-11-16

    security of Y-00 type protocols is clarified. Key words: Quantum cryptography PACS: 03.67.Dd Anew approach to quantum cryptog- raphy called KCQ, ( keyed ...classical- noise key generation [2] or the well known BB84 quantum protocol [3]. A special case called αη (or Y-00 in Japan) has been experimentally in... quantum noise for typical op- erating parameters. It weakens both the data and key security , possibly information-theoretically and cer- tainly

  10. Linear high-boost fusion of Stokes vector imagery for effective discrimination and recognition of real targets in the presence of multiple identical decoys

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Sakla, Wesam A.

    2010-04-01

    Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.

  11. Estimation and correction of visibility bias in aerial surveys of wintering ducks

    USGS Publications Warehouse

    Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.

  12. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets.

    PubMed

    Savitski, Mikhail M; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-09-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target-decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target-decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The "picked" protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The "picked" target-decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used "classic" protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.

    PubMed

    Liu, Kai; Kokubo, Hironori

    2017-10-23

    Docking has become an indispensable approach in drug discovery research to predict the binding mode of a ligand. One great challenge in docking is to efficiently refine the correct pose from various putative docking poses through scoring functions. We recently examined the stability of self-docking poses under molecular dynamics (MD) simulations and showed that equilibrium MD simulations have some capability to discriminate between correct and decoy poses. Here, we have extended our previous work to cross-docking studies for practical applications. Three target proteins (thrombin, heat shock protein 90-alpha, and cyclin-dependent kinase 2) of pharmaceutical interest were selected. Three comparable poses (one correct pose and two decoys) for each ligand were then selected from the docking poses. To obtain the docking poses for the three target proteins, we used three different protocols, namely: normal docking, induced fit docking (IFD), and IFD against the homology model. Finally, five parallel MD equilibrium runs were performed on each pose for the statistical analysis. The results showed that the correct poses were generally more stable than the decoy poses under MD. The discrimination capability of MD depends on the strategy. The safest way was to judge a pose as being stable if any one run among five parallel runs was stable under MD. In this case, 95% of the correct poses were retained under MD, and about 25-44% of the decoys could be excluded by the simulations for all cases. On the other hand, if we judge a pose as being stable when any two or three runs were stable, with the risk of incorrectly excluding some correct poses, approximately 31-53% or 39-56% of the two decoys could be excluded by MD, respectively. Our results suggest that simple equilibrium simulations can serve as an effective filter to exclude decoy poses that cannot be distinguished by docking scores from the computationally expensive free-energy calculations.

  14. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets

    PubMed Central

    Savitski, Mikhail M.; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-01-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target–decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target–decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The “picked” protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The “picked” target–decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used “classic” protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. PMID:25987413

  15. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells

    PubMed Central

    Finotti, Alessia; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria; Mancini, Irene; Cabrini, Giulio; Saviano, Michele; Avitabile, Concetta; Romanelli, Alessandra; Gambari, Roberto

    2012-01-01

    One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis. PMID:22772035

  16. Quantum dense key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  17. A decoy chain deployment method based on SDN and NFV against penetration attack

    PubMed Central

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Penetration attacks are one of the most serious network security threats. However, existing network defense technologies do not have the ability to entirely block the penetration behavior of intruders. Therefore, the network needs additional defenses. In this paper, a decoy chain deployment (DCD) method based on SDN+NFV is proposed to address this problem. This method considers about the security status of networks, and deploys decoy chains with the resource constraints. DCD changes the attack surface of the network and makes it difficult for intruders to discern the current state of the network. Simulation experiments and analyses show that DCD can effectively resist penetration attacks by increasing the time cost and complexity of a penetration attack. PMID:29216257

  18. A decoy chain deployment method based on SDN and NFV against penetration attack.

    PubMed

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Penetration attacks are one of the most serious network security threats. However, existing network defense technologies do not have the ability to entirely block the penetration behavior of intruders. Therefore, the network needs additional defenses. In this paper, a decoy chain deployment (DCD) method based on SDN+NFV is proposed to address this problem. This method considers about the security status of networks, and deploys decoy chains with the resource constraints. DCD changes the attack surface of the network and makes it difficult for intruders to discern the current state of the network. Simulation experiments and analyses show that DCD can effectively resist penetration attacks by increasing the time cost and complexity of a penetration attack.

  19. A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu

    2014-07-01

    Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.

  20. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  1. Recent progress of quantum communication in China (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    2016-04-01

    Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.

  2. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  3. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  4. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  5. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  6. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  7. LuciPHOr: Algorithm for Phosphorylation Site Localization with False Localization Rate Estimation Using Modified Target-Decoy Approach*

    PubMed Central

    Fermin, Damian; Walmsley, Scott J.; Gingras, Anne-Claude; Choi, Hyungwon; Nesvizhskii, Alexey I.

    2013-01-01

    The localization of phosphorylation sites in peptide sequences is a challenging problem in large-scale phosphoproteomics analysis. The intense neutral loss peaks and the coexistence of multiple serine/threonine and/or tyrosine residues are limiting factors for objectively scoring site patterns across thousands of peptides. Various computational approaches for phosphorylation site localization have been proposed, including Ascore, Mascot Delta score, and ProteinProspector, yet few address direct estimation of the false localization rate (FLR) in each experiment. Here we propose LuciPHOr, a modified target-decoy-based approach that uses mass accuracy and peak intensities for site localization scoring and FLR estimation. Accurate estimation of the FLR is a difficult task at the individual-site level because the degree of uncertainty in localization varies significantly across different peptides. LuciPHOr carries out simultaneous localization on all candidate sites in each peptide and estimates the FLR based on the target-decoy framework, where decoy phosphopeptides generated by placing artificial phosphorylation(s) on non-candidate residues compete with the non-decoy phosphopeptides. LuciPHOr also reports approximate site-level confidence scores for all candidate sites as a means to localize additional sites from multiphosphorylated peptides in which localization can be partially achieved. Unlike the existing tools, LuciPHOr is compatible with any search engine output processed through the Trans-Proteomic Pipeline. We evaluated the performance of LuciPHOr in terms of the sensitivity and accuracy of FLR estimates using two synthetic phosphopeptide libraries and a phosphoproteomic dataset generated from complex mouse brain samples. PMID:23918812

  8. Inorganic Kernel-Reconstituted Lipoprotein Biomimetic Nanovehicles Enable Efficient Targeting “Trojan Horse” Delivery of STAT3-Decoy Oligonucleotide for Overcoming TRAIL Resistance

    PubMed Central

    Shi, Kai; Xue, Jianxiu; Fang, Yan; Bi, Hongshu; Gao, Shan; Yang, Dongjuan; Lu, Anqi; Li, Yuai; Chen, Yao; Ke, Liyuan

    2017-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in a variety of tumor cells, but not most normal cells. Nevertheless, its therapeutic potential is limited due to the frequent occurrence of resistance in tumor cells, especially hepatocellular carcinoma cell lines. Therefore, we investigated the reversal effect of STAT3-decoy oligonucleotides (ODNs) on TRAIL resistance. Methods. Considering that the drawback of poor cellular permeability and rapid degradation in vivo limited ODNs' further clinical applications, we developed a biomimetic calcium phosphate-reconstituted low density lipoprotein nanovehicle (CaP@LDL) that would serve as a “Trojan horse” to carry STAT3-decoy ODNs into tumor cells and then regulate TRAIL-induced apoptosis. Results. In comparison with native ODNs, the reconstituted CaP@LDL packaged ODNs showed significantly increased serum stability, cellular transfection, in vitro synergistic cytotoxicity and apoptosis in hepatoma cells, while there was no cytotoxicity to normal cells. The improved TRAIL sensitization is attributed to blocking of STAT3 signaling and consequent expression of the downstream target antiapoptotic gene. Following systemic administration, CaP@LDL displayed LDL-mimicking pharmacokinetic behavior such as attenuated blood clearance as well as enhanced accumulation in tumor and hepatorenal sites. With the synergistic combination of decoyODN/CaP@LDL, TRAIL dramatically inhibited hepatic tumor growth in a xenograft model and induced significant tumor apoptosis in vivo. Conclusion. These results suggested that CaP@LDL-mediated STAT3-decoy ODN delivery might be a promising new strategy for reversing TRAIL resistance in hepatocellular carcinoma therapy. PMID:29158840

  9. Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-Cisplatin combination therapy in cervical cancer.

    PubMed

    Narayan, Gopeshwar; Xie, Dongxu; Ishdorj, Ganchimeg; Scotto, Luigi; Mansukhani, Mahesh; Pothuri, Bhavana; Wright, Jason D; Kaufmann, Andreas M; Schneider, Achim; Arias-Pulido, Hugo; Murty, Vundavalli V

    2016-02-01

    Multiple chromosomal regions are affected by deletions in cervical cancer (CC) genomes, but their consequence and target gene involvement remains unknown. Our single nucleotide polymorphism (SNP) array identified 8p copy number losses localized to an 8.4 Mb minimal deleted region (MDR) in 36% of CC. The 8p MDR was associated with tumor size, treatment outcome, and with multiple HPV infections. Genetic, epigenetic, and expression analyses of candidate genes at MDR identified promoter hypermethylation and/or inactivation of decoy receptors TNFRSF10C and TNFRSF10D in the majority of CC patients. TNFRSF10C methylation was also detected in precancerous lesions suggesting that this change is an early event in cervical tumorigenesis. We further demonstrate here that CC cell lines exhibiting downregulated expression of TNFRSF10C and/or TNFRSF10D effectively respond to TRAIL-induced apoptosis and this affect was synergistic in combination with DNA damaging chemotherapeutic drugs. We show that the CC cell lines harboring epigenetic inactivation of TRAIL decoy receptors effectively activate downstream caspases suggesting a critical role of inactivation of these genes in efficient execution of extrinsic apoptotic pathway and therapy response. Therefore, these findings shed new light on the role of genetic/epigenetic defects in TRAIL decoy receptor genes in the pathogenesis of CC and provide an opportunity to explore strategies to test decoy receptor gene inactivation as a biomarker of response to Apo2L/TRAIL-combination therapy. © 2015 Wiley Periodicals, Inc.

  10. Inorganic Kernel-Reconstituted Lipoprotein Biomimetic Nanovehicles Enable Efficient Targeting "Trojan Horse" Delivery of STAT3-Decoy Oligonucleotide for Overcoming TRAIL Resistance.

    PubMed

    Shi, Kai; Xue, Jianxiu; Fang, Yan; Bi, Hongshu; Gao, Shan; Yang, Dongjuan; Lu, Anqi; Li, Yuai; Chen, Yao; Ke, Liyuan

    2017-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in a variety of tumor cells, but not most normal cells. Nevertheless, its therapeutic potential is limited due to the frequent occurrence of resistance in tumor cells, especially hepatocellular carcinoma cell lines. Therefore, we investigated the reversal effect of STAT3-decoy oligonucleotides (ODNs) on TRAIL resistance. Methods . Considering that the drawback of poor cellular permeability and rapid degradation in vivo limited ODNs' further clinical applications, we developed a biomimetic calcium phosphate-reconstituted low density lipoprotein nanovehicle (CaP@LDL) that would serve as a "Trojan horse" to carry STAT3-decoy ODNs into tumor cells and then regulate TRAIL-induced apoptosis. Results . In comparison with native ODNs, the reconstituted CaP@LDL packaged ODNs showed significantly increased serum stability, cellular transfection, in vitro synergistic cytotoxicity and apoptosis in hepatoma cells, while there was no cytotoxicity to normal cells. The improved TRAIL sensitization is attributed to blocking of STAT3 signaling and consequent expression of the downstream target antiapoptotic gene. Following systemic administration, CaP@LDL displayed LDL-mimicking pharmacokinetic behavior such as attenuated blood clearance as well as enhanced accumulation in tumor and hepatorenal sites. With the synergistic combination of decoyODN/CaP@LDL, TRAIL dramatically inhibited hepatic tumor growth in a xenograft model and induced significant tumor apoptosis in vivo . Conclusion. These results suggested that CaP@LDL-mediated STAT3-decoy ODN delivery might be a promising new strategy for reversing TRAIL resistance in hepatocellular carcinoma therapy.

  11. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2002-12-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.

  12. Protein Loop Structure Prediction Using Conformational Space Annealing.

    PubMed

    Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung

    2017-05-22

    We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.

  13. A role for NF-κB–dependent gene transactivation in sunburn

    PubMed Central

    Abeyama, Kazuhiro; Eng, William; Jester, James V.; Vink, Arie A.; Edelbaum, Dale; Cockerell, Clay J.; Bergstresser, Paul R.; Takashima, Akira

    2000-01-01

    Exposure of skin to ultraviolet (UV) radiation is known to induce NF-κB activation, but the functional role for this pathway in UV-induced cutaneous inflammation remains uncertain. In this study, we examined whether experimentally induced sunburn reactions in mice could be prevented by blocking UV-induced, NF-κB–dependent gene transactivation with oligodeoxynucleotides (ODNs) containing the NF-κB cis element (NF-κB decoy ODNs). UV-induced secretion of IL-1, IL-6, TNF-α, and VEGF by skin-derived cell lines was inhibited by the decoy ODNs, but not by the scrambled control ODNs. Systemic or local injection of NF-κB decoy ODNs also inhibited cutaneous swelling responses to UV irradiation. Moreover, local UV-induced inflammatory changes (swelling, leukocyte infiltration, epidermal hyperplasia, and accumulation of proinflammatory cytokines) were all inhibited specifically by topically applied decoy ODNs. Importantly, these ODNs had no effect on alternative types of cutaneous inflammation caused by irritant or allergic chemicals. These results indicate that sunburn reactions culminate from inflammatory events that are triggered by UV-activated transcription of NF-κB target genes, rather than from nonspecific changes associated with tissue damage. PMID:10862790

  14. Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification

    DTIC Science & Technology

    2014-09-18

    and full/scale experimental verifications towards ground/ satellite quantum key distribution0 Oat Qhotonics 4235>9+7,=5;9!អ \\58^ Zin K. Dao Z. Miu T...Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification DISSERTATION Jeffrey D. Morris... QUANTUM KEY DISTRIBUTION SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM SPECIFICATION DISSERTATION Presented to the Faculty Department of Systems

  15. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-05-15

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Threemore » protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.« less

  16. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  17. Counterfactual quantum cryptography.

    PubMed

    Noh, Tae-Gon

    2009-12-04

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.

  18. New Quantum Key Distribution Scheme Based on Random Hybrid Quantum Channel with EPR Pairs and GHZ States

    NASA Astrophysics Data System (ADS)

    Yan, Xing-Yu; Gong, Li-Hua; Chen, Hua-Ying; Zhou, Nan-Run

    2018-05-01

    A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.

  19. Counterfactual Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Noh, Tae-Gon

    2009-12-01

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.

  20. Quantum Public Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2017-11-01

    Classical public key cryptosystems ( P K C), such as R S A, E I G a m a l, E C C, are no longer secure in quantum algorithms, and quantum cryptography has become a novel research topic. In this paper we present a quantum asymmetrical cryptosystem i.e. quantum public key cryptosystem ( Q P K C) based on the Bell states. In particular, in the proposed QPKC the public key are given by the first n particles of Bell states and generalized Pauli operations. The corresponding secret key are the last n particles of Bell states and the inverse of generalized Pauli operations. The proposed QPKC encrypts the message using a public key and decrypts the ciphertext using a private key. By H o l e v o ' s theorem, we proved the security of the secret key and messages during the QPKC.

  1. Decoy Wnt receptor (sLRP6E1E2)-expressing adenovirus induces anti-fibrotic effect via inhibition of Wnt and TGF-β signaling.

    PubMed

    Lee, Won Jai; Lee, Jung-Sun; Ahn, Hyo Min; Na, Youjin; Yang, Chae Eun; Lee, Ju Hee; Hong, JinWoo; Yun, Chae-Ok

    2017-11-08

    Aberrant activation of the canonical Wingless type (Wnt) signaling pathway plays a key role in the development of hypertrophic scars and keloids, and this aberrant activation of Wnt pathway can be a potential target for the development of novel anti-fibrotic agents. In this study, we evaluated the anti-fibrotic potential of a soluble Wnt decoy receptor (sLRP6E1E2)-expressing non-replicating adenovirus (Ad; dE1-k35/sLRP6E1E2) on human dermal fibroblasts (HDFs), keloid fibroblasts (KFs), and keloid tissue explants. Higher Wnt3a and β-catenin expression was observed in the keloid region compared to the adjacent normal tissues. The activity of β-catenin and mRNA expression of type-I and -III collagen were significantly decreased following treatment with dE1-k35/sLRP6E1E2 in HDFs and KFs. The expression of LRP6, β-catenin, phosphorylated glycogen synthase kinase 3 beta, Smad 2/3 complex, and TGF-β1 were decreased in Wnt3a- or TGF-β1-activated HDFs, following administration of dE1-k35/sLRP6E1E2. Moreover, dE1-k35/sLRP6E1E2 markedly inhibited nuclear translocation of both β-catenin and Smad 2/3 complex. The expression levels of type-I and -III collagen, fibronectin, and elastin were also significantly reduced in keloid tissue explants after treatment with dE1-k35/sLRP6E1E2. These results indicate that Wnt decoy receptor-expressing Ad can degrade extracellular matrix in HDFs, KFs, and primary keloid tissue explants, and thus it may be beneficial for treatment of keloids.

  2. Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band

    DTIC Science & Technology

    2013-10-30

    II: Summary of Project In this basic research program we proposed to investigate the use of keyed communication in quantum noise as a key generation...implement quantum limited detection in our running-code OCDMA experiment to demonstrate (a) quantum measurement advantage creation between two users, (b...neither is adequate against known-plaintext attacks. This is a serious security problem facing the whole field of quantum cryptography in regard to both

  3. Toward pest control via mass production of realistic decoys of insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Kumar, Jayant; Baker, Thomas C.; Martín-Palma, Raúl J.

    2012-04-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive species of beetles threatening the ash trees of North America. The species exhibits a mating behavior in which a flying male will first spot a stationary female at rest and then execute a pouncing maneuver to dive sharply onto her. The pouncing behavior appears to be cued by some visual signal from the top surface of the female's body. We have adopted bioreplication techniques to fabricate artificial visual decoys that could be used to detect, monitor, and slow the spread of EAB populations across North America. Using a negative die made of nickel and a positive die made of a hard polymer, we have stamped a polymer sheet to produce these decoys. Our bioreplication procedure is industrially scalable.

  4. Subcarrier Wave Quantum Key Distribution in Telecommunication Network with Bitrate 800 kbit/s

    NASA Astrophysics Data System (ADS)

    Gleim, A. V.; Nazarov, Yu. V.; Egorov, V. I.; Smirnov, S. V.; Bannik, O. I.; Chistyakov, V. V.; Kynev, S. M.; Anisimov, A. A.; Kozlov, S. A.; Vasiliev, V. N.

    2015-09-01

    In the course of work on creating the first quantum communication network in Russia we demonstrated quantum key distribution in metropolitan optical network infrastructure. A single-pass subcarrier wave quantum cryptography scheme was used in the experiments. BB84 protocol with strong reference was chosen for performing key distribution. The registered sifted key rate in an optical cable with 1.5 dB loss was 800 Kbit/s. Signal visibility exceeded 98%, and quantum bit error rate value was 1%. The achieved result is a record for this type of systems.

  5. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-05-27

    Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...2016 4. TITLE AND SUBTITLE Seaworthy Quantum Key Distribution Design and Validation (SEAKEY) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  6. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  7. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  8. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-29

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  9. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun

    2017-10-01

    A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.

  10. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.

    PubMed

    Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric

    2010-07-20

    Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.

  11. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method

    PubMed Central

    2010-01-01

    Background Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. Results We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. Conclusions By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set. PMID:20642859

  12. Unconditional security of quantum key distribution over arbitrarily long distances

    PubMed

    Lo; Chau

    1999-03-26

    Quantum key distribution is widely thought to offer unconditional security in communication between two users. Unfortunately, a widely accepted proof of its security in the presence of source, device, and channel noises has been missing. This long-standing problem is solved here by showing that, given fault-tolerant quantum computers, quantum key distribution over an arbitrarily long distance of a realistic noisy channel can be made unconditionally secure. The proof is reduced from a noisy quantum scheme to a noiseless quantum scheme and then from a noiseless quantum scheme to a noiseless classical scheme, which can then be tackled by classical probability theory.

  13. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-02-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem (Q P K C) based on the Bell states. By H o l e v o's theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack (C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  14. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-06-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem ( Q P K C) based on the Bell states. By H o l e v o' s theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack ( C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  15. Quantum network with trusted and untrusted relays

    NASA Astrophysics Data System (ADS)

    Ma, Xiongfeng; Annabestani, Razieh; Fung, Chi-Hang Fred; Lo, Hoi-Kwong; Lütkenhaus, Norbert; PitkäNen, David; Razavi, Mohsen

    2012-02-01

    Quantum key distribution offers two distant users to establish a random secure key by exploiting properties of quantum mechanics, whose security has proven in theory. In practice, many lab and field demonstrations have been performed in the last 20 years. Nowadays, quantum network with quantum key distribution systems are tested around the world, such as in China, Europe, Japan and US. In this talk, I will give a brief introduction of recent development for quantum network. For the untrusted relay part, I will introduce the measurement-device-independent quantum key distribution scheme and a quantum relay with linear optics. The security of such scheme is proven without assumptions on the detection devices, where most of quantum hacking strategies are launched. This scheme can be realized with current technology. For the trusted relay part, I will introduce so-called delayed privacy amplification, with which no error correction and privacy amplification is necessarily to be performed between users and the relay. In this way, classical communications and computational power requirement on the relay site will be reduced.

  16. Practical Quantum Cryptography for Secure Free-Space Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.

    1999-02-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation overmore » a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.« less

  17. FREE-SPACE QUANTUM CRYPTOGRAPHY IN DAYLIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.

    2000-01-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation overmore » a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.« less

  18. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  19. Quantum cryptography over underground optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure,more » real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``« less

  20. Trojan horse attacks on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Du, Yungang; Wu, Lingan

    2016-04-01

    There has been much interest in ;counterfactual quantum cryptography; (T.-G. Noh, 2009 [10]). It seems that the counterfactual quantum key distribution protocol without any photon carrier through the quantum channel provides practical security advantages. However, we show that it is easy to break counterfactual quantum key distribution systems in practical situations. We introduce the two types of Trojan horse attacks that are available for the two-way protocol and become possible for practical counterfactual systems with our eavesdropping schemes.

  1. Proceedings of the Quantum Computation for Physical Modeling Workshop 2004. Held in North Falmouth, MA on 12-15 September 2004

    DTIC Science & Technology

    2005-10-01

    late the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario. KEY WORDS: Time evolution... quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding...unambiguous, at least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto- col of quantum key distribution has a vulnerability similar to

  2. Vulnerability of nontarget goose species to hunting with electronic snow goose calls

    USGS Publications Warehouse

    Caswell, J.H.; Afton, A.D.; Caswell, F.D.

    2003-01-01

    Since 1999, use of electronic calls has been legal for hunting lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) during special seasons or times of day when other waterfowl species could not be hunted in prairie Canada. Prior to expanding the use of electronic calls for hunting snow geese during fall hunting seasons, effects of these calls on nontarget goose species must be examined. Accordingly, we examined the vulnerability of Canada (Branta canadensis) and white-fronted geese (Anser albifrons) (dark geese) to electronic snow goose calls and 3 goose decoy sets (dark, mixed, and white) during the 1999 fall hunting seasons in Manitoba and Saskatchewan. Canada geese were 2.3 times more likely to fly within gun range (P<0.001) and the mean number killed/hour/hunter was 2.5 times greater (P=0.043) during control periods when hunters were silent or used traditional calling methods (i.e., hand-held and voice calls) than when hunters used electronic snow goose calls. Flock response and kill rate for Canada geese declined as proportions of white decoys increased in decoy sets (P<0.001). White-fronted geese were 1.8 times more likely to fly within gun range (P=0.050) and the mean number killed/hour/hunter was 5.0 times greater (P=0.022) during control periods than during periods when electronic snow goose calls were used. Flock response for white-fronted geese also declined as the proportion of white decoys increased in decoy sets (P<0.001). The legalization of electronic snow goose calls during fall hunting seasons in prairie Canada should not result in increased harvest of nontarget dark geese.

  3. Surveillance of influenza viruses in waterfowl used as decoys in Andalusia, Spain.

    PubMed

    Jurado-Tarifa, Estefanía; Napp, Sebastian; Gómez-Pacheco, Juan Manuel; Fernández-Morente, Manuel; Jaén-Téllez, Juan Antonio; Arenas, Antonio; García-Bocanegra, Ignacio

    2014-01-01

    A longitudinal study was carried out to determine the seroprevalence of avian influenza viruses (AIVs) in waterfowl used as decoys in Andalusia, southern Spain. A total of 2319 aquatic birds from 193 flocks were analyzed before and after the hunting season 2011-2012. In the first sampling, 403 out of 2319 (18.0%, CI95%: 15.8-19.0) decoys showed antibodies against AIVs by ELISA. The AI seroprevalence was significantly higher in geese (21.0%) than in ducks (11.7%) (P<0.001). Besides, the spatial distribution of AIVs was not homogeneous as significant differences among regions were observed. The prevalence of antibodies against AIVs subtypes H5 and H7 were 1.1% and 0.3%, respectively, using hemagglutination inhibition test (HI). The overall and H5 seroprevalences slightly increased after the hunting period (to 19.2% and 1.4%, respectively), while the H7 seroprevalence remained at the same level (0.3%). The proportion of flocks infected by AIVs was 65.3%, while 11.2% and 4.9% of flocks were positive for H5 and H7, respectively. Viral shedding was not detected in any of the 47 samples positive by both ELISA and HI, tested by RRT-PCR. The individual incidence after the hunting season was 3.4%. The fact that 57 animals seroconverted, 15 of which were confirmed by HI (12 H5 and 3 H7), was indication of contact with AIVs during the hunting period. The results indicate that waterfowl used as decoys are frequently exposed to AIVs and may be potentially useful as sentinels for AIVs monitoring. The seroprevalence detected and the seropositivity against AIVs H5 and H7, suggest that decoys can act as reservoirs of AIVs, which may be of animal and public health concern.

  4. A SELEX-Screened Aptamer of Human Hepatitis B Virus RNA Encapsidation Signal Suppresses Viral Replication

    PubMed Central

    Feng, Hui; Beck, Jürgen; Nassal, Michael; Hu, Kang-hong

    2011-01-01

    Background The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the ε RNA stem-loop on pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. Methodology/Principal Findings Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP), to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. Conclusions/Significance This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B. PMID:22125633

  5. Effects of Smad decoy ODN on shear stress-induced atherosclerotic ApoE-/-mouse

    PubMed Central

    An, Hyun-Jin; Lee, Woo-Ram; Kim, Kyung-Hyun; Kim, Jung-Yeon; Kim, Woon-Hae; Park, Kwan-Kyu; Youn, Sung Won

    2015-01-01

    Atherosclerosis is a complex disease which involves both genetic and environmental factors in its development and progression. Shear stress is the drag force per unit area acting on the endothelium as a result of blood flow, and it plays a critical role in plaque location and progression. TGF-β1 is often regarded to have pro-atherosclerotic effect on vascular disease. TGF-β1 downstream targets Smad, for regulating a set of genes associated with atherosclerosis. Therefore, modulation of TGF-β1 and Smad expression may be the important targets for the prevention and treatment of shear stress-induced vascular disease. However, the precise mechanism of the anti-atherosclerotic effects of novel therapeutic approach has not been elucidated by using animal models regarding the shear stress-induced vascular disease. Therefore, we designed to test whether Smad decoy ODN would prevent the development of atherosclerosis in the shear stress-induced ApoE-/-mice on a western diet. We examined the effect of cast placement on the development of atherosclerosis, and the carotid artery was harvested at the sacrifice to observe histological changes. Also, we evaluated the impact of Smad decoy ODN in the regulation of genes expression related to atherosclerosis, including TGF-β1, PAI-1, and α-SMA. Our results showed that western diet with cast placement developed atherosclerosis in ApoE-/-mouse. Also, administration of Smad decoy ODN decreases the expression of TGF-β1, PAI-1, and α-SMA. These results demonstrate the potential of Smad decoy ODN to prevent the progression of atherosclerosis in ApoE-/-mouse model with western diet and shear stress. PMID:26097583

  6. Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions.

    PubMed

    Hsieh, Shie-Liang; Lin, Wan-Wan

    2017-06-19

    Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor (TNFR) superfamily member 6b (TNFRSF6B), is a soluble decoy receptor which can neutralize the biological functions of three members of tumor necrosis factor superfamily (TNFSF): Fas ligand (FasL), LIGHT, and TL1A. In addition to 'decoy' function, recombinant DcR3.Fc is able to modulate the activation and differentiation of dendritic cells (DCs) and macrophages via 'non-decoy' action. DcR3-treated DCs skew T cell differentiation into Th2 phenotype, while DcR3-treated macrophages behave M2 phenotype. DcR3 is upregulated in various cancer cells and several inflammatory tissues, and is regarded as a potential biomarker to predict inflammatory disease progression and cancer metastasis. However, whether DcR3 is a pathogenic factor or a suppressor to attenuate inflammatory reactions, has not been discussed comprehensively yet. Because mouse genome does not have DcR3, it is not feasible to investigate its physiological functions by gene-knockout approach. However, DcR3-mediated effects in vitro are determined via overexpressing DcR3 or addition of recombinant DcR3.Fc fusion protein. Moreover, CD68-driven DcR3 transgenic mice are used to investigate DcR3-mediated systemic effects in vivo. Upregulation of DcR3 during inflammatory reactions exerts negative-feedback to suppress inflammation, while tumor cells hijack DcR3 to prevent apoptosis and promote tumor growth and invasion. Thus, 'switch-on' of DcR3 expression may be feasible for the treatment of inflammatory diseases and enhance tissue repairing, while 'switch-off' of DcR3 expression can enhance tumor apoptosis and suppress tumor growth in vivo.

  7. Decoy receptor 3 is a prognostic factor in renal cell cancer.

    PubMed

    Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried

    2008-10-01

    Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.

  8. NF-kappaB transcription factor is required for inhibitory avoidance long-term memory in mice.

    PubMed

    Freudenthal, Ramiro; Boccia, Mariano M; Acosta, Gabriela B; Blake, Mariano G; Merlo, Emiliano; Baratti, Carlos M; Romano, Arturo

    2005-05-01

    Although it is generally accepted that memory consolidation requires regulation of gene expression, only a few transcription factors (TFs) have been clearly demonstrated to be specifically involved in this process. Increasing research data point to the participation of the Rel/nuclear factor-kappaB (NF-kappaB) family of TFs in memory and neural plasticity. Here we found that two independent inhibitors of NF-kappaB induced memory impairment in the one-trial step-through inhibitory avoidance paradigm in mice: post-training administration of the drug sulfasalazine and 2 h pretraining administration of a double-stranded DNA oligonucleotide containing the NF-kappaB consensus sequence (kappaB decoy). Conversely, one base mutation of the kappaB decoy (mut-kappaB decoy) injection did not affect long-term memory. Accordingly, the kappaB decoy inhibited NF-kappaB in hippocampus 2 h after injection but no inhibition was found with mut-kappaB decoy administration. A temporal course of hippocampal NF-kappaB activity after training was determined. Unexpectedly, an inhibition of NF-kappaB was found 15 min after training in shocked and unshocked groups when compared with the naïve group. Hippocampal NF-kappaB was activated 45 min after training in both shocked and unshocked groups, decreasing 1 h after training and returning to basal levels 2 and 4 h after training. On the basis of the latter results, we propose that activation of NF-kappaB in hippocampus is part of the molecular mechanism involved in the storage of contextual features that constitute the conditioned stimulus representation. The results presented here provide the first evidence to support NF-kappaB activity being regulated in hippocampus during consolidation, stressing the role of this TF as a conserved molecular mechanism for memory storage.

  9. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  10. SeaQuaKE: Sea-Optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-08-01

    which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...SeaQuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN

  11. Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-06-01

    Temporal steering, which is a temporal analog of Einstein-Podolsky-Rosen steering, refers to temporal quantum correlations between the initial and final state of a quantum system. Our analysis of temporal steering inequalities in relation to the average quantum bit error rates reveals the interplay between temporal steering and quantum cloning, which guarantees the security of quantum key distribution based on mutually unbiased bases against individual attacks. The key distributions analyzed here include the Bennett-Brassard 1984 protocol and the six-state 1998 protocol by Bruss. Moreover, we define a temporal steerable weight, which enables us to identify a kind of monogamy of temporal correlation that is essential to quantum cryptography and useful for analyzing various scenarios of quantum causality.

  12. Deterministic MDI QKD with two secret bits per shared entangled pair

    NASA Astrophysics Data System (ADS)

    Zebboudj, Sofia; Omar, Mawloud

    2018-03-01

    Although quantum key distribution schemes have been proven theoretically secure, they are based on assumptions about the devices that are not yet satisfied with today's technology. The measurement-device-independent scheme has been proposed to shorten the gap between theory and practice by removing all detector side-channel attacks. On the other hand, two-way quantum key distribution schemes have been proposed to raise the secret key generation rate. In this paper, we propose a new quantum key distribution scheme able to achieve a relatively high secret key generation rate based on two-way quantum key distribution that also inherits the robustness of the measurement-device-independent scheme against detector side-channel attacks.

  13. Design Architectures for Optically Multiplexed Imaging

    DTIC Science & Technology

    2015-09-16

    which single task is the highest priority task ∗ according to Equation 16. In es- sence , the task that is most often predicted to be of the...deployment (or a null deployment from inaction), our features consisted of pairwise relationships between each placed decoy and each missile. For each...de- coy/missile pairing, we have features describing whether a decoy had been placed such that the missile would be suc- cessfully distracted by

  14. A selective decoy-doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect.

    PubMed

    Wang, Shao-Jen; Hou, Yung-Te; Chen, Lin-Chi

    2015-09-04

    A novel selective decoy oligodeoxynucleotide (dODN)-doxorubicin (DOX) complex is reported for cancer theranostics. It eliminates the use of a ligand or carrier for targeted delivery and disassembles into therapeutic dODN and DOX upon encountering over-activated STAT3 in cancer cells. Hence, in situ STAT3 probing and synergistic anti-cancer effect are attained at the same time.

  15. HTS for SMFS, organohalide respiration, new epigenetic mark, and a decoy receptor.

    PubMed

    2014-10-23

    Each month, Chemistry & Biology Select highlights a selection of research reports from the recent literature. These highlights are a snapshot of interesting research done across the field of chemical biology. This month's Select highlights an on-chip platform for high-throughput force microscopy, a structural view of organohalide respiration, evidence that 5-hydroxymethylcytosine is an epigenetic mark, and use of a decoy receptor to thwart oncogene signaling.

  16. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.

    PubMed

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  17. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  18. Long-distance continuous-variable quantum key distribution by controlling excess noise

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  19. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-13

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  20. Long-distance continuous-variable quantum key distribution by controlling excess noise

    PubMed Central

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  1. A Secure Key Distribution System of Quantum Cryptography Based on the Coherent State

    NASA Technical Reports Server (NTRS)

    Guo, Guang-Can; Zhang, Xiao-Yu

    1996-01-01

    The cryptographic communication has a lot of important applications, particularly in the magnificent prospects of private communication. As one knows, the security of cryptographic channel depends crucially on the secrecy of the key. The Vernam cipher is the only cipher system which has guaranteed security. In that system the key must be as long as the message and most be used only once. Quantum cryptography is a method whereby key secrecy can be guaranteed by a physical law. So it is impossible, even in principle, to eavesdrop on such channels. Quantum cryptography has been developed in recent years. Up to now, many schemes of quantum cryptography have been proposed. Now one of the main problems in this field is how to increase transmission distance. In order to use quantum nature of light, up to now proposed schemes all use very dim light pulses. The average photon number is about 0.1. Because of the loss of the optical fiber, it is difficult for the quantum cryptography based on one photon level or on dim light to realize quantum key-distribution over long distance. A quantum key distribution based on coherent state is introduced in this paper. Here we discuss the feasibility and security of this scheme.

  2. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  3. Secure communications using quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1997-08-01

    The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit ofmore » an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.« less

  4. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

    PubMed

    Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J

    2018-05-01

    Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

  5. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  6. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Hua; Department of Mathematics and Physics, Hubei University of Technology, Wuhan 430068; Fung, Chi-Hang Fred

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against generalmore » attacks.« less

  7. Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol

    DTIC Science & Technology

    2011-06-01

    use in a quantum key system can be defined in two ways :  The number of messages passed between Alice and Bob  The...classical and quantum environment. Post- quantum cryptography , which is generally used to describe classical quantum -resilient protocols, includes...composed of a one- way quantum channel and a two - way classical channel. Owing to the physics of the channel, the quantum channel is subject to

  8. Fundamental finite key limits for one-way information reconciliation in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Martinez-Mateo, Jesus; Pacher, Christoph; Elkouss, David

    2017-11-01

    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols.

  9. Role of RANKL in bone diseases.

    PubMed

    Anandarajah, Allen P

    2009-03-01

    Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.

  10. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.

  11. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles

    PubMed Central

    Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell

    2016-01-01

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123

  12. Finite key analysis for symmetric attacks in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias

    2006-10-15

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found.more » We also study secret key rates for protocols using higher-dimensional quantum systems.« less

  13. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

  14. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    USGS Publications Warehouse

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, P<0.001). Juvenile Great Tits had lower body condition as measured by ptilochronology (P<0.01). These birds are more easily trapped in funnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  15. Hydrophobic potential of mean force as a solvation function for protein structure prediction.

    PubMed

    Lin, Matthew S; Fawzi, Nicolas Lux; Head-Gordon, Teresa

    2007-06-01

    We have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.

  16. Pictorial and conceptual representation of glimpsed pictures.

    PubMed

    Potter, Mary C; Staub, Adrian; O'Connor, Daniel H; Potter, Mary C

    2004-06-01

    Pictures seen in a rapid sequence are remembered briefly, but most are forgotten within a few seconds (M. C. Potter. A. Staub, J. Rado. & D. H. O'Connor. 2002). The authors investigated the pictorial and conceptual components of this fleeting memory by presenting 5 pictured scenes and immediately testing recognition of verbal titles (e.g., people at a table) or recognition of the pictures themselves. Recognition declined during testing, but initial performance was higher and the decline steeper when pictures were tested. A final experiment included test decoy pictures that were conceptually similar to but visually distinct from the original pictures. Yeses to decoys were higher than yeses to other distractors. Fleeting memory for glimpsed pictures has a strong conceptual component (conceptual short-term memory), but there is additional highly volatile pictorial memory (pictorial short-term memory) that is not tapped hy a gist title or decoy picture. ((c) 2004 APA, all rights reserved)

  17. Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer).

    PubMed

    Weinandt, Meggin L; Meyer, Michael; Strand, Mac; Lindsay, Alec R

    2012-12-01

    The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood-feeding insect, we made a series of bird decoy presentations to black flies on loon-inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers. © 2012 The Society for Vector Ecology.

  18. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regionsmore » that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.« less

  19. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.

    PubMed

    Bar, Maya; Sharfman, Miya; Avni, Adi

    2011-03-01

    The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.

  20. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  1. Continuous QKD and high speed data encryption

    NASA Astrophysics Data System (ADS)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  2. Counterfactual quantum key distribution with high efficiency

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wen, Qiao-Yan

    2010-11-01

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  3. Counterfactual quantum key distribution with high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Ying; Beijing Electronic Science and Technology Institute, Beijing 100070; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  4. Quantum Cryptography for Secure Communications to Low-Earth Orbit Satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the quantum transmissions, nor evade detection. Key material is built up using the transmission of a single-photon per bit. We have developed an experimental quantum cryptography system based on the transmissionmore » of non-orthogonal single-photon polarization states to generate shared key material over line-of-sight optical links. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on in orbit.« less

  5. Experimental quantum cryptography with qutrits

    NASA Astrophysics Data System (ADS)

    Gröblacher, Simon; Jennewein, Thomas; Vaziri, Alipasha; Weihs, Gregor; Zeilinger, Anton

    2006-05-01

    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre Gaussian modes with azimuthal index l + 1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10%.

  6. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  7. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    PubMed

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  8. Randomness determines practical security of BB84 quantum key distribution.

    PubMed

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-10

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  9. Randomness determines practical security of BB84 quantum key distribution

    PubMed Central

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  10. Randomness determines practical security of BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  11. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  12. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  13. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2016-03-10

    Contractor Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing 2 | P a g e Approved for public release; distribution is...we have continued work calculating the key rates achievable parametrically with receiver performance. In addition, we describe the initial designs

  14. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  15. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  16. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  17. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  18. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-07-15

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less

  19. Information security: from classical to quantum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Brougham, Thomas

    2012-09-01

    Quantum cryptography was designed to provide a new approach to the problem of distributing keys for private-key cryptography. The principal idea is that security can be ensured by exploiting the laws of quantum physics and, in particular, by the fact that any attempt to measure a quantum state will change it uncontrollably. This change can be detected by the legitimate users of the communication channel and so reveal to them the presence of an eavesdropper. In this paper I explain (briefly) how quantum key distribution works and some of the progress that has been made towards making this a viable technology. With the principles of quantum communication and quantum key distribution firmly established, it is perhaps time to consider how efficient it can be made. It is interesting to ask, in particular, how many bits of information might reasonably be encoded securely on each photon. The use of photons entangled in their time of arrival might make it possible to achieve data rates in excess of 10 bits per photon.

  20. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2008-07-01

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).

  1. Quantum cryptography as a retrodiction problem.

    PubMed

    Werner, A H; Franz, T; Werner, R F

    2009-11-27

    We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as the Mean King problem. The protocol uses a two way quantum channel. We show security against coherent attacks in a transmission-error free scenario, even if Eve is allowed to attack both transmissions. This establishes a connection between retrodiction and key distribution.

  2. Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days

    NASA Astrophysics Data System (ADS)

    Yoshino, Ken-ichiro; Ochi, Takao; Fujiwara, Mikio; Sasaki, Masahide; Tajima, Akio

    2013-12-01

    Maintenance-free wavelength-division-multiplexing quantum key distribution for 30 days was achieved through a 22-km field fiber. Using polarization-independent interferometers and stabilization techniques, we attained a quantum bit error rate as low as 1.70% and a key rate as high as 229.8 kbps, making the record of total secure key of 595.6 Gbits accumulated over an uninterrupted operation period.

  3. Multiparty Quantum Secret Sharing of Key Using Practical Faint Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan-Jun; Man, Zhong-Xiao

    2005-07-01

    Based on a bidirectional quantum key distribution protocol [Phys. Rev. A 70 (2004) 012311], we propose a (m-1,m-1)-threshold scheme of m (m >= 3)-party quantum secret sharing of key by using practical faint laser pulses. In our scheme, if all the m-1 sharers collaborate, they can obtain the joint secret key from the message sender. Our scheme is more feasible according to the present-day technology.

  4. An Effectiveness Analysis of the Tactical Employment of Decoys

    DTIC Science & Technology

    1994-06-03

    desert made it impossible to hide the dense concentration of vehicles in the three assembly areas: 1st Armoured Division in Assembly Area (AA) Murrayfield...North, 24th Armoured Brigade in AA Murrayfield South, and 10th Armoured Division in AA Melting Pot. However, an ingenious combination of decoys and...hood, configured to resemble an ammo carrier, was often draped over tanks to disguise thenm12 To reinforce the story that the British main attack would

  5. Tomographic quantum cryptography: equivalence of quantum and classical key distillation.

    PubMed

    Bruss, Dagmar; Christandl, Matthias; Ekert, Artur; Englert, Berthold-Georg; Kaszlikowski, Dagomir; Macchiavello, Chiara

    2003-08-29

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.

  6. Quantum cryptography with entangled photons

    PubMed

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  7. Experimental demonstration of counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ren, M.; Wu, G.; Wu, E.; Zeng, H.

    2011-04-01

    Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.

  8. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  9. G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy

    PubMed Central

    Membrino, Alexandro; Cogoi, Susanna; Pedersen, Erik B.; Xodo, Luigi E.

    2011-01-01

    HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2). When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R)-1-O-[4-(1-Pyrenylethynyl) phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys). The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated. PMID:21931711

  10. Suppression of wear particle induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report

    PubMed Central

    Lin, Tzu-hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B.

    2014-01-01

    Total joint replacement (TJR) is a very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate especially because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to peri-prosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, due to compensatory upregulation of other pro-inflammatory factors. We hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, we suppressed NF-κB activity in mouse RAW264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. We found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced peri-prosthetic osteolysis. PMID:24814879

  11. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice

    PubMed Central

    Cogoi, Susanna; Zorzet, Sonia; Rapozzi, Valentina; Géci, Imrich; Pedersen, Erik B.; Xodo, Luigi E.

    2013-01-01

    KRAS mutations are primary genetic lesions leading to pancreatic cancer. The promoter of human KRAS contains a nuclease-hypersensitive element (NHE) that can fold in G4-DNA structures binding to nuclear proteins, including MAZ (myc-associated zinc-finger). Here, we report that MAZ activates KRAS transcription. To knockdown oncogenic KRAS in pancreatic cancer cells, we designed oligonucleotides that mimic one of the G-quadruplexes formed by NHE (G4-decoys). To increase their nuclease resistance, two locked nucleic acid (LNA) modifications were introduced at the 3′-end, whereas to enhance the folding and stability, two polycyclic aromatic hydrocarbon units (TINA or AMANY) were inserted internally, to cap the quadruplex. The most active G4-decoy (2998), which had two para-TINAs, strongly suppressed KRAS expression in Panc-1 cells. It also repressed their metabolic activity (IC50 = 520 nM), and it inhibited cell growth and colony formation by activating apoptosis. We finally injected 2998 and control oligonucleotides 5153, 5154 (2 nmol/mouse) intratumorally in SCID mice bearing a Panc-1 xenograft. After three treatments, 2998 reduced tumor xenograft growth by 64% compared with control and increased the Kaplan–Meier median survival time by 70%. Together, our data show that MAZ-specific G4-decoys mimicking a KRAS quadruplex are promising for pancreatic cancer therapy. PMID:23471001

  12. Experimental quantum data locking

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Zhu; Wu, Cheng; Fukuda, Daiji; You, Lixing; Zhong, Jiaqiang; Numata, Takayuki; Chen, Sijing; Zhang, Weijun; Shi, Sheng-Cai; Lu, Chao-Yang; Wang, Zhen; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2016-08-01

    Classical correlation can be locked via quantum means: quantum data locking. With a short secret key, one can lock an exponentially large amount of information in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of a quantum data locking scheme originally proposed by D. P. DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004), 10.1103/PhysRevLett.92.067902] and a loss-tolerant scheme developed by O. Fawzi et al. [J. ACM 60, 44 (2013), 10.1145/2518131]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.

  13. Fundamental rate-loss tradeoff for optical quantum key distribution.

    PubMed

    Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M

    2014-10-24

    Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.

  14. Research on Quantum Algorithms at the Institute for Quantum Information and Matter

    DTIC Science & Technology

    2016-05-29

    local quantum computation with applications to position-based cryptography , New Journal of Physics, (09 2011): 0. doi: 10.1088/1367-2630/13/9/093036... cryptography , such as the ability to turn private-key encryption into public-key encryption. While ad hoc obfuscators exist, theoretical progress has mainly...to device-independent quantum cryptography , to quantifying entanglement, and to the classification of quantum phases of matter. Exact synthesis

  15. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less

  16. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  17. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  18. On the complexity of search for keys in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2016-03-01

    The trace distance is used as a security criterion in proofs of security of keys in quantum cryptography. Some authors doubted that this criterion can be reduced to criteria used in classical cryptography. The following question has been answered in this work. Let a quantum cryptography system provide an ɛ-secure key such that ½‖ρ XE - ρ U ⊗ ρ E ‖1 < ɛ, which will be repeatedly used in classical encryption algorithms. To what extent does the ɛ-secure key reduce the number of search steps (guesswork) as compared to the use of ideal keys? A direct relation has been demonstrated between the complexity of the complete consideration of keys, which is one of the main security criteria in classical systems, and the trace distance used in quantum cryptography. Bounds for the minimum and maximum numbers of search steps for the determination of the actual key have been presented.

  19. Quantum-chaotic cryptography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. L.; Ramos, R. V.

    2018-03-01

    In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.

  20. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  1. Surveillance of Influenza Viruses in Waterfowl Used As Decoys in Andalusia, Spain

    PubMed Central

    Jurado-Tarifa, Estefanía; Napp, Sebastian; Gómez-Pacheco, Juan Manuel; Fernández-Morente, Manuel; Jaén-Téllez, Juan Antonio; Arenas, Antonio; García-Bocanegra, Ignacio

    2014-01-01

    A longitudinal study was carried out to determine the seroprevalence of avian influenza viruses (AIVs) in waterfowl used as decoys in Andalusia, southern Spain. A total of 2319 aquatic birds from 193 flocks were analyzed before and after the hunting season 2011–2012. In the first sampling, 403 out of 2319 (18.0%, CI95%: 15.8–19.0) decoys showed antibodies against AIVs by ELISA. The AI seroprevalence was significantly higher in geese (21.0%) than in ducks (11.7%) (P<0.001). Besides, the spatial distribution of AIVs was not homogeneous as significant differences among regions were observed. The prevalence of antibodies against AIVs subtypes H5 and H7 were 1.1% and 0.3%, respectively, using hemagglutination inhibition test (HI). The overall and H5 seroprevalences slightly increased after the hunting period (to 19.2% and 1.4%, respectively), while the H7 seroprevalence remained at the same level (0.3%). The proportion of flocks infected by AIVs was 65.3%, while 11.2% and 4.9% of flocks were positive for H5 and H7, respectively. Viral shedding was not detected in any of the 47 samples positive by both ELISA and HI, tested by RRT-PCR. The individual incidence after the hunting season was 3.4%. The fact that 57 animals seroconverted, 15 of which were confirmed by HI (12 H5 and 3 H7), was indication of contact with AIVs during the hunting period. The results indicate that waterfowl used as decoys are frequently exposed to AIVs and may be potentially useful as sentinels for AIVs monitoring. The seroprevalence detected and the seropositivity against AIVs H5 and H7, suggest that decoys can act as reservoirs of AIVs, which may be of animal and public health concern. PMID:24901946

  2. Mechanisms of the prevention and inhibition of the progression and development of non-alcoholic steatohepatitis by genetic and pharmacological decoy receptor 3 supplementation.

    PubMed

    Lee, Pei-Chang; Yang, Ling-Yu; Wang, Ying-Wen; Huang, Shiang-Fen; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Hsieh, Shie-Liang; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yuah; Lee, Shou-Dong

    2017-11-01

    Treatment of non-alcoholic steatohepatitis (NASH) is difficult due to the absence of a proven treatment and its comprehensive mechanisms. In the NASH animal model, upregulated hepatic inflammation and oxidative stress, with the resultant M1 polarization of macrophages as well as imbalanced adipocytokines, all accelerate NASH progression. As a member of the tumor necrosis factor receptor superfamily, decoy receptor 3 (DcR3) not only neutralizes the death ligands, but also performs immune modulations. In this study, we aimed to investigate the possible non-decoy effects of DcR3 on diet-induced NASH mice. Methionine- and choline-deficient (MCD) diet feeding for 9 weeks was applied to induce NASH in BALB/c mice. Decoy receptor 3 heterozygous transgenesis or pharmacological pretreatment with DcR3a for 1 month were designed as interventions. Intrahepatic inflammatory status as well as macrophage polarization, oxidative stress, and steatosis as well as lipogenic gene expression and fibrotic status were analyzed. Additionally, acute effects of DcR3a on HepG2 cells, Hep3B cells, and primary mouse hepatocytes in various MCD medium-stimulated changes were also evaluated. Both DcR3 genetic and pharmacologic supplement significantly reduced MCD diet-induced hepatic M1 polarization. In addition, DcR3 supplement attenuated MCD diet-increased hepatic inflammation, oxidative stress, adipocytokine imbalance, steatosis, and fibrogenesis. Moreover, acute DcR3a incubation in HepG2 cells, Hep3B cells, and mouse hepatocytes could normalize the expression of genes related to lipid oxidation along with inflammation and oxidative stress. The ability of DcR3 to attenuate hepatic steatosis and inflammation through its non-decoy effects of immune modulation and oxidative stress attenuation makes it a potential treatment for NASH. © 2017 The Japan Society of Hepatology.

  3. Robust quantum data locking from phase modulation

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth

    2014-08-01

    Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.

  4. Two-party quantum key agreement protocols under collective noise channel

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong

    2018-06-01

    Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

  5. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  6. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  7. An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution

    DTIC Science & Technology

    2012-02-01

    offers another alternative for exchanging a symmetric key without compromising security. Quantum cryptography is the use of quantum mechanics to... quantum money), and, more significantly for our purposes here, a method for the transmission of two or three messages in such a way that reading...well as two channels. A quantum channel is used to communicate qubits (photons), and it is assumed that only active eavesdropping may take place on

  8. Quantum cryptography for secure free-space communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1999-03-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg`s uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up usingmore » the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of {approximately}1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD.« less

  9. Direct and reverse secret-key capacities of a quantum channel.

    PubMed

    Pirandola, Stefano; García-Patrón, Raul; Braunstein, Samuel L; Lloyd, Seth

    2009-02-06

    We define the direct and reverse secret-key capacities of a memoryless quantum channel as the optimal rates that entanglement-based quantum-key-distribution protocols can reach by using a single forward classical communication (direct reconciliation) or a single feedback classical communication (reverse reconciliation). In particular, the reverse secret-key capacity can be positive for antidegradable channels, where no forward strategy is known to be secure. This property is explicitly shown in the continuous variable framework by considering arbitrary one-mode Gaussian channels.

  10. Quantum-locked key distribution at nearly the classical capacity rate.

    PubMed

    Lupo, Cosmo; Lloyd, Seth

    2014-10-17

    Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.

  11. Quantum secret sharing with identity authentication based on Bell states

    NASA Astrophysics Data System (ADS)

    Abulkasim, Hussein; Hamad, Safwat; Khalifa, Amal; El Bahnasy, Khalid

    Quantum secret sharing techniques allow two parties or more to securely share a key, while the same number of parties or less can efficiently deduce the secret key. In this paper, we propose an authenticated quantum secret sharing protocol, where a quantum dialogue protocol is adopted to authenticate the identity of the parties. The participants simultaneously authenticate the identity of each other based on parts of a prior shared key. Moreover, the whole prior shared key can be reused for deducing the secret data. Although the proposed scheme does not significantly improve the efficiency performance, it is more secure compared to some existing quantum secret sharing scheme due to the identity authentication process. In addition, the proposed scheme can stand against participant attack, man-in-the-middle attack, impersonation attack, Trojan-horse attack as well as information leaks.

  12. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  13. A quantum proxy group signature scheme based on an entangled five-qubit state

    NASA Astrophysics Data System (ADS)

    Wang, Meiling; Ma, Wenping; Wang, Lili; Yin, Xunru

    2015-09-01

    A quantum proxy group signature (QPGS) scheme based on controlled teleportation is presented, by using the entangled five-qubit quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security of the scheme is guaranteed by the entanglement correlations of the entangled five-qubit state, the secret keys based on the quantum key distribution (QKD) and the one-time pad algorithm, all of which have been proven to be unconditionally secure and the signature anonymity.

  14. Efficient multiparty quantum key agreement with collective detection.

    PubMed

    Huang, Wei; Su, Qi; Liu, Bin; He, Yuan-Hang; Fan, Fan; Xu, Bing-Jie

    2017-11-10

    As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

  15. Quantum key distribution using gaussian-modulated coherent states

    NASA Astrophysics Data System (ADS)

    Grosshans, Frédéric; Van Assche, Gilles; Wenger, Jérôme; Brouri, Rosa; Cerf, Nicolas J.; Grangier, Philippe

    2003-01-01

    Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software.

  16. Fundamental rate-loss trade-off for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-01

    The quantum internet holds promise for achieving quantum communication--such as quantum teleportation and quantum key distribution (QKD)--freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result--putting a practical but general limitation on the quantum internet--enables us to grasp the potential of the future quantum internet.

  17. Fundamental rate-loss trade-off for the quantum internet

    PubMed Central

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-01-01

    The quantum internet holds promise for achieving quantum communication—such as quantum teleportation and quantum key distribution (QKD)—freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka–Guha–Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result—putting a practical but general limitation on the quantum internet—enables us to grasp the potential of the future quantum internet. PMID:27886172

  18. Fundamental rate-loss trade-off for the quantum internet.

    PubMed

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-25

    The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.

  19. Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy.

    PubMed

    Christandl, Matthias; Ferrara, Roberto

    2017-12-01

    An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.

  20. Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy

    NASA Astrophysics Data System (ADS)

    Christandl, Matthias; Ferrara, Roberto

    2017-12-01

    An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005), 10.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.

  1. Quantum cryptographic system with reduced data loss

    DOEpatents

    Lo, H.K.; Chau, H.F.

    1998-03-24

    A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

  2. Quantum cryptographic system with reduced data loss

    DOEpatents

    Lo, Hoi-Kwong; Chau, Hoi Fung

    1998-01-01

    A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

  3. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less

  4. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    DOE PAGES

    Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen; ...

    2017-10-27

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less

  5. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Kiktenko, E. O.; Trushechkin, A. S.; Lim, C. C. W.; Kurochkin, Y. V.; Fedorov, A. K.

    2017-10-01

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. The proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.

  6. Sound segregation via embedded repetition is robust to inattention.

    PubMed

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  7. Secret-key-assisted private classical communication capacity over quantum channels

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Luo, Zhicheng; Brun, Todd

    2008-10-01

    We prove a regularized formula for the secret-key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak (e-print arXiv:quant-ph/0512015) on entanglement-assisted quantum communication capacity . This formula provides a family protocol, the private father protocol, under the resource inequality framework that includes private classical communication without secret-key assistance as a child protocol.

  8. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-03

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  9. Fully Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  10. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-06-01

    is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

  11. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.

  12. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  13. Quantum key distribution using basis encoding of Gaussian-modulated coherent states

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua

    2018-04-01

    The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.

  14. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  15. Continuous high speed coherent one-way quantum key distribution.

    PubMed

    Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo

    2009-08-03

    Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43 dB-loss (150 km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5 bps.

  16. Misinterpretation of statistical distance in security of quantum key distribution shown by simulation

    NASA Astrophysics Data System (ADS)

    Iwakoshi, Takehisa; Hirota, Osamu

    2014-10-01

    This study will test an interpretation in quantum key distribution (QKD) that trace distance between the distributed quantum state and the ideal mixed state is a maximum failure probability of the protocol. Around 2004, this interpretation was proposed and standardized to satisfy both of the key uniformity in the context of universal composability and operational meaning of the failure probability of the key extraction. However, this proposal has not been verified concretely yet for many years while H. P. Yuen and O. Hirota have thrown doubt on this interpretation since 2009. To ascertain this interpretation, a physical random number generator was employed to evaluate key uniformity in QKD. In this way, we calculated statistical distance which correspond to trace distance in quantum theory after a quantum measurement is done, then we compared it with the failure probability whether universal composability was obtained. As a result, the degree of statistical distance of the probability distribution of the physical random numbers and the ideal uniformity was very large. It is also explained why trace distance is not suitable to guarantee the security in QKD from the view point of quantum binary decision theory.

  17. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  18. Experimental realization of equiangular three-state quantum key distribution

    PubMed Central

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643

  19. Theory of single-photon detectors employing smart strategies of detection

    NASA Astrophysics Data System (ADS)

    Silva, João Batista Rosa; Ramos, Rubens Viana

    2005-11-01

    Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.

  20. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  1. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE PAGES

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; ...

    2018-04-06

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  2. Eavesdropping on counterfactual quantum key distribution with finite resources

    NASA Astrophysics Data System (ADS)

    Liu, Xingtong; Zhang, Bo; Wang, Jian; Tang, Chaojing; Zhao, Jingjing; Zhang, Sheng

    2014-08-01

    A striking scheme called "counterfactual quantum cryptography" gives a conceptually new approach to accomplish the task of key distribution. It allows two legitimate parties to share a secret even though a particle carrying secret information is not, in fact, transmitted through the quantum channel. Since an eavesdropper cannot directly access the entire quantum system of each signal particle, the protocol seems to provide practical security advantages. However, here we propose an eavesdropping method which works on the scheme in a finite key scenario. We show that, for practical systems only generating a finite number of keys, the eavesdropping can obtain all of the secret information without being detected. We also present a improved protocol as a countermeasure against this attack.

  3. Metropolitan Quantum Key Distribution with Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk

    2018-04-01

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  4. Implementing Diffie-Hellman key exchange using quantum EPR pairs

    NASA Astrophysics Data System (ADS)

    Mandal, Sayonnha; Parakh, Abhishek

    2015-05-01

    This paper implements the concepts of perfect forward secrecy and the Diffie-Hellman key exchange using EPR pairs to establish and share a secret key between two non-authenticated parties and transfer messages between them without the risk of compromise. Current implementations of quantum cryptography are based on the BB84 protocol, which is susceptible to siphoning attacks on the multiple photons emitted by practical laser sources. This makes BB84-based quantum cryptography protocol unsuitable for network computing environments. Diffie-Hellman does not require the two parties to be mutually authenticated to each other, yet it can provide a basis for a number of authenticated protocols, most notably the concept of perfect forward secrecy. The work proposed in this paper provides a new direction in utilizing quantum EPR pairs in quantum key exchange. Although, classical cryptography boasts of efficient and robust protocols like the Diffie-Hellman key exchange, in the current times, with the advent of quantum computing they are very much vulnerable to eavesdropping and cryptanalytic attacks. Using quantum cryptographic principles, however, these classical encryption algorithms show more promise and a more robust and secure structure for applications. The unique properties of quantum EPR pairs also, on the other hand, go a long way in removing attacks like eavesdropping by their inherent nature of one particle of the pair losing its state if a measurement occurs on the other. The concept of perfect forward secrecy is revisited in this paper to attribute tighter security to the proposed protocol.

  5. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  6. Quantum key distribution protocol based on contextuality monogamy

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Bharti, Kishor; Arvind

    2017-06-01

    The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides a new framework for QKD which has conceptual and practical advantages over other protocols.

  7. Quantum communication and information processing

    NASA Astrophysics Data System (ADS)

    Beals, Travis Roland

    Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.

  8. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-19

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  9. Parameter regimes for a single sequential quantum repeater

    NASA Astrophysics Data System (ADS)

    Rozpędek, F.; Goodenough, K.; Ribeiro, J.; Kalb, N.; Caprara Vivoli, V.; Reiserer, A.; Hanson, R.; Wehner, S.; Elkouss, D.

    2018-07-01

    Quantum key distribution allows for the generation of a secret key between distant parties connected by a quantum channel such as optical fibre or free space. Unfortunately, the rate of generation of a secret key by direct transmission is fundamentally limited by the distance. This limit can be overcome by the implementation of so-called quantum repeaters. Here, we assess the performance of a specific but very natural setup called a single sequential repeater for quantum key distribution. We offer a fine-grained assessment of the repeater by introducing a series of benchmarks. The benchmarks, which should be surpassed to claim a working repeater, are based on finite-energy considerations, thermal noise and the losses in the setup. In order to boost the performance of the studied repeaters we introduce two methods. The first one corresponds to the concept of a cut-off, which reduces the effect of decoherence during the storage of a quantum state by introducing a maximum storage time. Secondly, we supplement the standard classical post-processing with an advantage distillation procedure. Using these methods, we find realistic parameters for which it is possible to achieve rates greater than each of the benchmarks, guiding the way towards implementing quantum repeaters.

  10. Multi-user quantum key distribution with entangled photons from an AlGaAs chip

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.

    2016-12-01

    In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.

  11. The design and application of a multi-band IR imager

    NASA Astrophysics Data System (ADS)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  12. Optimal attacks on qubit-based Quantum Key Recycling

    NASA Astrophysics Data System (ADS)

    Leermakers, Daan; Škorić, Boris

    2018-03-01

    Quantum Key Recycling (QKR) is a quantum cryptographic primitive that allows one to reuse keys in an unconditionally secure way. By removing the need to repeatedly generate new keys, it improves communication efficiency. Škorić and de Vries recently proposed a QKR scheme based on 8-state encoding (four bases). It does not require quantum computers for encryption/decryption but only single-qubit operations. We provide a missing ingredient in the security analysis of this scheme in the case of noisy channels: accurate upper bounds on the required amount of privacy amplification. We determine optimal attacks against the message and against the key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We provide results in terms of min-entropy loss as well as accessible (Shannon) information. We show that the Shannon entropy analysis for 8-state encoding reduces to the analysis of quantum key distribution, whereas 4-state and 6-state suffer from additional leaks that make them less effective. From the optimal attacks we compute the required amount of privacy amplification and hence the achievable communication rate (useful information per qubit) of qubit-based QKR. Overall, 8-state encoding yields the highest communication rates.

  13. Fast and simple high-capacity quantum cryptography with error detection

    PubMed Central

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-01-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240

  14. Fast and simple high-capacity quantum cryptography with error detection.

    PubMed

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  15. Fast and simple high-capacity quantum cryptography with error detection

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  16. The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD)

    NASA Astrophysics Data System (ADS)

    Tysowski, Piotr K.; Ling, Xinhua; Lütkenhaus, Norbert; Mosca, Michele

    2018-04-01

    Quantum key distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service (KMS) for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterprise-level computing has been researched, to enable quantum-safe communication. A novel method for constructing a KMS is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The KMS operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.

  17. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  18. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2013-01-01

    entanglement based quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Extended dispersive-optics QKD (DO-QKD) protocol...2 2.3 Analysis of non-local correlations of entangled photon pairs for arbitrary dis- persion...Section 3). 2 Protocol Development 2.1 Achieving multiple secure bits per coincidence in time-energy entanglement based quantum key distribution High

  19. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.

    2005-06-15

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less

  20. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    NASA Astrophysics Data System (ADS)

    Datta, Shounak; Goswami, Suchetana; Pramanik, Tanumoy; Majumdar, A. S.

    2017-03-01

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment.

  1. Device-independent security of quantum cryptography against collective attacks.

    PubMed

    Acín, Antonio; Brunner, Nicolas; Gisin, Nicolas; Massar, Serge; Pironio, Stefano; Scarani, Valerio

    2007-06-08

    We present the optimal collective attack on a quantum key distribution protocol in the "device-independent" security scenario, where no assumptions are made about the way the quantum key distribution devices work or on what quantum system they operate. Our main result is a tight bound on the Holevo information between one of the authorized parties and the eavesdropper, as a function of the amount of violation of a Bell-type inequality.

  2. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  3. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  4. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  5. An Introduction to Quantum Communications Networks; Or, how shall we communicate in the quantum era?

    NASA Astrophysics Data System (ADS)

    Razavi, Mohsen

    2018-05-01

    This book fills a gap between experts and non-experts in the field by providing readers with the basic tools to understand the latest developments in quantum communications and its future directions. With the fast pace of developments in quantum technologies, it is more necessary than ever to make the new generation of students in science/engineering familiar with the key ideas behind such disruptive systems. This book describes key applications for quantum networks; local, metropolitan, and global networks; and the industrial outlook for the field.

  6. Robust shot-noise measurement for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  7. Quantum-key-distribution protocol with pseudorandom bases

    NASA Astrophysics Data System (ADS)

    Trushechkin, A. S.; Tregubov, P. A.; Kiktenko, E. O.; Kurochkin, Y. V.; Fedorov, A. K.

    2018-01-01

    Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications. An important part of QKD technology is a high-quality random number generator for the quantum-state preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols. However, the protocol strongly requires single-photon sources.

  8. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei

    2014-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.

  9. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Hua; Wang, Xiang S.; Teotico, Denise; Golbraikh, Alexander; Tropsha, Alexander

    2008-09-01

    The use of inaccurate scoring functions in docking algorithms may result in the selection of compounds with high predicted binding affinity that nevertheless are known experimentally not to bind to the target receptor. Such falsely predicted binders have been termed `binding decoys'. We posed a question as to whether true binders and decoys could be distinguished based only on their structural chemical descriptors using approaches commonly used in ligand based drug design. We have applied the k-Nearest Neighbor ( kNN) classification QSAR approach to a dataset of compounds characterized as binders or binding decoys of AmpC beta-lactamase. Models were subjected to rigorous internal and external validation as part of our standard workflow and a special QSAR modeling scheme was employed that took into account the imbalanced ratio of inhibitors to non-binders (1:4) in this dataset. 342 predictive models were obtained with correct classification rate (CCR) for both training and test sets as high as 0.90 or higher. The prediction accuracy was as high as 100% (CCR = 1.00) for the external validation set composed of 10 compounds (5 true binders and 5 decoys) selected randomly from the original dataset. For an additional external set of 50 known non-binders, we have achieved the CCR of 0.87 using very conservative model applicability domain threshold. The validated binary kNN QSAR models were further employed for mining the NCGC AmpC screening dataset (69653 compounds). The consensus prediction of 64 compounds identified as screening hits in the AmpC PubChem assay disagreed with their annotation in PubChem but was in agreement with the results of secondary assays. At the same time, 15 compounds were identified as potential binders contrary to their annotation in PubChem. Five of them were tested experimentally and showed inhibitory activities in millimolar range with the highest binding constant Ki of 135 μM. Our studies suggest that validated QSAR models could complement structure based docking and scoring approaches in identifying promising hits by virtual screening of molecular libraries.

  10. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening.

    PubMed

    Hsieh, Jui-Hua; Yin, Shuangye; Wang, Xiang S; Liu, Shubin; Dokholyan, Nikolay V; Tropsha, Alexander

    2012-01-23

    Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.

  11. Practical challenges in quantum key distribution

    DOE PAGES

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing; ...

    2016-11-08

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  12. Practical challenges in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  13. Present and future free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.

    2002-04-01

    Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.

  14. Two-party quantum key agreement with five-particle entangled states

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    A two-party quantum key agreement protocol is proposed with five-particle entangled states and the delayed measurement technique. According to the measurement correlation property of five-particle entangled states, two participants can deduce the measurement results of each other’s initial quantum states. As a result, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Thus, a shared key is fairly established. Since each particle is transmitted only once in quantum channel, the protocol is congenitally free from the Trojan horse attacks. It is shown that the protocol not only is secure against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  15. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Wei; Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004; Wang, Shuang

    2011-12-15

    It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost ofmore » only increasing the quantum bit error rate from 1.3 to 1.4%.« less

  16. Robust multiparty quantum secret key sharing over two collective-noise channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan-jun

    2006-02-01

    Based on a polarization-based quantum key distribution protocol over a collective-noise channel [Phys. Rev. Lett. 92 (2004) 017901], a robust (n,n)-threshold scheme of multiparty quantum secret sharing of key over two collective-noise channels (i.e., the collective dephasing channel and the collective rotating channel) is proposed. In this scheme the sharer entirety can establish a joint key with the message sender only if all the sharers collaborate together. Since Bell singlets are enough for use and only single-photon polarization needs to be identified, this scheme is feasible according to the present-day technique.

  17. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    PubMed Central

    2010-01-01

    Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941

  18. Xenoepitope substitution avoids deceptive imprinting and broadens the immune response to foot-and-mouth disease virus.

    PubMed

    Szczepanek, Steven M; Barrette, Roger W; Rood, Debra; Alejo, Diana; Silbart, Lawrence K

    2012-04-01

    Many RNA viruses encode error-prone polymerases which introduce mutations into B and T cell epitopes, providing a mechanism for immunological escape. When regions of hypervariability are found within immunodominant epitopes with no known function, they are referred to as "decoy epitopes," which often deceptively imprint the host's immune response. In this work, a decoy epitope was identified in the foot-and-mouth disease virus (FMDV) serotype O VP1 G-H loop after multiple sequence alignment of 118 isolates. A series of chimeric cyclic peptides resembling the type O G-H loop were prepared, each bearing a defined "B cell xenoepitope" from another virus in place of the native decoy epitope. These sequences were derived from porcine respiratory and reproductive syndrome virus (PRRSV), from HIV, or from a presumptively tolerogenic sequence from murine albumin and were subsequently used as immunogens in BALB/c mice. Cross-reactive antibody responses against all peptides were compared to a wild-type peptide and ovalbumin (OVA). A broadened antibody response was generated in animals inoculated with the PRRSV chimeric peptide, in which virus binding of serum antibodies was also observed. A B cell epitope mapping experiment did not reveal recognition of any contiguous linear epitopes, raising the possibility that the refocused response was directed to a conformational epitope. Taken together, these results indicate that xenoepitope substitution is a novel method for immune refocusing against decoy epitopes of RNA viruses such as FMDV as part of the rational design of next-generation vaccines.

  19. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis.

    PubMed

    Aoki, Shigeki; Honma, Masashi; Kariya, Yoshiaki; Nakamichi, Yuko; Ninomiya, Tadashi; Takahashi, Naoyuki; Udagawa, Nobuyuki; Suzuki, Hiroshi

    2010-09-01

    The amount of the receptor activator of NF-κB ligand (RANKL) on the osteoblastic cell surface is considered to determine the magnitude of the signal input to osteoclast precursors and the degree of osteoclastogenesis. Previously, we have shown that RANKL is localized predominantly in lysosomal organelles, but little is found on the osteoblastic cell surface, and consequently, the regulated subcellular trafficking of RANKL in osteoblastic cells is important for controlled osteoclastogenesis. Here we have examined the involvement of osteoprotegerin (OPG), which is currently recognized as a decoy receptor for RANKL, in the regulation of RANKL behavior. It was suggested that OPG already makes a complex with RANKL in the Golgi apparatus and that the complex formation is necessary for RANKL sorting to the secretory lysosomes. It was also shown that each structural domain of OPG is indispensable for exerting OPG function as a traffic regulator. In particular, the latter domains of OPG, whose physiologic functions have been unclear, were indicated to sort RANKL molecules to lysosomes from the Golgi apparatus. In addition, the overexpression of RANK-OPG chimeric protein, which retained OPG function as a decoy receptor but lost the function as a traffic regulator, inhibited endogenous OPG function as a traffic regulator selectively in osteoblastic cells and resulted in the upregulation of osteoclastogenic ability despite the increased number of decoy receptor molecules. Conclusively, OPG function as a traffic regulator for RANKL is crucial for regulating osteoclastogenesis at least as well as that as a decoy receptor. © 2010 American Society for Bone and Mineral Research.

  20. Reduction of Blood Pressure by AT1 Receptor Decoy Peptides.

    PubMed

    Re, Richard N; Chen, Ben; Alam, Jawed; Cook, Julia L

    2013-01-01

    We previously identified the binding of the chaperone protein gamma-aminobutyric acid receptor-associated protein (GABARAP) to a sequence on the carboxy-terminus of the angiotensin II AT1 receptor (AT1R) and showed that this binding enhances AT1R trafficking to the cell surface as well as angiotensin signaling. In this study, we treated sodium-depleted mice with decoy peptides consisting either of a fusion of the cell-penetrating peptide penetratin and the GABARAP/AT1R binding sequence or penetratin fused to a mutated AT1R sequence. We used telemetry to measure blood pressure. Systolic and diastolic pressure fell during the 24 hours following decoy peptide injection but not after control peptide injection. Active cell-penetrating decoy peptide decreased 24-hour average systolic blood pressure from 129.8 ± 4.7 mmHg to 125.0 ± 6.0 mmHg (mean ± standard deviation). Diastolic blood pressure fell from 99.0 ± 7.1 mmHg to 95.0 ± 9.2 mmHg (n=5). Administration of the control peptide raised systolic blood pressure from 128.7 ± 1.3 mmHg to 131.7 ± 2.9 mmHg and diastolic pressure from 93.9 ± 4.5 mmHg to 95.9 ± 4.2 mmHg (n=5). The decreases in both systolic and diastolic blood pressure after active peptide administration were statistically significant compared to control peptide administration (P<0.05, two-tailed Wilcoxon rank-sum test). These results indicate the physiological and potentially therapeutic relevance of inhibitors of GABARAP/AT1R binding.

  1. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  2. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyuan; Shi, Ronghua; Zeng, Guihua; Guo, Ying

    2018-06-01

    We suggest an approach on the coherent attack of continuous-variable quantum key distribution (CVQKD) with an untrusted entangled source in the middle. The coherent attack strategy can be performed on the double links of quantum system, enabling the eavesdropper to steal more information from the proposed scheme using the entanglement correlation. Numeric simulation results show the improved performance of the attacked CVQKD system in terms of the derived secret key rate with the controllable parameters maximizing the stolen information.

  3. A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.

    PubMed

    Li, Haiou; Lyu, Qiang; Cheng, Jianlin

    2016-12-01

    Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.

  4. Decoy Strategies: The Structure of TL1A:DcR3 Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Zhan; Y Patskovsky; Q Yan

    2011-12-31

    Decoy Receptor 3 (DcR3), a secreted member of the Tumor Necrosis Factor (TNF) receptor superfamily, neutralizes three different TNF ligands: FasL, LIGHT, and TL1A. Each of these ligands engages unique signaling receptors which direct distinct and critical immune responses. We report the crystal structures of the unliganded DcR3 ectodomain and its complex with TL1A, as well as complementary mutagenesis and biochemical studies. These analyses demonstrate that DcR3 interacts with invariant backbone and side-chain atoms in the membrane-proximal half of TL1A which supports recognition of its three distinct TNF ligands. Additional features serve as antideterminants that preclude interaction with other membersmore » of the TNF superfamily. This mode of interaction is unique among characterized TNF:TNFR family members and provides a mechanistic basis for the broadened specificity required to support the decoy function of DcR3, as well as for the rational manipulation of specificity and affinity of DcR3 and its ligands.« less

  5. Serum decoy receptor 3 level: a predictive marker for nodal metastasis and survival among oral cavity cancer patients.

    PubMed

    Tu, Hsi-Feng; Liu, Chung-Ji; Liu, Shyun-Yeu; Chen, Yu-Ping; Yu, En-Hao; Lin, Shu-Chun; Chang, Kuo-Wei

    2011-03-01

    Validating markers for prediction of nodal metastasis could be beneficial in treatment of oral cavity cancer. Decoy receptor 3 (DcR3), locus on 20q13, functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor (TNFR) family. This study analyzed the serum level of DcR3 in relationship to the clinical parameters of oral cavity cancer patients together with detection of DcR3 genomic copy number in primary and recurrent tumors. Elevated serum DcR3 was associated with nodal metastasis and worse prognosis. Gain of DcR3 copy number was detected in 17% of primary tumor tissue but not found in healthy areca chewers. Tissue from recurrent tumors showed more frequent DcR3 copy number alteration (48%) than the paired primary tumor tissue. Serum DcR3 level is a predictor for the nodal metastasis and survival among oral cavity cancer patients and the DcR3 copy number alteration could underlie oral carcinogenesis progression. Copyright © 2010 Wiley Periodicals, Inc.

  6. Study of the Quantum Channel between Earth and Space for Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Bonato, Cristian; Tomaello, Andrea; da Deppo, Vania; Naletto, Giapiero; Villoresi, Paolo

    In this work there are studied the conditions for the effective quantum communications between a terminal on Earth and the other onboard of an orbiter. The quantum key distribution between a LEO satellite and a ground station is studied in particular. The effect of the propagation over long distances as well as the background during day or night is modeled, compared and discussed in the context of key generation and exchange.

  7. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.

    PubMed

    Capmany, José

    2009-04-13

    We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

  8. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    NASA Astrophysics Data System (ADS)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  9. Quantum key distribution in a multi-user network at gigahertz clock rates

    NASA Astrophysics Data System (ADS)

    Fernandez, Veronica; Gordon, Karen J.; Collins, Robert J.; Townsend, Paul D.; Cova, Sergio D.; Rech, Ivan; Buller, Gerald S.

    2005-07-01

    In recent years quantum information research has lead to the discovery of a number of remarkable new paradigms for information processing and communication. These developments include quantum cryptography schemes that offer unconditionally secure information transport guaranteed by quantum-mechanical laws. Such potentially disruptive security technologies could be of high strategic and economic value in the future. Two major issues confronting researchers in this field are the transmission range (typically <100km) and the key exchange rate, which can be as low as a few bits per second at long optical fiber distances. This paper describes further research of an approach to significantly enhance the key exchange rate in an optical fiber system at distances in the range of 1-20km. We will present results on a number of application scenarios, including point-to-point links and multi-user networks. Quantum key distribution systems have been developed, which use standard telecommunications optical fiber, and which are capable of operating at clock rates of up to 2GHz. They implement a polarization-encoded version of the B92 protocol and employ vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, as well as silicon single-photon avalanche diodes as the single photon detectors. The point-to-point quantum key distribution system exhibited a quantum bit error rate of 1.4%, and an estimated net bit rate greater than 100,000 bits-1 for a 4.2 km transmission range.

  10. Security of quantum key distribution with iterative sifting

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos

    2018-01-01

    Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.

  11. China demonstrates intercontinental quantum key distribution

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-11-01

    A quantum cryptography key has been shared between Beijing and Vienna using a satellite - allowing the presidents of the Chinese Academy of Sciences and Austrian Academy of Sciences to communicate via a secure video link.

  12. Upper bounds on secret-key agreement over lossy thermal bosonic channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2017-12-01

    Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017), 10.1103/PhysRevLett.119.120503] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.

  13. Modeling a space-based quantum link that includes an adaptive optics system

    NASA Astrophysics Data System (ADS)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  14. Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun

    2016-08-01

    We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).

  15. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits.

    PubMed

    Ding, Yu-Yang; Chen, Wei; Chen, Hua; Wang, Chao; Li, Ya-Ping; Wang, Shuang; Yin, Zhen-Qiang; Guo, Guang-Can; Han, Zheng-Fu

    2017-03-15

    The calibration of the polarization basis between the transmitter and receiver is an important task in quantum key distribution. A continuously working polarization-basis tracking scheme (PBTS) will effectively promote the efficiency of the system and reduce the potential security risk when switching between the transmission and calibration modes. Here, we proposed a single-photon level continuously working PBTS using only sifted key bits revealed during an error correction procedure, without introducing additional reference light or interrupting the transmission of quantum signals. We applied the scheme to a polarization-encoding BB84 QKD system in a 50 km fiber channel, and obtained an average quantum bit error rate (QBER) of 2.32% and a standard derivation of 0.87% during 24 h of continuous operation. The stable and relatively low QBER validates the effectiveness of the scheme.

  16. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  17. High-speed continuous-variable quantum key distribution without sending a local oscillator.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Wang, Chao; Zeng, Guihua

    2015-08-15

    We report a 100-MHz continuous-variable quantum key distribution (CV-QKD) experiment over a 25-km fiber channel without sending a local oscillator (LO). We use a "locally" generated LO and implement with a 1-GHz shot-noise-limited homodyne detector to achieve high-speed quantum measurement, and we propose a secure phase compensation scheme to maintain a low level of excess noise. These make high-bit-rate CV-QKD significantly simpler for larger transmission distances compared with previous schemes in which both LO and quantum signals are transmitted through the insecure quantum channel.

  18. Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Humble, Travis S.; McCaskey, Alex

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less

  19. Quantum key distribution for composite dimensional finite systems

    NASA Astrophysics Data System (ADS)

    Shalaby, Mohamed; Kamal, Yasser

    2017-06-01

    The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.

  20. Plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung

    2016-03-01

    Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.

  1. Quantum key distribution over an installed multimode optical fiber local area network.

    PubMed

    Namekata, Naoto; Mori, Shigehiko; Inoue, Shuichiro

    2005-12-12

    We have investigated the possibility of a multimode fiber link for a quantum channel. Transmission of light in an extremely underfilled mode distribution promises a single-mode-like behavior in the multimode fiber. To demonstrate the performance of the fiber link we performed quantum key distribution, on the basis of the BB84 four-state protocol, over 550 m of an installed multimode optical fiber local area network, and the quantum-bit-error rate of 1.09 percent was achieved.

  2. Multi-party Quantum Key Agreement without Entanglement

    NASA Astrophysics Data System (ADS)

    Cai, Bin-Bin; Guo, Gong-De; Lin, Song

    2017-04-01

    A new efficient quantum key agreement protocol without entanglement is proposed. In this protocol, each user encodes his secret key into the traveling particles by performing one of four rotation operations that one cannot perfectly distinguish. In the end, all users can simultaneously obtain the final shared key. The security of the presented protocol against some common attacks is discussed. It is shown that this protocol can effectively protect the privacy of each user and satisfy the requirement of fairness in theory. Moreover, the quantum carriers and the encoding operations used in the protocol can be achieved in realistic physical devices. Therefore, the presented protocol is feasible with current technology.

  3. High-efficiency reconciliation for continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  4. Quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  5. Quantum computing on encrypted data.

    PubMed

    Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  6. Fundamental limits of repeaterless quantum communications

    PubMed Central

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-01-01

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624

  7. Fundamental limits of repeaterless quantum communications.

    PubMed

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-04-26

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.

  8. Quantum displacement receiver for M-ary phase-shift-keyed coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio

    2014-12-04

    We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.

  9. Monogamy relations of quantum entanglement for partially coherently superposed states

    NASA Astrophysics Data System (ADS)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  10. Aggregating quantum repeaters for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  11. Quantum information is physical

    NASA Astrophysics Data System (ADS)

    DiVincenzo, D. P.; Loss, D.

    1998-03-01

    We discuss a few current developments in the use of quantum mechanically coherent systems for information processing. In each of these developments, Rolf Landauer has played a crucial role in nudging us, and other workers in the field, into asking the right questions, some of which we have been lucky enough to answer. A general overview of the key ideas of quantum error correction is given. We discuss how quantum entanglement is the key to protecting quantum states from decoherence in a manner which, in a theoretical sense, is as effective as the protection of digital data from bit noise. We also discuss five general criteria which must be satisfied to implement a quantum computer in the laboratory, and we illustrate the application of these criteria by discussing our ideas for creating a quantum computer out of the spin states of coupled quantum dots.

  12. Reply to 'Comment on 'Quantum dense key distribution''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, I.P.; Berchera, I. Ruo; Castelletto, S.

    2005-01-01

    In this Reply we propose a modified security proof of the quantum dense key distribution protocol, detecting also the eavesdropping attack proposed by Wojcik in his Comment [Wojcik, Phys. Rev. A 71, 016301 (2005)].

  13. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  14. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.

    PubMed

    Leverrier, Anthony; Grangier, Philippe

    2009-05-08

    We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

  15. Security of a semi-quantum protocol where reflections contribute to the secret key

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2016-05-01

    In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.

  16. Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan

    2017-08-01

    The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.

  17. Analysis of counterfactual quantum key distribution using error-correcting theory

    NASA Astrophysics Data System (ADS)

    Li, Yan-Bing

    2014-10-01

    Counterfactual quantum key distribution is an interesting direction in quantum cryptography and has been realized by some researchers. However, it has been pointed that its insecure in information theory when it is used over a high lossy channel. In this paper, we retry its security from a error-correcting theory point of view. The analysis indicates that the security flaw comes from the reason that the error rate in the users' raw key pair is as high as that under the Eve's attack when the loss rate exceeds 50 %.

  18. Simple proof of security of the BB84 quantum key distribution protocol

    PubMed

    Shor; Preskill

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.

  19. Security of coherent-state quantum cryptography in the presence of Gaussian noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heid, Matthias; Luetkenhaus, Norbert

    2007-08-15

    We investigate the security against collective attacks of a continuous variable quantum key distribution scheme in the asymptotic key limit for a realistic setting. The quantum channel connecting the two honest parties is assumed to be lossy and imposes Gaussian noise on the observed quadrature distributions. Secret key rates are given for direct and reverse reconciliation schemes including post-selection in the collective attack scenario. The effect of a nonideal error correction and two-way communication in the classical post-processing step is also taken into account.

  20. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  1. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Dual Agonist Surrobody Simultaneously Activates Death Receptors DR4 and DR5 to Induce Cancer Cell Death.

    PubMed

    Milutinovic, Snezana; Kashyap, Arun K; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O'Neil, Ryann; Kurtzman, Aaron L; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H; Diaz, Paul W; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R; Reed, John C

    2016-01-01

    Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. ©2015 American Association for Cancer Research.

  3. Dual agonist Surrobody™ simultaneously activates death receptors DR4 and DR5 to induce cancer cell death

    PubMed Central

    Milutinovic, Snezana; Kashyap, Arun K.; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O' Neil, Ryann; Kurtzman, Aaron L.; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H.; Diaz, Paul W.; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R.; Reed, John C.

    2015-01-01

    Death receptors of the Tumor Necrosis Factor (TNF) family are found on surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors-4 and -5 (DR4 and DR5) is Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, TRAIL (Apo2L). Since most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody™ technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing pro-apoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 mono-specific antibodies. Taken together, Surrobody shows promising preclinical pro-apoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. PMID:26516157

  4. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression*

    PubMed Central

    Smith, Spenser S.; Dole, Neha S.; Franceschetti, Tiziana; Hrdlicka, Henry C.; Delany, Anne M.

    2016-01-01

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3′-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. PMID:27551048

  5. Quantum cryptography using coherent states: Randomized encryption and key generation

    NASA Astrophysics Data System (ADS)

    Corndorf, Eric

    With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  6. Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo

    2015-04-01

    The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.

  7. Faked state attacks on realistic round robin DPS quantum key distribution systems and countermeasure

    NASA Astrophysics Data System (ADS)

    Iwakoshi, T.

    2015-05-01

    In May 2014, a new quantum key distribution protocol named "Round Robin Differential-Phase-Shift Quantum Key Distribution (RR DPS QKD)" was proposed. It has a special feature that the key consumption via privacy amplification is a small constant because RR DPS QKD guarantees its security by information causality, not by information-disturbance trade-off. Therefore, the authors claimed that RR DPS QKD systems does not need to monitor the disturbance by an attacker in the quantum channel. However, this study shows that a modified Faked-State Attack (or so-called bright illumination attack) can hack a RR DPS QKD system almost perfectly if it is implemented with realistic detectors even information-causality guarantees the security of RR DPS QKD protocol. Therefore, this study also proposes a possible Measurement-Device-Independent RR DPS QKD system to avoid the modified Faked-State Attack.

  8. Practical private database queries based on a quantum-key-distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Markus; Humboldt-Universitaet zu Berlin, D-10117 Berlin; Simon, Christoph

    2011-02-15

    Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions inmore » order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.« less

  9. Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2017-02-01

    Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.

  10. Quantum Cryptography Based on the Deutsch-Jozsa Algorithm

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Nakamura, Tadao; Farouk, Ahmed

    2017-09-01

    Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi: 10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f( x) is constant for all values of x, or else the value of f( x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2 N ).

  11. Quantum Watermarking Scheme Based on INEQR

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Zhou, Yang; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou

    2018-04-01

    Quantum watermarking technology protects copyright by embedding invisible quantum signal in quantum multimedia data. In this paper, a watermarking scheme based on INEQR was presented. Firstly, the watermark image is extended to achieve the requirement of embedding carrier image. Secondly, the swap and XOR operation is used on the processed pixels. Since there is only one bit per pixel, XOR operation can achieve the effect of simple encryption. Thirdly, both the watermark image extraction and embedding operations are described, where the key image, swap operation and LSB algorithm are used. When the embedding is made, the binary image key is changed. It means that the watermark has been embedded. Of course, if the watermark image is extracted, the key's state need detected. When key's state is |1>, this extraction operation is carried out. Finally, for validation of the proposed scheme, both the Signal-to-noise ratio (PSNR) and the security of the scheme are analyzed.

  12. Quantum key distribution without detector vulnerabilities using optically seeded lasers

    NASA Astrophysics Data System (ADS)

    Comandar, L. C.; Lucamarini, M.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Tam, S. W.-B.; Yuan, Z. L.; Penty, R. V.; Shields, A. J.

    2016-05-01

    Security in quantum cryptography is continuously challenged by inventive attacks targeting the real components of a cryptographic set-up, and duly restored by new countermeasures to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference from independent light sources can be used to remove any vulnerability from detectors. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent (MDI), has been experimentally demonstrated but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.

  13. Performance analysis of quantum access network using code division multiple access model

    NASA Astrophysics Data System (ADS)

    Hu, Linxi; Yang, Can; He, Guangqiang

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61475099 and 61102053), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201405), the Open Fund of IPOC (BUPT) (Grant No. IPOC2015B004), and the Program of State Key Laboratory of Information Security (Grant No. 2016-MS-05).

  14. Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.

    2003-02-01

    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less

  15. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  16. Measurement-device-independent quantum communication with an untrusted source

    NASA Astrophysics Data System (ADS)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  17. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  18. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber.

    PubMed

    Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2012-03-15

    We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.

  19. Method for adding nodes to a quantum key distribution system

    DOEpatents

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  20. Fast Entanglement Establishment via Local Dynamics for Quantum Repeater Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    Quantum entanglement is a necessity for future quantum communication networks, quantum internet, and long-distance quantum key distribution. The current approaches of entanglement distribution require high-delay entanglement transmission, entanglement swapping to extend the range of entanglement, high-cost entanglement purification, and long-lived quantum memories. We introduce a fundamental protocol for establishing entanglement in quantum communication networks. The proposed scheme does not require entanglement transmission between the nodes, high-cost entanglement swapping, entanglement purification, or long-lived quantum memories. The protocol reliably establishes a maximally entangled system between the remote nodes via dynamics generated by local Hamiltonians. The method eliminates the main drawbacks of current schemes allowing fast entanglement establishment with a minimized delay. Our solution provides a fundamental method for future long-distance quantum key distribution, quantum repeater networks, quantum internet, and quantum-networking protocols. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

Top