Sample records for decrease air pollution

  1. Air quality, primary air pollutants and ambient concentrations inventory for Romania

    NASA Astrophysics Data System (ADS)

    Năstase, Gabriel; Șerban, Alexandru; Năstase, Alina Florentina; Dragomir, George; Brezeanu, Alin Ionuț

    2018-07-01

    Air pollution is among the greatest risk factors for human health, but it also poses risks to the food security, the economy and the environment. The majority of the pollutants emitted by human activities derive from the production and use of fossil-fuel-based energy. Most energy-related emissions contain sulfur dioxide and nitrogen oxides. The principal source of sulfur dioxide originates from coal, and the main sources of nitrogen oxide emissions are power generation and use of vehicles. Other important pollutants are the inhalable coarse particles (PM10) and the fine particulate matter (PM2.5), which arises from the building sector. Over the last decade, since Romania joined the European Union on the 1st of January 2007, the use of fossil fuels has decreased dramatically, as consumers switched to either natural gas or biomass. This was as a result of the European Commission encouraging the member countries to make use of renewable sources (including biomass). To reduce the PM emissions, in April 2015 EC has extended the EcoDesign Directive to solid-fuel boilers and solid-fuel space heaters. The boilers need to generally meet certain requirements that will be introduced by 1 January 2020. In this article, we are highlighting the fluctuations in air pollution in Romania from the European WebDAB - EMAP database and trends in ambient concentrations of air pollutants using Romania's national air pollution monitoring network. Romania's Air Pollutants/Air Quality Monitoring Network consists of 142 automatic air quality monitoring stations. The results indicate that Romania's annual average mass emissions of CO decreased from 3186 Gg in 1990 to 774 in 2014 (decrease by <76%), SOx decreased from 1311 Gg-176 Gg (decrease by ∼60%), NOx decreased from 546 Gg to 218 (decrease by ∼87%), CO2 decreased from 66.226 Gg/year in 2007 to 38.916 Gg/year in 2014 (decrease by <41%).

  2. Biologically plausible particulate air pollution mortality concentration-response functions.

    PubMed Central

    Roberts, Steven

    2004-01-01

    In this article I introduce an alternative method for estimating particulate air pollution mortality concentration-response functions. This method constrains the particulate air pollution mortality concentration-response function to be biologically plausible--that is, a non-decreasing function of the particulate air pollution concentration. Using time-series data from Cook County, Illinois, the proposed method yields more meaningful particulate air pollution mortality concentration-response function estimates with an increase in statistical accuracy. PMID:14998745

  3. Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts

    NASA Astrophysics Data System (ADS)

    Nie, Teng; Nie, Lei; Zhou, Zhen; Wang, Zhanshan; Xue, Yifeng; Gao, Jiajia; Wu, Xiaoqing; Fan, Shoubin; Cheng, Linglong

    2018-06-01

    In recent years, Beijing has experienced severe air pollution which has caused widespread public concern. Compared to the same period in 2014, the first three quarters of 2015 exhibited significantly improved air quality. However, the air quality sharply declined in the fourth quarter of 2015, especially in November and December. During that time, Beijing issued the first red alert for severe air pollution in history. In total, 2 red alerts, 3 orange alerts, 3 yellow alerts, and 3 blue alerts were issued based on the adoption of relatively temporary emergency control measures to mitigate air pollution. This study explored the reasons for these variations in air quality and assessed the effectiveness of emergency alerts in addressing severe air pollution. A synthetic analysis of emission variations and meteorological conditions was performed to better understand these extreme air pollution episodes in the fourth quarter of 2015. The results showed that compared to those in the same period in 2014, the daily average emissions of air pollutants decreased in the fourth quarter of 2015. However, the emission levels of primary pollutants were still relatively high, which was the main intrinsic cause of haze episodes, and unfavorable meteorological conditions represented important external factors. Emergency control measures for heavy air pollution were implemented during this red alert period, decreasing the emissions of primary air pollutants by approximately 36% and the PM2.5 concentration by 11%‒21%.

  4. Health benefit evaluation of the energy use scenarios in Beijing, China.

    PubMed

    Pan, Xiaochuan; Yue, Wei; He, Kebin; Tong, Shilu

    2007-03-15

    Air pollution is one of the important causal factors for excess cardiorespiratory deaths and diseases. However, little information is available on health gains from clean energy usage in developing countries. In this study the expected population exposed to air pollutants was estimated under the different energy use scenarios by the year 2010, 2020 and 2030, respectively, in the urban area of Beijing, China. The concentration-response functions between air pollutants and the health endpoints were established using meta-analysis and regression models. The decreased cardiorespiratory deaths and diseases of the exposed population were predicted as the health benefits from air pollution reduction. We used daily measurements of particulate matter less than 10 mum in aerodynamic diameter (PM(10)) and sulphate dioxide (SO(2)) as air pollution indicators. The percentage of population exposed to higher level of PM(10) will be decreased significantly under the clean energy use scenario than that under the Baseline Scenario (i.e., business-as-usual scenario). Compared with the Baseline Scenario there will be, by 2010, 2020, and 2030, respectively, a decrease of 29-152, 30-212 and 39-287 acute excess deaths; and 340-1811, 356-2529 and 462-3424 chronic excess deaths associated with the reduction of PM(10) level; also a decrease of 237-331, 285-371 and 400-554 short-term excess deaths associated with the decrease of SO(2) level. Meanwhile, the number of respiratory and cardiovascular hospital admissions, outpatient visits to internal and paediatrics departments, total emergency room visits and asthma attacks will be remarkably reduced with the reduction of air pollution. Energy structure improvement could reduce ambient air pollution and produce substantial health benefits to the population in Beijing. These findings may have significant implications for other metropolitan cities, particularly in developing countries.

  5. Effects of air pollution on hematological parameters in passerine birds.

    PubMed

    Llacuna, S; Gorriz, A; Riera, M; Nadal, J

    1996-07-01

    The effects of atmospheric air pollution on some hematological, and bioquimic parameters, of passerine birds were analyzed. The studies were undertaken in the area of Cercs (polluted area in Spain), where there is a coal-fired power plant that emanates SO2, NOx, and particles, and the area of St. Jaume de Frontanya (nonpolluted area) located 40 km from the area of Cercs with similar climatology, relief, and altitude, but without air pollution. The results showed that there was a significant decrease in the erythrocyte count, and an increase in erythrocyte size in specimens from the polluted area. An increase in pre-albumines and a decrease in beta-globulines in Emberiza cia was observed, while an increase in transaminases (GOT and GPT), and a decrease in weight in Turdus merula from the polluted zone was observed.

  6. Air pollution interventions and their impact on public health.

    PubMed

    Henschel, Susann; Atkinson, Richard; Zeka, Ariana; Le Tertre, Alain; Analitis, Antonis; Katsouyanni, Klea; Chanel, Olivier; Pascal, Mathilde; Forsberg, Bertil; Medina, Sylvia; Goodman, Patrick G

    2012-10-01

    Numerous epidemiological studies have found a link between air pollution and health. We are reviewing a collection of published intervention studies with particular focus on studies assessing both improvements in air quality and associated health effects. Interventions, defined as events aimed at reducing air pollution or where reductions occurred as a side effect, e.g. strikes, German reunification, from the 1960s onwards were considered for inclusion. This review is not a complete record of all existing air pollution interventions. In total, 28 studies published in English were selected based on a systematic search of internet databases. Overall air pollution interventions have succeeded at improving air quality. Consistently published evidence suggests that most of these interventions have been associated with health benefits, mainly by the way of reduced cardiovascular and/or respiratory mortality and/or morbidity. The decrease in mortality from the majority of the reviewed interventions has been estimated to exceed the expected predicted figures based on the estimates from time-series studies. There is consistent evidence that decreased air pollution levels following an intervention resulted in health benefits for the assessed population.

  7. Ambient air quality trends and driving factor analysis in Beijing, 1983-2007.

    PubMed

    Zhang, Ju; Ouyang, Zhiyun; Miao, Hong; Wang, Xiaoke

    2011-01-01

    The rapid development in Beijing, the capital of China, has resulted in serious air pollution problems. Meanwhile great efforts have been made to improve the air quality, especially since 1998. The variation in air quality under the interaction of pollution and control in this mega city has attracted much attention. We analyzed the changes in ambient air quality in Beijing since the 1980's using the Daniel trend test based on data from long-term monitoring stations. The results showed that different pollutants displayed three trends: a decreasing trend, an increasing trend and a flat trend. SO2, dustfall, B[a]P, NO2 and PM10 fit decreasing trend pattern, while NOx showed an increasing trend, and CO, ozone pollution, total suspended particulate (TSP), as well as Pb fit the flat trend. The cause of the general air pollution in Beijing has changed from being predominantly related to coal burning to mixed traffic exhaust and coal burning related pollution. Seasonally, the pollution level is typically higher during the heating season from November to the following March. The interaction between pollution sources change and implementation of air pollution control measures was the main driving factor that caused the variation in air quality. Changes of industrial structure and improved energy efficiency, the use of clean energy and preferred use of clean coal, reduction in pollution sources, and implementation of advanced environmental standards have all contributed to the reduction in air pollution, particularly since 1998.

  8. Air pollution and population health: a global challenge.

    PubMed

    Chen, Bingheng; Kan, Haidong

    2008-03-01

    "Air pollution and population health" is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still at relatively high levels, though the levels have been gradually decreasing or have remained stable during rapid economic development. In recent years, several hundred epidemiological studies have emerged showing adverse health effects associated with short-term and long-term exposure to air pollutants. Time-series studies conducted in Asian cities also showed similar health effects on mortality associated with exposure to particulate matter (PM), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)) and ozone (O(3)) to those explored in Europe and North America. The World Health Organization (WHO) published the "WHO Air Quality Guidelines (AQGs), Global Update" in 2006. These updated AQGs provide much stricter guidelines for PM, NO(2), SO(2) and O(3). Considering that current air pollution levels are much higher than the WHO-recommended AQGs, interim targets for these four air pollutants are also recommended for member states, especially for developing countries in setting their country-specific air quality standards. In conclusion, ambient air pollution is a health hazard. It is more important in Asian developing countries within the context of pollution level and population density. Improving air quality has substantial, measurable and important public health benefits.

  9. Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.).

    PubMed

    Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat

    2016-05-01

    Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.

  10. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  11. The Emerging Role of Outdoor and Indoor Air Pollution in Cardiovascular Disease

    PubMed Central

    Uzoigwe, Jacinta C.; Prum, Thavaleak; Bresnahan, Eric; Garelnabi, Mahdi

    2013-01-01

    Outdoor and indoor air pollution poses a significant cardiovascular risk, and has been associated with atherosclerosis, the main underlying pathology in many cardiovascular diseases. Although, it is well known that exposure to air pollution causes pulmonary disease, recent studies have shown that cardiovascular health consequences of air pollution generally equal or exceed those due to pulmonary diseases. The objective of this article is to evaluate the current evidence on the emerging role of environmental air pollutions in cardiovascular disease, with specific focus on the types of air pollutants and mechanisms of air pollution-induced cardiotoxicity. Published literature on pollution was systematically reviewed and cited in this article. It is hoped that this review will provide a better understanding of the harmful cardiovascular effects induced by air pollution exposure. This will help to bring a better understanding on the possible preventive health measures and will also serve regulatory agencies and researchers. In addition, elucidating the biological mechanisms underlying the link between air pollution and cardiovascular disease is an essential target in developing novel pharmacological strategies aimed at decreasing adverse effects of air pollution on cardiovascular system. PMID:24083218

  12. Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany

    PubMed Central

    Breitner, Susanne; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Wölke, Gabriele; Kreyling, Wolfgang; Küchenhoff, Helmut; Heinrich, Joachim; Wichmann, H.-Erich; Peters, Annette

    2009-01-01

    Background Numerous studies have shown associations between ambient air pollution and daily mortality. Objectives Our goal was to investigate the association of ambient air pollution and daily mortality in Erfurt, Germany, over a 10.5-year period after the German unification, when air quality improved. Methods We obtained daily mortality counts and data on mass concentrations of particulate matter (PM) < 10 μm in aerodynamic diameter (PM10), gaseous pollutants, and meteorology in Erfurt between October 1991 and March 2002. We obtained ultrafine particle number concentrations (UFP) and mass concentrations of PM < 2.5 μm in aerodynamic diameter (PM2.5) from September 1995 to March 2002. We analyzed the data using semiparametric Poisson regression models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology. We evaluated cumulative associations between air pollution and mortality using polynomial distributed lag (PDL) models and multiday moving averages of air pollutants. We evaluated changes in the associations over time in time-varying coefficient models. Results Air pollution concentrations decreased over the study period. Cumulative exposure to UFP was associated with increased mortality. An interquartile range (IQR) increase in the 15-day cumulative mean UFP of 7,649 cm−3 was associated with a relative risk (RR) of 1.060 [95% confidence interval (CI), 1.008–1.114] for PDL models and an RR/IQR of 1.055 (95% CI, 1.011–1.101) for moving averages. RRs decreased from the mid-1990s to the late 1990s. Conclusion Results indicate an elevated mortality risk from short-term exposure to UFP. They further suggest that RRs for short-term associations of air pollution decreased as pollution control measures were implemented in Eastern Germany. PMID:19337521

  13. Health Effects of Air Pollution: A Historical Review and Present Status.

    PubMed

    Shima, Masayuki

    2017-01-01

    During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.

  14. ATTENUATION OF SOLAR UV RADIATION BY AEROSOLS DURING AIR POLLUTION EPISODES

    EPA Science Inventory

    Increase in the amount of solar UV radiation reaching the surface due to decrease in stratospheric ozone continues to be a major concern (WMO, 1998). However, recent studies show that absorption and smattering by aerosols during air pollution episode decreases the amount of radi...

  15. Effects of air pollutants on lemons and naval oranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.R.

    1968-01-01

    The effects of photochemical oxidant and fluoride air pollutants on lemon and orange trees were evaluated in a series of greenhouse experiments. Trees exposed to the pollutants show increased lead drop and decreased fruit yield in comparison to controls.

  16. Outdoor air pollutants and patient health.

    PubMed

    Laumbach, Robert J

    2010-01-15

    Almost 160 million persons live in areas of the United States that exceed federal health-based air pollution standards. The two air pollutants that most commonly exceed standards are ozone and particulate matter. Ozone and particulate matter can harm anyone if levels are sufficiently elevated, but health risk from air pollution is greatest among vulnerable populations. Both ozone and particulate matter can cause pulmonary inflammation, decreased lung function, and exacerbation of asthma and chronic obstructive pulmonary disease. Particulate matter is also strongly associated with increased cardiovascular morbidity and mortality. Children, older adults, and other vulnerable persons may be sensitive to lower levels of air pollution. Persons who are aware of local air pollution levels, reported daily by the U.S. Environmental Protection Agency as the Air Quality Index, can take action to reduce exposure. These actions include simple measures to limit exertion and time spent outdoors when air pollution levels are highest, and to reduce the infiltration of outdoor air pollutants into indoor spaces.

  17. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    EPA Science Inventory

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  18. Mature ponderosa pine nutrient use and allocation responses to air pollution

    Treesearch

    Mark A. Poth; Mark E. Fenn

    1998-01-01

    Current-year needles from mature ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) were sampled at four sites across the air pollution gradient in the San Bernardino Mountains in southern California. The sites, in order of decreasing air pollution exposure, included: Sky Forest (SF), Conference Center (CC), Camp Angelus (CA) and Heart Bar (HB)....

  19. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; >Tahira Yasmin,

    2013-06-01

    The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.

  20. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-02-11

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level.Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.

  1. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases

    PubMed Central

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase. Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health. The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level. Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions. PMID:23398734

  2. Thirty-year survey on airborne pollen concentrations in Genoa, Italy: relationship with sensitizations, meteorological data, and air pollution.

    PubMed

    Negrini, Arsenio Corrado; Negrini, Simone; Giunta, Vania; Quaglini, Silvana; Ciprandi, Giorgio

    2011-01-01

    Pollen allergy represents a relevant health issue. Betulaceae sensitization significantly increased in Genoa, Italy, in the last decades. This study investigated possible relationships among pollen count, meteorological changes, air pollution, and sensitizations in this city during a 30-year period. Betulaceae, Urticaceae, Gramineae, and Oleaceae pollen counts were measured from 1981 to 2010 in Genoa. Sensitization to these pollens was also considered in large populations of allergic patients. Meteorological parameters and pollutants were also measured in the same area. Betulaceae sensitization increased over time. All pollen species significantly increased over this time. Pollen season advanced for Betulaceae and Urticaceae. Only Urticaceae season significantly increased. Temperature increased while rainfall decreased over the time. Pollutants significantly decreased. There were some relationships between pollen changes and climatic and air pollution parameters. This 30-year study conducted in an urbanized area provided evidence that Betulaceae sensitization significantly increased, pollen load significantly augmented, and climate and air pollution changed with a possible influence on pollen release.

  3. Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan.

    PubMed

    Hasunuma, Hideki; Ishimaru, Yasushi; Yoda, Yoshiko; Shima, Masayuki

    2014-05-01

    In Japan, air pollution due to nitrogen oxides (NOx) and particulate matter (PM) has been gradually reduced since control measures based on the Automobile NOx/PM law were enforced beginning in 2001. The effects of decrease in air pollutants due to the control measures during the past decade on the prevalence of respiratory and allergic disorders such as asthma in children were evaluated. Using data of 618,973 children collected in 28 regions of Japan from 1997 to 2009, we evaluated whether reductions in the concentrations of nitrogen dioxide (NO2) and suspended particulate matter (SPM) contribute to the decrease in the prevalence of asthma, wheezing, bronchitis, allergic rhinitis, and atopic dermatitis by multiple linear regression analysis, including adjustments for related factors. The annual rates of decrease in air pollution in the PM-law-enforced areas were 2.0 and 2.5 times higher for NO2 and SPM, respectively, compared with those in the non-enforced areas. The prevalence of asthma decreased significantly at -0.073% per year in the areas in which measures based on the Automobile NOx/PM law were taken but not in area where such measures were not applied. Multiple linear regression analysis showed a reduction in the ambient air pollution was significantly associated with a reduction in the prevalence of asthma, with a rate of 0.118% [95% confidence interval (CI): 0.012-0.225] per 1 ppb for NO2, and 0.050% [95% CI: 0.020-0.080] per 1 μg/m(3) for SPM. An increase in the ambient air pollution was associated with an increase in the prevalence of atopic dermatitis of 0.390% [95% CI: 0.107-0.673] per 1 ppb for NO2, 0.141% [95% CI: 0.058-0.224] per 1 μg/m(3) for SPM. The changes in the prevalence of wheezing and allergic rhinitis were not significantly correlated with changes in air pollutant concentrations. The enforcement of measures to control automobile emissions based on the Automobile NOx/PM law was shown to have reduced air pollution and contributed to decreases in the prevalence of respiratory and allergic disorders in 3-year-old children. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Urban air pollution, poverty, violence and health--Neurological and immunological aspects as mediating factors.

    PubMed

    Kristiansson, Marianne; Sörman, Karolina; Tekwe, Carmen; Calderón-Garcidueñas, Lilian

    2015-07-01

    Rapid rural-urban migration has created overcrowded areas characterized by concentrated poverty and increases in indoor and outdoor air pollutants. These "hotspots" constitute an increased risk of violence and disease outbreaks. We hypothesize that the effects of poverty and associated air pollution-related stress on impaired cognitive skills are mediated by inflammatory cytokines. A research framework is proposed, encompassing (i) an epidemiological investigation of associations between poverty, high concentrations of air pollutants, violence and health, (ii) a longitudinal follow-up of working memory capacities and inflammatory markers, and (iii) intervention programs aiming to strengthen employability and decreased exposures to toxic air pollutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Assessing the resilience of urban areas to traffic-related air pollution: Application in Greater Paris.

    PubMed

    Cariolet, Jean-Marie; Colombert, Morgane; Vuillet, Marc; Diab, Youssef

    2018-02-15

    Recent studies report that outdoor air pollution will become the main environmental cause of premature death over the next few decades (OECD, 2012; WHO, 2014; World Bank, 2016). Cities are considered hot spots and urban populations are particularly exposed. There is therefore an urgent need to adapt urban systems and urban design to tackle this issue. While most European cities have introduced measures to reduce emissions, action is still required to reduce concentrations and exposure, and a holistic approach to urban design is badly needed. The concept of urban resilience, defined by Holling (1987) as the ability of a city to absorb a disturbance while maintaining its functions and structures, may offer a new paradigm for tackling urban air pollution. We propose to adapt the concept of urban resilience to outdoor air pollution. A method has been developed to assess the resilience of an urban area to outdoor air pollution. Three "resilience capacities" have been identified: the capacity of an urban area to decrease air pollution emissions, the capacity to decrease concentrations and the capacity to decrease exposure. The calculation is based on the analysis of urban design, defined as the pattern of buildings as well as the structural elements that define an urban area (urban morphology; transport network, services and land use). For each resilience capacity, indicators are calculated using a Geographic Information System (GIS) and a grid-based approach. This method has been implemented in the Greater Paris area within a 500m grid-cell system. Greater Paris is one of the densest urban areas in Europe and experiences high air pollution levels. The proposed "quick scan" method helps to localize areas where specific action is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    PubMed Central

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  7. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  8. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  9. Air pollution during pregnancy and lung development in the child.

    PubMed

    Korten, Insa; Ramsey, Kathryn; Latzin, Philipp

    2017-01-01

    Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Investigating the association between birth weight and complementary air pollution metrics: a cohort study.

    PubMed

    Laurent, Olivier; Wu, Jun; Li, Lianfa; Chung, Judith; Bartell, Scott

    2013-02-17

    Exposure to air pollution is frequently associated with reductions in birth weight but results of available studies vary widely, possibly in part because of differences in air pollution metrics. Further insight is needed to identify the air pollution metrics most strongly and consistently associated with birth weight. We used a hospital-based obstetric database of more than 70,000 births to study the relationships between air pollution and the risk of low birth weight (LBW, <2,500 g), as well as birth weight as a continuous variable, in term-born infants. Complementary metrics capturing different aspects of air pollution were used (measurements from ambient monitoring stations, predictions from land use regression models and from a Gaussian dispersion model, traffic density, and proximity to roads). Associations between air pollution metrics and birth outcomes were investigated using generalized additive models, adjusting for maternal age, parity, race/ethnicity, insurance status, poverty, gestational age and sex of the infants. Increased risks of LBW were associated with ambient O(3) concentrations as measured by monitoring stations, as well as traffic density and proximity to major roadways. LBW was not significantly associated with other air pollution metrics, except that a decreased risk was associated with ambient NO(2) concentrations as measured by monitoring stations. When birth weight was analyzed as a continuous variable, small increases in mean birth weight were associated with most air pollution metrics (<40 g per inter-quartile range in air pollution metrics). No such increase was observed for traffic density or proximity to major roadways, and a significant decrease in mean birth weight was associated with ambient O3 concentrations. We found contrasting results according to the different air pollution metrics examined. Unmeasured confounders and/or measurement errors might have produced spurious positive associations between birth weight and some air pollution metrics. Despite this, ambient O(3) was associated with a decrement in mean birth weight and significant increases in the risk of LBW were associated with traffic density, proximity to roads and ambient O(3). This suggests that in our study population, these air pollution metrics are more likely related to increased risks of LBW than the other metrics we studied. Further studies are necessary to assess the consistency of such patterns across populations.

  11. Investigating the association between birth weight and complementary air pollution metrics: a cohort study

    PubMed Central

    2013-01-01

    Background Exposure to air pollution is frequently associated with reductions in birth weight but results of available studies vary widely, possibly in part because of differences in air pollution metrics. Further insight is needed to identify the air pollution metrics most strongly and consistently associated with birth weight. Methods We used a hospital-based obstetric database of more than 70,000 births to study the relationships between air pollution and the risk of low birth weight (LBW, <2,500 g), as well as birth weight as a continuous variable, in term-born infants. Complementary metrics capturing different aspects of air pollution were used (measurements from ambient monitoring stations, predictions from land use regression models and from a Gaussian dispersion model, traffic density, and proximity to roads). Associations between air pollution metrics and birth outcomes were investigated using generalized additive models, adjusting for maternal age, parity, race/ethnicity, insurance status, poverty, gestational age and sex of the infants. Results Increased risks of LBW were associated with ambient O3 concentrations as measured by monitoring stations, as well as traffic density and proximity to major roadways. LBW was not significantly associated with other air pollution metrics, except that a decreased risk was associated with ambient NO2 concentrations as measured by monitoring stations. When birth weight was analyzed as a continuous variable, small increases in mean birth weight were associated with most air pollution metrics (<40 g per inter-quartile range in air pollution metrics). No such increase was observed for traffic density or proximity to major roadways, and a significant decrease in mean birth weight was associated with ambient O3 concentrations. Conclusions We found contrasting results according to the different air pollution metrics examined. Unmeasured confounders and/or measurement errors might have produced spurious positive associations between birth weight and some air pollution metrics. Despite this, ambient O3 was associated with a decrement in mean birth weight and significant increases in the risk of LBW were associated with traffic density, proximity to roads and ambient O3. This suggests that in our study population, these air pollution metrics are more likely related to increased risks of LBW than the other metrics we studied. Further studies are necessary to assess the consistency of such patterns across populations. PMID:23413962

  12. Synergy between air pollution and urban meteorological changes through aerosol-radiation-diffusion feedback―A case study of Beijing in January 2013

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ueda, Hiromasa; Han, Zhiwei; Kudo, Rei; Inomata, Yayoi; Kaku, Hidenori

    2017-12-01

    The interactions of aerosol-radiation-stratification-turbulence-cloud processes during a severe haze event in Beijing in January 2013 were studied using a numerical model. For the clear days, solar radiation flux was reduced by approximately 15% and surface temperature was slightly decreased from 0 to 0.5 K throughout the day and night, except for a 1.4 K decrease around sunrise when fog was presented. The longwave radiation cooling was intensified by the fog or drizzle droplets near the top of the fog layer. Thus, in Beijing, both in the daytime and at night, the surface air temperature was decreased by air pollutants. In the presence of the low-level stratus and light precipitation, the modification of meteorology by aerosols was amplified and changed the wind speed and direction much more significantly compared to clear days. The non-linear effect (or positive feedback) of pollutant emission control on the surface air concentration was newly assessed―severe air pollution leads to the intensification of stable stratification near the surface at night and delays the evolution of the mixing layer, which in turn causes more severe air pollution. The non-linear effect was not significant for the current emission levels in the current case, approximately 10%. In another word, the mixing ratio of aerosols became higher by 10% due to their radiation effects.

  13. Effect of environmental air pollution on cardiovascular diseases.

    PubMed

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  14. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-06

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  15. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods.

    PubMed

    Sun, Jie; Wang, Yuesi; Wu, Fangkun; Tang, Guiqian; Wang, Lili; Wang, Yinghong; Yang, Yuan

    2018-05-01

    In recent years, photochemical smog and gray haze-fog have frequently appeared over northern China. To determine the spatial distribution of volatile organic compounds (VOC) during a pollution period, tethered balloon flights were conducted over a suburban site on the North China Plain. Statistical analysis showed that the VOCs concentrations peaked at the surface, and decreased with altitude. A rapid decrease appeared from the surface to 400 m, with concnetrations of alkanes, alkenes, aromatics and halocarbons decreasing by 48.0%, 53.3%, 43.3% and 51.1%, respectively. At heights in the range of 500-1000 m, alkenes concnetrations decline by 40.2%; alkanes and halocarbons concnetrations only decreased by 24.8% and 6.4%, respectively; and aromatics increased slightly by 5.5%. High concentrations VOCs covered a higher range of height (400 m) on heavy pollution days due to lacking of diffusion power. The VOCs concentrations decreased by 50% at 200 m on light pollution days. The transport of air mass affected the composition and concentration of high-altitude VOCs, especially on lightly polluted days. These air masses originated in areas with abundant traffic and combustion sources. Reactive aromatics (k OH >20,000 ppm -1  min -1 and k OH <20,000 ppm -1  min -1 ) were the main contributor to the ozone formation, accounting for 37%, on the surface on light pollution days. The contribution increased to 52% with pollution aggravated, and increased to 64% with height. The contributions of reactive aromatics were influenced by the degree of air mass aging. Under the umbrella of aging air mass, the contribution of reactive aromatics increased with height. Copyright © 2017. Published by Elsevier Ltd.

  16. Socioeconomic position and low birth weight among mothers exposed to traffic-related air pollution.

    PubMed

    Habermann, Mateus; Gouveia, Nelson

    2014-01-01

    Atmospheric pollution is a major public health concern. It can affect placental function and restricts fetal growth. However, scientific knowledge remains too limited to make inferences regarding causal associations between maternal exposure to air pollution and adverse effects on pregnancy. This study evaluated the association between low birth weight (LBW) and maternal exposure during pregnancy to traffic related air pollutants (TRAP) in São Paulo, Brazil. Analysis included 5,772 cases of term-LBW (<2,500 g) and 5,814 controls matched by sex and month of birth selected from the birth registration system. Mothers' addresses were geocoded to estimate exposure according to 3 indicators: distance from home to heavy traffic roads, distance-weighted traffic density (DWTD) and levels of particulate matter ≤10 µg/m3 estimated through land use regression (LUR-PM10). Final models were evaluated using multiple logistic regression adjusting for birth, maternal and pregnancy characteristics. We found decreased odds in the risk of LBW associated with DWTD and LUR-PM10 in the highest quartiles of exposure with a significant linear trend of decrease in risk. The analysis with distance from heavy traffic roads was less consistent. It was also observed that mothers with higher education and neighborhood-level income were potentially more exposed to TRAP. This study found an unexpected decreased risk of LBW associated with traffic related air pollution. Mothers with advantaged socioeconomic position (SEP) although residing in areas of higher vehicular traffic might not in fact be more expose to air pollution. It can also be that the protection against LBW arising from a better SEP is stronger than the effect of exposure to air pollution, and this exposure may not be sufficient to increase the risk of LBW for these mothers.

  17. Socioeconomic Position and Low Birth Weight among Mothers Exposed to Traffic-Related Air Pollution

    PubMed Central

    Habermann, Mateus; Gouveia, Nelson

    2014-01-01

    Background Atmospheric pollution is a major public health concern. It can affect placental function and restricts fetal growth. However, scientific knowledge remains too limited to make inferences regarding causal associations between maternal exposure to air pollution and adverse effects on pregnancy. This study evaluated the association between low birth weight (LBW) and maternal exposure during pregnancy to traffic related air pollutants (TRAP) in São Paulo, Brazil. Methods and findings Analysis included 5,772 cases of term-LBW (<2,500 g) and 5,814 controls matched by sex and month of birth selected from the birth registration system. Mothers’ addresses were geocoded to estimate exposure according to 3 indicators: distance from home to heavy traffic roads, distance-weighted traffic density (DWTD) and levels of particulate matter ≤10 µg/m3 estimated through land use regression (LUR-PM10). Final models were evaluated using multiple logistic regression adjusting for birth, maternal and pregnancy characteristics. We found decreased odds in the risk of LBW associated with DWTD and LUR-PM10 in the highest quartiles of exposure with a significant linear trend of decrease in risk. The analysis with distance from heavy traffic roads was less consistent. It was also observed that mothers with higher education and neighborhood-level income were potentially more exposed to TRAP. Conclusions This study found an unexpected decreased risk of LBW associated with traffic related air pollution. Mothers with advantaged socioeconomic position (SEP) although residing in areas of higher vehicular traffic might not in fact be more expose to air pollution. It can also be that the protection against LBW arising from a better SEP is stronger than the effect of exposure to air pollution, and this exposure may not be sufficient to increase the risk of LBW for these mothers. PMID:25426640

  18. Mortality reduction following the air pollution control measures during the 2010 Asian Games

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Zhang, Yonghui; Liu, Tao; Xiao, Jianpeng; Xu, Yanjun; Xu, Xiaojun; Qian, Zhenmin; Tong, Shilu; Luo, Yuan; Zeng, Weilin; Ma, Wenjun

    2014-07-01

    Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2006-2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73-0.86), 0.77 (95% CI: 0.66-0.89) and 0.68 (95% CI: 0.57-0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

  19. Long term variations of the atmospheric air pollutants in Istanbul City.

    PubMed

    Ozcan, H Kurtulus

    2012-03-01

    High population density and intense industrial activity has resulted in various forms of pollution in megacities. Air pollution ranks at the top of this list. This study investigated long-term changes in air pollutant parameters (SO(2), CO, NO, NO(2), NO(x)) in Istanbul City, Turkey, using data from air-quality measurement stations on the Asian and European sides of Istanbul. The results show decreases from 2002 to 2010 in the amounts of SO(2) (one of the main pollutants released as a result of the burning of fossil fuels) and CO (indicative of incomplete combustion). However, NO(x) concentrations showed fluctuations over time, rather than a steady decline throughout the study period.

  20. Long Term Variations of the Atmospheric Air Pollutants in Istanbul City

    PubMed Central

    Ozcan, H. Kurtulus

    2012-01-01

    High population density and intense industrial activity has resulted in various forms of pollution in megacities. Air pollution ranks at the top of this list. This study investigated long-term changes in air pollutant parameters (SO2, CO, NO, NO2, NOx) in Istanbul City, Turkey, using data from air-quality measurement stations on the Asian and European sides of Istanbul. The results show decreases from 2002 to 2010 in the amounts of SO2 (one of the main pollutants released as a result of the burning of fossil fuels) and CO (indicative of incomplete combustion). However, NOx concentrations showed fluctuations over time, rather than a steady decline throughout the study period. PMID:22690163

  1. Mortality from asthma and chronic bronchitis associated with changes in sulfur oxides air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, M.; Yoshida, K.; Kitabatake, M.

    Death certificates issued in Yokkaichi, Japan, during the 21 yr from 1963 until 1983 were surveyed to determine the relationship between changes in air pollution and mortality due to bronchial asthma and chronic bronchitis. The following results were obtained. In response to worsening air pollution, mortality for bronchial asthma and chronic bronchitis began to increase. Mortality due to bronchial asthma decreased immediately in response to improvement of pollution, whereas mortality due to chronic bronchitis decreased to the level in the control area 4 to 5 yr after the concentration of sulfur dioxide (SO/sub 2/) began to satisfy the ambient airmore » quality standard. In the polluted area, mortality due to bronchial asthma in subjects who were 20 yr of age was higher during the period in which higher concentrations of sulfur oxides were prevalent.« less

  2. Association between exposure to ambient air pollution and renal function in Korean adults.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  < 0.05). In the full covariate model, interquartile range increases in the annual mean concentrations of PM 10 and NO 2 were associated with decreases in eGFR levels of 0.46 (95% CI = - 0.87, - 0.04) and 0.85 (95% CI = - 1.40, - 0.30), respectively. Three of the ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p  < 0.0001), but all significant associations disappeared after adjusting for covariates (all p  > 0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  3. Impact of varying area of polluting surface materials on perceived air quality.

    PubMed

    Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F

    2003-06-01

    A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.

  4. Health status and air pollution related socioeconomic concerns in urban China.

    PubMed

    Jiao, Kaishan; Xu, Mengjia; Liu, Meng

    2018-02-05

    China is experiencing environmental issues and related health effects due to its industrialization and urbanization. The health effects associated with air pollution are not just a matter of epidemiology and environmental science research, but also an important social science issue. Literature about the relationship of socioeconomic factors with the environment and health factors is inadequate. The relationship between air pollution exposure and health effects in China was investigated with consideration of the socioeconomic factors. Based on nationwide survey data of China in 2014, we applied the multilevel mixed-effects model to evaluate how socioeconomic status (represented by education and income) contributed to the relationship between self-rated air pollution and self-rated health status at community level and individual level. The findings indicated that there was a non-linear relationship between the community socioeconomic status and community air pollution in urban China, with the highest level of air pollution presented in the communities with moderate socioeconomic status. In addition, health effects associated air pollution in different socioeconomic status groups were not equal. Self-rated air pollution had the greatest impact on self-rated health of the lower socioeconomic groups. With the increase of socioeconomic status, the effect of self-rated air pollution on self-rated health decreased. This study verified the different levels of exposure to air pollution and inequality in health effects among different socioeconomic groups in China. It is imperative for the government to urgently formulate public policies to enhance the ability of the lower socioeconomic groups to circumvent air pollution and reduce the health damage caused by air pollution.

  5. Traffic Related Air Quality Trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P.; Andrade, M. D. F.

    2014-12-01

    An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).

  6. Possible molecular mechanisms linking air pollution and asthma in children.

    PubMed

    Esposito, Susanna; Tenconi, Rossana; Lelii, Mara; Preti, Valentina; Nazzari, Erica; Consolo, Silvia; Patria, Maria Francesca

    2014-03-01

    Air pollution has many effects on the health of both adults and children, but children's vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics. Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children's susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections. Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.

  7. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    PubMed

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  8. IMPROVE AND APPLY CHEMICAL MECHANISMS FOR DEVELOPING OZONE CONTROL STRATEGIES

    EPA Science Inventory

    Air quality models that realistically describe the formation of ozone, air toxics, and other pollutants are needed by EPA and state agencies to predict current and future concentrations of these pollutants and develop ways to decrease their concentrations below harmful levels. ...

  9. Air quality management in China: issues, challenges, and options.

    PubMed

    Wang, Shuxiao; Hao, Jiming

    2012-01-01

    This article analyzed the control progress and current status of air quality, identified the major air pollution issues and challenges in future, proposed the long-term air pollution control targets, and suggested the options for better air quality in China. With the continuing growth of economy in the next 10-15 years, China will face a more severe situation of energy consumption, electricity generation and vehicle population leading to increase in multiple pollutant emissions. Controlling regional air pollution especially fine particles and ozone, as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country. To protect public health and the eco-system, the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO). To achieve the air quality targets, the emissions of SO2, NOx, PM10, and volatile organic compounds (VOC) should decrease by 60%, 40%, 50%, and 40%, respectively, on the basis of that in 2005. A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China. The options include development of clean energy resources, promotion of clean and efficient coal use, enhancement of vehicle pollution control, implementation of synchronous control of multiple pollutants including SO2, NOx, VOC, and PM emissions, joint prevention and control of regional air pollution, and application of climate friendly air pollution control measures.

  10. Climate change and air pollution: Effects on pollen allergy and other allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Bergmann, Karl Christian; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Sanduzzi, Alessandro; Liccardi, Gennaro; Vitale, Carolina; Stanziola, Anna; D'Amato, Maria

    The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollen grains especially in the presence of specific weather conditions. Although genetic factors are important in the development of asthma and allergic diseases, their rising trend can be explained only by changes occurring in the environment and urban air pollution by motor vehicles has been indicated as one of the major risk factors responsible for this increase. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world with a significant effect on respiratory health. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favor the accumulation of air pollutants at ground level. Associations between thunderstorms and asthma morbidity of pollinosis-affected people have also been identified in multiple locations around the world ( Fig. 1). Cite this as D'Amato G, Bergmann KC, Cecchi L, Annesi-Maesano I, Sanduzzi A, Liccardi G, Vitale C, Stanziola A, D'Amato M. Climate change and air pollution - Effects on pollen allergy and other allergic respiratory diseases. Allergo J Int 2014; 23: 17-23 DOI 10.1007/s40629-014-0003-7 A factor clouding the problem is that laboratory evaluations do not reflect what happens during natural exposition. Considering these aspects, governments worldwide, international organizations, and cooperations such as the World Health Organization (WHO) and the European Health Policy of the European Union (EU) are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.

  11. Evaluating the Impacts of Transboundary Air pollution from China on Air Quality in the U.S. Using a Regression Framework

    NASA Astrophysics Data System (ADS)

    Ngo, N. S.; Bao, X.; Zhong, N.

    2014-12-01

    China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in CA decreases by 3 μg/m3. We also conduct other tests and sensitivity checks, like observing impacts from individual cities in China or other events, and using daily leads as a falsification test. Our results have important policy implications regarding the consequences of foreign pollution sources and suggest a causal relationship between pollution from China and air quality in CA.

  12. Feasibility of Assessing Public Health Impacts of Air Pollution Reduction Programs on a Local Scale: New Haven Case Study

    PubMed Central

    Lobdell, Danelle T.; Isakov, Vlad; Baxter, Lisa; Touma, Jawad S.; Smuts, Mary Beth; Özkaynak, Halûk

    2011-01-01

    Background New approaches to link health surveillance data with environmental and population exposure information are needed to examine the health benefits of risk management decisions. Objective We examined the feasibility of conducting a local assessment of the public health impacts of cumulative air pollution reduction activities from federal, state, local, and voluntary actions in the City of New Haven, Connecticut (USA). Methods Using a hybrid modeling approach that combines regional and local-scale air quality data, we estimated ambient concentrations for multiple air pollutants [e.g., PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), NOx (nitrogen oxides)] for baseline year 2001 and projected emissions for 2010, 2020, and 2030. We assessed the feasibility of detecting health improvements in relation to reductions in air pollution for 26 different pollutant–health outcome linkages using both sample size and exploratory epidemiological simulations to further inform decision-making needs. Results Model projections suggested decreases (~ 10–60%) in pollutant concentrations, mainly attributable to decreases in pollutants from local sources between 2001 and 2010. Models indicated considerable spatial variability in the concentrations of most pollutants. Sample size analyses supported the feasibility of identifying linkages between reductions in NOx and improvements in all-cause mortality, prevalence of asthma in children and adults, and cardiovascular and respiratory hospitalizations. Conclusion Substantial reductions in air pollution (e.g., ~ 60% for NOx) are needed to detect health impacts of environmental actions using traditional epidemiological study designs in small communities like New Haven. In contrast, exploratory epidemiological simulations suggest that it may be possible to demonstrate the health impacts of PM reductions by predicting intraurban pollution gradients within New Haven using coupled models. PMID:21335318

  13. Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo.

    PubMed

    Mohallem, Soraya Vecci; de Araújo Lobo, Débora Jã; Pesquero, Célia Regina; Assunção, João Vicente; de Andre, Paulo Afonso; Saldiva, Paulo Hilário Nascimento; Dolhnikoff, Marisa

    2005-06-01

    It has largely been shown that air pollution can affect human health. Effects on human fertility have been shown mainly in males by a decrease in semen quality. Few studies have focused on the environmental effects on female fertility. The aim of the present study was to analyze the effects of air pollution in the city of Sao Paulo on mouse female fertility. Four groups of female Balb/c mice were placed in two chambers 10 days (newborn) or 10 weeks (adults) after birth. Mice were maintained in the chambers 24 h a day, 7 days a week, for 4 months. The first chamber received air that had passed through an air filter (clean chamber) and the second received ambient air (polluted chamber). We measured PM10 and NO2 inside both chambers. Mice belonging to the adult groups were bred to male mice after living for 3 months inside the chambers. The newborn groups mated after reaching reproductive age (12 weeks). After 19 days of pregnancy the numbers of live-born pups, reabsorptions, fetal deaths, corpora lutea, and implantation failures were determined. PM10 and NO2 concentrations in the clean chamber were 50% and 77.5% lower than in the polluted chamber, respectively. Differences in fertility parameters between groups were observed only in animals exposed to air pollution at an early age (10 days after birth). We observed a higher number of live-born pups per animal in the clean chamber than per animal from the polluted chamber (median=6.0 and 4.0, respectively; P=0.037). There was a higher incidence of implantation failures in the polluted group than in the clean group (median=3.5 and 2.0, respectively; P=0.048). There were no significant differences in the other reproductive parameters between groups. These results support the concept that female reproductive health represents a target of air pollutants.

  14. Higher fuel prices are associated with lower air pollution levels.

    PubMed

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Impact of noise and air pollution on pregnancy outcomes.

    PubMed

    Gehring, Ulrike; Tamburic, Lillian; Sbihi, Hind; Davies, Hugh W; Brauer, Michael

    2014-05-01

    Motorized traffic is an important source of both air pollution and community noise. While there is growing evidence for an adverse effect of ambient air pollution on reproductive health, little is known about the association between traffic noise and pregnancy outcomes. We evaluated the impact of residential noise exposure on small size for gestational age, preterm birth, term birth weight, and low birth weight at term in a population-based cohort study, for which we previously reported associations between air pollution and pregnancy outcomes. We also evaluated potential confounding of air pollution effects by noise and vice versa. Linked administrative health data sets were used to identify 68,238 singleton births (1999-2002) in Vancouver, British Columbia, Canada, with complete covariate data (sex, ethnicity, parity, birth month and year, income, and education) and maternal residential history. We estimated exposure to noise with a deterministic model (CadnaA) and exposure to air pollution using temporally adjusted land-use regression models and inverse distance weighting of stationary monitors for the entire pregnancy. Noise exposure was negatively associated with term birth weight (mean difference = -19 [95% confidence interval = -23 to -15] g per 6 dB(A)). In joint air pollution-noise models, associations between noise and term birth weight remained largely unchanged, whereas associations decreased for all air pollutants. Traffic may affect birth weight through exposure to both air pollution and noise.

  16. Metals in airpollution particles decrease whole blood coagulation time

    EPA Science Inventory

    The mechanism underlying the pro-coagulative effect of air pollution particle exposure is not known. We tested the postulate that 1) the soluble fraction ofan air pollution particle can affect whole blood coagulation time and 2) metals included in the soluble fraction are respons...

  17. Air pollution and heart rate variability: effect modification by chronic lead exposure.

    PubMed

    Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Wright, Robert O; Coull, Brent; Nie, Huiling; Hu, Howard; Schwartz, Joel

    2008-01-01

    Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied. We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates. We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability. People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.

  18. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  19. Regional air pollution at a turning point.

    PubMed

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  20. Ambient air pollution and semen quality.

    PubMed

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  1. Dust-wind interactions can intensify aerosol pollution over eastern China.

    PubMed

    Yang, Yang; Russell, Lynn M; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J

    2017-05-11

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s -1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  2. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T.; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, Ian A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zengast, Guang

    2016-08-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year-1), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000) deaths year-1 in 2000 to between 1.09 and 2.36 million deaths year-1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths year-1 for the four RCPs. The global mortality burden of PM2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths year-1 in 2000 to between 0.95 and 1.55 million deaths year-1 in 2100 for the four RCPs due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  3. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble.

    PubMed

    Silva, Raquel A; West, J Jason; Lamarque, Jean-François; Shindell, Drew T; Collins, William J; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M; Eyring, Veronika; Josse, Beatrice; MacKenzie, I A; Plummer, David; Righi, Mattia; Stevenson, David S; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM 2.5 ) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM 2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM 2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM 2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM 2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths/year for the four RCPs. The global mortality burden of PM 2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths/year in 2000 to between 0.95 and 1.55 million deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM 2.5 concentrations and changes in population and baseline mortality rates. Trends in future air pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  4. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  5. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  6. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  7. Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.

    2013-06-01

    The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

  8. Long-term mortality benefits of air quality improvement during the twelfth five-year-plan period in 31 provincial capital cities of China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Cai, Yuanyuan; Feng, Baixiang; Cao, Ganxiang; Lin, Hualiang; Xiao, Jianpeng; Li, Xing; Liu, Sha; Pei, Lei; Fu, Li; Yang, Xinyi; Zhang, Bo; Ma, Wenjun

    2018-01-01

    The severe air pollution across China in the past several years has made the Chinese government recognize its significant impacts on public health and society, and take enormous efforts to improve the air quality all over the country, especially during the Twelfth Five-Year Plan (12th FYP). However, the overall effectiveness of these air pollution control policies remains unclear. In this study, we selected the 31 municipalities and provincial capital cities in mainland China as study settings. We collected the annual average population size, mortality rates (total mortality and mortality due to cardiovascular diseases, respiratory diseases, total cancer, lung cancer and breast cancer) and concentrations of air pollutants (PM10, PM2.5, SO2 and NO2) in each capital city from 2010 to 2015 from national or local Statistical Yearbooks. The effect sizes of air pollutants on mortality were obtained from previously published meta analyses or cohort studies. We first estimated the annual mortality rates attributed to the changes in air pollutant concentrations for every city in each year. Then, we further estimated the mortality benefits in the scenarios where the air quality had reached the grade II levels of Chinese Ambient Air Quality Standards (CAAQS) and World Health Organization (WHO) guidelines. In most capital cities, we observed dominant decreases in air pollutant concentrations during the 12th FYP, particularly from 2013 to 2015, which has led to significant mortality benefits for the public. A total of 121,658 deaths (0.441‰) have been prevented due to the decrease of PM2.5concentrations from 2013 to 2015 in all included cities. The morality benefits were larger in capital cities located in the key regions (the three main regions and ten city groups) than the other cities. In addition, more mortality benefits could be obtained in the future if the air quality reaches the grade II levels of Chinese Ambient Air Quality Standards (CAAQS) or WHO guidelines. We concluded that substantial mortality benefits achieved during the 12th FYP may be attributed to the improvements in China's air quality, which indicated the significant effectiveness of air pollution control policies.

  9. Long term effects of exposure to automobile exhaust on the pulmonary function of female adults in Tokyo, Japan

    PubMed Central

    Sekine, K; Shima, M; Nitta, Y; Adachi, M

    2004-01-01

    Aims: To investigate the chronic effects of air pollution caused mainly by automobiles in healthy adult females. Methods: Respiratory symptoms were investigated in 5682 adult females who had lived in the Tokyo metropolitan area for three years or more in 1987; 733 of them were subjected to pulmonary function tests over eight years from 1987 to 1994. The subjects were divided into three groups by the level of air pollution they were exposed to during the study period. The concentrations of nitrogen dioxide and suspended particulate matter were the highest in group 1, and the lowest in group 3. Results: The prevalence rates of respiratory symptoms in group 1 were higher than those in groups 2 and 3, except for wheezing. Multiple logistic regression analysis showed significant differences in persistent phlegm and breathlessness. The subjects selected for the analysis of pulmonary function were 94, 210, and 102 females in groups 1, 2, and 3, respectively. The annual mean change of FEV1 in group 1 was the largest (-0.020 l/y), followed by that in group 2 (-0.015 l/y), and that in group 3 (-0.009 l/y). Testing for trends showed a significant larger decrease of FEV1 with the increase in the level of air pollution. Conclusions: The subjects living in areas with high levels of air pollution showed higher prevalence rates of respiratory symptoms and a larger decrease of FEV1 compared with those living in areas with low levels of air pollution. Since the traffic density is larger in areas with high air pollution, the differences among the groups may reflect the effect of air pollution attributable to particulate matter found in automobile exhaust. PMID:15031394

  10. Relationship between air pollutants and economic development of the provincial capital cities in China during the past decade.

    PubMed

    Luo, Yunpeng; Chen, Huai; Zhu, Qiu'an; Peng, Changhui; Yang, Gang; Yang, Yanzheng; Zhang, Yao

    2014-01-01

    With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictors such as Gross Regional Product per capita (GRP per capita), the concentration of air pollutants (PM10, SO2, NO2) and the air pollution index (API) from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provincial cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC), that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China.

  11. Acute Health Impact of Air Pollution in China

    NASA Astrophysics Data System (ADS)

    Feng, T.; Zhao, Y.; Zheng, M.

    2014-12-01

    Air pollution not only has long term health impact, but can affect health through acute exposure. This paper, using air pollution index (API) as overall evaluation of air quality, blood pressure and vital capacity as health outcomes, focuses on the acute health impact of air pollution in China. Current result suggests that after controlling smoking history, occupational exposure, income and education, API is positively associated with blood pressure and negatively associated with vital capacity. The associations became stronger for people with hypertension or pulmonary functional diseases, which indicates that these people are more sensitive to air pollution. Among three pollutants which API measures, that is inhalable particles (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2), PM10 is most statistically associated with blood pressure increase and vital capacity decrease. Further study will focusing on the following two questions. The first question is how various time lags affect the associations among API, blood pressure and vital capacity. The second question is how differently people in various cohorts reacts to acute exposure to air pollution. The differences in reactions of blood pressure and vital capacity between people in urban and rural areas, genders, various age cohorts, distinct income and education groups will be further studied.

  12. Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  13. Spatial Analysis of Air Quality Monitor Data in China, Japan, and South Korea

    NASA Astrophysics Data System (ADS)

    Rohde, Robert

    2016-04-01

    In 2015, Berkeley Earth published a widely-reported study concluding that air pollution contributes to 1.6 million deaths per year in China. This presentation will provide an update on that work with additional data for China and new analysis for South Korea and Japan. In China, two years of data from more than 1500 monitoring stations allows local trends to be estimated. Preliminary review indicates a trend towards improving air quality across most of China with decreasing emissions at most major population centers. Such improvements are consistent with tightening emissions standards and the decreasing usage of coal. In addition, new spatial analysis has been applied to ~900 monitoring sites in Japan and ~120 sites in South Korea. This new analysis provides information on air quality, pollutant source distributions, and implied mortality in these countries. Finally, boundary crossing fluxes in South Korea and Japan have been used to estimate the fraction of air pollution in Japan and South Korea that has being imported from sources in China.

  14. Relationship Between Air Quality and Outdoor Exercise Behavior in China: a Novel Mobile-Based Study.

    PubMed

    Hu, Liang; Zhu, Li; Xu, Yaping; Lyu, Jiaying; Imm, Kellie; Yang, Lin

    2017-08-01

    Based on data collected from an exercise app, the study aims to provide empirical evidence on the relationship between air quality and patterns of outdoor exercise in China. Objective outdoor exercise data spanning 160 days were collected from 153 users of an exercise app, Tulipsport in China. Each exercise mode (running, biking, and walking, respectively) was organized into five air quality categories based on Air Quality Index (AQI): excellent, good, mild pollution, moderate pollution, and serious pollution. Key parameters of each app user were calculated and analyzed: the total number of exercise bouts, the average duration, and the average distance of each exercise mode in each air quality category. Multivariate analyses of variance indicate that the users were less likely to participate in outdoor running, biking, and walking (F = 24.16, p < .01, Wilk's Λ = 0.64) as levels of air pollution increased. However, there is no difference in terms of average distance and duration of exercise across different air pollution categories. People's participation in outdoor exercise is impeded by air pollution severity, but they stick to their exercise routines once exercise is initiated. Although people should protect themselves from health damages caused by exercising under pollution, the decreases in physical activity associated with air pollution may also pose an indirect risk to public health. The interactive relationship between air quality, exercise, and health warrants more empirical and interdisciplinary explorations.

  15. MINIMIZING POLLUTION IN CLEANING AND DEGREASING OPERATIONS

    EPA Science Inventory

    The objective of this study was to examine approaches to decreasing rates of loss by evaporation and extend@ the useful lifetime of metal-cleaning solvents in service as means to decrease the generation of pollutant emissions and residues from Air Force cleaning and degreasing op...

  16. Effects of Air Pollutants on Development of Allergic Immune Responses in the Respiratory Tract

    PubMed Central

    Gershwin, Laurel J.

    2003-01-01

    The increased incidence of allergic asthma in the human population worldwide has stimulated many explanatory theories. A concomitant decrease in air quality leads to epidemiological and laboratory-based studies to demonstrate a link between air pollutants and asthma. Specifically, ozone, environmental tobacco smoke, and diesel exhaust are associated with enhancement of respiratory allergy to inhaled allergens. This review summarizes the state of the knowledge, both human epidemiology and laboratory animal experiments, linking air pollution to allergy. Critical issues involve development of the lung and the fetal immune response, and the potential for substances like ozone and ETS in the air to modulate early immune responses with lifelong consequences. PMID:14768942

  17. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia

    PubMed Central

    2014-01-01

    Background Air pollution is a major health challenge worldwide and has previously been strongly associated with adverse reproductive health. This study aimed to examine the association between spontaneous abortion and seasonal variation of air pollutants in Ulaanbaatar, Mongolia. Methods Monthly average O3, SO2, NO2, CO, PM10 and PM2.5 levels were measured at Mongolian Government Air Quality Monitoring stations. The medical records of 1219 women admitted to the hospital due to spontaneous abortion between 2009–2011 were examined retrospectively. Fetal deaths per calendar month from January-December, 2011 were counted and correlated with mean monthly levels of various air pollutants by means of regression analysis. Results Regression of ambient pollutants against fetal death as a dose–response toxicity curve revealed very strong dose–response correlations for SO2 r > 0.9 (p < 0.001) while similarly strongly significant correlation coefficients were found for NO2 (r > 0.8), CO (r > 0.9), PM10 (r > 0.9) and PM2.5 (r > 0.8), (p < 0.001), indicating a strong correlation between air pollution and decreased fetal wellbeing. Conclusion The present study identified alarmingly strong statistical correlations between ambient air pollutants and spontaneous abortion. Further studies need to be done to examine possible correlations between personal exposure to air pollutants and pregnancy loss. PMID:24758249

  18. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    NASA Technical Reports Server (NTRS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  19. Acrolein-Induced Increases in Blood Pressure and Heart Rate Are Coupled with Decreased Blood Oxygen Levels During Exposure in Hypertensive Rats

    EPA Science Inventory

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in individuals with pre-existing cardiovascular disease. Recent studies link exposure to air pollution with reduced blood oxygen saturation suggesting that hypoxia is a potential me...

  20. [Oxidative stress, lung function and exposure to air pollutants in Mexican schoolchildren with and without asthma].

    PubMed

    Romero-Calderón, Ana Teresa; Moreno-Macías, Hortensia; Manrique-Moreno, Joel David Francisco; Riojas-Rodríguez, Horacio; Torres-Ramos, Yessica Dorín; Montoya-Estrada, Araceli; Hicks-Gómez, Juan José; Linares-Segovia, Benigno; Cárdenas, Beatriz; Bárcenas, Claudia; Barraza-Villarreal, Albino

    2017-01-01

    To assess the association between the air pollutants exposure on markers of oxidative stress and lung function in schoolchildren with and without asthma from Salamanca and Leon Guanajuato, Mexico. We realized determinations of oxidative stress biomarkers and lung function tests in 314 schoolchildren. Information of air pollutants (O3, SO2, CO, PM2.5 and PM10) were obtained from monitoring stations and multiple linear regression models were run to assess the association. An increase of 0.09 pmol in conjugated dienes was observed by exposure to PM10 lag 1 in asthmatics from Salamanca (p<0.05). The exposure to O3 during the same day increased the concentration of Lipohydroperoxides in 4.38 nmol in asthmatics of Salamanca, as well as in 2.31 nmol by exposure to PM10 lag 2 (p<0.05). The forced vital capacity decreased by 138 and 203 ml in children without asthma, respectively, due to exposure to carbon monoxide (p<0.05). Exposure to air pollutants increase oxidative stress and decreased lung function in schoolchildren, with and without asthma.

  1. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices.

    PubMed

    Bakó-Biró, Z; Wargocki, P; Weschler, C J; Fanger, P O

    2004-06-01

    In groups of six, 30 female subjects were exposed for 4.8 h in a low-polluting office to each of two conditions--the presence or absence of 3-month-old personal computers (PCs). These PCs were placed behind a screen so that they were not visible to the subjects. Throughout the exposure the outdoor air supply was maintained at 10 l/s per person. Under each of the two conditions the subjects performed simulated office work using old low-polluting PCs. They also evaluated the air quality and reported Sick Building Syndrome (SBS) symptoms. The PCs were found to be strong indoor pollution sources, even after they had been in service for 3 months. The sensory pollution load of each PC was 3.4 olf, more than three times the pollution of a standard person. The presence of PCs increased the percentage of people dissatisfied with the perceived air quality from 13 to 41% and increased by 9% the time required for text processing. Chemical analyses were performed to determine the pollutants emitted by the PCs. The most significant chemicals detected included phenol, toluene, 2-ethylhexanol, formaldehyde, and styrene. The identified compounds were, however, insufficient in concentration and kind to explain the observed adverse effects. This suggests that chemicals other than those detected, so-called 'stealth chemicals', may contribute to the negative effects. PCs are an important, but hitherto overlooked, source of pollution indoors. They can decrease the perceived air quality, increase SBS symptoms and decrease office productivity. The ventilation rate in an office with a 3-month-old PC would need to be increased several times to achieve the same perceived air quality as in a low-polluting office with the PC absent. Pollution from PCs has an important negative impact on the air quality, not only in offices but also in many other spaces, including homes. PCs may have played a role in previously published studies on SBS and perceived air quality, where PCs were overlooked as a possible pollution source in the indoor environment. The fact that the chemicals identified in the office air and in the chamber experiments were insufficient to explain the adverse effects observed during human exposures illustrates the inadequacy of the analytical chemical methods commonly used in indoor air quality investigations. For certain chemicals the human senses are much more sensitive than the chemical methods routinely used in indoor air quality investigations. The adverse effects of PC-generated air pollutants could be reduced by modifications in the manufacturing process, increased ventilation, localized PC exhaust, or personalized ventilation systems.

  2. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis.

    PubMed

    Zhang, Chao; Ding, Rui; Xiao, Changchun; Xu, Yachun; Cheng, Han; Zhu, Furong; Lei, Ruoqian; Di, Dongsheng; Zhao, Qihong; Cao, Jiyu

    2017-10-01

    In recent years, air pollution has become an alarming problem in China. However, evidence on the effects of air pollution on cardiovascular mortality is still not conclusive to date. This research aimed to assess the short-term effects of air pollution on cardiovascular morbidity in Hefei, China. Data of air pollution, cardiovascular mortality, and meteorological characteristics in Hefei between 2010 and 2015 were collected. Time-series analysis in generalized additive model was applied to evaluate the association between air pollution and daily cardiovascular mortality. During the study period, the annual average concentration of PM 10, SO 2 , and NO 2 was 105.91, 20.58, and 30.93 μg/m 3 , respectively. 21,816 people (including 11,876 man, and 14,494 people over 75 years of age) died of cardiovascular diseases. In single pollutant model, the effects of multi-day exposure were greater than single-day exposure of the air pollution. For every increase of 10 μg/m 3 in SO 2 , NO 2 , and PM 10 levels, CVD mortality increased by 5.26% (95%CI: 3.31%-7.23%), 2.71% (95%CI: 1.23%-4.22%), and 0.68% (95%CI: 0.33%-1.04%) at a lag03, respectively. The multi-pollutant models showed that PM 10 and SO 2 remained associated with CVD mortality, although the effect estimates attenuated. However, the effect of NO 2 on CVD mortality decreased to statistically insignificant. Subgroup analyses further showed that women were more vulnerable than man upon air pollution exposure. These findings showed that air pollution could significantly increase the CVD mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Spatial-Temporal Characteristics of Air Pollution in China from 2001–2014

    PubMed Central

    Bao, Junzhe; Yang, Xiping; Zhao, Zhiyuan; Wang, Zhenkun; Yu, Chuanhua; Li, Xudong

    2015-01-01

    To provide some useful information about the control of air pollution in China, we studied the spatial-temporal characteristics of air pollution in China from 2001–2014. First, we drew several line charts and histograms of the Air Pollution Index (API) and Air Quality Index (AQI) of 31 capital cities and municipalities to research the distribution across different times and cities; then, we researched the spatial clustering of API and AQI; finally, we examined the shift of the gravity center of API and AQI in different years and months. The API values had a decreasing trend: the high values had a clustering trend in some northern cities, and the low values had a clustering trend in some southern cities. The AQI values were relatively low, from 15:00–17:00 during the day. The gravity center of API had a trend of moving south from 2001–2003, then fluctuated in an unordered pattern and moved north in the winter. The AQI gravity center did not have a regular shift during different months. In conclusion, the government should take action to mitigate air pollution in some typical cities, as well as air pollution during the winter. PMID:26694427

  4. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  5. The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble

    NASA Technical Reports Server (NTRS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; hide

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between 2.39 and 1.31 million deaths per year for the four RCPs. The global mortality burden of PM(sub 2.5) is estimated to decrease from 1.70 (1.30 to 2.10) million deaths per year in 2000 to between 0.95 and 1.55 million deaths per year in 2100 for the four RCPs due to the combined effect of decreases in PM(sub 2.5) concentrations and changes in population and baseline mortality rates. Trends in future air-pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

  6. Air pollution and gene-specific methylation in the Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Lepeule, Johanna; Zanobetti, Antonella; Gasparrini, Antonio; Baccarelli, Andrea A; Coull, Brent A; Tarantini, Letizia; Vokonas, Pantel S; Koutrakis, Petros; Schwartz, Joel

    2014-01-01

    The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation. PMID:24385016

  7. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  8. Implications of air pollution effects on athletic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, W.E.; Covert, D.S.; Koenig, J.Q.

    Both controlled human studies and observational studies suggest that air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, sulfur dioxide, which is a highly water-soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorptionmore » occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO/sub 2/ or O/sub 3/) caused a marked bronchoconstriction and reduced ventilatory flow when compared to pollution exposure at rest. In a situation like the Olympic Games where milliseconds and millimeters often determine the success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.« less

  9. Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade

    PubMed Central

    Luo, Yunpeng; Chen, Huai; Zhu, Qiu'an; Peng, Changhui; Yang, Gang; Yang, Yanzheng; Zhang, Yao

    2014-01-01

    With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictorssuch as Gross Regional Product per capita (GRP per capita), the concentration of air pollutants (PM10, SO2, NO2) and the air pollution index (API) from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provinical cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC), that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China. PMID:25083711

  10. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatão, Brazil.

    PubMed

    Klumpp, G; Furlan, C M; Domingos, M; Klumpp, A

    2000-01-31

    The present study was performed in the vicinity of the industrial complex of Cubatão, São Paulo, Brazil, in order to evaluate the response of 'manaca da serra' Tibouchina pulchra Cogn. (Melastomataceae), a common species of secondary Atlantic Rain Forest vegetation, to the impact of complex air pollution. Emphasis was given to changes of biochemical parameters such as ascorbic acid concentration, peroxidase activity, contents of water-soluble thiols, pH of leaf extract and buffering capacity. These plant factors are often used as early indicators of air pollution stress. Field experiments included sampling of leaves from mature trees in areas with different air pollution load (passive monitoring), exposure of saplings cultivated in uniform soil at these areas (active monitoring) and a study on the combined effects of contaminated soil and air pollution. In general, metabolic response of saplings was more accentuated than that of mature trees. Leaf extract pH and buffering capacity showed no or only small alterations in plants exposed to industrial emissions. In contrast, air pollution resulted in a distinct decrease in ascorbic acid contents and an increase in peroxidase activity and thiol concentrations in leaves. Cultivation of saplings in soil types from contaminated regions frequently caused the same modifications or enhanced the effects produced by air pollution. Growth analysis of exposed saplings demonstrated that a change of the relationship between above-ground and below-ground plant parts was the most obvious effect of air pollution and soil contamination. The experiments showed that even T. pulchra, a species considered resistant to air pollution, suffers metabolic disturbances by the present ambient air and soil quality. Although biochemical and physiological alterations were not related to a certain air pollution type, they could be used to estimate the overall pollution load and to map zones with different air quality.

  11. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  12. Gestational exposure to urban air pollution related to a decrease in cord blood vitamin d levels.

    PubMed

    Baïz, Nour; Dargent-Molina, Patricia; Wark, John D; Souberbielle, Jean-Claude; Slama, Rémy; Annesi-Maesano, Isabella

    2012-11-01

    Vitamin D deficiency has been implicated in the increased risk of several diseases. Exposure to air pollution has been suggested as a contributor to vitamin D deficiency. However, studies that have examined the effects of air pollution on vitamin D status are few and have never focused on prenatal life as an exposure window. Our aim was to investigate the associations between gestational exposure to urban air pollutants and 25-hydroxyvitamin D [25(OH)D] cord blood serum level in 375 mother-child pairs of the EDEN birth cohort. The Atmospheric Dispersion Modelling System (ADMS-Urban) pollution model, a validated dispersion model combining data on traffic conditions, topography, meteorology, and background pollution, was used to assess the concentrations of two major urban pollutants, particulate matter less than 10 μm in diameter (PM(10)) and nitrogen dioxide (NO(2)), at the mother's home address during pregnancy. Cord blood samples were collected at birth and were analyzed for levels of 25(OH)D. Maternal exposure to ambient urban levels of NO(2) and PM(10) during the whole pregnancy was a strong predictor of low vitamin D status in newborns. After adjustment, log-transformed 25(OH)D decreased by 0.15 U (P = 0.05) and 0.41 U (P = 0.04) for a 10-μg/m(3) increase in NO(2) and PM(10) pregnancy levels, respectively. The association was strongest for third-trimester exposures (P = 0.0003 and P = 0.004 for NO(2) and PM(10), respectively). Gestational exposure to ambient urban air pollution, especially during late pregnancy, may contribute to lower vitamin D levels in offspring. This could affect the child's risk of developing diseases later in life.

  13. Assessment of the Air Quality Improvement Potentials for Seoul Metropolitan Area using GAINS-Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Ahn, Y. H.; Kim, J.; Bu, C.; Lee, Y.; Choi, K. C.; Amann, M.; Kim, S. K.

    2016-12-01

    Urban areas are very important places for climate change and air pollution because they have been emitting a significant amount of Green House Gases (GHGs) and air pollutants. Cause they have massive pollutant emissions and high population density with amount of vehicles. Korea's government has set the 2nd phase capital air quality improvement program called Seoul metropolitan area Air Quality Management Plan(SAQMP), targeting the year 2024. The air quality improvement targets are to achieve annual mean PM10 and pm2.5concentration for SMA Area 30 ug/m3 and 20 ug/m3, respectively. To achieve this target, emissions of PM10, PM2.5 are required to be decreased up to 35%, 45%, respectively, from their future baseline level. In this study, we found the emission level of some pollutants for the year 2030 will be decreased compare with the baseline level but the concentration cannot meet their target even with more stringent control measures. The more in-depth analysis of future PM concentration, estimated from Source-Receptor(S-R) relationship, were conducted for more accurate air quality improvement assessment. As the result, we found that secondary and transboundary pollution have been plying significant role in Seoul Metro air quality. Not only direct/in-region measures, therefore, but indirect measures/international cooperation have to be conducted to achieve target air quality. ** This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea.

  14. Dust-wind interactions can intensify aerosol pollution over eastern China

    PubMed Central

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2017-01-01

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land–sea surface air temperature difference and further decrease winds by −0.06 (±0.05) m s−1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies. PMID:28492276

  15. Unexpected slowdown of US pollutant emission reduction in the past decade

    PubMed Central

    McDonald, Brian C.; Worden, Helen; Worden, John R.; Miyazaki, Kazuyuki; Qu, Zhen; Henze, Daven K.; Jones, Dylan B. A.; Fischer, Emily V.; Zhu, Liye; Boersma, K. Folkert

    2018-01-01

    Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOx emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions. PMID:29712822

  16. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    PubMed

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  17. Short-term Effects of Air Pollution on Oxygen Saturation in a Cohort of Senior Adults in Steubenville, OH

    PubMed Central

    Luttmann-Gibson, Heike; Sarnat, Stefanie Ebelt; Suh, Helen H.; Coull, Brent A.; Schwartz, Joel; Zanobetti, Antonella; Gold, Diane R.

    2014-01-01

    Objective We examine whether ambient air pollution is associated with oxygen saturation in 32 elderly subjects in Steubenville. Methods We used linear mixed models to examine the effects of fine particles (PM2.5), sulfate (SO42-), elemental carbon (EC), and gases on median oxygen saturation. Results An interquartile range (IQR) increase of 13.4 μg/m3 in PM2.5 on the previous day was associated with a decrease of -0.18% (95% CI: -0.31 to -0.06), and a 5.1 μg/m3 IQR increase in SO42- on the previous day was associated with a decrease of -0.16% (95% CI: -0.27 to -0.04) in oxygen saturation during the initial 5-min rest period of the protocol. Conclusions Increased exposure to air pollution, including the non-traffic pollutant SO42- from industrial sources, led to changes in oxygen saturation that may reflect particle-induced pulmonary inflammatory or vascular responses. PMID:24451609

  18. Short-term effects of air pollution on oxygen saturation in a cohort of senior adults in Steubenville, Ohio.

    PubMed

    Luttmann-Gibson, Heike; Sarnat, Stefanie Ebelt; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Zanobetti, Antonella; Gold, Diane R

    2014-02-01

    We examine whether ambient air pollution is associated with oxygen saturation in 32 elderly subjects in Steubenville, Ohio. We used linear mixed models to examine the effects of fine particulate matter less than 2.5 μm (PM(2.5)), sulfate (SO(4)(-2)), elemental carbon, and gases on median oxygen saturation. An interquartile range increase of 13.4 μg/m in PM(2.5) on the previous day was associated with a decrease of -0.18% (95% confidence interval: -0.31 to -0.06) and a 5.1 μg/m(3) interquartile range increase in SO(4)(-2) on the previous day was associated with a decrease of -0.16% (95% confidence interval: -0.27 to -0.04) in oxygen saturation during the initial 5-minute rest period of the protocol. Increased exposure to air pollution, including the nontraffic pollutant SO(4)(-2) from industrial sources, led to changes in oxygen saturation that may reflect particle-induced pulmonary inflammatory or vascular responses.

  19. Air Pollution in the Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Ruiz-Suarez, L. G.

    2007-05-01

    Mexico City is a megacity whose metropolitan area includes the country federal district, 18 municipalities of the State of Mexico. In year 1992, only 16 municipalities of the State of Mexico were part of MCMA. In year 1940 the Mexico City population was 1.78 millions in an area of 118 km2, in year 2000 the population was 17.9 millions in an area of 1,500 km2. Population has grown a ten fold whereas population density has dropped 20%. Total number of private cars has grown from 2,341,731 in year 1998 to 2,967,893 in year 2004. Nowadays, people and goods travel longer at lower speed to reach school, work and selling points. In addition highly efficient public transport lost a significant share of transport demand from 19.1 in 1986 to 14.3 in 1998. Air pollution is a public concern since early eighties last century; systematic public efforts have been carried out since late eighties. Energy consumption has steadily increased in the MCMA whereas emissions have also decreased. From year 2000 to 2004, the private cars fleet increased 17% whereas CO, NOx and COV emissions decreased between 20-30%. Average concentrations of criteria pollutants have decreased The number of days that the one-hour national standard for bad air quality was exceeded in year 1990 was 160. In year 2005 was 70. Research efforts and public policies on air pollution have been focused on public health. We are now better able to estimate the cost in human lives due to air pollution, or the cost in labor lost due to illness. Little if none at all work has been carried out to look at the effect of air pollution on private and public property or onto the cultural heritage. Few reports have can be found on the impact of air pollution in rural areas, including forest and crops, around the mega city. Mexico City is in the south end of a Valley with mountain ranges higher than 1000 m above the average city altitude. In spite the heavy loss of forested areas to the city, the mountains still retain large forest under strong demographic pressure and under heavy impact of air pollution. Flow patterns induced by complex terrain in the center of Mexico induce strong interaction between the mega city and the rural areas in the Mexico Basin. In and out mesoscale transport to and from the neighboring valleys with cities already larger than one million inhabitants increase the complexity of air pollution processes. Fast urbanization in these valleys suggests even more complicated and full of concerns scenarios. Some recent results on these issues will be shown.

  20. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  1. Hypertension prevalence and living conditions related to air pollution: results of a national epidemiological study in Lebanon.

    PubMed

    Salameh, Pascale; Chahine, Mirna; Hallit, Souheil; Farah, Rita; Zeidan, Rouba Karen; Asmar, Roland; Hosseiny, Hassan

    2018-04-01

    Hypertension is a risk factor of several diseases, linked to high mortality and morbidity, particularly in developing countries. Some studies have linked indoor and outdoor pollution exposure items to hypertension, but results were inconsistent. Our objective was to assess the association of living conditions related to air pollution to hypertension in Lebanon, a Middle Eastern country. A national cross-sectional study was conducted all over Lebanon. Blood pressure and its related medications were assessed to be able to classify participants as hypertensive or not. Moreover, in addition to living conditions related to air pollution exposure, we assessed potential predictors of hypertension, including sociodemographic characteristics, self-reported health information and biological measurements. Furthermore, we assessed dose-effect relationship of air pollution items in relation with hypertension. Living conditions related to indoor and outdoor air pollution exposures were associated with hypertension, with or without taking biological values into account. Moreover, we found a dose-effect relationship of exposure with risk of disease (15% increase in risk of disease for every additional pollution exposure item), after adjustment for sociodemographics and biological characteristics (Ora = 1.15 [1.03-1.28]). Although additional studies would be necessary to confirm these findings, interventions should start to sensitize the population about the effect of air pollution on chronic diseases. The work on reducing pollution and improving air quality should be implemented to decrease the disease burden on the population and health system.

  2. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013-2016.

    PubMed

    Zhou, Xi; Zhang, Tingjun; Li, Zhongqin; Tao, Yan; Wang, Feiteng; Zhang, Xin; Xu, Chunhai; Ma, Shan; Huang, Ju

    2018-05-01

    Airborne pollutant characteristics, potential sources, and variation trends of cause are investigated based on the hourly air concentrations of gaseous pollutants and particulate matter from 2013 to 2016 in Lanzhou. The mean concentration of SO 2 , NO 2 , CO, 8-hO 3 , PM 2.5 , and PM 10 was 25.2 ± 16.0 μg m -3 , 46.5 ± 21.1 μg m -3 , 1.3 ± 0.7 mg m -3 , 77.8 ± 45.5 μg m -3 , 58.7 ± 32.9 μg m -3 , and 131.1 ± 86.2 μg m -3 , respectively. The concentrations of SO 2 , PM 10 , and PM 2.5 present decreasing trends while NO 2 , CO, and O 3 present increasing trends. PM is the most frequent major pollutants with much higher value than standard limit. However, NO 2 pollution had obvious trends to reach the limit and was more serious in Lanzhou compared with other Chinese cities. Relationship between air pollutants and meteorological parameters suggested that lower primary pollutants were associated with higher wind speed from north and west. Modeled back trajectory demonstrated that the transport of air masses from the Hexi Corridor and Inner Mongolia was responsible for the high concentrations of the air pollutants in wintertime, and high PM 10 level in springtime was related to long-range transport of dust from desert areas of the Sinkiang and the Central Asia. Effects of local pollutant emissions and meteorological condition were preliminary analyzed. Improvement of air quality might be related to the decreasing of pollutant emissions due to strict emissions controls, and the contribution of meteorological condition was not explicit and should be further investigated.

  3. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia to Himalayas and further inland Tibetan Plateau. The monitoring network will be continuously operated to provide basis for defining the transboundary air pollution and their impact on the environments and ecosystems over the Himalayas and the Tibetan Plateau.

  4. Acute effects of air pollutants on pulmonary function among students: a panel study in an isolated island.

    PubMed

    Yoda, Yoshiko; Takagi, Hiroshi; Wakamatsu, Junko; Ito, Takeshi; Nakatsubo, Ryouhei; Horie, Yosuke; Hiraki, Takatoshi; Shima, Masayuki

    2017-04-04

    Many epidemiological studies on the health effects of air pollutants have been carried out in regions with major sources such as factories and automobiles. However, the health effects of air pollutants in regions without major sources remain unclear. This study investigated the acute effects of ambient air pollution on pulmonary function among healthy students in an isolated island without major artificial sources of air pollutants. A panel study was conducted of 43 healthy subjects who attended a school in an isolated island in the Seto Inland Sea, Japan. We measured the forced expiratory volume in 1 s (FEV 1 ) and peak expiratory flow (PEF) every morning for about 1 month in May 2014. Ambient concentrations of particulate matter ≤ 2.5 μm in diameter (PM 2.5 ), particulate matter between 2.5 and 10 μm in diameter (PM 10-2.5 ), black carbon (BC), ozone (O 3 ), and nitrogen dioxide (NO 2 ) were measured. The associations between the concentrations of air pollutants and pulmonary function were analyzed using mixed-effects models. A decrease in FEV 1 was significantly associated with BC concentrations (-27.28 mL [95%confidence interval (CI):-54.10,-0.46] for an interquartile range (IQR) increase of 0.23 μg/m 3 ). The decrease in PEF was significantly associated with indoor O 3 concentrations (-8.03 L/min [95% CI:-13.02,-3.03] for an IQR increase of 11 ppb). Among subjects with a history of allergy, an increase in PM 2.5 concentrations was significantly associated with low FEV 1 . In subjects with a history of asthma, an inverse association between the indoor O 3 concentration and pulmonary function was observed. Our results demonstrate that increases in BC and O 3 concentrations have acute effects on the pulmonary function among students in an isolated island without major artificial sources of air pollutants.

  5. Environmental pollution and lung effects in children.

    PubMed

    Searing, Daniel A; Rabinovitch, Nathan

    2011-06-01

    Studies over the last 2 years have added important new information on the relationship between air pollution and asthma incidence and severity. Outdoor air pollution has been associated with asthma exacerbations, including emergency department visits and hospitalizations, as well as with the onset of asthma. Possible mechanisms mediating both incidence and severity effects include the induction of oxidative stress, and/or allergic sensitization, as well as increased susceptibility to viral infections. Some of these mechanisms may be occurring in utero including epigenetic changes that may increase risk for development of asthma. Factors related to increased susceptibility for air pollution-related asthma severity include age, season and genetic polymorphisms related to antioxidant enzymes. Ambient pollution levels may be associated with both asthma incidence and severity. Susceptibility to air pollution may be higher in children with genetic polymorphisms related to the 'oxidant stress pathways'. Potential interventions for susceptible children at risk for asthma development and/or severity include decreased exposure on high air pollution days, especially in the summer months, and antioxidant supplementation. On the population level, changes in school and home zoning to increase distance from busy roadways may help reduce both asthma incidence and severity.

  6. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  7. Air pollution and anemia as risk factors for pneumonia in ecuadorian children: a retrospective cohort analysis

    PubMed Central

    2011-01-01

    Background Ambient air pollution and malnutrition, particularly anemia, are risk factors for pneumonia, a leading cause of death in children under five. We simultaneously assessed these risk factors in Quito, Ecuador. Methods In 2005, we studied two socioeconomically similar neighborhoods in Quito: Lucha de los Pobres (LP) and Jaime Roldos (JR). LP had relatively high levels of air pollution (annual median PM2.5 = 20.4 μg/m3; NO2 = 29.5 μg/m3) compared to JR (annual median PM2.5 = 15.3 μg/m3; NO2 = 16.6 μg/m3). We enrolled 408 children from LP (more polluted) and 413 children from JR (less polluted). All subjects were aged 18-42 months. We obtained medical histories of prior physician visits and hospitalizations during the previous year, anthropometric nutrition data, hemoglobin levels, and hemoglobin oxygen saturation via oximetry. Results In anemic children, higher pollution exposure was significantly associated with pneumonia hospitalization (OR = 6.82, 95%CI = 1.45-32.00; P = 0.015). In non-anemic children, no difference in hospitalizations by pollution exposure status was detected (OR = 1.04, NS). Children exposed to higher levels of air pollution had more pneumonia hospitalizations (OR = 3.68, 1.09-12.44; P = 0.036), total respiratory illness (OR = 2.93, 95% CI 1.92-4.47; P < 0.001), stunting (OR = 1.88, 1.36-2.60; P < 0.001) and anemia (OR = 1.45, 1.09-1.93; P = 0.013) compared to children exposed to lower levels of air pollution. Also, children exposed to higher levels of air pollution had significantly lower oxygen saturation (92.2% ± 2.6% vs. 95.8% ± 2.2%; P < 0.0001), consistent with air pollution related dyshemoglobinemia. Conclusions Ambient air pollution is associated with rates of hospitalization for pneumonia and with physician's consultations for acute respiratory infections. Anemia may interact with air pollution to increase pneumonia hospitalizations. If confirmed in larger studies, improving nutrition-related anemia, as well as decreasing the levels of air pollution in Quito, may reduce pneumonia incidence. PMID:22050924

  8. Inflammatory markers in relation to long-term air pollution.

    PubMed

    Mostafavi, Nahid; Vlaanderen, Jelle; Chadeau-Hyam, Marc; Beelen, Rob; Modig, Lars; Palli, Domenico; Bergdahl, Ingvar A; Vineis, Paolo; Hoek, Gerard; Kyrtopoulos, Soterios Α; Vermeulen, Roel

    2015-08-01

    Long-term exposure to ambient air pollution can lead to chronic health effects such as cancer, cardiovascular and respiratory disease. Systemic inflammation has been hypothesized as a putative biological mechanism contributing to these adverse health effects. We evaluated the effect of long-term exposure to air pollution on blood markers of systemic inflammation. We measured a panel of 28 inflammatory markers in peripheral blood samples from 587 individuals that were biobanked as part of a prospective study. Participants were from Varese and Turin (Italy) and Umea (Sweden). Long-term air pollution estimates of nitrogen oxides (NOx) were available from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Linear mixed models adjusted for potential confounders were applied to assess the association between NOx and the markers of inflammation. Long-term exposure to NOx was associated with decreased levels of interleukin (IL)-2, IL-8, IL-10 and tumor necrosis factor-α in Italy, but not in Sweden. NOx exposure levels were considerably lower in Sweden than in Italy (Sweden: median (5th, 95th percentiles) 6.65 μg/m(3) (4.8, 19.7); Italy: median (5th, 95th percentiles) 94.2 μg/m(3) (7.8, 124.5)). Combining data from Italy and Sweden we only observed a significant association between long-term exposure to NOx and decreased levels of circulating IL-8. We observed some indication for perturbations in the inflammatory markers due to long-term exposure to NOx. Effects were stronger in Italy than in Sweden, potentially reflecting the difference in air pollution levels between the two cohorts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.

    PubMed

    Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane

    It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality ( p  < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with increased accuracy obtained when accounting for interactive effects through adjustment for dependent pollutants using a DLNM.

  10. Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2017-12-01

    Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.

  11. The impact of air pollution to central nervous system in children and adults.

    PubMed

    Sram, Radim J; Veleminsky, Milos; Veleminsky, Milos; Stejskalová, Jana

    2017-12-01

    The aim of this paper was to review studies analyzing the associations between air pollution and neurodevelopment in children as well as the effect on adult population. Effect of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs, benzo[a]pyrene, B[a]P) were already studied on cohorts from New York, Poland, China, and Spain. All results indicate changes of child behavior and neurodevelopment at the age of 3-9 years, decrease of IQ, increase of Attention Deficit Hyperactivity Disorder (ADHD), decrease of brain-derived neurotrophic factor (BDNF), reduction of left hemisphere white matter. Effect of traffic-related air pollution (TRAP) to neurobehavioral development in children, measured as PM2.5 (particulate matter <2.5 µm), PM10, elemental carbon (EC), black smoke (BC), NO2, NOx, were studied in USA, Spain, Italy, and South Korea. Increased concentrations of TRAP were associated with the increase of ADHD, autism, affected cognitive development; PM2.5 decreased the expression of BDNF in placenta. Increased concentrations of PM2.5 affected adults cognition (episodic memory), increased major depressive disorders. Increased concentrations of NO2 were associated with dementia, NOx with Parkinson's disease. Increased concentrations of PAHs, PM2.5 and NO2 in polluted air significantly affect central nervous system in children and adults and represent a significant risk factor for human health.

  12. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  13. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    PubMed

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  14. Air quality and climate benefits of long-distance electricity transmission in China

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  15. Air quality, health, and climate implications of China’s synthetic natural gas development

    PubMed Central

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  16. Air quality, health, and climate implications of China's synthetic natural gas development.

    PubMed

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R; Mauzerall, Denise L

    2017-05-09

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO 2 emissions. Due to variations in air pollutant and CO 2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today's technology, SNG emits 22 to 40% more CO 2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  17. Air quality, health, and climate implications of China's synthetic natural gas development

    NASA Astrophysics Data System (ADS)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  18. Emissions reduction policies and recent trends in Southern California's ambient air quality.

    PubMed

    Lurmann, Fred; Avol, Ed; Gilliland, Frank

    2015-03-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed more than 20 years of monitoring data, emissions estimates, and regulatory policies across several southern California communities participating in a long-term study of children's health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, were generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. For many cities facing the challenge of reducing air pollution to meet health-based standards, the emission control policies and pollution reduction programs adopted in southern California should serve as an example of the potential success of aggressive, comprehensive, and integrated approaches. Policies targeting on-road mobile emissions were the single most important element for observed improvements in the Los Angeles region. However, overall program success was the result of a much broader approach designed to achieve emission reductions across all major pollutants and emissions categories.

  19. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  20. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    PubMed

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683-1693; http://dx.doi.org/10.1289/EHP136.

  1. Changes of plasma vWF level in response to the improvement of air quality: an observation of 114 healthy young adults.

    PubMed

    Yuan, Zhonghai; Chen, Yan; Zhang, Ying; Liu, Hui; Liu, Qian; Zhao, Jun; Hu, Min; Huang, Wei; Wang, Guangfa; Zhu, Tong; Zhang, Jim; Zhu, Ping

    2013-04-01

    Plasma von Willebrand factor (vWF) is an important factor involving in hemostasis and various cardiovascular diseases. Air pollution is related to many respiratory and cardiovascular diseases. During the Olympic Games Beijing 2008 period (August 8 to September 17, 2008) when air quality in Beijing improved greatly, we studied the relationship between plasma vWF level and the factors of air pollution index (API), ABO blood group, and polymorphisms in vWF gene in healthy young adults. We recruited 114 healthy medical students. In a period of more than 4 months around the period of Olympic Games Beijing 2008, six blood samples at stages 1 and 2 (before Olympic Games), stages 3 and 4 (during Olympic Games), and stages 5 and 6 (after Olympic Games) were taken from every participant for the measurement of plasma vWF level and genotyping of three SNPs (rs7954855, rs7965413, and rs216311) in vWF gene. Daily air pollution index near their living places was obtained from the officially published data. The average API began to decrease from stage 2, reached to nadir in stages 3 and 4, and increased but was still lower in stages 5 and 6. Plasma vWF decreased during the experimental period in all participants. The average plasma vWF decreased from stage 2 and remained lower in stages 3-6. vWF level varied greatly among the participants (from 30 to 170 %) but decreased proportionately when we analyzed their levels individually. Participants with O blood type had lower plasma vWF level than those with A, B, and AB blood types. Those with the SNP in vWF gene causing homozygous threonine at codon 1381 had lower plasma vWF level than those with homozygous alanine or heterozygous alanine/threonine. In the 114 normal individuals, the average plasma vWF level decreased during the period of Olympic Games Beijing 2008 when air quality improved greatly. This suggests that control of air pollution may be useful to prevent some diseases such as cardiovascular diseases.

  2. Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality

    PubMed Central

    Kravchenko, Julia; Akushevich, Igor; Abernethy, Amy P; Holman, Sheila; Ross, William G; Lyerly, H Kim

    2014-01-01

    Background The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. Materials and methods We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993–2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. Results Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths–with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths–with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. Conclusion Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina. PMID:25018627

  3. Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality.

    PubMed

    Kravchenko, Julia; Akushevich, Igor; Abernethy, Amy P; Holman, Sheila; Ross, William G; Lyerly, H Kim

    2014-01-01

    The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.

  4. Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable.

    PubMed

    Zhang, Weidong; Zhao, Yong; Zhang, Pengfei; Hao, Yanan; Yu, Shuai; Min, Lingjiang; Li, Lan; Ma, Dongxue; Chen, Liang; Yi, Bao; Tang, Xiangfang; Meng, Qingshi; Liu, Lei; Wang, Shukun; Shen, Wei; Zhang, Hongfu

    2018-03-01

    Numerous epidemiological studies suggest that air pollutants cause a decline in the quality of human spermatozoa and thus a reduction in fertility. However, the exact cause of infertility remains unknown. Air pollution gases, such as NH 3 and H 2 S are either free or bound to airborne particular materials (PM) and are abundant and reactive. The aim of this current investigation was to explore the impacts of NH 3 and/or H 2 S on male fertility and the underlying mechanisms. Male mouse exposed to H 2 S and/or NH 3 and after two generations were used to evaluate the impacts on fertility. The fertility, and spermatozoa quality parameters and proteins involved in spermatogenesis were investigated. Our current investigation demonstrates: i) H 2 S and/or NH 3 decrease male fertility by 20-30%, reduce the spermatozoa concentration about 20-40%, decrease 10-20%, increase around 30%; ii) the reduction in male fertility by H 2 S and/or NH 3 can be inheritable; iii) H 2 S and/or NH 3 can diminish male fertility through the disruption of spermatogenesis without affecting other body parameters such as body weight and organ index. One component of air pollutants, for example NH 3 , does not have a severe impact; however, two or more pollutants such as H 2 S and NH 3 combined can cause serious health problems, especially with regard to male fertility. We suggest that greater attention should be paid to these air pollutants to improve human health and fertility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  6. Senate passes clean air bill

    NASA Astrophysics Data System (ADS)

    In an 89 to 11 vote the Senate passed a clean air bill aimed at reducing pollution by the turn of the century by imposing tougher controls on American industry. The bill is the first revision of the Clean Air Act of 1970 in 13 years and calls for new limits on auto pollution to clean up smog in most U.S. cities, decreasing by half emissions by power plants that cause acid rain to protect the ecology, and increasing technological controls on factories to protect against cancer-causing and toxic substances. The bill will add about $20 billion per year to the estimated $33 billion cost of complying with current pollution laws.

  7. Do the health benefits of cycling outweigh the risks?

    PubMed

    Johan de Hartog, Jeroen; Boogaard, Hanna; Nijland, Hans; Hoek, Gerard

    2010-08-01

    Although from a societal point of view a modal shift from car to bicycle may have beneficial health effects due to decreased air pollution emissions, decreased greenhouse gas emissions, and increased levels of physical activity, shifts in individual adverse health effects such as higher exposure to air pollution and risk of a traffic accident may prevail. We describe whether the health benefits from the increased physical activity of a modal shift for urban commutes outweigh the health risks. We have summarized the literature for air pollution, traffic accidents, and physical activity using systematic reviews supplemented with recent key studies. We quantified the impact on all-cause mortality when 500,000 people would make a transition from car to bicycle for short trips on a daily basis in the Netherlands. We have expressed mortality impacts in life-years gained or lost, using life table calculations. For individuals who shift from car to bicycle, we estimated that beneficial effects of increased physical activity are substantially larger (3-14 months gained) than the potential mortality effect of increased inhaled air pollution doses (0.8-40 days lost) and the increase in traffic accidents (5-9 days lost). Societal benefits are even larger because of a modest reduction in air pollution and greenhouse gas emissions and traffic accidents. On average, the estimated health benefits of cycling were substantially larger than the risks relative to car driving for individuals shifting their mode of transport.

  8. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    EPA Science Inventory

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollut...

  9. Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollutants.

    PubMed

    Haapala, H; Goltsova, N; Lodenius, M

    2001-01-01

    The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.

  10. Detection and estimation trends linked to air quality and mortality on French Riviera over the 1990-2005 period to develop a prediction model of an aggregate risk index

    NASA Astrophysics Data System (ADS)

    Sicard, P.; Mangin, A.; Hebel, P.; Lesne, O.; Malléa, P.

    2009-04-01

    There is a profound relation between human health and well being from the one side and air pollution levels from the other. Air quality in South of France and more specifically in Nice, is known to be bad, especially in summer. The main objectives are to establish correlations between air pollution, exposure of people and reactivity of these people to this aggression, to validate a risk index built from air quality and pollen data in the area of Nice and to construct a prediction model of this sanitary index. The spatial extent of the experiment will be mainly the territory of "Alpes Maritimes". All the tasks are performed in collaboration with the "Heath-Environment Network" of the "Centre Hospitalier Universitaire" of Nice. The development of an adequate tool for observation (health index and/or indices per pathology) to understand impacts of pollution levels in an area is of utmost importance. These indexes should take into account the possible adverse effects associated with the coexistence of all the pollutants and environmental parameters. This tool must be able to inform the citizens about the levels of pollution in an adequate and understandable way but also to be used by relevant authorities to take a series of predetermined measures to protect the health of the population. This paper describes the first step to construct a prediction model of this sanitary index with a confidence interval 99% (and 95%): detection and estimation trends observed in concentrations of pollutants, emissions and mortality over the 1990-2005 period in the "Alpes Maritimes" area. The non-parametric Mann-Kendall test has been developed for detecting and estimating monotonic trends in the time series and applied in our study at annual values of pollutants air concentrations. An important objective of many environmental monitoring programs is to detect changes or trends in pollution levels over time. Over the period 1990-2005, concerning the emissions of the main pollutants, we obtained significant decreasing trends. Between 1994 and 2005, from the SO2 concentrations, decreasing trends of 1.2 %.year-1 (urban stations) and of 5.4 %.year-1 (traffic stations) were calculated. Over the same period, we obtained a decreasing trend of 1.3 %.year-1 for the NO2 concentrations (urban stations) and of 3.1 %.year-1 for the traffic stations. In addition, a decreasing trend of 0.5 %.year-1 was calculated for the suburban stations over the 1998-2005 period. Globally, the concentration of the major pollutants showed a clear downward trend and those main reductions have reflected the reduction policy of the emissions over twenty years. By considering the ozone mean values in urban areas over the 1997-2005 period, an increasing of 3.0 %.year-1 was obtained with annual averages and 3.9 %.year-1 with median values. Over the 1990-2005 period, we obtained significant decreasing trends concerning the "ischemic heart diseases" (- 1.20 %.year-1) and "asthma" (- 4.03 %.year-1) categories. No significant sex-related difference was identified for these groups. An annual change rate of + 0.31 %.year-1 for the "airway diseases" and of + 2.50%.year-1 for the "unknown causes" were identified. For these categories, we noted a sex-related difference. In fact, we obtained for males a decreasing trend contrary to females.

  11. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: Insights for public health translation.

    PubMed

    Cascio, Wayne E

    2016-12-01

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regulatory environmental protections to actions that can be taken by individuals, public health officials, healthcare professionals, city and regional planners, local and state governmental officials and all those who possess the capacity to improve cardiovascular health within the population. The foundation of the framework rests on the contribution of traditional cardiovascular risk factors acting alone and in concert with long-term exposures to air pollutants to create a conditional susceptibility for clinical vascular events, such as myocardial ischemia and infarction; stroke and lethal ventricular arrhythmias. The conceptual framework focuses on the fact that short-term exposures to ambient air particulate matter (PM) are associated with vascular thrombosis (acute coronary syndrome, stroke, deep venous thrombosis, and pulmonary embolism) and electrical dysfunction (ventricular arrhythmia); and that individuals having prevalent heart disease are at greatest risk. Moreover, exposure is concomitant with changes in autonomic nervous system balance, systemic inflammation, and prothrombotic/anti-thrombotic and profibrinolytic-antifibrinolytic balance. Thus, a comprehensive solution to the problem of premature mortality triggered by air pollutant exposure will require compliance with regulations to control ambient air particle pollution levels, minimize exposures to air pollutants, as well as a concerted effort to decrease the number of people at-risk for serious clinical cardiovascular events triggered by air pollutant exposure by improving the overall state of cardiovascular health in the population. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  12. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    PubMed

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Uneven distribution of inorganic pollutants in marine air originating from ocean-going ships.

    PubMed

    Bencs, László; Horemans, Benjamin; Buczyńska, Anna Jolanta; Van Grieken, René

    2017-03-01

    The distribution of mass, water-soluble inorganic salts and mineral elements of size-segregated aerosols (PM 1 , PM 2.5-1 and PM 10-2.5 ), precursor gaseous pollutants, black carbon, and nanoparticles (10-300 nm size range) at the Southern Bight of the North Sea has been studied. The concentrations of air pollutants peaked over shipping lanes, open-water anchorage areas and frequently navigated waters, due to the presence of mobile emission sources. A considerable decrease in air pollutant levels was seen when diverting from these marine areas towards remote or coastal banks. These findings showed the rapid dispersion of pollutants in the marine air. The nano-aerosol count, originating from ocean-going ships, peaked at lower average aerodynamic diameters (e.g., ≈28 nm) than those, observed from low-displacement vessels (45-50 nm, e.g., for fishing boats). The average diameter of nano-PM depended also on weather conditions, e.g., it was higher (≈50 nm) in air of higher humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biomarkers used in studying air pollution exposure during pregnancy and perinatal outcomes: a review.

    PubMed

    Desai, Gauri; Chu, Li; Guo, Yanjun; Myneni, Ajay A; Mu, Lina

    2017-09-01

    This review focuses on studies among pregnant women that used biomarkers to assess air pollution exposure, or to understand the mechanisms by which it affects perinatal outcomes. We searched PubMed and Google scholar databases to find articles. We found 29 articles, mostly consisting of cohort studies. Interpolation models were most frequently used to assess exposure. The most consistent positive association was between polycyclic aromatic hydrocarbon (PAH) exposure during entire pregnancy and cord blood PAH DNA adducts. Exposure to particulate matter (PM) and nitrogen dioxide (NO 2 ) showed consistent inverse associations with mitochondrial DNA (mtDNA) content, particularly in the third trimester of pregnancy. No single pollutant showed strong associations with all the biomarkers included in this review. C-reactive proteins (CRPs) and oxidative stress markers increased, whereas telomere length decreased with increasing air pollution exposure. Placental global DNA methylation and mtDNA methylation showed contrasting results with air pollution exposure, the mechanism behind which is unclear. Most studies except those on PAH DNA adducts and mtDNA content provided insufficient evidence for characterizing a critical exposure window. Further research using biomarkers is warranted to understand the relationship between air pollution and perinatal outcomes.

  15. Satellite Air Quality Monitoring Before, During and After the Beijing 2008 Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    Witte, J. C.; Schoeberl, M. R.; Krotkov, N. A.; Pickering, K. E.; Streets, D. G.; Gleason, J. F.; Gille, J. C.

    2009-12-01

    In 2001, Beijing, China was awarded the hosting rights to the 2008 Olympic and Paralympic Games. Since then, the government has gradually implemented pollution emission control strategies to improve Beijing's air quality in preparation for both games. Long-term industrial and short-term vehicle emission controls have also been enforced upwind of Beijing's neighboring provinces to the south and west. This region is characterized by numerous heavy-polluting industries whose emissions are typically transported towards Beijing, significantly impacting the city's air quality. We examine the efficacy of these emission control measures on tropospheric NO2, SO2, and CO pollution using satellite data from Aura's Ozone Monitoring Instrument (OMI) and Terra's Measurements Of Pollution In The Troposphere (MOPITT) from 2004 to the present. During both games, held in August and September 2008, OMI and MOPITT measured significant decreases in all three tracer gases compared to the past three years: NO2 (-43%), SO2 (-13%), and CO (-12%). This decrease in CO and SO2 over northeastern China continues through 2009, reflecting the longer-term nature of emission controls on heavily polluting industries. The global recession is also a likely contributor, as factories have shut down or slowed production due to the decrease in demand for manufactured goods. The tropospheric NO2 column over Beijing returned to typical monthly mean values when controls on vehicle emissions were lifted by the end of September 2008. However, we observe a slight NO2 decrease at the beginning of 2009 relative to 2008 suggesting a decrease in the contribution of industrial emissions of NOx to the overall NO2 column.

  16. Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system

    NASA Astrophysics Data System (ADS)

    Brandt, J.; Silver, J. D.; Christensen, J. H.; Andersen, M. S.; Bønløkke, J. H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A. B.; Hansen, K. M.; Hedegaard, G. B.; Kaas, E.; Frohn, L. M.

    2013-03-01

    An integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain has been developed, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors. The model system can be used to support policy-making with respect to emission control. In this study, we apply the EVA system to Europe, and perform a more detailed assessment of past, present, and future health-cost externalities of the total air pollution levels in Europe (including both natural and anthropogenic sources), represented by the years 2000, 2007, 2011, and 2020. We also assess the contribution to the health-related external costs from international ship traffic with special attention to the international ship traffic in the Baltic and North Seas, since special regulatory actions on sulphur emissions, called SECA (sulphur emission control area), have been introduced in these areas,. We conclude that despite efficient regulatory actions in Europe in recent decades, air pollution still constitutes a serious problem to human health, hence the related external costs are considerable. The total health-related external costs for the whole of Europe is estimated at 803 bn Euro yr-1 for the year 2000, decreasing to 537 bn Euro yr-1 in the year 2020. We estimate the total number of premature deaths in Europe in the year 2000 due to air pollution to be around 680 000 yr-1, decreasing to approximately 450 000 in the year 2020. The contribution from international ship traffic in the Northern Hemisphere was estimated to 7% of the total health-related external costs in Europe in the year 2000, increasing to 12% in the year 2020. In contrast, the contribution from international ship traffic in the Baltic Sea and the North Sea decreases 36% due to the regulatory efforts of reducing sulphur emissions from ship traffic in SECA. Introducing this regulatory instrument for all international ship traffic in the Northern Hemisphere, or at least in areas close to Europe, would have a significant positive impact on human health in Europe.

  17. Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system

    NASA Astrophysics Data System (ADS)

    Brandt, J.; Silver, J. D.; Christensen, J. H.; Andersen, M. S.; Bønløkke, J. H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A. B.; Hansen, K. M.; Hedegaard, G. B.; Kaas, E.; Frohn, L. M.

    2013-08-01

    An integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain has been developed to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors. The model system can be used to support policy-making with respect to emission control. In this study, we apply the EVA system to Europe, and perform a more detailed assessment of past, present, and future health-cost externalities of the total air pollution levels in Europe (including both natural and anthropogenic sources), represented by the years 2000, 2007, 2011, and 2020. We also assess the contribution to the health-related external costs from international ship traffic with special attention to the international ship traffic in the Baltic and North seas, since special regulatory actions on sulfur emissions, called SECA (sulfur emission control area), have been introduced in these areas. We conclude that, despite efficient regulatory actions in Europe in recent decades, air pollution still constitutes a serious problem for human health. Hence the related external costs are considerable. The total health-related external costs for the whole of Europe are estimated at 803 bn euros yr-1 for the year 2000, decreasing to 537 bn euros yr-1 in the year 2020. We estimate the total number of premature deaths in Europe in the year 2000 due to air pollution to be around 680 000 yr-1, decreasing to approximately 450 000 in the year 2020. The contribution from international ship traffic in the Northern Hemisphere was estimated to 7% of the total health-related external costs in Europe in the year 2000, increasing to 12% in the year 2020. In contrast, the contribution from international ship traffic in the Baltic Sea and the North Sea decreases 36% due to the regulatory efforts of reducing sulfur emissions from ship traffic in SECA. Introducing this regulatory instrument for all international ship traffic in the Northern Hemisphere, or at least in areas close to Europe, would have a significant positive impact on human health in Europe.

  18. Assessment of Past, Present and Future Health-Cost Ex-ternalities of Air Pollution in Europe and the contribution from International Ship Traffic using the EVA Model System

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Silver, Jeremy D.; Christensen, Jesper H.; Andersen, Mikael S.; Bønløkke, Jakob H.; Sigsgaard, Torben; Geels, Camilla; Gross, Allan; Hansen, Ayoe B.; Hansen, Kaj M.; Hedegaard, Gitte B.; Kaas, Eigil; Frohn, Lise M.

    2013-04-01

    An integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain has been developed, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors. The model system can be used to support policy-making with respect to emission control. In this study, we apply the EVA system to Europe, and perform a more detailed assessment of past, present, and future health-cost externalities of the total air pollution levels in Europe (including both natural and anthropogenic sources), represented by the years 2000, 2007, 2011, and 2020. We also assess the contribution to the health-related external costs from international ship traffic with special attention to the international ship traffic in the Baltic and North Seas, since special regulatory actions on sulphur emissions, called SECA (sulphur emission control area), have been intro-duced in these areas,. We conclude that despite efficient regulatory actions in Europe in recent decades, air pollution still constitutes a serious problem to human health, hence the related external costs are considerable. The total health-related external costs for the whole of Europe is estimated at 803 bn Euro/year for the year 2000, decreasing to 537 bn Euro/year in the year 2020. We estimate the total number of premature deaths in Europe in the year 2000 due to air pollution to be around 680,000/year, decreasing to approximately 450,000 in the year 2020. The contribution from international ship traffic in the Northern Hemisphere was estimated to 7% of the total health-related external costs in Europe in the year 2000, increasing to 12% in the year 2020. In contrast, the contribution from international ship traffic in the Baltic Sea and the North Sea decreases 36% due to the regulatory efforts of reducing sulphur emissions from ship traffic in SECA. Introducing this regulatory instrument for all international ship traffic in the Northern Hemisphere, or at least in areas close to Europe, would have a significant posi-tive impact on human health in Europe.

  19. China's air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas.

    PubMed

    Anger, Annela; Dessens, Olivier; Xi, Fengming; Barker, Terry; Wu, Rui

    2016-03-01

    China, as a fast growing fossil-fuel-based economy, experiences increasing levels of air pollution. To tackle air pollution, China has taken the first steps by setting emission-reduction targets for nitrogen oxides (NO x ) and sulphur dioxide (SO2) in the 11th and 12th Five Year Plans. This paper uses two models-the Energy-Environment-Economy Model at the Global level (E3MG) and the global Chemistry Transport Model pTOMCAT-to test the effects of these policies. If the policy targets are met, then the maximum values of 32 % and 45 % reductions below 'business as usual' in the monthly mean NO x and SO2 concentrations, respectively, will be achieved in 2015. However, a decrease in NO x concentrations in some highly polluted areas of East, North-East and South-East China can lead to up to a 10% increase in the monthly mean concentrations in surface ozone in 2015. Our study demonstrates an urgent need for the more detailed analysis of the impacts and designs of air pollution reduction guidelines for China.

  20. The effects of air pollutants on the mortality rate of lung cancer and leukemia.

    PubMed

    Dehghani, Mansooreh; Keshtgar, Laila; Javaheri, Mohammad Reza; Derakhshan, Zahra; Oliveri Conti, Gea; Zuccarello, Pietro; Ferrante, Margherita

    2017-05-01

    World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (P<0.05). Therefore, special attention should be paid to sources of these pollutants and we need better management to decrease air pollutant concentrations through, e.g., using clean energy respect to fossil fuels, better management of urban traffic planning, and the improvement of public transport service and car sharing.

  1. Trans-boundary air pollution in a city under various atmospheric conditions.

    PubMed

    Luo, Ming; Hou, Xiangting; Gu, Yefu; Lau, Ngar-Cheung; Yim, Steve Hung-Lam

    2018-03-15

    Trans-boundary air pollution (TAP) is a crucial factor affecting air quality, and its contribution may vary over time and differ under various atmospheric conditions. This study firstly applies an integrated statistical scheme to estimate the contributions of TAP and local sources to air pollutants in a city, and then investigate the influences of tropical cyclones (TC) on TAP. Hong Kong is chosen as an example because of its significant and special TAP characteristics. This study focuses on four major air pollutants, namely, respirable and fine suspended particulates (RSP/PM 10 and FSP/PM 2.5 ), sulfur dioxide (SO 2 ), and nitrogen dioxide (NO 2 ), from 2002 to 2013. Our results show that, on average, TAP is the major contributor of the annual RSP, FSP, SO 2 , and NO 2 in Hong Kong. We estimate that when a TC is approaching, the increase in pollutant concentration in Hong Kong is mainly due to the increase in TAP contribution by the strengthened northerly wind at higher level of atmosphere (≥900hPa). These changes are accompanied by decreases in precipitation and increases in northerly/north-easterly wind, which may prolong the lifetime of pollutants, enhancing pollutant transport from mainland China to Hong Kong. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?

    USGS Publications Warehouse

    Greaver, Tara L.; Sullivan, Timothy J.; Herrick, Jeffrey D.; Barber, Mary C.; Baron, Jill S.; Cosby, Bernard J.; Deerhake, Marion E.; Dennis, Robin L.; Dubois, Jean-Jacque B.; Goodale, Christine L.; Herlihy, Alan T.; Lawrence, Gregory B.; Liu, Lingli; Lynch, Jason A.; Novak, Kristopher J.

    2012-01-01

    Four decades after the passage of the US Clean Air Act, air-quality standards are set to protect ecosystems from damage caused by gas-phase nitrogen (N) and sulfur (S) compounds, but not from the deposition of these air pollutants to land and water. Here, we synthesize recent scientific literature on the ecological effects of N and S air pollution in the US. Deposition of N and S is the main driver of ecosystem acidification and contributes to nutrient enrichment in many natural systems. Although surface-water acidification has decreased in the US since 1990, it remains a problem in many regions. Perturbations to ecosystems caused by the nutrient effects of N deposition continue to emerge, although gas-phase concentrations are generally not high enough to cause phytotoxicity. In all, there is overwhelming evidence of a broad range of damaging effects to ecosystems in the US under current air quality conditions.

  3. Physicians' attitude toward their ethical responsibility regarding air pollution: a qualitative research.

    PubMed

    Saeeditehrani, Saeedeh; Parsapour, Alireza; Nedjat, Saharnaz; Kadivar, Maliheh; Larijani, Bagher

    2017-01-01

    Air pollution is among the environmental problems that adversely affect people's health. There is a close relationship between medicine and environment, and as a consequence, there are ethical considerations surrounding the problem of air pollution. The present research aimed to determine physicians' attitude toward their ethical responsibility regarding air pollution, and their role in reducing it. This was a qualitative research using content analysis, conducted in Tehran University of Medical Sciences. The focus group included 21 physicians with specialties and subspecialties in pediatrics, infectious diseases, pulmonology, gynecology, and midwifery selected through predetermined sampling along with 13 personal in-depth interviews. A number of questions were asked regarding physicians' ethical responsibility to decrease environmental crises, particularly air pollution. As a result, 4 themes and 20 subthemes were extracted by assessing the focus group and interviews. These four general themes included the role of a physician as 1) an ordinary person, 2) a special citizen and a role model, 3) a professional person with special personal and social commitments, and 4) an administrator of the healthcare system. In the present research, physicians acquired a special attitude toward air pollution. The research population mentioned physicians' impact as role models for the society, as well as their educational, supervisory, informative, promotional, and administrative roles among their most important obligations regarding air pollution. It is recommended to conduct further studies on physicians' knowledge, attitude and practice regarding their responsibility toward environmental issues in order to investigate this important matter further.

  4. Total free radical species and oxidation equivalent in polluted air.

    PubMed

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J. C.; Alvarez-Ramirez, J.

    2015-06-01

    The rescaled range (R / S) analysis was used for analyzing the statistical persistence of air pollutants in Mexico City. The air-pollution time series consisted of hourly observations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter obtained at the Mexico City downtown monitoring station during 1999-2014. The results showed that long-range persistence is not a uniform property over a wide range of time scales, from days to months. In fact, although the air pollutant concentrations exhibit an average persistent behavior, environmental (e.g., daily and yearly) and socio-economic (e.g., daily and weekly) cycles are reflected in the dependence of the persistence strength as quantified in terms of the Hurst exponent. It was also found that the Hurst exponent exhibits time variations, with the ozone and nitrate oxide concentrations presenting some regularity, such as annual cycles. The persistence dynamics of the pollutant concentrations increased during the rainy season and decreased during the dry season. The time and scale dependences of the persistence properties provide some insights in the mechanisms involved in the internal dynamics of the Mexico City atmosphere for accumulating and dissipating dangerous air pollutants. While in the short-term individual pollutants dynamics seems to be governed by specific mechanisms, in the long-term (for monthly and higher scales) meteorological and seasonal mechanisms involved in atmospheric recirculation seem to dominate the dynamics of all air pollutant concentrations.

  6. Entrainment, Drizzle, and Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  7. The Results of 45 Years of Atmospheric Corrosion Study in the Czech Republic.

    PubMed

    Kreislova, Katerina; Knotkova, Dagmar

    2017-04-07

    Atmospheric corrosion poses a significant problem with regard to destruction of various materials, especially metals. Observations made over the past decades suggest that the world's climate is changing. Besides global warming, there are also changes in other parameters. For example, average annual precipitation increased by nearly 10% over the course of the 20th century. In Europe, the most significant change, from the atmospheric corrosion point of view, was an increase in SO₂ pollution in the 1970s through the 1980s and a subsequent decrease in this same industrial air pollution and an increase in other types of air pollution, which created a so-called multi-pollutant atmospheric environment. Exposed metals react to such changes immediately, even if corrosion attack started in high corrosive atmospheres. This paper presents a complex evaluation of the effect of air pollution and other environmental parameters and verification of dose/response equations for conditions in the Czech Republic.

  8. Trace gases and air mass origin at Kaashidhoo, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Lobert, Jürgen M.; Harris, Joyce M.

    2002-10-01

    Carbon monoxide (CO) was measured at the Kaashidhoo Climate Observatory (KCO, Republic of Maldives) between February 1998 and March 2000 to assess the regional pollution of the remote atmosphere in the northern Indian Ocean. CO showed a distinct annual cycle with maximum daily mixing ratios of around 240 parts per billion (ppb), a seasonal difference of about 200 ppb, and high variability during the dry seasons. Detailed air mass trajectory analysis for 1998, 1999, and 2000 was used to identify source regions and to associate them with various levels of pollution encountered at KCO. We conclude that most significant changes in local pollution throughout the year are caused by changes in air masses. Air at KCO generally originated from three main regions with decreasing pollution: India and southeast Asia, the Arabian Sea, and the Southern Hemisphere. We show that isentropic air mass trajectories can be used to predict CO pollution levels at KCO to a certain extent and vice versa. Nitrous oxide, CFC-11, CFC-12, CCI4, and SF6 were measured during the Indian Ocean Experiment (February to March 1999) to support pollution analysis and to confirm that India is the main source for heavy pollution measured at KCO. Correlations between CO and other gases and aerosol properties measured at the surface illustrate that CO may also be used as a proxy for aerosol loading and general pollution at the surface.

  9. The effects of atmospheric processes on tehran smog forming.

    PubMed

    Mohammadi, H; Cohen, D; Babazadeh, M; Rokni, L

    2012-01-01

    Air pollution is one of the most important problems in urban areas that always threaten citizen's health. Photochemical smog is one of the main factors of air pollution in large cities like Tehran. Usually smog is not only a part of nature, but is being analyzed as an independent matter, which highly affects on the nature. It has been used as relationship between atmospheric elements such as temperature, pressure, relative humidity, wind speed with inversion in the time of smog forming and weather map in 500 Hpa level during 9 years descriptive static by using correlation coefficient in this analyze. Results show that there is a meaningful correlation between atmospheric elements and smog forming. This relation is seen between monthly average of these elements and monthly average of smog forming. However, when temperature decreases, corresponding pressure will increase and result of this will be smog forming. Usually smog increases in cold months of year due to enter cold high pressure air masses in Iran during December and January that is simultaneous with decreasing temperature and air pressure increases and inversion height distance decreases from the earth surface which cause to integrate air pollution under its surface, will cause to form smog in Tehran. It shows a meaningful and strong relation, based on resultant relations by correlation coefficient from inversion height and smog forming, so that obtained figure is more than 60% .

  10. Decreasing Free Radicals Level on High Risk Person After Vitamin C and E Supplement Treatment

    NASA Astrophysics Data System (ADS)

    Sitorus, M. S.; Anggraini, D. R.; Hidayat

    2017-03-01

    Has become a global issue that the increase in global warming mainly caused by high air pollution levels which are donated by motor vehicle emissions. As a rapidly developing country, Indonesia becomes vulnerable to health problems related to air pollution. Excessive free radicals that is produced by air pollution can initiate stress oxidative. Already known that, stress oxidative trigger many health problems. Vitamin C and E is a non enzymatic antioxidant that can neutralize free radicals. This study aims to investigate the decreasing free radicals level by administering vitamin C and E. This research using pre and post experimental design study. There are 24 operators gasoline station Pertamina as samples, with an average age of 26 years. The samples were divided into 4 groups. Group 1 (control), group 2, were given vitamin C doses of 500mg / day, group 3 was given vitamin E doses of 250 IU / day and the group 4 was given a combination of vitamins C and E. The treatment was given for 30 days. Free radicals level is obtained from malonaldehyde (MDA) level by spectrophotometer. Before treatment the average of MDA level is 5.540 µm. After the treatment, MDA is significantly decreased become 3.992 µm (T-test, sig<0.05). This result can be used as a sign of side affect of air pollutant in the operator SPBU. As reminding to protect the employee with safety aid and supplement.

  11. [Disease burden attributable to household air pollution in 1990 and 2013 in China].

    PubMed

    Yin, P; Cai, Y; Liu, J M; Liu, Y N; Qi, J L; Wang, L J; You, J L; Zhou, M G

    2017-01-06

    Objective: To assess the disease burden attributable to household air pollution in 1990 and 2013 in China. Methods: Based on data from the Global Burden of Disease Study 2013 in China (GBD 2013), we used population attributable fractions (PAF) to analyze the burden of different diseases attributable to solid-fuel household pollution in 2013 in China(not inclnding HongKang, Macao, Taiwan). We compared PAF, mortality, and disability-adjusted life years (DALY) for diseases attributable to solid-fuel household pollution in 31 provinces in mainland China in 1990 and 2013, and stratified the burden by age group. The estimated world average population during 2000- 2025 was used to calculate age-standardized mortality and DALY rates. Results: In 2013, 14.9% of lower respiratory infections in children <5, 32.5% of chronic obstructive pulmonary disease (COPD), 12.0% of ischemic stroke, 14.2% of hemorrhagic stroke, 10.9% of ischemic heart disease, and 13.7% of lung cancer were attributable to solid-fuel household pollution. In addition, 807 000 deaths were attributable to solid-fuel household pollution, including 296 000 from COPD, 169 000 from hemorrhagic stroke, 152 000 from ischemic heart disease, 88 000 from ischemic stroke, 75 000 from lung cancer, and 28 000 from lower respiratory infections in children <5. The age-standardized mortality rate from solid-fuel household pollution decreased by 59.3% from 158.8/100 000 in 1990 to 64.6/100 000 in 2013. The age-standardized mortality rate from solid-fuel household pollution decreased in all 31 provinces, with the highest decline observed in Shanghai (96.3%), and lowest in Xinjiang (39.9%). In 2013, the age-standardized DALY rate from solid-fuel household pollution was highest in Guizhou (2 233.0/100 000) and lowest in Shanghai (27.0/100 000). The DALY rate was the highest for the >70 age group (7 006.0/100 000). Compared with 1990, the 2013 mortality rate and DALY rate from solid-fuel household pollution decreased in all age groups, with the highest decline observed in the <5 age group (91.9% and 91.8% , respectively). Conclusion: Although the disease burden attributable to household air pollution decreased notably between 1990 and 2013, household pollution caused a high number of deaths and DALY loss in certain western provinces.

  12. An Evaluation of the Health Benefits Achieved at the Time of an Air Quality Intervention in Three Israeli Cities

    PubMed Central

    Yinon, Lital; Thurston, George

    2018-01-01

    Background The statistical association between increased exposure to air pollution and increased risk of morbidity and mortality is well established. However, documentation of the health benefits of lowering air pollution levels, which would support the biological plausibility of those past statistical associations, are not as well developed. A better understanding of the aftereffects of interventions to reduce air pollution is needed in order to: 1) better document the benefits of lowered air pollution; and, 2) identify the types of reductions that most effectively provide health benefits. Methods This study analyzes daily health and pollution data from three major cities in Israel that have undergone pollution control interventions to reduce sulfur emissions from combustion sources. In this work, the hypothesis tested is that transitions to cleaner fuels are accompanied by a decreased risk of daily cardiovascular and respiratory mortalities. Interrupted time series regression models are applied in order to test whether the cleaner air interventions are associated with a statistically significant reduction in mortality. Results In the multi-city meta-analysis we found statistically significant reductions of 13.3% [CI −21.9%, −3.8%] in cardiovascular mortality, and a borderline significant (p=0.06) reduction of 19.0% [CI −35.1%, 1.1%] in total mortality. Conclusions Overall, new experiential evidence is provided consistent with human health benefits being associated with interventions to reduce air pollution. The methods employed also provide an approach that may be applied elsewhere in the future to better document and optimize the health benefits of clean air interventions. PMID:28237065

  13. Acute and recent air pollution exposure and cardiovascular events at labour and delivery

    PubMed Central

    Männistö, Tuija; Mendola, Pauline; Grantz, Katherine Laughon; Leishear, Kira; Sundaram, Rajeshwari; Sherman, Seth; Ying, Qi; Liu, Danping

    2017-01-01

    Objective To study the relationship between acute air pollution exposure and cardiovascular events during labour/delivery. Methods The Consortium on Safe Labor (2002–2008), an observational US cohort with 223 502 singleton deliveries provided electronic medical records. Air pollution exposure was estimated by modified Community Multiscale Air Quality models. Cardiovascular events (cardiac failure/arrest, stroke, myocardial infarcts and other events) were recorded in the hospital discharge records for 687 pregnancies (0.3%). Logistic regression with generalised estimating equations estimated the relationship between cardiovascular events and daily air pollutant levels for delivery day and the 7 days preceding delivery. Results Increased odds of cardiovascular events were observed for each IQR increase in exposure to nitric oxides at 5 and 6 days prior to delivery (OR=1.17, 99% CI 1.04 to 1.30 and OR=1.15, 1.03 to 1.28, respectively). High exposure to toxic air pollution species such as ethylbenzene (OR=1.50, 1.08 to 2.09), m-xylene (OR=1.54, 1.11 to 2.13), o-xylene (OR=1.51, 1.09 to 2.09), p-xylene (OR=1.43, 1.03 to 1.99) and toluene (OR=1.42, 1.02 to 1.97) at 5 days prior to delivery were also associated with cardiovascular events. Decreased odds of events were observed with exposure to ozone. Conclusions Air pollution in the days prior to delivery, especially nitrogen oxides and some toxic air pollution species, was associated with increased risk of cardiovascular events during the labour/delivery admission. PMID:26105036

  14. An evaluation of the health benefits achieved at the time of an air quality intervention in three Israeli cities.

    PubMed

    Yinon, Lital; Thurston, George

    2017-05-01

    The statistical association between increased exposure to air pollution and increased risk of morbidity and mortality is well established. However, documentation of the health benefits of lowering air pollution levels, which would support the biological plausibility of those past statistical associations, are not as well developed. A better understanding of the aftereffects of interventions to reduce air pollution is needed in order to: 1) better document the benefits of lowered air pollution; and, 2) identify the types of reductions that most effectively provide health benefits. This study analyzes daily health and pollution data from three major cities in Israel that have undergone pollution control interventions to reduce sulfur emissions from combustion sources. In this work, the hypothesis tested is that transitions to cleaner fuels are accompanied by a decreased risk of daily cardiovascular and respiratory mortalities. Interrupted time series regression models are applied in order to test whether the cleaner air interventions are associated with a statistically significant reduction in mortality. In the multi-city meta-analysis we found statistically significant reductions of 13.3% [CI -21.9%, -3.8%] in cardiovascular mortality, and a borderline significant (p=0.06) reduction of 19.0% [CI -35.1%, 1.1%] in total mortality. Overall, new experiential evidence is provided consistent with human health benefits being associated with interventions to reduce air pollution. The methods employed also provide an approach that may be applied elsewhere in the future to better document and optimize the health benefits of clean air interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Countervailing effects of income, air pollution, smoking, and obesity on aging and life expectancy: population-based study of U.S. Counties.

    PubMed

    Allen, Ryan T; Hales, Nicholas M; Baccarelli, Andrea; Jerrett, Michael; Ezzati, Majid; Dockery, Douglas W; Pope, C Arden

    2016-08-12

    Income, air pollution, obesity, and smoking are primary factors associated with human health and longevity in population-based studies. These four factors may have countervailing impacts on longevity. This analysis investigates longevity trade-offs between air pollution and income, and explores how relative effects of income and air pollution on human longevity are potentially influenced by accounting for smoking and obesity. County-level data from 2,996 U.S. counties were analyzed in a cross-sectional analysis to investigate relationships between longevity and the four factors of interest: air pollution (mean 1999-2008 PM2.5), median income, smoking, and obesity. Two longevity measures were used: life expectancy (LE) and an exceptional aging (EA) index. Linear regression, generalized additive regression models, and bivariate thin-plate smoothing splines were used to estimate the benefits of living in counties with higher incomes or lower PM2.5. Models were estimated with and without controls for smoking, obesity, and other factors. Models which account for smoking and obesity result in substantially smaller estimates of the effects of income and pollution on longevity. Linear regression models without these two variables estimate that a $1,000 increase in median income (1 μg/m(3) decrease in PM2.5) corresponds to a 27.39 (33.68) increase in EA and a 0.14 (0.12) increase in LE, whereas models that control for smoking and obesity estimate only a 12.32 (20.22) increase in EA and a 0.07 (0.05) increase in LE. Nonlinear models and thin-plate smoothing splines also illustrate that, at higher levels of income, the relative benefits of the income-pollution tradeoff changed-the benefit of higher incomes diminished relative to the benefit of lower air pollution exposure. Higher incomes and lower levels of air pollution both correspond with increased human longevity. Adjusting for smoking and obesity reduces estimates of the benefits of higher income and lower air pollution exposure. This adjustment also alters the tradeoff between income and pollution: increases in income become less beneficial relative to a fixed reduction in air pollution-especially at higher levels of income.

  16. Study on the impact of air quality in agricultural and health sectors

    NASA Astrophysics Data System (ADS)

    Chairani, S.

    2018-03-01

    This study focused on the impact of air quality in agricultural and health sectors. The impact of CO2 on the agricultural crops was conducted by using literature review and the impact of air quality was conducted using secondary data to calculate the Air Quality Index (AQI), derived from some monitoring stations available in Indonesia. Numerous studies showed that the elevated CO2 decreased the agricultural productivity. Maize yields decreased by 15 % in areas which used irrigation system and 8 % in areas which used rainfed. Maize yields had already experienced severe losses without increasing CO2 concentrations. It decreased by 21 % for irrigated maize and 26 % by rainfed maize. In addition, it turned out that other elevated pollutants, such as SO2, NO2, SPM, O3, CH4, PM2.5, PM10 and TSP also occurred in the atmosphere. These pollutants’ effects might harm human being in term of health concern. The USEPA had developed a tool, called the Air Quality Index (AQI) calculator to calculate the pollutants’ concentrations in a daily basis. This tool’s function to inform how clean or polluted the air that we breathed was with the health effects based on the concentrations of each pollutant. The AQI also provided the information on sensitive groups, health effects and cautionary statements. Based on the air daily data which derived from Board of Meteorology, Climatology and Geophysics (BMKG) of Indonesia, the AQI in Indonesia varied from good, moderate to unhealthy categories; with level of health concern was respiratory diseases, such as asthma.

  17. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui

    2016-08-01

    Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.

  18. Algal layer ratios as indicators of air pollutant effects in Permelia sulcata

    USGS Publications Warehouse

    Bennett, J.P.

    2002-01-01

    Parmelia sulcata Taylor is generally believed to be fairly pollution tolerant, and consequently it is sometimes collected in urban and/or polluted localities. The condition of these specimens, however, is not always luxuriant and healthy. This study tested the hypothesis that total thallus and algal layer thickness, and the algal layer ratio would be thinner in polluted areas, thus allowing these characters to be used a indicators of air pollutant effects. Herbarium specimens were studied from 16 different localities varying in pollution level. The thallus and algal layers and ratio were not affected by year or locality of sampling, but decreased 11, 31 and 21% respectively between low and high pollution level localities. These results agreed with earlier studies using other species, but further work is needed to clarify the effects of geography and substrate on these phenomena.

  19. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century.

  20. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California.

    PubMed

    Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto

    2012-05-15

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The response of the foliar antioxidant system and stable isotopes (δ(13)C and δ(15)N) of white willow to low-level air pollution.

    PubMed

    Wuytack, Tatiana; AbdElgawad, Hamada; Staelens, Jeroen; Asard, Han; Boeckx, Pascal; Verheyen, Kris; Samson, Roeland

    2013-06-01

    In this study we aimed to determine and elucidate the effect of ambient air pollution on the foliar antioxidant system and stable carbon and nitrogen isotopes of white willow (Salix alba L.). We grew white willow in uniform potting soil in the near vicinity of sixteen air quality monitoring stations in Belgium where nitrogen dioxide (NO2), ozone, sulfur dioxide and particulate matter concentrations were continuously measured. The trees were exposed to ambient air during six months (April-September 2011), and, thereafter, the degree of lipid peroxidation and foliar content of antioxidant molecules (ascorbate, glutathione, polyphenols, flavonoids), antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, peroxidase) and foliar stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes were measured. We found that lipid peroxidation was caused by air pollution stress, arising from high ambient NO2 concentrations, as shown by an increased amount of malondialdehyde. The antioxidant system was activated by increasing the amount of polyphenols at monitoring stations with a high atmospheric NO2 and low O3 concentration, while no increase of key enzymes (e.g., ascorbate, glutathione) was observed. The δ(13)C also decreased with increasing NO2 concentrations and decreasing O3 concentrations, probably reflecting a decreased net photosynthesis and/or a concomitant decrease of (13)CO2 in the atmosphere. Shade also influenced foliar δ(13)C and the content of leaf ascorbate and glutathione. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia

    NASA Astrophysics Data System (ADS)

    Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.

    2014-12-01

    Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air quality predictions under proposed regulatory scenarios.

  3. Computational fluid dynamics modeling to assess the impact of roadside barriers on near-road air quality

    EPA Science Inventory

    Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...

  4. Does Mental Health Status Influence Susceptibility to the Physiologic Effects of Air Pollution? A Population Based Study of Canadian Children.

    PubMed

    Dales, Robert E; Cakmak, Sabit

    2016-01-01

    Both air pollution exposure and the presence of mental illness are associated with an increased risk of physical illness. To determine whether or not children with less favourable mental health are more susceptible to pulmonary and cardiovascular effects of ambient air pollution, compared to those who are mentally healthy. We carried out a cross-sectional study of 1,883 children between the ages of 6 and 17 years of age who participated in the Canadian Health Measures population survey between 2007 and 2009. Subjects were assigned the air pollution values obtained from the National Air Pollution monitor closest to their neighborhood. Lung function, heart rate and blood pressure were stratified by indicators of mental health. The latter were ascertained by questions about feelings of happiness, a diagnosed mood disorder, and the emotional symptom subscale of the Strengths and Difficulties Questionnaire. Among those who reported a mood disorder, an interquartile increase in ozone was associated with increases in systolic and diastolic pressures of 3.8 mmHg (95% CI 1.6, 5.9) and 3.0mmHg (95%CI 0.9, 5.2) respectively, and a decreases in FVC of 7.6% (95% CI 2.9, 12.3). No significant changes in these variables were observed in those who did not report a mood disorder. Among those with unfavourable emotional symptoms, ozone was associated with a 6.4% (95% CI 1.7, 11.3) increase in heart rate, a 4.1% (95%CI 1.2, 7.1) increase in systolic blood pressure, and a 6.0% (95% CI 1.4, 10.6) decrease in FEVl. No significant effect was seen in these variables among those with no emotional symptoms. In the Canadian population, children who report mood disorders or unfavourable emotional symptoms appear to be more vulnerable to the adverse physiologic effects of air pollution.

  5. Influence of Air Pollutant Emission Controls on the "Climate Penalty" in the United States

    NASA Astrophysics Data System (ADS)

    Feng, T.; Couzo, E. A.; Selin, N. E.; Garcia-Menendez, F.; Monier, E.

    2016-12-01

    Previous work has examined the so-called "climate penalty" (or benefit, where climate change leads to decreased pollutant concentrations) for the U.S. In particular, previous research has identified the role of changes in temperature, precipitation, relative humidity, and biogenic emissions, in altering concentrations of O3 and PM2.5, when emissions of air pollutant precursors are held constant. However, changes in emissions of those precursors can also affect the magnitude of climate penalty/benefit. The effect of changing air pollutant emissions on the climate penalty/benefit has not been systematically studied. Here, we estimate the U.S. climate penalty (for O3 and PM2.5) as a function of four different local (U.S.) non-GHG emissions scenarios using the GEOS-Chem chemical transport model coupled to the MIT Integrated Global System Model linked to the Community Atmosphere Model (IGSM-CAM). Our base case scenario includes global and regional emissions for 2006. We conduct three sensitivity scenarios that adjust U.S. air pollutant precursor (non-GHG) emissions by -50%, +50%, and +100%; global emissions are kept at 2006 levels. This allows us to quantify the avoided climate penalty achieved by non-GHG emissions reductions. To capture inter-annual meteorological variability, our climate penalty calculations use 20-year averages for the present (1991-2010) and future (2091-2110) climate under a no-policy scenario. Consistent with previous work, we find a "climate penalty" for O3 and PM2.5 in U.S. by 2100 across all four scenarios. We also find a climate-related decrease in the concentration of NOx and nitrate, and an increase in black carbon, organic carbon and sulfate. Changes in ammonium are spatially inhomogeneous, with an increase in eastern U.S. and a decrease in middle and western U.S. When air pollutant precursor emissions increase, we find that the O3 "climate penalty" is enhanced. However, the response of the PM2.5 "climate penalty" to changed emissions differs spatially among U.S. regions. It increases with U.S. non-GHG emissions in the East, but decreases with the emissions in the West. We use these results to draw conclusions about whether (and where) U.S. emissions controls could have an additional and previously unquantified benefit in reducing projected climate penalties.

  6. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Measurements of ozone and nonmethane hydrocarbons at Chichi-jima island, a remote island in the western Pacific: long-range transport of polluted air from the Pacific rim region

    NASA Astrophysics Data System (ADS)

    Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi

    Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.

  8. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  9. Pulmonary rehabilitation improves exercise capacity and dyspnea in air pollution-related respiratory disease.

    PubMed

    Miyamoto, Naomi; Senjyu, Hideaki; Tanaka, Takako; Asai, Masaharu; Yanagita, Yorihide; Yano, Yudai; Nishinakagawa, Tsuyoshi; Kotaki, Kenji; Kitagawa, Chika; Rikitomi, Naoto; Kozu, Ryo; Honda, Sumihisa

    2014-01-01

    Air pollution in Japan caused respiratory disease, such as chronic bronchitis and asthma, in many individuals in the 1960s. Although air pollution has decreased, many victims of air pollution-related respiratory disease are limited in their activities of daily living because of respiratory symptoms. The purpose of this study was to evaluate the efficacy of pulmonary rehabilitation in victims of air pollution-related chronic bronchitis or asthma. Subjects were enrolled in a 12-week (2-week inpatient followed by 10-week outpatient) pulmonary rehabilitation program. The program comprised conditioning, strength training, endurance training, and patient education. We assessed the Modified Medical Research Council (MMRC) dyspnea grade, pulmonary function, peripheral muscle force, incremental shuttle walk distance (ISWD), and physical activity at baseline and immediately after the program. Twenty-nine subjects (mean age 74.2 ± 10.1 years, 11 males) completed the program, including 11 subjects with COPD and 18 subjects with asthma. Following rehabilitation, the participants (n = 29) showed significant improvements in MMRC dyspnea grade, vital capacity % predicted, quadriceps force and ISWD (all P < 0.05). Sub-group analyses revealed that all these variables were significantly improved in subjects with asthma. In contrast, subjects with COPD showed significant improvements only in quadriceps force and ISWD (both P < 0.05). Thus, pulmonary rehabilitation is an effective method of improving exercise capacity and dyspnea in officially acknowledged victims of air pollution-related asthma. In conclusion, we recommend that patients with chronic bronchitis or asthma, resulting from exposure to air pollution, are referred for pulmonary rehabilitation.

  10. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution–related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683–1693; http://dx.doi.org/10.1289/EHP136 PMID:27285588

  11. Particulate matter pollutants and risk of type 2 diabetes: a time for concern?

    PubMed

    Esposito, Katherine; Petrizzo, Michela; Maiorino, Maria Ida; Bellastella, Giuseppe; Giugliano, Dario

    2016-01-01

    The World Health Organization estimates that worldwide in 2012 around 7 million deaths occurred prematurely due to air pollution, which is now the world's largest single environmental health risk. The higher premature mortality associated with air pollution is due to exposure to small particulate matter of 10 microns (PM10) or less in diameter. Exposure to air pollution has also been suggested as a contributing to diabetes incidence and progression. There are a number of possible biological pathways linking air pollutants to diabetes, including endothelial dysfunction, dysregulation of the visceral adipose tissue through inflammation, hepatic insulin resistance, elevated hemoglobin A1c level, elevated blood pressure, and alterations in autonomic tone, which may increase insulin resistance. The risk of future diabetes associated with exposure to 10 μg/m(3) increase of PM2.5 has been quantified in the range of 10 to 27%; the risk of diabetes mortality associated with PM2.5 appears to be quite lower, around 1% for each increment exposure of 10 μg/m(3) of both PM2.5 and PM10. Limitations of the current epidemiological evidence include the complex mixture of pollutants, the different design of the studies, the limited data available for non Western populations, and the lack of demonstration that improvement of air quality is associated with a decrease incidence of type 2 diabetes. Although the most sources of outdoor air pollution are well beyond the control of individuals, people should be informed that there are means to reduce the burden of air pollutants on diabetes risk, including avoidance of passive smoking, adoption of an healthy diet, and increasing leisure-time physical activity.

  12. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  13. Geographic Variation in Mentally Unhealthy Days: Air Pollution and Altitude Perspectives.

    PubMed

    Ha, Hoehun

    2017-09-01

    Ha, Hoehun. Geographic variation in mentally unhealthy days: air pollution and altitude perspectives. High Alt Med Biol. 18:258-266, 2017. Mental health incorporates our emotional, psychological, and social well-being and it is critical at each phase of life, from youth and preadulthood through adulthood. We assessed the association between mentally unhealthy days (MUDs), air pollutant concentrations, and altitude on the basis of cross-county studies. Data on poor mental health days for the United States were based on health-related telephone surveys conducted by the Behavioral Risk Factor Surveillance System (BRFSS). Average annual regional air pollution data were obtained from Center for Disease Control and Prevention (CDC) WONDER Environmental data, and altitude data were collected from the U.S. Geological Survey (USGS). In the data set (across 2589 U.S. counties for 2011), even after accounting for potential confounding variables and multicollinearity, a significant association between altitude, air pollution, and poor mental health days was found, explaining that poor mental health days increase with increasing air pollution concentrations and with decreasing altitude (R 2  = 0.663, p < 0.001). Controlling for socioeconomic (e.g., education and employment) and social (including social relationship and crime) factors did not change these findings. In this study, we found that counties with lower air pollution and higher altitude had significantly lower average number of MUDs reported within the past 30 days. This association has not been reported before in the literature. These findings suggest a need for further investigation into the extent that air quality and altitude may serve as significant factors for mental health and have major implications in our understanding of the etiology of mental health by medical professionals.

  14. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren.

    PubMed

    van Kempen, Elise; Fischer, Paul; Janssen, Nicole; Houthuijs, Danny; van Kamp, Irene; Stansfeld, Stephen; Cassee, Flemming

    2012-05-01

    Children living close to roads are exposed to both traffic noise and traffic-related air pollution. There are indications that both exposures affect cognitive functioning. So far, the effects of both exposures have only been investigated separately. To investigate the relationship between air pollution and transportation noise on the cognitive performance of primary schoolchildren in both the home and school setting. Data acquired within RANCH from 553 children (aged 9-11 years) from 24 primary schools were analysed using multilevel modelling with adjustment for a range of socio-economic and life-style factors. Exposure to NO(2) (which is in urban areas an indicator for traffic-related air pollution) at school was statistically significantly associated with a decrease in the memory span length measured during DMST (χ(2)=6.8, df=1, p=0.01). This remained after additional adjustment for transportation noise. Statistically significant associations were observed between road and air traffic noise exposure at school and the number of errors made during the 'arrow' (χ(2)=7.5, df=1, p=0.006) and 'switch' (χ(2)=4.8, df=1, p=0.028) conditions of the SAT. This remained after adjustment for NO(2). No effects of air pollution exposure or transportation noise exposure at home were observed. Combined exposure of air pollution and road traffic noise had a significant effect on the reaction times measured during the SRTT and the 'block' and the 'arrow' conditions of the SAT. Our results provide some support that prolonged exposure to traffic-related air pollution as well as to noise adversely affects cognitive functioning. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Air quality trends and potential health effects - Development of an aggregate risk index

    NASA Astrophysics Data System (ADS)

    Sicard, Pierre; Lesne, Olivia; Alexandre, Nicolas; Mangin, Antoine; Collomp, Rémy

    2011-02-01

    The "Provence Alpes Côte d'Azur" (PACA) region, in the South East of France, is one of Europe's regions most influenced by the atmospheric pollution. During the last 15 years, the industrial emissions decrease caused an evolution of the atmospheric pollution nature. Nowadays, atmospheric pollution is more and more influenced by the road traffic, the dominating pollution source in urban zones for the PACA region. Combined with this intense road traffic, the strong hot season of the Mediterranean climate contributes to the region bad air quality; it is known to be one of the worse in Europe. The recognized air pollution effects over public health include increased risk of hospital admissions and mortality by respiratory or cardiovascular diseases. The combination of these serious pollution related health hazards with senior and children vulnerabilities leads to serious sanitary concerns. Over the 1990-2005 period, we obtained, using the non-parametric Mann-Kendall test from annual mortality dataset (CépiDC), decreasing trends for Asthma (-5.00% year -1), Cardiovascular (-0.73% year -1), Ischemic (-0.69% year -1) and cerebrovascular diseases (-3.10% year -1). However, for "Other heart diseases" (+0.10% year -1) and "Respiratory" (+0.10% year -1) an increase was observed. The development of an adequate tool to understand impacts of pollution levels is of utmost importance. Different pollutants have different health endpoints, information may be lost through the use of a single index consequently, in this study we present the modified formula of air quality index, based on Cairncross's concept the Aggregate Risk Index (ARI). ARI is based on the relative risk of the well-established increased daily mortality, or morbidity, enabling an assessment of additive effects of short-term exposure to the main air pollutants: PM 2.5, PM 10, SO 2, O 3 and NO 2 in order to account for the reality of the multiple exposures impacts of chemical agents. The ARI, developed per pathology, takes into account the possible adverse effects associated with the coexistence of all pollutants. This index will enable to communicate the health risks associated, from modelled or monitored pollutant concentrations, to the general population. The second step will consist in the construction of a prediction model of this sanitary index.

  16. Environment and air pollution: health services bequeath to grotesque menace.

    PubMed

    Qureshi, Muhammad Imran; Rasli, Amran Md; Awan, Usama; Ma, Jian; Ali, Ghulam; Faridullah; Alam, Arif; Sajjad, Faiza; Zaman, Khalid

    2015-03-01

    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.

  17. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  19. The impact of air pollutants on rainwater chemistry during "urban-induced heavy rainfall" in downtown Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Uchiyama, Ryunosuke; Okochi, Hiroshi; Katsumi, Naoya; Ogata, Hiroko

    2017-06-01

    In order to clarify the impact of air pollution on the formation of sudden and locally distributed heavy rain in urban areas (hereafter UHR = urban-induced heavy rain), we analyzed inorganic ions in rainwater samples collected on an event basis over 5 years from October 2012 to December 2016 in Shinjuku, Tokyo. Hourly rainfall amounts and wet deposition fluxes of acidic components (the sum of H+, NH4+, NO3-, and nonsea-salt SO42-) in UHR were 13.1 and 17.8 times larger than those in normal rainfall, respectively, indicating that large amount of air pollutants were scavenged and deposited by UHR with large amounts of rainfall. The level of air pollutants, such as NO2, SO2, and potential ozone, in the ambient air increased just before the formation of UHR and decreased sharply at the end of the UHR event. These results indicate that NO2, which was formed secondarily by oxidants, was further oxidized by HO radicals and formed HNO3 just before the formation of UHR, which was subsequently scavenged by UHR.

  20. High resolution estimates of the corrosion risk for cultural heritage in Italy.

    PubMed

    De Marco, Alessandra; Screpanti, Augusto; Mircea, Mihaela; Piersanti, Antonio; Proietti, Chiara; Fornasier, M Francesca

    2017-07-01

    Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO 2 , HNO 3 , O 3 , PM 10 ) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003-2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM 10 and HNO 3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ozone decreases sperm quality in systemic lupus erythematosus patients.

    PubMed

    Farhat, Juliana; Farhat, Sylvia Costa Lima; Braga, Alfésio Luís Ferreira; Cocuzza, Marcello; Borba, Eduardo Ferreira; Bonfá, Eloisa; Silva, Clovis Artur

    2016-01-01

    To investigate the deleterious effects of air pollutants exposure in the Sao Paulo metropolitan region on semen quality in systemic lupus erythematosus (SLE). A seven-years longitudinal repeated-measures panel study was performed at the Laboratory of Experimental Air Pollution and Rheumatology Division. Two semen samples from 28 post-pubertal SLE patients were analyzed. Daily concentrations of air pollutants exposure: PM10, SO2, NO2, ozone, CO, and meteorological variables were evaluated on 90 days before each semen collection dates using generalized estimating equation models. Intravenous cyclophosphamide (IVCYC) and ozone had an association with a decrease in sperm quality of SLE patients. IVCYC was associated with decreases of 64.3 million of spermatozoa/mL (95% CI 39.01-89.65; p=0.0001) and 149.14 million of spermatozoa/ejaculate (95% CI 81.93-216.38; p=0.017). With regard to ozone, the most relevant adverse effects were observed from lags 80-88, when the exposure to an interquartile range increase in ozone 9-day moving average concentration led to decreases of 22.9 million of spermatozoa/mL (95% CI 5.8-40.0; p=0.009) and 70.5 million of spermatozoa/ejaculate (95% CI 12.3-128.7; p=0.016). Further analysis of 17 patients that never used IVCYC showed association between exposure to ozone (80-88 days) and decrease of 30.0 million of spermatozoa/mL (95% CI 7.0-53.0; p=0.011) and 79.0 million of spermatozoa/ejaculate (95% CI 2.1-155.9; p=0.044). Ozone and IVCYC had a consistent adverse effect on semen quality of SLE patients during spermatogenesis. Minimizing exposure to air pollution should be taken into account, especially for patients with chronic systemic inflammatory diseases living in large cities. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  2. 2001-2012 trends on air quality in Spain.

    PubMed

    Querol, X; Alastuey, A; Pandolfi, M; Reche, C; Pérez, N; Minguillón, M C; Moreno, T; Viana, M; Escudero, M; Orio, A; Pallarés, M; Reina, F

    2014-08-15

    This study aims at interpreting the 2001-2012 trends of major air pollutants in Spain, with a major focus on evaluating their relationship with those of the national emission inventories (NEI) and policy actions. Marked downward concentration trends were evidenced for PM10, PM2.5 and CO. Concentrations of NO2 and NOx also declined but in a lesser proportion at rural and traffic sites. At rural sites O3 has been kept constant, whereas it clearly increased at urban and industrial sites. Comparison of the air quality trends and major inflection points with those from NEIs, the National Energy Consumption and the calendar of the implementation of major policy actions allowed us to clearly identify major benefits of European directives on power generation and industrial sources (such as the Large Combustion Plants and the Integrated Pollution Prevention and Control Directives). This, together with a sharp 2007-2008 decrease of coal consumption has probably caused the marked parallel decline of SO2, NOx and for PM2.5 concentrations. Also the effect of the EURO 4 and 5 vehicle emission standards on decreasing emissions of PM and CO from vehicles is noticeable. The smooth decline in NO2-NOx levels is mostly attributed to the low efficiency of EURO 4 and 5 standards in reducing real life urban driving NO2 emissions. The low NOx decrease together with the complexity of the reactions of O3 formation is responsible for the constant O3 concentrations, or even the urban increase. The financial crisis has also contributed to the decrease of the ambient concentration of pollutants; however this caused a major reduction of the primary energy consumption from 2008 to 2009, and not from 2007 to 2008 when ambient air PM and SO2 sharply decreased. The meteorological influence was characterized by a 2008-2012 period favorable to the dispersion of pollutants when compared to the 2001-2007. Copyright © 2014. Published by Elsevier B.V.

  3. Multi-model assessment of health impacts of air pollution in Europe and the U.S.

    NASA Astrophysics Data System (ADS)

    Im, Ulas; Brandt, Jørgen; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Andersen, Mikael S.; Solazzo, Efisio; Hogrefe, Christian; Galmarini, Stefano

    2017-04-01

    According to the World Health Organization (WHO), air pollution is now the world's largest single environmental health risk. Assessments of health impacts and the associated external costs related to air pollution are estimated based on observed and/or modelled air pollutant levels. Chemistry and transport models (CTMs) are useful tools to calculate the concentrations of health-related pollutants taking into account the non-linearities in the chemistry and the complex interactions between meteorology and chemistry. However, the CTMs include different chemical and aerosol schemes that introduce differences in the representation of the processes. Likewise, will differences in the emissions and boundary conditions used in the models add to the overall uncertainties. These uncertainties are introduced also into the health impact estimates using output from the CTMs. Multi-model (MM) ensembles can be useful to minimize these uncertainties introduced by the individual CTMs. In the present study, the simulated surface concentrations of health related air pollutants for the year 2010 from fifteen modelling groups participating in the AQMEII exercise, serve as input to the Economic Valuation of Air Pollution model (EVA), in order to calculate the impacts of these pollutants on human health and the associated external costs in Europe and U.S. In addition, the impacts of a 20% global emission reduction scenario on the human health and associated costs have been calculated. Preliminary results show that in Europe and U.S., the MM mean number of premature deaths due to air pollution is calculated to be 400 000 and 160 000, respectively. Estimated health impacts among different models can vary up to a factor of 3 and 1.2 in Europe and U.S., respectively. PM is calculated to be the major pollutant affecting the health impacts and the differences in models regarding the treatment of aerosol composition, physics and dynamics is a key factor. The total MM mean costs due to health impacts of air pollution are estimated to be 400 and 170 billion € in Europe and U.S., respectively. Finally, the scenario with a 20% reduction in global anthropogenic emissions leads to a decrease of 18% of all health outcomes.

  4. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    PubMed

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Associations Between Air Quality Changes and Biomarkers of Systemic Inflammation During the 2014 Nanjing Youth Olympics: A Quasi-Experimental Study.

    PubMed

    Li, Huichu; Zhou, Lian; Wang, Cuicui; Chen, Renjie; Ma, Xiaoying; Xu, Bin; Xiong, Lilin; Ding, Zhen; Chen, Xiaodong; Zhou, Yun; Xu, Yan; Kan, Haidong

    2017-06-15

    There is increasing interest in quasi-experimental research to evaluate whether actions taken to improve air quality will benefit public health. We conducted a quasi-experimental study to evaluate inflammatory response to changes in air quality during the 2014 Nanjing Youth Olympics in China. We repeatedly measured 8 biomarkers of systemic inflammation in 31 healthy adults and obtained hourly air pollutant concentrations from a nearby fixed-site monitoring station. We used linear mixed-effect models to examine the associations between air quality changes and blood biomarkers. Air pollutant concentrations decreased apparently during the Youth Olympics. Concomitantly, we observed significant decreases in levels of soluble cluster of differentiation 40 (CD40) ligand and interleukin 1β (geometric means ratios were 0.45 and 0.24, respectively) from the pre-Olympic period to the intra-Olympic period. Afterwards, levels of C-reactive protein and vascular cell adhesion molecule 1 increased significantly (geometric means ratios were 2.22 and 1.29, respectively) in the post-Olympic period. Fine particulate matter and ozone were significantly associated with soluble CD40 ligand, P-selectin, interleukin 1β, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Other pollutants showed positive but nonsignificant associations. Our study indicated that reduced air pollution, especially fine particulate matter and ozone, during the 2014 Nanjing Youth Olympics was associated with alleviated systemic inflammation in healthy adults. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.

    2016-12-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.

  7. Revealed variations of air quality in industrial development over a remote plateau of Southwest China: an application of atmospheric visibility data

    NASA Astrophysics Data System (ADS)

    Zhao, Tianliang; Liu, Di; Zheng, Xiaobo; Yang, Lexin; Gu, Xiaoping; Hu, Jun; Shu, Zhuozhi; Chang, Jiacheng; Wu, Xiasheng

    2017-12-01

    Since the 1980s, an industrial development has bloomed in China including the Yunnan-Guizhou Plateau (YGP), a remote region in Southwest China. To analyze the regional variations in air quality over YGP during the industrial development, we adopt the equivalent visibility by excluding the influence of natural factors on the observed visibility based on the meteorological data observed at 203 sites over YGP from 1980 to 2010 in this study. The YGP air quality exhibits the tremendous spatial differences in a general distribution from western good to eastern poor air quality. A similar pattern shifts seasonally in the spatial distribution with a typical seasonality of air quality over YGP between summertime low air pollution and wintertime high air pollution. The increasing and decreasing trends in visibility are mostly concentrated, respectively, in the YGP regions with high and low visibility, displaying the phenomenon of polarization in air quality change over YGP during 1980-2010. The regional mean visibility of the YGP presents a significant declining trend with change rate of -1.5 km decade-1 for air quality deterioration. The seasonal differences in visibility between summer (33.6 km) and winter (25.2 km) became obscure with the interannual change trends of visibility with stronger declines (-2.29 km decade-1) in summer and weaker decreases (-0.89 km decade-1) in winter over 1980-2010, which lead to a indistinct seasonality of air quality change over YGP. The remote YGP had experienced more frequent haze pollution, especially in the eastern plateau over 31 years. In accompany of increasing energy consumption in the industrial development, population growth is an important factor influencing the interannual change of YGP air quality. The distinct spatial distribution in the YGP terrain exerts an impact on poor air quality in lower flatlands harbored by mountainous topography with good air quality. Declined monsoon winds could meteorologically drive the air quality change with less regional transport of air pollutant over YGP during 1980-2010. Implications of the climate change for atmospheric environment will be having potential utility for sustainable development in China.

  8. Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults.

    PubMed

    Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R

    2010-09-01

    Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM(2.5)) and sulphate (SO(4)(2-)) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. A 5.8 mg/l elevation in CRP was associated with decreases of between -8% and -33% for time and frequency domain HRV outcomes. A 5.1 microg/m(3) increase in SO(4)(2-) on the day before the health assessment was associated with a decrease of -6.7% in the SD of normal RR intervals (SDNN) (95% CI -11.8% to -1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM(2.5). Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation.

  9. Effects of air pollution on heart rate variability: the VA normative aging study.

    PubMed

    Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Schwartz, Joel

    2005-03-01

    Reduced heart rate variability (HRV), a marker of poor cardiac autonomic function, has been associated with air pollution, especially fine particulate matter [< 2.5 microm in aerodynamic diameter (PM2.5)]. We examined the relationship between HRV [standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF) and low frequency (LF), and LF:HF ratio] and ambient air pollutants in 497 men from the Normative Aging Study in greater Boston, Massachusetts, seen between November 2000 and October 2003. We examined 4-hr, 24-hr, and 48-hr moving averages of air pollution (PM2.5, particle number concentration, black carbon, ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide). Controlling for potential confounders, HF decreased 20.8% [95% confidence interval (CI), 4.6-34.2%] and LF:HF ratio increased 18.6% (95% CI, 4.1-35.2%) per SD (8 microg/m3) increase in 48-hr PM2.5. LF was reduced by 11.5% (95% CI, 0.4-21.3%) per SD (13 ppb) increment in 4-hr O3. The associations between HRV and PM2.5 and O3 were stronger in people with ischemic heart disease (IHD) and hypertension. The associations observed between SDNN and LF and PM2.5 were stronger in people with diabetes. People using calcium-channel blockers and beta-blockers had lower associations between O3 and PM2.5 with LF. No effect modification by other cardiac medications was found. Exposures to PM2.5 and O3 are associated with decreased HRV, and history of IHD, hypertension, and diabetes may confer susceptibility to autonomic dysfunction by air pollution.

  10. Effects of Air Pollution on Heart Rate Variability: The VA Normative Aging Study

    PubMed Central

    Park, Sung Kyun; O’Neill, Marie S.; Vokonas, Pantel S.; Sparrow, David; Schwartz, Joel

    2005-01-01

    Reduced heart rate variability (HRV), a marker of poor cardiac autonomic function, has been associated with air pollution, especially fine particulate matter [< 2.5 μm in aerodynamic diameter (PM2.5)]. We examined the relationship between HRV [standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF) and low frequency (LF), and LF:HF ratio] and ambient air pollutants in 497 men from the Normative Aging Study in greater Boston, Massachusetts, seen between November 2000 and October 2003. We examined 4-hr, 24-hr, and 48-hr moving averages of air pollution (PM2.5, particle number concentration, black carbon, ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide). Controlling for potential confounders, HF decreased 20.8% [95% confidence interval (CI), 4.6–34.2%] and LF:HF ratio increased 18.6% (95% CI, 4.1–35.2%) per SD (8 μg/m3) increase in 48-hr PM2.5. LF was reduced by 11.5% (95% CI, 0.4–21.3%) per SD (13 ppb) increment in 4-hr O3. The associations between HRV and PM2.5 and O3 were stronger in people with ischemic heart disease (IHD) and hypertension. The associations observed between SDNN and LF and PM2.5 were stronger in people with diabetes. People using calcium-channel blockers and beta-blockers had lower associations between O3 and PM2.5 with LF. No effect modification by other cardiac medications was found. Exposures to PM2.5 and O3 are associated with decreased HRV, and history of IHD, hypertension, and diabetes may confer susceptibility to autonomic dysfunction by air pollution. PMID:15743719

  11. The Results of 45 Years of Atmospheric Corrosion Study in the Czech Republic

    PubMed Central

    Kreislova, Katerina; Knotkova, Dagmar

    2017-01-01

    Atmospheric corrosion poses a significant problem with regard to destruction of various materials, especially metals. Observations made over the past decades suggest that the world’s climate is changing. Besides global warming, there are also changes in other parameters. For example, average annual precipitation increased by nearly 10% over the course of the 20th century. In Europe, the most significant change, from the atmospheric corrosion point of view, was an increase in SO2 pollution in the 1970s through the 1980s and a subsequent decrease in this same industrial air pollution and an increase in other types of air pollution, which created a so-called multi-pollutant atmospheric environment. Exposed metals react to such changes immediately, even if corrosion attack started in high corrosive atmospheres. This paper presents a complex evaluation of the effect of air pollution and other environmental parameters and verification of dose/response equations for conditions in the Czech Republic. PMID:28772754

  12. Enhanced air pollution via aerosol-boundary layer feedback in China.

    PubMed

    Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M

    2016-01-12

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  13. An analogy on assessment of urban air pollution in Turkey over the turn of the millennium (1992-2001).

    PubMed

    Ozdilek, Hasan Goksel

    2006-11-01

    Rapid industrialization and urbanization in Turkey, especially over the last twenty five years, has provided better living standards to its residents, but it also caused a decrease in environmental quality. In late 1970's, air quality monitoring activities were started in some major cities by individual researchers in Turkey. It was just around the 1990's that a countrywide program on continuous air pollution monitoring in major province centers and selected large towns was launched. The impact of air pollution on people depend on various factors, such as existence and magnitude of coal powered energy generation plants, type of urban heating and their efficiency, and the numbers and specifications of vehicles. In this study, current Turkish urban air quality over the turn of the Millennium (1992-2001) is studied in the light of the country's worst cities in terms of outdoor air quality, the number of upper respiratory diseases, sinusitis, bronchitis, and pneumonia cases in these provinces reported by the state medical treatment facilities in 2001. The population that is under outdoor urban air pollution hazard was computed. A comparative analysis between the provinces that use natural gas and others that use fossil fuels was also completed in order to project monetary gains if the studied provinces will transform their indoor heating and industrial operations to be run by natural gas or other cleaner energy sources. If natural gas use in air polluted urban centers could be realized in the near future, approximately 212 to 350 million US dollars per annum could to be saved just by reducing health related problems caused by outdoor air pollution.

  14. Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate.

    PubMed

    Marmett, Bruna; Nunes, Ramiro Barcos; de Souza, Kellen Sábio; Lago, Pedro Dal; Rhoden, Cláudia Ramos

    2018-12-01

    The purpose of this study was to investigate the effects of chromium picolinate (CrPic) supplementation associated with aerobic exercise using measures of oxidative stress in rats exposed to air pollution. Sixty-one male Wistar rats were divided into eight groups: residual oil fly ash (ROFA) exposure and sedentary (ROFA-SED); ROFA exposure, sedentary and supplemented (ROFA-SED-CrPic); ROFA exposure and trained (ROFA-AT); ROFA exposure, supplemented and trained (ROFA-AT-CrPic); sedentary (Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution) received 50 µg of ROFA daily via intranasal instillation. Supplemented rats received CrPic (1 mg/kg/day) daily by oral gavage. Exercise training was performed on a rat treadmill (5×/week). Oxidative parameters were evaluated at the end of protocols. Trained groups demonstrated lower gain of body mass (P < .001) and increased exercise tolerance (P < .0001). In the gastrocnemius, trained groups demonstrated increased SOD activity (P < .0001) and decrease levels of TBARS (P = .0014), although CAT activity did not differ among groups (P = .4487). Air pollution exposure did not lead to alterations in oxidative markers in lungs and heart, and exercise training was responsible for decreasing oxidative stress of the gastrocnemius.

  15. Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution Reduction: Results from a Natural Experiment

    PubMed Central

    Liu, Kaibo; Zhang, Jinliang; Thurston, Sally W.; Stevens, Timothy P.; Pan, Ying; Kane, Cathleen; Weinberger, Barry; Ohman-Strickland, Pamela; Woodruff, Tracey J.; Duan, Xiaoli; Assibey-Mensah, Vanessa; Zhang, Junfeng

    2015-01-01

    Background Previous studies have reported decreased birth weight associated with increased air pollutant concentrations during pregnancy. However, it is not clear when during pregnancy increases in air pollution are associated with the largest differences in birth weight. Objectives Using the natural experiment of air pollution declines during the 2008 Beijing Olympics, we evaluated whether having specific months of pregnancy (i.e., 1st…8th) during the 2008 Olympics period was associated with larger birth weights, compared with pregnancies during the same dates in 2007 or 2009. Methods Using n = 83,672 term births to mothers residing in four urban districts of Beijing, we estimated the difference in birth weight associated with having individual months of pregnancy during the 2008 Olympics (8 August–24 September 2008) compared with the same dates in 2007 and 2009. We also estimated the difference in birth weight associated with interquartile range (IQR) increases in mean ambient particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) concentrations during each pregnancy month. Results Babies whose 8th month of gestation occurred during the 2008 Olympics were, on average, 23 g larger (95% CI: 5 g, 40 g) than babies whose 8th month occurred during the same calendar dates in 2007 or 2009. IQR increases in PM2.5 (19.8 μg/m3), CO (0.3 ppm), SO2 (1.8 ppb), and NO2 (13.6 ppb) concentrations during the 8th month of pregnancy were associated with 18 g (95% CI: –32 g, –3 g), 17 g (95% CI: –28 g, –6 g), 23 g (95% CI: –36 g, –10 g), and 34 g (95% CI: –70 g, 3 g) decreases in birth weight, respectively. We did not see significant associations for months 1–7. Conclusions Short-term decreases in air pollution late in pregnancy in Beijing during the 2008 Summer Olympics, a normally heavily polluted city, were associated with higher birth weight. Citation Rich DQ, Liu K, Zhang J, Thurston SW, Stevens TP, Pan Y, Kane C, Weinberger B, Ohman-Strickland P, Woodruff TJ, Duan X, Assibey-Mensah V, Zhang J. 2015. Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: results from a natural experiment. Environ Health Perspect 123:880–887; http://dx.doi.org/10.1289/ehp.1408795 PMID:25919693

  16. The influence of roadside solid and vegetation barriers on near-road air quality

    NASA Astrophysics Data System (ADS)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  17. Detection and estimation trends linked to air quality and mortality on French Riviera over the 1990-2005 period.

    PubMed

    Sicard, Pierre; Mangin, Antoine; Hebel, Pierre; Malléa, Patrick

    2010-03-15

    There is a profound relation between human health and well being from the one side and air pollution levels from the other. Air quality in South of France and more specifically in Nice, is known to be bad, especially in summer. The non-parametric Mann-Kendall test has been developed for detecting and estimating monotonic trends in the time series and applied in our study at annual values of pollutants air concentrations and mortality. An important objective of many environmental monitoring programs is to detect changes or trends in pollution levels over time. Over the period 1990-2005, concerning the emissions of main pollutants, we obtained significant decreasing trends. By considering the ozone mean values in urban areas over the 1997-2005 period, an increase of 3.0% year(-1) was obtained with annual averages and 3.9% year(-1) with median values. A clear increasing trend for PM(10) ambient concentrations is obtained. In addition, we observed an increase of the Olea (and Grass) pollination season. Over the same period, an annual change rate of +0.31% year(-1) for "airway diseases" and of +2.50% year(-1) for "unknown causes" were identified in the "Alpes Maritimes" county. To see the results, there seems to be a short-term link between the levels of these pollutants and mortality for respiratory causes. The other pollutants concentration showed a downward trend reflecting the reduction policy of the emissions. In addition, we obtained significant decreasing trends concerning the "ischemic heart diseases" (-1.20% year(-1)) and "asthma" (-4.03% year(-1)) categories. No significant gender-related difference was identified for these groups.

  18. The role of traffic noise on the association between air pollution and children's lung function.

    PubMed

    Franklin, Meredith; Fruin, Scott

    2017-08-01

    Although it has been shown that traffic-related air pollution adversely affects children's lung function, few studies have examined the influence of traffic noise on this association, despite both sharing a common source. Estimates of noise exposure (L dn, dB), and freeway and non-freeway emission concentrations of oxides of nitrogen (NO x , ppb) were spatially assigned to children in Southern California who were tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1s, (FEV 1, n=1332), and asthma. The associations between traffic-related NO x and these outcomes, with and without adjustment for noise, were examined using mixed effects models. Adjustment for noise strengthened the association between NO x and reduced lung function. A 14.5mL (95% CI -40.0, 11.0mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NO x was strengthened to a 34.6mL decrease after including a non-linear function of noise (95% CI -66.3, -2.78mL). Similarly, a 6.54mL decrease in FEV 1 (95% CI -28.3, 15.3mL) was strengthened to a 21.1mL decrease (95% CI -47.6, 5.51) per interquartile range in freeway NO x . Our results indicate that where possible, noise should be included in epidemiological studies of the association between traffic-related air pollution on lung function. Without taking noise into account, the detrimental effects of traffic-related pollution may be underestimated. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Global health benefits of mitigating ozone pollution with methane emission controls.

    PubMed

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  20. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts.

    PubMed

    Guxens, Mònica; Garcia-Esteban, Raquel; Giorgis-Allemand, Lise; Forns, Joan; Badaloni, Chiara; Ballester, Ferran; Beelen, Rob; Cesaroni, Giulia; Chatzi, Leda; de Agostini, Maria; de Nazelle, Audrey; Eeftens, Marloes; Fernandez, Mariana F; Fernández-Somoano, Ana; Forastiere, Francesco; Gehring, Ulrike; Ghassabian, Akhgar; Heude, Barbara; Jaddoe, Vincent W V; Klümper, Claudia; Kogevinas, Manolis; Krämer, Ursula; Larroque, Béatrice; Lertxundi, Aitana; Lertxuni, Nerea; Murcia, Mario; Navel, Vladislav; Nieuwenhuijsen, Mark; Porta, Daniela; Ramos, Rosa; Roumeliotaki, Theano; Slama, Rémy; Sørensen, Mette; Stephanou, Euripides G; Sugiri, Dorothea; Tardón, Adonina; Tiemeier, Henning; Tiesler, Carla M T; Verhulst, Frank C; Vrijkotte, Tanja; Wilhelm, Michael; Brunekreef, Bert; Pershagen, Göran; Sunyer, Jordi

    2014-09-01

    Accumulating evidence from laboratory animal and human studies suggests that air pollution exposure during pregnancy affects cognitive and psychomotor development in childhood. We analyzed data from 6 European population-based birth cohorts-GENERATION R (The Netherlands), DUISBURG (Germany), EDEN (France), GASPII (Italy), RHEA (Greece), and INMA (Spain)-that recruited mother-infant pairs from 1997 to 2008. Air pollution levels-nitrogen oxides (NO2, NOx) in all regions and particulate matter (PM) with diameters of <2.5, <10, and 2.5-10 μm (PM2.5, PM10, and PMcoarse, respectively) and PM2.5 absorbance in a subgroup-at birth addresses were estimated by land-use regression models, based on monitoring campaigns performed primarily between 2008 and 2011. Levels were back-extrapolated to exact pregnancy periods using background monitoring sites. Cognitive and psychomotor development was assessed between 1 and 6 years of age. Adjusted region-specific effect estimates were combined using random-effects meta-analysis. A total of 9482 children were included. Air pollution exposure during pregnancy, particularly NO2, was associated with reduced psychomotor development (global psychomotor development score decreased by 0.68 points [95% confidence interval = -1.25 to -0.11] per increase of 10 μg/m in NO2). Similar trends were observed in most regions. No associations were found between any air pollutant and cognitive development. Air pollution exposure during pregnancy, particularly NO2 (for which motorized traffic is a major source), was associated with delayed psychomotor development during childhood. Due to the widespread nature of air pollution exposure, the public health impact of the small changes observed at an individual level could be considerable.

  1. What health professionals should know about the health effects of air pollution and climate change on children and pregnant mothers.

    PubMed

    Poursafa, Parinaz; Kelishadi, Roya

    2011-01-01

    Health professionals face the adverse health effects of climate change and air pollution in their practices. This review underscores the effects of these environmental factors on maternal and children's health, as the most vulnerable groups to climate change and air pollution. We reviewed electronic databases for a search of the literature to find relevant studies published in English from 1990 to 2011. Environmental factors, notably climate change and air pollution influence children's health before conception and continue during pregnancy, childhood, and adolescence. Experts have suggested that such health hazards may represent the greatest public health challenge that humanity has faced. The accumulation of greenhouse gases such as carbon dioxide, primarily from burning fossil fuels, results in warming which has an impact on air pollution particularly on levels of ozone and particulates. Heat-related health effects include increased rates of pregnancy complications, pre-eclampsia, eclampsia, low birth weight, renal effects, vector-borne diseases as malaria and dengue, increased diarrheal and respiratory disease, food insecurity, decreased quality of foods (notably grains), malnutrition, water scarcity, exposures to toxic chemicals, worsened poverty, natural disasters and population displacement. Air pollution has many adverse health effects for mothers and children. In addition to short-term effects like premature labour, intrauterine growth retardation, neonatal and infant mortality rate, malignancies (notably leukaemia and Hodgkin lymphoma), respiratory diseases, allergic disorders and anaemia, exposure to criteria air pollutants from early life might be associated with increase in stress oxidative, inflammation and endothelial dysfunction which in turn might have long-term effects on chronic non-communicable diseases. Health professionals have an exclusive capability to help prevent and reduce the harmful effects of environmental factors for high-risk groups, and should consider this capacity in their usual practice.

  2. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; de Fátima Andrade, María.; de Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs making a greater contribution during the 2000-2008 period, whereas HDVs made a greater contribution during the 2009-2013 period, and decreases in NOx emissions resulted in increases in O3 observations.

  3. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  4. China's international trade and air pollution in the United States.

    PubMed

    Lin, Jintai; Pan, Da; Davis, Steven J; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G; Wuebbles, Donald J; Guan, Dabo

    2014-02-04

    China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution.

  5. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.

  6. The Value of Clean Air: Comparing Discounting of Delayed Air Quality and Money Across Magnitudes.

    PubMed

    Berry, Meredith S; Friedel, Jonathan E; DeHart, William B; Mahamane, Salif; Jordan, Kerry E; Odum, Amy L

    2017-06-01

    The detrimental health effects of exposure to air pollution are well established. Fostering behavioral change concerning air quality may be challenging because the detrimental health effects of exposure to air pollution are delayed. Delay discounting, a measure of impulsive choice, encapsulates this process of choosing between the immediate conveniences of behaviors that increase pollution and the delayed consequences of prolonged exposure to poor air quality. In Experiment 1, participants completed a series of delay-discounting tasks for air quality and money. We found that participants discounted delayed air quality more than money. In Experiment 2, we investigated whether the common finding that large amounts of money are discounted less steeply than small amounts of money generalized to larger and smaller improvements in air quality. Participants discounted larger improvements in air quality less steeply than smaller improvements, indicating that the discounting of air quality shares a similar process as the discounting of money. Our results indicate that the discounting of delayed money is strongly related to the discounting of delayed air quality and that similar mechanisms may be involved in the discounting of these qualitatively different outcomes. These data are also the first to demonstrate the malleability of delay discounting of air quality, and provide important public health implications for decreasing delay discounting of air quality.

  7. Spatio-temporal modelling of residential exposure to particulate matter and gaseous pollutants for the Heinz Nixdorf Recall Cohort

    NASA Astrophysics Data System (ADS)

    Nonnemacher, Michael; Jakobs, Hermann; Viehmann, Anja; Vanberg, Irene; Kessler, Christoph; Moebus, Susanne; Möhlenkamp, Stefan; Erbel, Raimund; Hoffmann, Barbara; Memmesheimer, Michael

    2014-07-01

    For the simultaneous analysis of short- and long-term effects of air pollution in the Heinz Nixdorf Recall Cohort a sophisticated exposure modelling was performed. The dispersion and chemistry transport model EURAD (European Air Pollution Dispersion) was used for the estimation of hourly concentrations of a number of pollutants for a horizontal grid with a cell size of 1 km² covering the whole study area (three large adjacent cities in a highly urbanized region in Western Germany) for the years 2000-2003 and 2006-2008. For each 1 km² cell we estimated the mean concentration by calculating daily means from the hourly concentrations modelled by the EURAD process. The modelled concentrations showed an overall tendency to decrease from 2001 to 2008 whereas the trend in the single grid cells and study period was inhomogeneous. Participant-related exposure slightly increased from 2001 to 2003 followed by a decrease from 2006 to 2008. The exposure modelling enables a very flexible exposure assessment compared to conventional modelling approaches which either use central monitoring or temporally static spatial contrasts. The modelling allows the calculation of an average exposure concentration for any place and time within the study region and study period with a high spatial and temporal resolution. This is important for the assessment of short-, medium and long-term effects of air pollution on human health in epidemiological studies.

  8. Fetal growth and air pollution - A study on ultrasound and birth measures.

    PubMed

    Malmqvist, Ebba; Liew, Zeyan; Källén, Karin; Rignell-Hydbom, Anna; Rittner, Ralf; Rylander, Lars; Ritz, Beate

    2017-01-01

    Air pollution has been suggested to affect fetal growth, but more data is needed to assess the timing of exposure effects by using ultrasound measures. It is also important to study effects in low exposure areas to assess eventual thresholds of effects. The MAPSS (Maternal Air Pollution in Southern Sweden) cohort consists of linked registry data for around 48,000 pregnancies from an ultrasound database, birth registry and exposure data based on residential addresses. Measures of air pollution exposure were obtained through dispersion modelling with input data from an emissions database (NO x ) with high resolution (100-500m grids). Air pollution effects were assessed with linear regressions for the following endpoints; biparietal diameter, femur length, abdominal diameter and estimated fetal weight measured in late pregnancy and birth weight and head circumference measured at birth. We estimated negative effects for NO x ; in the adjusted analyses the decrease of abdominal diameter and femur length were -0.10 (-0.17, -0.03) and -0.13 (-0.17, -0.01)mm, respectively, per 10µg/m 3 increment of NO x . We also estimated an effect of NO x -exposures on birth weight by reducing birth weight by 9g per 10µg/m 3 increment of NO x . We estimated small but statistically significant effects of air pollution on late fetal and birth size and reduced fetal growth late in pregnancy in a geographic area with levels below current WHO air quality guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Particulate air pollution and mortality in 38 of China's largest cities: time series analysis.

    PubMed

    Yin, Peng; He, Guojun; Fan, Maoyong; Chiu, Kowk Yan; Fan, Maorong; Liu, Chang; Xue, An; Liu, Tong; Pan, Yuhang; Mu, Quan; Zhou, Maigeng

    2017-03-14

    Objectives  To estimate the short term effect of particulate air pollution (particle diameter <10 μm, or PM 10 ) on mortality and explore the heterogeneity of particulate air pollution effects in major cities in China. Design  Generalised linear models with different lag structures using time series data. Setting  38 of the largest cities in 27 provinces of China (combined population >200 million). Participants  350 638 deaths (200 912 in males, 149 726 in females) recorded in 38 city districts by the Disease Surveillance Point System of the Chinese Center for Disease Control and Prevention from 1 January 2010 to 29 June 2013. Main outcome measure  Daily numbers of deaths from all causes, cardiorespiratory diseases, and non-cardiorespiratory diseases and among different demographic groups were used to estimate the associations between particulate air pollution and mortality. Results  A 10 µg/m 3 change in concurrent day PM 10 concentrations was associated with a 0.44% (95% confidence interval 0.30% to 0.58%) increase in daily number of deaths. Previous day and two day lagged PM 10 levels decreased in magnitude by one third and two thirds but remained statistically significantly associated with increased mortality. The estimate for the effect of PM 10 on deaths from cardiorespiratory diseases was 0.62% (0.43% to 0.81%) per 10 µg/m 3 compared with 0.26% (0.09% to 0.42%) for other cause mortality. Exposure to PM 10 had a greater impact on females than on males. Adults aged 60 and over were more vulnerable to particulate air pollution at high levels than those aged less than 60. The PM 10 effect varied across different cities and marginally decreased in cities with higher PM 10 concentrations. Conclusion  Particulate air pollution has a greater impact on deaths from cardiorespiratory diseases than it does on other cause mortality. People aged 60 or more have a higher risk of death from particulate air pollution than people aged less than 60. The estimates of the effect varied across cities and covered a wide range of domain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins.

    PubMed

    Bijnens, Esmée M; Derom, Catherine; Gielen, Marij; Winckelmans, Ellen; Fierens, Frans; Vlietinck, Robert; Zeegers, Maurice P; Nawrot, Tim S

    2016-07-01

    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Wang, S. L.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.

    2010-08-01

    This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34-88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing, but increased regional emissions during 2005-2008. More stringent control of regional emissions will be needed for significant reductions of ozone and fine particulate pollution in Beijing.

  12. Co-benefits of air quality and climate change policies on air quality of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet

    2015-04-01

    The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines the largest PM reductions over the entire continent and the Mediterranean basin.

  13. Air pollution trends over Indian megacities and their local-to-global implications

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Ravindra, Khaiwal; Nagpure, Ajay Singh

    2016-10-01

    More than half of the world's population lives in urban areas. It is estimated that by 2030 there will be 41 megacities and most of them will be located in developing countries. The megacities in India (Delhi, Mumbai, and Kolkata) collectively have >46 million inhabitants. Increasing population and prosperity results in rapid growth of the already large consumption of energy and other resources, which contributes to air pollution, among other problems. Megacity pollution outflow plumes contain high levels of criteria pollutants (e.g. Particulate matter, SO2, NOx), greenhouse gases, ozone precursors and aerosols; which can affect the atmosphere not only on a local scale but also on regional and global scales. In the current study, emissions and concentration trends of criteria and other air pollutants (polycyclic aromatic hydrocarbons, carbon monoxide and greenhouse gases) were examined in the three Indian megacities. Further, various policies and control strategies adopted by Indian Government are also discussed to improve air quality. Decreasing trends of SO2 was observed in all three megacities due to decrease in the sulfur content in coal and diesel. However, increasing trend for NOx was found in these megacities due to increase in number of vehicles registered and high flash point of CNG engines, which leads to higher NOx emission. In terms of SPM and PM10, highest emissions have been found at Kolkata, whereas highest ambient concentrations were recorded in Delhi. For Mumbai and Kolkata fluctuating trends of SPM concentrations were observed between 1991 and 1998 and stable afterwards till 2005; whereas for Delhi, fluctuating trend was observed for the entire study period. However, several steps have been taken to control air pollution in India but there is a need to focus on control of non-exhaust emissions including municipal solid waste and biomass burning in the megacities and surrounding areas.

  14. Two Mechanisms: The Role of Social Capital and Industrial Pollution Exposure in Explaining Racial Disparities in Self-Rated Health

    PubMed Central

    Ard, Kerry; Colen, Cynthia; Becerra, Marisol; Velez, Thelma

    2016-01-01

    This study provides an empirical test of two mechanisms (social capital and exposure to air pollution) that are theorized to mediate the effect of neighborhood on health and contribute to racial disparities in health outcomes. To this end, we utilize the Social Capital Benchmark Study, a national survey of individuals nested within communities in the United States, to estimate how multiple dimensions of social capital and exposure to air pollution, explain racial disparities in self-rated health. Our main findings show that when controlling for individual-confounders, and nesting within communities, our indicator of cognitive bridging, generalized trust, decreases the gap in self-rated health between African Americans and Whites by 84%, and the gap between Hispanics and Whites by 54%. Our other indicator of cognitive social capital, cognitive linking as represented by engagement in politics, decreases the gap in health between Hispanics and Whites by 32%, but has little impact on African Americans. We also assessed whether the gap in health was explained by respondents’ estimated exposure to toxicity-weighted air pollutants from large industrial facilities over the previous year. Our results show that accounting for exposure to these toxins has no effect on the racial gap in self-rated health in these data. This paper contributes to the neighborhood effects literature by examining the impact that estimated annual industrial air pollution, and multiple measures of social capital, have on explaining the racial gap in health in a sample of individuals nested within communities across the United States. PMID:27775582

  15. Two Mechanisms: The Role of Social Capital and Industrial Pollution Exposure in Explaining Racial Disparities in Self-Rated Health.

    PubMed

    Ard, Kerry; Colen, Cynthia; Becerra, Marisol; Velez, Thelma

    2016-10-19

    This study provides an empirical test of two mechanisms (social capital and exposure to air pollution) that are theorized to mediate the effect of neighborhood on health and contribute to racial disparities in health outcomes. To this end, we utilize the Social Capital Benchmark Study, a national survey of individuals nested within communities in the United States, to estimate how multiple dimensions of social capital and exposure to air pollution, explain racial disparities in self-rated health. Our main findings show that when controlling for individual-confounders, and nesting within communities, our indicator of cognitive bridging, generalized trust, decreases the gap in self-rated health between African Americans and Whites by 84%, and the gap between Hispanics and Whites by 54%. Our other indicator of cognitive social capital, cognitive linking as represented by engagement in politics, decreases the gap in health between Hispanics and Whites by 32%, but has little impact on African Americans. We also assessed whether the gap in health was explained by respondents' estimated exposure to toxicity-weighted air pollutants from large industrial facilities over the previous year. Our results show that accounting for exposure to these toxins has no effect on the racial gap in self-rated health in these data. This paper contributes to the neighborhood effects literature by examining the impact that estimated annual industrial air pollution, and multiple measures of social capital, have on explaining the racial gap in health in a sample of individuals nested within communities across the United States.

  16. Investigation of air pollution and regional climate change due to anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo

    2016-10-01

    Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. In particular, large cities in East Asia have experienced numerous heavy haze episodes. Atmospheric aerosol distributions in East Asia are complex, being influenced by both natural phenomena and human activity, with urban areas in particular being dominated by fine anthropogenic aerosols released from diesel-powered vehicles and industrial activity. In Japan, air pollution levels have been reduced; nevertheless, in recent years, there is increasing concern regarding air pollution caused by fine particulate matter. The origins of air pollution were examined, focusing on the comparison between aerosol properties observed from satellites and that on the ground. Because of their short life spans, concentrations of anthropogenic aerosols are highest over the source regions, and as a result, the climatic impacts of anthropogenic aerosols are also found to be most pronounced in these regions. In this study, aerosol impacts on climate are assessed by numerical model simulations. The direct effects of aerosols include reduced solar radiation, and hence a decrease in surface temperatures. In addition to these changes in the radiation budget, aerosols have a significant potential to change cloud and precipitation fields. These climatic responses to aerosols can manifest far from their source regions with high industrial activities.

  17. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    NASA Astrophysics Data System (ADS)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.

  18. Effect of air and noise pollution on species diversity and population density of forest birds at Lalpahari, West Bengal, India.

    PubMed

    Saha, Dulal C; Padhy, Pratap K

    2011-11-15

    The Rajmahal-type quality stones for building purposes are found abundantly in Birbhum district, West Bengal, India, where stone mining and crushing have become the main industrial activity. Although crusher dust is injurious to health, demand for crushed stone is ever-increasing as a result of rapid infrastructural growth in the country. Most of the crusher units at Rampurhat are situated along the roadways adjacent to forest under Tumboni Beat of Rampurhat Range of Birbhum Forest Division. Excessive load of air pollution in this area has led to degradation of this forest. The status of the ambient air and noise level was evaluated. The effect of air and noise pollution on abundance and variability of birds in this forest have been compared to an almost non-polluted forest of the same bio-geographic zone. Both species diversity and population density of birds were found to decrease in the polluted forest, especially in the areas adjacent to crushers. For comparing the pollution status of two different forest sites and for establishing whether the density of birds have any correlation between the sites, the Student's t-test and the chi-square test were applied respectively. Most of the results proved to be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ambient air pollution exposure and full-term birth weight in California.

    PubMed

    Morello-Frosch, Rachel; Jesdale, Bill M; Sadd, James L; Pastor, Manuel

    2010-07-28

    Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 microg/m3 particulate matter under 10 microm, -12.8 g (-14.3 g, -11.3 g) per 10 microg/m3 particulate matter under 2.5 microm, and -9.3 g (-10.7 g, -7.9 g) per 10 microg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of birth weight has broader health implications. However, the ubiquity of air pollution exposures, the responsiveness of pollutant levels to regulation, and the fact that the highest pollution levels in California are lower than those regularly experienced in other countries suggest that precautionary efforts to reduce pollutants may be beneficial for infant health from a population perspective.

  20. Sulfur Dioxide and Material Damage

    ERIC Educational Resources Information Center

    Gillette, Donald G.

    1975-01-01

    This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

  1. Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality

    PubMed Central

    Lurmann, Fred; Gilliland, Frank

    2017-01-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed over 20 years of monitoring data, emissions estimates, and regulatory policies across several Southern California communities participating in a long-term study of children’s health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower-pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, was generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. PMID:25947128

  2. Characterization of urban air quality using GIS as a management system.

    PubMed

    Puliafito, E; Guevara, M; Puliafito, C

    2003-01-01

    Keeping the air quality acceptable has become an important task for decision makers as well as for non-governmental organizations. Particulate and gaseous emissions of pollutant from industries and auto-exhausts are responsible for rising discomfort, increasing airway diseases, decreasing productivity and the deterioration of artistic and cultural patrimony in urban centers. A model to determine the air quality in urban areas using a geographical information system will be presented here. This system permits the integration, handling, analysis and simulation of spatial and temporal data of the ambient concentration of the main pollutant. It allows the users to characterize and recognize areas with a potential increase or improvement in its air pollution situation. It is also possible to compute past or present conditions by changing basic input information as traffic flow, or stack emission rates. Additionally the model may be used to test the compliance of local standard air quality, to study the environmental impact of new industries or to determine the changes in the conditions when the vehicle circulation is increased.

  3. Active green wall plant health tolerance to diesel smoke exposure.

    PubMed

    Paull, Naomi J; Irga, Peter J; Torpy, Fraser R

    2018-05-10

    Poor air quality is an emerging world-wide problem, with most urban air pollutants arising from vehicular emissions. As such, localized high pollution environments, such as traffic tunnels pose a significant health risk. Phytoremediation, including the use of active (ventilated) green walls or botanical biofilters, is gaining recognition as a potentially effective method for air pollution control. Research to date has tested the capacity of these systems to remove low levels of pollutants from indoor environments. If botanical biofilters are to be used in highly polluted environments, the plants used in these systems must be resilient, however, this idea has received minimal research. Thus, testing was conducted to assess the hardiness of the vegetated component of a botanical biofilter to simulated street level air pollutant exposure. A range of morphological, physiological, and biochemical tests were conducted on 8 common green wall plant species prior to and post 5-week exposure to highly concentrated diesel fuel combustion effluent; as a pilot study to investigate viability in in situ conditions. The results indicated that species within the fig family were the most tolerant species of those assessed. It is likely that species within the fig family can withstand enhanced air pollutant conditions, potentially a result of its leaf morphology and physiology. Other species tested were all moderately tolerant to the pollution treatment. We conclude that most common green wall plant species have the capacity to withstand high pollutant environments, however, extended experimentation is needed to rule out potential long term effects along with potential decreases in filter efficiency from accumulative effects on the substrate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Air quality improvement during 2010 Asian games on blood coagulability in COPD patients.

    PubMed

    Zhang, Zili; Wang, Jian; Guo, Meihua; Xiong, Mingmei; Zhou, Qipeng; Li, Defu; Shu, Jiaze; Lu, Wenju; Sun, Dejun

    2016-04-01

    Exposure to elevated levels of ambient air pollutants can lead to adverse cardiovascular effects. Perturbation of the coagulation balance is one of the potential mechanisms. However, evidence regarding the impact of improvement in air pollution on blood coagulability in COPD patients has never been reported. Coagulation processes are known to be of relevance for cardiovascular pathology; therefore, this study aimed to investigate the association of short-term air pollution exposure with blood marker (D-dimer) of coagulation. A 3-year (through the Asian game) cohort study based on the GIRD COPD Biobank Project was conducted in 36 COPD patients to estimate whether changes in measurements of D-dimer were associated with changes in pollutant concentration, comparing for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2009 and 2011). Daily mean concentrations of air pollutants and meteorological variables were measured during the time. Daily PM10 decreased from 65.86 μg/m(3) during the baseline period to 62.63 μg/m(3) during the Asian Games period; daily NO2 decreased from 51.33 to 42.63 μg/m(3). SO2 and other weather variables did not differ substantially. We did not observe statistically significant improvements in D-dimer levels by 9.86% from a pre-Asian game mean of 917 ng/ml to a during-Asian game mean of 1007 ng/ml, platelet number by 11.66%, PH by -0.15%, PCO2 by -6.54%, and PO2 by -1.16%. In the post-Asian game period, when pollutant concentrations increased, most outcomes approximated pre-Asian game levels, and similar effects were also demonstrated in D-dimer, platelet number, and arterial blood gas. For D-dimer and platelet number, we observed statistically significant increases associated with increases in NO2 at lag 1-3 and SO2 at lag 2-4. For PH, PCO2, and PO2, any significant effect was not demonstrated. This study gives no support to the hypothesis that reduction in air pollution levels during the 2010 Asian game is associated with activation of blood coagulation with COPD patients. However, one step forward has been made on the gap between improved air pollution and blood coagulability. Meanwhile, our study also provides evidence for the presence of a hypercoagulative state in systemic circulation in COPD patients. Additional studies employing other susceptible populations and endpoints are pending.

  5. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000-2012) data in Atlanta

    NASA Astrophysics Data System (ADS)

    Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.

    2015-10-01

    The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.

  6. Short-term impact of atmospheric pollution on fecundability.

    PubMed

    Slama, Rémy; Bottagisi, Sébastien; Solansky, Ivo; Lepeule, Johanna; Giorgis-Allemand, Lise; Sram, Radim

    2013-11-01

    Epidemiologic studies have reported associations between air pollution levels and semen characteristics, which might in turn affect a couple's ability to achieve a live birth. Our aim was to characterize short-term effects of atmospheric pollutants on fecundability (the month-specific probability of pregnancy among noncontracepting couples). For a cohort of births between 1994 and 1999 in Teplice (Czech Republic), we averaged fine particulate matter (PM2.5), carcinogenic polycyclic aromatic hydrocarbons, ozone, nitrogen dioxide (NO2), and sulfur dioxide levels estimated from a central measurement site over the 60-day period before the end of the first month of unprotected intercourse. We estimated changes in the probability of occurrence of a pregnancy during the first month of unprotected intercourse associated with exposure, using binomial regression and adjusting for maternal behaviors and time trends. Among the 1,916 recruited couples, 486 (25%) conceived during the first month of unprotected intercourse. Each increase of 10 µg/m in PM2.5 levels was associated with an adjusted decrease in fecundability of 22% (95% confidence interval = 6%-35%). NO2 levels were also associated with decreased fecundability. There was no evidence of adverse effects with the other pollutants considered. Biases related to pregnancy planning or temporal trends in air pollution were unlikely to explain the observed associations. In this polluted area, we highlighted short-term decreases in a couple's ability to conceive in association with PM2.5 and NO2 levels assessed in a central monitoring station.

  7. [Motor transport emission, ambient air quality, and the Moscow population's health].

    PubMed

    Ivanenko, A V; Volkova, I F; Kornienko, A P

    2007-01-01

    As of 2006, the city's motor transport fleet amounted to as many as 3 million units that annually consume about 5 million tons of petrol. The use rate of all kinds of vehicles has increased, resulting in the growth of the proportion of ambient air pollutants discharged by motor transport, which surpasses the increase of the absolute size of the fleet. The contribution of traveling sources to ambient air pollution is growing steadily and it has been recently about 90% (1 million tons). Implementation of measures and developed managerial decisions, and ecological programs, improvement of Moscow town-planning measures, and environment-improving measures against motor vehicles have contributed to a reduction in chemical and physical burdens on the population. The characteristics of the capital's ambient air pollution have been recently observed to become stable and improve. There is stabilization in morbidity due to respiratory diseases in all population groups. The prevalence of chronic respiratory diseases in children is on the decrease, the increase rate was 1.4% versus 33.5% in the preceding period. Assessment of carcinogenic risk showed that ambient air pollution and drinking water contamination had a negative impact on the Moscow population.

  8. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.

    2010-05-01

    This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%-88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing. However, further control of regional emissions is needed for significant reductions of ozone and fine particulate pollution in Beijing.

  9. Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function.

    PubMed

    Jacquemin, Bénédicte; Lepeule, Johanna; Boudier, Anne; Arnould, Caroline; Benmerad, Meriem; Chappaz, Claire; Ferran, Joane; Kauffmann, Francine; Morelli, Xavier; Pin, Isabelle; Pison, Christophe; Rios, Isabelle; Temam, Sofia; Künzli, Nino; Slama, Rémy; Siroux, Valérie

    2013-09-01

    Errors in address geocodes may affect estimates of the effects of air pollution on health. We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults. We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant's address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects. Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: -0.56, -6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: -0.14, -3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted -2.81 (95% CI: -0.26, -5.35) using NavTEQ, or 2.08 (95% CI -4.63, 0.47, p = 0.11) using Google Maps]. Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model.

  10. [Improvement of Air Quality During APEC in Beijing in 2014].

    PubMed

    Cheng, Nian-liang; Li, Yun-ting; Zhang, Da-wei; Chen, Tian; Li, Ling-jun; Li, Jin; Jiang, Lei

    2016-01-15

    Variations of air quality, meteorological conditions and the effect of pollution control measures on particle matter concentrations in Beijing were all analyzed during APEC (from 1st to 12th in November) in 2014 based on the atmospheric pollutant monitoring data, monitoring components of PM2.5, meteorological and remote sensing data and CMB model. The results showed that the average concentrations of PM2.5, PM10, SO2, NO2 were 43,62,8,46 [g.m respectively during APEC and the average concentrations of PM2.5, PM10, SO2, NO2 were decreased by 45%, 43%, 64% and 31% compared to those in the same period of the last 5 years (PM2. was the average of the last 2 years); the concentrations of PM25 at different sites were decreased by 27.4%-35.5%; the concentrations of PM2.5 in the center of city and northern mountainous areas were the lowest, which dropped by 30%-45% compared to those in the same period of the last 5 years while in the southern area the decrement was below 25%; the main component SO4(2-), the substance of the crust, and NO3- were decreased by 50%, 76%, 35% respectively compared to those in the same period in 2013 and the chemical mass balance (CMB) model analysis results indicated that contributions of coal boiler, dust, motor vehicle were 2%, 7%, 30% respectively during APEC; air pollution control measures (coal, dust and traffic management) had a significant effect on reducing pollutant emissions and the pollutant emissions control reduced the concentration peak and delayed the accumulation speed.

  11. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function.

    PubMed

    O'Neill, Marie S; Veves, Aristidis; Zanobetti, Antonella; Sarnat, Jeremy A; Gold, Diane R; Economides, Panayiotis A; Horton, Edward S; Schwartz, Joel

    2005-06-07

    Epidemiological studies suggest that people with diabetes are vulnerable to cardiovascular health effects associated with exposure to particle air pollution. Endothelial and vascular function is impaired in diabetes and may be related to increased cardiovascular risk. We examined whether endothelium-dependent and -independent vascular reactivity was associated with particle exposure in individuals with and without diabetes. Study subjects were 270 greater-Boston residents. We measured 24-hour average ambient levels of air pollution (fine particles [PM2.5], particle number, black carbon, and sulfates [SO4(2-)]) approximately 500 m from the patient examination site. Pollutant concentrations were evaluated for associations with vascular reactivity. Linear regressions were fit to the percent change in brachial artery diameter (flow mediated and nitroglycerin mediated), with the particulate pollutant index, apparent temperature, season, age, race, sex, smoking history, and body mass index as predictors. Models were fit to all subjects and then stratified by diagnosed diabetes versus at risk for diabetes. Six-day moving averages of all 4 particle metrics were associated with decreased vascular reactivity among patients with diabetes but not those at risk. Interquartile range increases in SO4(2-) were associated with decreased flow-mediated (-10.7%; 95% CI, -17.3 to -3.5) and nitroglycerin-mediated (-5.4%; 95% CI, -10.5 to -0.1) vascular reactivity among those with diabetes. Black carbon increases were associated with decreased flow-mediated vascular reactivity (-12.6%; 95% CI, -21.7 to -2.4), and PM2.5 was associated with nitroglycerin-mediated reactivity (-7.6%; 95% CI, -12.8 to -2.1). Effects were stronger in type II than type I diabetes. Diabetes confers vulnerability to particles associated with coal-burning power plants and traffic.

  12. Longitudinal study of respiratory function and symptoms in a non-smoking group of long-term officially-acknowledged victims of pollution-related illness.

    PubMed

    Tanaka, Takako; Asai, Masaharu; Yanagita, Yorihide; Nishinakagawa, Tsuyoshi; Miyamoto, Naomi; Kotaki, Kenji; Yano, Yudai; Kozu, Ryo; Honda, Sumihisa; Senjyu, Hideaki

    2013-08-17

    Air pollution is known to be a leading cause of respiratory symptoms. Many cross-sectional studies reported that air pollution caused respiratory disease in Japanese individuals in the 1960s. Japan has laws regulating air pollution levels and providing compensation for victims of pollution-related respiratory disease. However, long-term changes in respiratory function and symptoms in individuals who were exposed to air pollution in the 1960s have not been well studied. This study aimed to investigate longitudinal respiratory function and symptoms in older, non-smoking, long-term officially-acknowledged victims of pollution-related illness. The study included 563 officially-acknowledged victims of pollution-related illness living in Kurashiki, Okayama who were aged ≥ 65 years in 2009. Data were retrospectively collected from yearly respiratory symptom questionnaires and spirometry examinations conducted from 2000 to 2009. Respiratory function declined significantly from 2000 to 2009 (p < 0.01), but the mean annual changes were relatively small. The change in mean vital capacity was -40.5 ml/year in males and -32.7 ml/year in females, and the change in mean forced expiratory volume in 1 second was -27.6 ml/year in males and -23.9 ml/year in females. Dyspnea was the only symptom that worsened significantly from 2000 to 2009 in both sexes (males: p < 0.05, females: p < 0.01). Our results suggest that the high concentrations of air pollutants around 1970 resulted in a decrease in respiratory function and an increase in respiratory symptoms in the study population. From 2000 to 2009, the mean annual changes in respiratory function were within the normal range, even though the severity of dyspnea worsened. The changes in respiratory function and symptoms over the study period were probably due to aging. The laws governing air pollution levels and providing compensation for officially-acknowledged victims of pollution-related illness in Japan may be effective for respiratory disease cause by pollution.

  13. Longitudinal study of respiratory function and symptoms in a non-smoking group of long-term officially-acknowledged victims of pollution-related illness

    PubMed Central

    2013-01-01

    Background Air pollution is known to be a leading cause of respiratory symptoms. Many cross-sectional studies reported that air pollution caused respiratory disease in Japanese individuals in the 1960s. Japan has laws regulating air pollution levels and providing compensation for victims of pollution-related respiratory disease. However, long-term changes in respiratory function and symptoms in individuals who were exposed to air pollution in the 1960s have not been well studied. This study aimed to investigate longitudinal respiratory function and symptoms in older, non-smoking, long-term officially-acknowledged victims of pollution-related illness. Methods The study included 563 officially-acknowledged victims of pollution-related illness living in Kurashiki, Okayama who were aged ≥ 65 years in 2009. Data were retrospectively collected from yearly respiratory symptom questionnaires and spirometry examinations conducted from 2000 to 2009. Results Respiratory function declined significantly from 2000 to 2009 (p < 0.01), but the mean annual changes were relatively small. The change in mean vital capacity was −40.5 ml/year in males and −32.7 ml/year in females, and the change in mean forced expiratory volume in 1 second was −27.6 ml/year in males and −23.9 ml/year in females. Dyspnea was the only symptom that worsened significantly from 2000 to 2009 in both sexes (males: p < 0.05, females: p < 0.01). Conclusions Our results suggest that the high concentrations of air pollutants around 1970 resulted in a decrease in respiratory function and an increase in respiratory symptoms in the study population. From 2000 to 2009, the mean annual changes in respiratory function were within the normal range, even though the severity of dyspnea worsened. The changes in respiratory function and symptoms over the study period were probably due to aging. The laws governing air pollution levels and providing compensation for officially-acknowledged victims of pollution-related illness in Japan may be effective for respiratory disease cause by pollution. PMID:24090071

  14. Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential.

    PubMed

    Zhang, Xian; Staimer, Norbert; Tjoa, Tomas; Gillen, Daniel L; Schauer, James J; Shafer, Martin M; Hasheminassab, Sina; Pakbin, Payam; Longhurst, John; Sioutas, Constantinos; Delfino, Ralph J

    2016-07-26

    Short-term exposure to ambient air pollution has been associated with acute increases in cardiovascular hospitalization and mortality. However, causative chemical components and underlying pathophysiological mechanisms remain to be clarified. We hypothesized that endothelial dysfunction would be associated with mobile-source (traffic) air pollution and that pollutant components with higher oxidative potential to generate reactive oxygen species (ROS) would have stronger associations. We carried out a cohort panel study in 93 elderly non-smoking adults living in the Los Angeles metropolitan area, during July 2012-February 2014. Microvascular function, represented by reactive hyperemia index (RHI), was measured weekly for up to 12 weeks (N = 845). Air pollutant data included daily data from regional air-monitoring stations, five-day average PM chemical components and oxidative potential in three PM size-fractions, and weekly personal nitrogen oxides (NOx). Linear mixed-effect models estimated adjusted changes in microvascular function with exposure. RHI was inversely associated with traffic-related pollutants such as ambient PM2.5 black carbon (BC), NOx, and carbon monoxide (CO). An interquartile range change increase (1.06 μg/m(3)) in 5-day average BC was associated with decreased RHI, -0.093 (95 % CI: -0.151, -0.035). RHI was inversely associated with other mobile-source components/tracers (polycyclic aromatic hydrocarbons, elemental carbon, and hopanes), and PM oxidative potential as quantified in two independent assays (dithiothreitol and in vitro macrophage ROS) in accumulation and ultrafine PM, and transition metals. Our findings suggest that short-term exposures to traffic-related air pollutants with high oxidative potential are major components contributing to microvascular dysfunction.

  15. An air pollution episode and its formation mechanism during the tropical cyclone Nuri's landfall in a coastal city of south China

    NASA Astrophysics Data System (ADS)

    Yang, John Xun; Lau, Alexis Kai Hon; Fung, Jimmy Chi Hung; Zhou, Wen; Wenig, Mark

    2012-07-01

    In this work we investigated an air pollution episode during the landfall process of a tropical cyclone (TC) in Hong Kong. TCs affect air condition and account for most air pollution episodes in summer of this region. In August 2008, TC Nuri made direct landfall in Hong Kong. Before its landfall, an air pollution episode occurred, where major pollutants like SO2 and PM10 increased eight and six times higher respectively. Rather than using single measurement method, we combined ground air sampling, lidar, sunphotometer and satellite lidar CALIPSO with focus on aerosol to study the episode mechanism, and some new phenomena were found. During the episode, it was found that heavy inland aerosol plumes existed in areas larger than urbanized regions and were elevated vertically and transported southward. During episode, planetary boundary layer (PBL) expansion and height increase were observed, which is different from previous reported PBL compression and height decrease. While vertical subsidence and horizontal stagnation and consequently local aerosol accumulation were attributed as the main episode cause in previous cases, our observation showed that transported aerosols dominated in this TC landfall event. This can be further confirmed by examining aerosol chemical composition, size distribution and single scattering albedo, where transported related species showed significantly change and local indicators remained relatively stable. Invigorated cloud droplets were found on the boundary layer top upon aerosol elevation. The results indicate that site difference and TC tracks should be considered for analyzing episode formation mechanism. They can cause difference in the strength of vertical subsidence and horizontal advection and affect pollution flow direction, which subsequently results in different pollution formation processes.

  16. Nitrous oxide pollution from aircraft to increase by 2050

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    The transportation industry is not only one of the biggest sources of air pollution and a significant player in greenhouse gas-induced global warming, but, as a new study shows, the industry could also be responsible for episodes of ozone (O3 ) pollution, particularly over the United States and northern Europe. Combustion of fuel in cars, shipping vessels, and low-flying aircraft produce nitrogen oxides (NOx), which not only decrease the lifetime of greenhouse gases such as methane but also react with other molecules in the atmosphere to form tropospheric O3, another, more lethal, air pollutant. Hauglustaine and Koff used a global three-dimensional chemistry-climate model to investigate how different components of the transportation industry—cars, ships, and low-flying aircraft—would contribute to NOx pollution over the next few decades under several projected emission scenarios. They found that as road transportation stagnates or even declines due to stricter regulations and congestion, NOx emissions from cars will decrease over time. However, aircraft will increase in number and could contribute between 25% and 48% of NOx emissions, which will be most severe over the United States and Europe—two regions with the highest growth rate in commercial aviation.

  17. SOLSOURCE 3-IN-1: PROVIDING CLEAN ENERGY TO THE POOREST 2.5 BILLION AT A PRICE THEY CAN AFFORD

    EPA Science Inventory

    We expect this project to have the following impacts on people, prosperity, and the planet:

    People: Decreased indoor air pollution exposures, decreased pathogen transmission, decreased injuries and miscarriages during fuel collection along mountain slopes, increased ...

  18. Effects of climate change on residential infiltration and air pollution exposure.

    PubMed

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  19. China’s international trade and air pollution in the United States

    PubMed Central

    Lin, Jintai; Pan, Da; Davis, Steven J.; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G.; Wuebbles, Donald J.; Guan, Dabo

    2014-01-01

    China is the world’s largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3–10% of annual mean surface sulfate concentrations and 0.5–1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12–24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution. PMID:24449863

  20. Indoor air pollution from gas cooking and infant neurodevelopment.

    PubMed

    Vrijheid, Martine; Martinez, David; Aguilera, Inma; Bustamante, Mariona; Ballester, Ferran; Estarlich, Marisa; Fernandez-Somoano, Ana; Guxens, Mònica; Lertxundi, Nerea; Martinez, M Dolores; Tardon, Adonina; Sunyer, Jordi

    2012-01-01

    Gas cooking is a main source of indoor air pollutants, including nitrogen dioxide and particles. Because concerns are emerging for neurodevelopmental effects of air pollutants, we examined the relationship between indoor gas cooking during pregnancy and infant neurodevelopment. Pregnant mothers were recruited between 2004 and 2008 to a prospective birth cohort study (INfancia y Medio Ambiente) in Spain during the first trimester of pregnancy. Third-trimester questionnaires collected information about the use of gas appliances at home. At age 11 to 22 months, children were assessed for mental development using the Bayley Scales of Infant Development. Linear regression models examined the association of gas cooking and standardized mental development scores (n = 1887 mother-child pairs). Gas cookers were present in 44% of homes. Gas cooking was related to a small decrease in the mental development score compared with use of other cookers (-2.5 points [95% confidence interval = -4.0 to -0.9]) independent of social class, maternal education, and other measured potential confounders. This decrease was strongest in children tested after the age of 14 months (-3.1 points [-5.1 to -1.1]) and when gas cooking was combined with less frequent use of an extractor fan. The negative association with gas cooking was relatively consistent across strata defined by social class, education, and other covariates. This study suggests a small adverse effect of indoor air pollution from gas cookers on the mental development of young children.

  1. CO Seasonal Variability and Trend over Paris Megacity Using Ground-Based QualAir FTS and Satellite IASI-MetOp Measurements

    NASA Astrophysics Data System (ADS)

    Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette

    2012-11-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).

  2. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.

  3. Has China been exporting less particulate air pollution over the past decade?

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Reid, Jeffrey S.; Alfaro-Contreras, Ricardo; Xian, Peng

    2017-03-01

    Particulate matter (PM) pollution from China is transported eastward to Korea and Japan and has been suggested to influence surface air quality on the West Coast of the United States. However, remote sensing studies have been inconclusive as to recent trends in Chinese emissions and transport. We reconciled different passive remote sensing points of view and found that while aerosol optical thickness (AOT) as an indicator of particulate pollution has increased from the start of the observation period (2000) to 2006-2007 from the main Chinese coastal outflow regions, since then there has been a 10-20% decrease in AOT (with respect to 2007). Reductions were observed in spring, summer, and fall seasons. No improvement in exported PM pollution is found for the winter season.

  4. The Co-Benefits of Global and Regional Greenhouse Gas Mitigation on US Air Quality at Fine Resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.

    2014-12-01

    Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.

  5. Effect of air pollution on nitrogen fixation in lichens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallio, S.; Varheenmaa, T.

    1974-01-01

    Clear decrease (80-90%) of acetylene reduction in Stereocaulon paschale and Nephroma arcticum was observed in the polluted city area of Turku (SW Finland) within a period of three-four weeks, while nitrogenase activity remained unchanged in the specimens outside the city area. Carbon dioxide fixation in these lichens lowered 20-50%.

  6. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    PubMed

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  7. The Value of Clean Air: Comparing Discounting of Delayed Air Quality and Money Across Magnitudes

    PubMed Central

    Friedel, Jonathan E.; DeHart, William B.; Mahamane, Salif; Jordan, Kerry E.; Odum, Amy L.

    2018-01-01

    The detrimental health effects of exposure to air pollution are well established. Fostering behavioral change concerning air quality may be challenging because the detrimental health effects of exposure to air pollution are delayed. Delay discounting, a measure of impulsive choice, encapsulates this process of choosing between the immediate conveniences of behaviors that increase pollution and the delayed consequences of prolonged exposure to poor air quality. In Experiment 1, participants completed a series of delay-discounting tasks for air quality and money. We found that participants discounted delayed air quality more than money. In Experiment 2, we investigated whether the common finding that large amounts of money are discounted less steeply than small amounts of money generalized to larger and smaller improvements in air quality. Participants discounted larger improvements in air quality less steeply than smaller improvements, indicating that the discounting of air quality shares a similar process as the discounting of money. Our results indicate that the discounting of delayed money is strongly related to the discounting of delayed air quality and that similar mechanisms may be involved in the discounting of these qualitatively different outcomes. These data are also the first to demonstrate the malleability of delay discounting of air quality, and provide important public health implications for decreasing delay discounting of air quality. PMID:29606776

  8. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population.

    PubMed

    Honda, Trenton; Pun, Vivian C; Manjourides, Justin; Suh, Helen

    2017-04-01

    Anemia, a highly prevalent disorder in elderly populations, is associated with numerous adverse health outcomes, including increased mortality, impaired functional status and cognitive disorders. Approximately two-thirds of anemia in American elderly is caused by chronic inflammation or is unexplained. A potential contributing factor may include air pollution exposures, which have been shown to increase systemic inflammation and affect erythropoiesis. Few studies, however, have investigated the associations of air pollution on hemoglobin levels and anemia. We used linear regression models and modified Poisson regression with robust error variance to examine the associations of particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) on hemoglobin concentrations and prevalence of anemia, respectively, among 4121 older Americans enrolled in the National Social Life, Health, and Aging Project. We estimated participant-specific exposures to PM 2.5 using spatio-temporal models, and to NO 2 using nearest measurements from Environmental Protection Agency's Air Quality System. Hemoglobin levels were measured for participants in each of two data collection waves from dried blood spots. Anemia was defined using World Health Organization hemoglobin-based criteria of <13 and <12g/dL for men and women, respectively. Models were adjusted for age, sex, smoking status, race, income, education, neighborhood socioeconomic status, region, urbanicity and medication use. Mediation by C-reactive protein (CRP), a marker of systemic inflammation, was also investigated. An inter-quartile range (IQR, 3.9μg/m 3 ) increase in the one-year moving average PM 2.5 was positively associated with anemia prevalence (prevalence ratio, or PR 1.33, 95% CI: 1.23, 1.45) and decreases in average hemoglobin of 0.81g/dL (p<0.001). Similarly, an IQR (9.6ppb) increase in NO 2 was associated with anemia prevalence (PR 1.43, 95% CI: 1.25, 1.63) and a decrease in average hemoglobin of 0.81g/dL (p<0.001). Strong dose-response relationships were identified for both pollutants. Mediation of the effect of PM 2.5 by CRP was also identified (p=0.007). Air pollution exposures were significantly associated with increased prevalence of anemia and decreased hemoglobin levels in a cohort of older Americans. If causal, these associations could indicate that chronic air pollution exposure is an important risk factor for anemia in older adults. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Anemia Prevalence and Hemoglobin Levels are Associated with Long-Term Exposure to Air Pollution in an Older Population

    PubMed Central

    Honda, Trenton; Pun, Vivian C.; Manjourides, Justin; Suh, Helen

    2017-01-01

    BACKGROUND Anemia, a highly prevalent disorder in elderly populations, is associated with numerous adverse health outcomes, including increased mortality, impaired functional status and cognitive disorders. Approximately two-thirds of anemia in American elderly is caused by chronic inflammation or is unexplained. A potential contributing factor may include air pollution exposures, which have been shown to increase systemic inflammation and affect erythropoiesis. Few studies, however, have investigated the associations of air pollution on hemoglobin levels and anemia. METHODS We used linear regression models and modified Poisson regression with robust error variance to examine the associations of particulate matter (PM2.5) and nitrogen dioxide (NO2) on hemoglobin concentrations and prevalence of anemia, respectively, among 4,121 older Americans enrolled in the National Social Life, Health, and Aging Project. We estimated participant-specific exposures to PM2.5 using spatio-temporal models, and to NO2 using nearest measurements from Environmental Protection Agency’s Air Quality System. Hemoglobin levels were measured for participants in each of two data collection waves from dried blood spots. Anemia was defined using World Health Organization hemoglobin-based criteria of <13 and <12 g/dL for men and women, respectively. Models were adjusted for age, sex, smoking status, race, income, education, neighborhood socioeconomic status, region, urbanicity and medication use. Mediation by C-reactive protein (CRP), a marker of systemic inflammation, was also investigated. RESULTS An inter-quartile range (IQR, 3.9 μg/m3) increase in the one-year moving average PM2.5 was positively associated with anemia prevalence (prevalence ratio, or PR 1.33, 95% CI: 1.23, 1.45) and decreases in average hemoglobin of 0.81 g/dL (p<0.001). Similarly, an IQR (9.6 ppb) increase in NO2 was associated with anemia prevalence (PR 1.43, 95% CI: 1.25, 1.63) and a decrease in average hemoglobin of 0.81 g/dL (p<0.001). Strong dose-response relationships were identified for both pollutants. Mediation of the effect of PM2.5 by CRP was also identified (P=0.007). CONCLUSIONS/INTERPRETATIONS Air pollution exposures were significantly associated with increased prevalence of anemia and decreased hemoglobin levels in a cohort of older Americans. If causal, these associations could indicate that chronic air pollution exposure is an important risk factor for anemia in older adults. PMID:28153527

  10. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    PubMed Central

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  11. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    PubMed

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  12. Emissions of indoor air pollutants from six user scenarios in a model room

    NASA Astrophysics Data System (ADS)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  13. Population Intervention Models to Estimate Ambient NO2 Health Effects in Children with Asthma

    PubMed Central

    Snowden, Jonathan M.; Mortimer, Kathleen M.; Dufour, Mi-Suk Kang; Tager, Ira B.

    2015-01-01

    Health effects of ambient air pollution are most frequently expressed in individual studies as responses to a standardized unit of air pollution changes (e.g., an interquartile interval), which is thought to enable comparison of findings across studies. However, this approach does not necessarily convey health effects in terms of a real-world air pollution scenario. In the present study, we employ population intervention modeling to estimate the effect of an air pollution intervention that makes explicit reference to the observed exposure data and is identifiable in those data. We calculate the association between ambient summertime NO2 and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25–75) in a cohort of children with asthma in Fresno, California. We scale the effect size to reflect NO2 abatement on a majority of summer days. The effect estimates were small, imprecise, and consistently indicated improved pulmonary function with decreased NO2. The effects ranged from −0.8% of mean FEF25–75 (95% Confidence Interval: −3.4 , 1.7) to −3.3% (95% CI: −7.5, 0.9). We conclude by discussing the nature and feasibility of the exposure change analyzed here given the observed air pollution profile, and we propose additional applications of the population intervention model in environmental epidemiology. PMID:25182844

  14. [Relationship between air pollution exposure during pregnancy and birth weight of term singleton live-birth newborns].

    PubMed

    Guo, L Q; Zhang, Q; Zhao, D D; Wang, L L; Chen, Y; Mi, B B; Dang, S N; Yan, H

    2017-10-10

    Objective: This study explored the association between air pollution exposure and birth weight by using the multilevel linear model, after controlling related meteorological factors and individual differences of both mothers and babies. Methods: Women of childbearing age who were pregnant in Xi'an from 2010 to 2013, were selected as objects of this study. Multistage random sampling method was used to select 4 631 subjects followed by a self-designed questionnaire survey. Data related to quality of air and meteorology were gathered from routine monitoring system. Gestational age and date of birth, together with the average levels of air pollution were calculated for each trimester on each mother, and then the impact of air pollution on birth weight was assessed. A multilevel linear model was employed to investigate the association between the levels of exposure to air pollution by birth weight. Confounding factors were under control. We established three models in this study: Model 1 which involving the variable of air pollution exposure. Model 2 was adjusted for variables in Model 1 plus some other individual differences of both mother and baby. Model 3 was adjusted for variables in Model 2 plus meteorological factors. Results: There were significant differences seen in birth weight within the subgroups of gender, gestational age, mother's reproductive age, maternal education, residential areas and family incomes ( P <0.01) of the infants. However, there was no difference found in Model 1 ( P >0.05). Data from Model 3 indicated that a decrease of 13.3 g(10.9 g in Model 2) and 6.6 g (5.9 g in Model 2) in birth weight that were associated with an increase of 10 μg/m(3) in the average level of NO(2) and PM(10) during the second trimester; A decrease of 13.7 g (9.8 g in Model 2) in birth weight was associated with an increase of 10 μg/m(3) in the average level of NO(2) during the third trimester. Conclusion: After controlling for meteorological factors, the levels of exposure to NO(2) and PM(10) during the second trimester and NO(2) during the third trimester were negatively associated with birth weight.

  15. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    PubMed

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  16. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process

    PubMed Central

    2014-01-01

    Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601

  17. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample

    PubMed Central

    Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George

    2015-01-01

    The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial investigations. PMID:23340702

  18. Global air quality and climate.

    PubMed

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.

  19. Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality.

    EPA Science Inventory

    Traffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that d...

  20. Association between ambient air pollution and pregnancy rate in women who underwent IVF.

    PubMed

    Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y

    2018-06-01

    Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI: 0.87, 0.99) and CO (0.94, 95% CI: 0.89, 1.00) during period 1 were associated with decreased probability of intrauterine pregnancy. PM10 (0.92, 95% CI: 0.85, 0.99), NO2 (0.93, 95% CI = 0.86, 1.00) and CO (0.93, 95% CI: 0.87, 1.00) levels during period 3 were also inversely associated with intrauterine pregnancy. Both PM10 (1.17, 95% CI: 1.04 1.33) and NO2 (1.18, 95% CI: 1.03, 1.34) during period 3 showed positive associations with biochemical pregnancy loss. The district-specific ambient air pollution treated as an individual exposure may not represent the actual level of each woman's exposure to air pollution. Smoking, working status, parity or gravidity of women, and semen analysis data were not included in the analysis. This study provided evidence of an association between increased ambient concentrations of PM10, NO2 and CO and reduced probabilities for achieving intrauterine pregnancy using multiple IVF cycle data. Specifically, our results indicated that lower intrauterine pregnancy rates in IVF cycles may be linked to ambient air pollution during COS and the post-transfer period. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013 R1A6A3A04059017, 2016 R1D1A1B03933410 and 2018 R1A2B6004608) and the National Cancer Center of Korea (NCC-1810220-01). The authors report no conflicts of interest. N/A.

  1. Modeling Green Infrastructure Land Use Changes on Future Air Quality—Case Study in Kansas City

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bash, J. O.; Roselle, S. J.; Gilliland, A. B.; Shatas, A.; DeYoung, R.; Piziali, J.

    2016-12-01

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). We found that the average 2-meter temperatures (T2) during summer (June, July and August) are projected to slightly decrease over the downtown of KC and slightly increase over the newly developed regions surrounding the urban core. The planetary boundary layer (PBL) height changes are consistent with the T2 changes: the PBL height is somewhat lowered over the downtown and raised over the newly developed areas. We also saw relatively small decreases in O3 in the downtown area for the mean of all hours as well as for the maximum 8 hour average (MDA8), corresponding with the changes in T2 and PBL height. However, we also found relatively small PM2.5 concentration increases over KC, especially over the downtown areas, with the largest contribution from components of organic carbon, elementary carbon, non-anion dust, and unspeciated PM. More diagnostic analysis is needed to further investigate how these land use changes affect different processes (such as the dry deposition).

  2. What health professionals should know about the health effects of air pollution and climate change on children and pregnant mothers

    PubMed Central

    Poursafa, Parinaz; Kelishadi, Roya

    2011-01-01

    BACKGROUND: Health professionals face the adverse health effects of climate change and air pollution in their practices. This review underscores the effects of these environmental factors on maternal and children's health, as the most vulnerable groups to climate change and air pollution. METHODS: We reviewed electronic databases for a search of the literature to find relevant studies published in English from 1990 to 2011. RESULTS: Environmental factors, notably climate change and air pollution influence children's health before conception and continue during pregnancy, childhood, and adolescence. Experts have suggested that such health hazards may represent the greatest public health challenge that humanity has faced. The accumulation of greenhouse gases such as carbon dioxide, primarily from burning fossil fuels, results in warming which has an impact on air pollution particularly on levels of ozone and particulates. Heat-related health effects include increased rates of pregnancy complications, pre-eclampsia, eclampsia, low birth weight, renal effects, vector-borne diseases as malaria and dengue, increased diarrheal and respiratory disease, food insecurity, decreased quality of foods (notably grains), malnutrition, water scarcity, exposures to toxic chemicals, worsened poverty, natural disasters and population displacement. Air pollution has many adverse health effects for mothers and children. In addition to short-term effects like premature labour, intrauterine growth retardation, neonatal and infant mortality rate, malignancies (notably leukaemia and Hodgkin lymphoma), respiratory diseases, allergic disorders and anaemia, exposure to criteria air pollutants from early life might be associated with increase in stress oxidative, inflammation and endothelial dysfunction which in turn might have long-term effects on chronic non-communicable diseases. CONCLUSIONS: Health professionals have an exclusive capability to help prevent and reduce the harmful effects of environmental factors for high-risk groups, and should consider this capacity in their usual practice. PMID:22224116

  3. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease.

    PubMed

    Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin

    2012-03-01

    Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater <2.5 µm)]. Consistent with traffic-derived sources, this PM contained organic carbon and polycyclic aromatic hydrocarbons and was highly oxidizing, generating large amounts of free radicals. The face mask was well tolerated, and its use was associated with decreased self-reported symptoms and reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.

  4. Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood

    PubMed Central

    Hertz-Picciotto, Irva; Herr, Caroline E.W.; Yap, Poh-Sin; Dostál, Miroslav; Shumway, Robert H.; Ashwood, Paul; Lipsett, Michael; Joad, Jesse P.; Pinkerton, Kent E.; Šrám, Radim J.

    2005-01-01

    Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 μm in diameter (PM2.5) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3+ T-lymphocytes and their subsets CD4+ and CD8+, CD19+ B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM2.5 was 24.8 μg/m3 and that of PAHs was 63.5 ng/m3. In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM2.5 levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3+ CD4+, and CD8+), and a clear increase in the B-lymphocyte (CD19+) fraction. For a 100-ng/m3 increase in PAHs, which represented approximately two standard deviations, the percentage decrease was −3.3% [95% confidence interval (CI), −5.6 to −1.0%] for CD3+, −3.1% (95% CI, −4.9 to −1.3%) for CD4+, and −1.0% (95% CI, −1.8 to −0.2%) for CD8+ cells. The corresponding increase in the CD19+ cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM2.5. Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus. PMID:16203253

  5. [Effect of air pollution on health service demand of the elderly and middle-age patients with hypertension, cardiovascular and cerebrovascular diseases: based on analysis of data from CHARLS].

    PubMed

    Shan, J; Li, H Y; Liu, G F; Yang, X; Dong, W; Jian, W Y; Deng, F R; Guo, X B

    2016-06-18

    To study the association of air pollution with health service demand of the elderly and middle-age patients with cardiovascular and cerebrovascular diseases, and to provide a scientific basis for development of environmental protection policy and health service policy of the Chinese government. This study included survey data on self-evaluated health, outpatient service demand and inpatient service demand of the patients with hypertension, heart disease and stroke in 62 cities of 17 provinces from China Health and Retirement Longitudinal Study (CHARLS) in 2011 and 2013, and combined it with the data on the annual concentrations of inhalable particulate matter (PM(10)), sulfur dioxide(SO(2)) and nitrogen dioxide (NO(2)) of those provinces and cities. Conditional Logistic regression was carried out to assess the possible effects of air pollutants on self-evaluated health and health service utilization. The results showed that turning points existed in the effects of concentrations of NO(2) and SO(2) on the health service demand of the patients with hypertension, heart disease and stroke. The inpatient service demand of the hypertension patients increased with NO(2) concentration when it was lower than 35.1 μg/m(3) and decreased with NO(2) concentration for higher value. Self-evaluated health of the patients with heart disease and stroke decreased with SO(2) concentration when it was lower than 63.8 μg/m(3) and increased with SO(2) concentration for higher value. In addition, no evidence was found for the association between PM(10) and health service demand. Air pollution may have effects on health service demand of the patients with hypertension,cardiovascular and cerebrovascular diseases, and different air pollutants at high or low concentration may have different health effects.

  6. Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults

    PubMed Central

    Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R

    2015-01-01

    Objectives Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. Methods 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM2.5) and sulphate (SO42−) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. Results A 5.8 mg/l elevation in CRP was associated with decreases of between −8% and −33% for time and frequency domain HRV outcomes. A 5.1 μg/m3 increase in SO42− on the day before the health assessment was associated with a decrease of −6.7% in the SD of normal RR intervals (SDNN) (95% CI −11.8% to −1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM2.5. Conclusions Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation. PMID:20519749

  7. Cardio-Respiratory Effects of Air Pollution in a Panel Study of Outdoor Physical Activity and Health in Rural Older Adults

    PubMed Central

    Stieb, David M.; Shutt, Robin; Kauri, Lisa; Mason, Sarah; Chen, Li; Szyszkowicz, Mieczyslaw; Dobbin, Nina A.; Rigden, Marc; Jovic, Branka; Mulholland, Marie; Green, Martin S.; Liu, Ling; Pelletier, Guillaume; Weichenthal, Scott A.; Dales, Robert E.; Luginaah, Isaac

    2017-01-01

    Objective: To examine cardio-respiratory effects of air pollution in rural older adults exercising outdoors. Methods: Adults 55 and over completed measurements of blood pressure, peak expiratory flow and oximetry daily, and of heart rate variability, endothelial function, spirometry, fraction of exhaled nitric oxide and urinary oxidative stress markers weekly, before and after outdoor exercise, for 10 weeks. Data were analyzed using linear mixed effect models. Results: Pooled estimates combining 2013 (n = 36 participants) and 2014 (n = 41) indicated that an interquartile increase in the air quality health index (AQHI) was associated with a significant (P < 0.05) increase in heart rate (2.1%) and significant decreases in high frequency power (−19.1%), root mean square of successive differences (−9.5%), and reactive hyperemia index (−6.5%). Conclusions: We observed acute subclinical adverse effects of air pollution in rural older adults exercising outdoors. PMID:28628045

  8. Biochemical profile of non-enzymatic stress markers in the plant species "Urginea maritima" in a Mediterranean natural reserve exposed to oxidative stress.

    PubMed

    Khairallah, Yara; Houri, Tarek; Osta, Bilal; Romanos, Dany; Haddad, Georges

    2018-05-22

    Protected areas decrease degrading natural ecosystems due to pollution such as air pollution. In 1981, the inhabitants founded Bentael natural reserve in Byblos, Lebanon, to secure their region against urbanization projects, like the recently constructed road that threatens the biodiversity of the reserve. This study was conducted to determine the oxidative stress resulting from this pollution and that menaces 360 floral species among them a rare species "Urginea maritima." In this research, the biomonitoring approach was experienced to assess the oxidative stress. Biomonitoring possesses has the advantage to be low cost and a constructive method to generate valuable data for further examinations. The studied parameters were air pollutants, ascorbic acid, photosynthetic pigments, leave's pH, relative water content, proline, carbohydrates, and hydrogen peroxide, in three chosen spots, near the pollution source (P1), opposite the latter spot (P2), and in an area relatively far from the source of contamination and which was chosen as the control site (Ctrl). The results showed in P1 detection of air pollutants higher of about 80% than in Ctrl, modifications in stress markers: increased concentration of the reactive oxygen species "hydrogen peroxide," rise in the concentration of the osmoregulator amino acid "proline," and depletion in chlorophyll content, in contrast to an increase in pheophytin. All these findings can be exploited as early diagnosis of air pollution and confirmed the ability to use such biomonitor ("Urginea maritima") as a way to assess the environmental pollution levels and consequently affirm the danger of such landscape activities on natural reserves.

  9. Air quality measurements-From rubber bands to tapping the rainbow.

    PubMed

    Hidy, George M; Mueller, Peter K; Altshuler, Samuel L; Chow, Judith C; Watson, John G

    2017-06-01

    It is axiomatic that good measurements are integral to good public policy for environmental protection. The generalized term for "measurements" includes sampling and quantitation, data integrity, documentation, network design, sponsorship, operations, archiving, and accessing for applications. Each of these components has evolved and advanced over the last 200 years as knowledge of atmospheric chemistry and physics has matured. Air quality was first detected by what people could see and smell in contaminated air. Gaseous pollutants were found to react with certain materials or chemicals, changing the color of dissolved reagents such that their light absorption at selected wavelengths could be related to both the pollutant chemistry and its concentration. Airborne particles have challenged the development of a variety of sensory devices and laboratory assays for characterization of their enormous range of physical and chemical properties. Advanced electronics made possible the sampling, concentration, and detection of gases and particles, both in situ and in laboratory analysis of collected samples. Accurate and precise measurements by these methods have made possible advanced air quality management practices that led to decreasing concentrations over time. New technologies are leading to smaller and cheaper measurement systems that can further expand and enhance current air pollution monitoring networks. Ambient air quality measurement systems have a large influence on air quality management by determining compliance, tracking trends, elucidating pollutant transport and transformation, and relating concentrations to adverse effects. These systems consist of more than just instrumentation, and involve extensive support efforts for siting, maintenance, calibration, auditing, data validation, data management and access, and data interpretation. These requirements have largely been attained for criteria pollutants regulated by National Ambient Air Quality Standards, but they are rarely attained for nonroutine measurements and research studies.

  10. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public.

    PubMed

    Huang, Jing; Pan, Xiaochuan; Guo, Xinbiao; Li, Guoxing

    2018-04-01

    Limited studies have explored the impacts of exposure to sustained high levels of air pollution (air pollution wave) on mortality. Given that the frequency, intensity and duration of air pollution wave has been increasing in highly polluted regions recently, understanding the impacts of air pollution wave is crucial. In this study, air pollution wave was defined as 2 or more consecutive days with air pollution index (API) > 100. The impacts of air pollution wave on years of life lost (YLL) due to non-accidental, cardiovascular and respiratory deaths were evaluated by considering both consecutive days with high levels of air pollution and daily air pollution levels in Tianjin, China, from 2006 to 2011. The results showed the durational effect of consecutive days with high levels of air pollution was substantial in addition to the effect of daily air pollution. For instance, the durational effect was related to an increase in YLL of 116.6 (95% CI: 4.8, 228.5) years from non-accidental deaths when the air pollution wave was sustained for 4 days, while the corresponding daily air pollution's effect was 121.2 (95% CI: 55.2, 187.1) years. A better interpretation of the health risks of air pollution wave is crucial for air pollution control policy making and public health interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Associations between maternal weekly air pollutant exposures and low birth weight: a distributed lag non-linear model

    NASA Astrophysics Data System (ADS)

    Wu, Han; Jiang, Baofa; Zhu, Ping; Geng, Xingyi; Liu, Zhong; Cui, Liangliang; Yang, Liping

    2018-02-01

    When discussing the association between birth weight and air pollution, previous studies mainly focus on the maternal trimester-specific exposures during pregnancy, whereas the possible associations between birth weight and weekly-specific exposures have been largely neglected. We conducted a nested 1:4 matched case-control study in Jinan, China to examine the weekly-specific associations during pregnancy between maternal fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5), nitrogen dioxide (NO2), and sulfur dioxide (SO2) exposure and birth weight, which is under a representative scenario of very high pollution levels. Ambient air monitoring data from thirteen monitoring stations and daily mean temperature data for Jinan during 2013-2016 were continuously collected. Birth data were obtained from the largest maternity and child care hospital of this city during 2014-2016. Individual exposures to PM2.5, NO2, and SO2 during pregnancy were estimated using an inverse distance weighting method. Birth weight for gender-, gestational age-, and parity-specific standard score (BWGAP z-score) was calculated as the outcome of interest. Distributed lag non-linear models (DLNMs) were applied to estimate weekly-specific relationship between maternal air pollutant exposures and birth weight. For an increase of per inter-quartile range in maternal PM2.5 exposure concentration during pregnancy, the BWGAP z-score decreased significantly during the 27th-33th gestational weeks with the strongest association in the 30th gestational weeks (standard deviation units decrease in BWGAP z-score: -0.049, 95% CI: -0.080 -0.017, in three-pollutant model). No significant association between maternal weekly NO2 or SO2 BWGAP z-score was observed. In conclusion, this study provides evidence that maternal PM2.5 exposure during the 27th-33th gestational weeks may reduce the birth weight in the context of very high pollution level of PM2.5.

  12. Quantifying air distribution, ventilation effectiveness and airborne pollutant transport in an aircraft cabin mockup

    NASA Astrophysics Data System (ADS)

    Wang, Aijun

    The health, safety and comfort of passengers during flight inspired this research into cabin air quality, which is closely related to its airflow distribution, ventilation effectiveness and airborne pollutant transport. The experimental facility is a full-scale aircraft cabin mockup. A volumetric particle tracking velocimetry (VPTV) technique was enhanced by incorporating a self-developed streak recognition algorithm. Two stable recirculation regions, the reverse flows above the seats and the main air jets from the air supply inlets formed the complicated airflow patterns inside the cabin mockup. The primary air flow was parallel to the passenger rows. The small velocity component in the direction of the cabin depth caused less net air exchange between the passenger rows than that parallel to the passenger rows. Different total air supply rate changed the developing behaviors of the main air jets, leading to different local air distribution patterns. Two indices, Local mean age of air and ventilation effectiveness factor (VEF), were measured at five levels of air supply rate and two levels of heating load. Local mean age of air decreased linearly with an increase in the air supply rate, while the VEF remained consistent when the air supply rate varied. The thermal buoyancy force from the thermal plume generated the upside plume flow, opposite to the main jet flow above the boundary seats and thus lowered the local net air exchange. The airborne transport dynamics depends on the distance between the source and the receptors, the relative location of pollutant source, and air supply rate. Exposure risk was significantly reduced with increased distance between source and receptors. Another possible way to decrease the exposure risk was to position the release source close to the exhaust outlets. Increasing the air supply rate could be an effective solution under some emergency situations. The large volume of data regarding the three-dimensional air velocities was visualized in the CAVE virtual environment. ShadowLight, a virtual reality application was used to import and navigate the velocity vectors through the virtual airspace. A real world demonstration and an active interaction with the three-dimensional air velocity data have been established.

  13. Short-Term Introduction of Air Pollutants from Fireworks During Diwali in Rural Palwal, Haryana, India: A Case Study

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Yadav, A.; Pillarisetti, A.; Smith, K.; Arora, N.

    2018-03-01

    The contribution of firework-related air pollutants into the rural atmosphere was monitored by measuring ambient air concentrations of PM2.5, CO, and metals over Mitrol- Aurangabad, Haryana, India, before, during, and after the 2015 Diwali celebration. PM2.5 concentrations were observed to be approximately 5 times and 12 times higher than Indian and WHO 24-h standards, respectively. CO concentrations on the day of Diwali were found to be nearly 7.5 times and nearly 1.5 times higher than Indian standards and WHO 8-h standards, respectively. Increased concentrations of SO4, K, N3, Al, and Na were observed. SO4, K, N3, Al, and Na were found between approximately 2 and 5 times higher on festival days than on a normal, non-festival day in November. Use of firecrackers during Diwali and surrounding celebrations thus contribute to decreased air quality and elevated levels of air pollutants associated with adverse health impacts. Optimization or controlled use of firecrackers during Diwali is suggested in rural areas.

  14. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  15. Air quality improvements using European environment policies: a case study of SO2 in a coastal region in Portugal.

    PubMed

    Pereira, M C; Santos, R C; Alvim-Ferraz, M C M

    2007-02-01

    The European Union (EU) has defined several efforts for preventing and controlling air pollution that have led to a generalized reduction of health risks and environmental effects. One example of these efforts was the establishment of legislation that imposed a reduction of sulfur content in fuels, switching to cleaner fuels for industry and motor vehicles (Auto-Oil Directives). The goal of this study was to evaluate the first trends in the air quality of Oporto Metropolitan Area (Oporto-MA) related to implementation of these directives in Portugal since 2000. Therefore, sulfur dioxide (SO2) concentration data from air quality monitoring sites were analyzed for the period 1999 through 2003. It was observed that daily SO2 concentrations in the industrial area are much higher than those of the urban and rural areas, reflecting the influence of the industrial sector. The annual SO2 concentrations for the consecutive years of analysis decreased considerably for all the monitoring sites. A considerable decrease in SO2 emissions was also observed for the same period. According to EU legislation, the exceedances of the SO2 recommended limit values decreased significantly. In conclusion, this analysis shows evidence that SO2 concentrations are decreasing, and that this is consistent with the implementation of the legislation and control of the sources of pollution. Nevertheless, the potential for human health risks still persists, particularly in industrialized areas. It is expected that SO2 concentration levels in ambient air of Oporto-MA will continue to decrease in the coming years, following the present European trends.

  16. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    NASA Astrophysics Data System (ADS)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the change of PM2.5 concentration. The lower the H_PMLs is, the higher the PLAM becomes, and the more conductive the air condition is to aggravation of pollutant aerosol concentration.

  17. An anticipatory integrated assessment of regional acidification: The RAINS-Asia model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, M.; Carmichael, G.R.; Foell, W.

    1996-12-31

    Across large parts of Asia, air pollution problems are becoming more and more evident. Rainfall in some areas, including China, Japan, and Thailand, has been measured to be 10 times more acidic than unpolluted rain. Increasing evidence of acidification damage to ecosystems such as surface waters, soils, and economically important crops, is beginning to appear. In addition, urban air quality in many areas of the region continues to decrease. Current economic forecasts predict continued rapid economic growth in the region, which will bring with it increasing emissions of air pollutants, especially sulfur. The total primary energy demand in Asia currentlymore » doubles every twelve years (as compared to a world average of every 28 years). Coal is expected to continue to be the dominant energy source, with coal demand projected to increase by 65 percent per year, a rate that outpaces regional economic growth. If current trends in economic development and energy use in Asia continue, emissions of sulfur dioxide, one of the key components in acid rain, will more than triple within the next 30 years. Many ecosystems will be unable to continue to absorb these increased levels of pollution without harmful effects, thus creating a potential danger for irreversible environmental damage in many areas. In view of the potential environmental consequences of projected growth in Asian energy consumption, emissions, and air pollution, the World Bank, together with the Asian Development Bank, have funded a project to develop and implement an integrated assessment model for the acid deposition phenomenon in Asia. The Regional Air Pollution INformation and Simulation model for Asia (RAINS-Asia) is a software tool to help decision makers assess and project future trends in emissions, transport, and deposition of air pollutants, and their potential environmental effects.« less

  18. Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences.

    PubMed

    Ge, Baozhu; Wang, Zifa; Lin, Weili; Xu, Xiaobin; Li, Jie; Ji, Dongshen; Ma, Zhiqiang

    2018-03-01

    High concentrations of the fine particles (PM 2.5 ) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO 2 , NO 2 , CO, PM 2.5 ) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO 2 , SO 2 , PM 2.5 and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO 2 , PM 2.5 and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Progression from Asthma to Chronic Obstructive Pulmonary Disease. Is Air Pollution a Risk Factor?

    PubMed

    To, Teresa; Zhu, Jingqin; Larsen, Kristian; Simatovic, Jacqueline; Feldman, Laura; Ryckman, Kandace; Gershon, Andrea; Lougheed, M Diane; Licskai, Christopher; Chen, Hong; Villeneuve, Paul J; Crighton, Eric; Su, Yushan; Sadatsafavi, Mohsen; Williams, Devon; Carlsten, Christopher

    2016-08-15

    Individuals with asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS), have more rapid decline in lung function, more frequent exacerbations, and poorer quality of life than those with asthma or COPD alone. Air pollution exposure is a known risk factor for asthma and COPD; however, its role in ACOS is not as well understood. To determine if individuals with asthma exposed to higher levels of air pollution have an increased risk of ACOS. Individuals who resided in Ontario, Canada, aged 18 years or older in 1996 with incident asthma between 1996 and 2009 who participated in the Canadian Community Health Survey were identified and followed until 2014 to determine the development of ACOS. Data on exposures to fine particulate matter (PM2.5) and ozone (O3) were obtained from fixed monitoring sites. Associations between air pollutants and ACOS were evaluated using Cox regression models. Of the 6,040 adults with incident asthma who completed the Canadian Community Health Survey, 630 were identified as ACOS cases. Compared with those without ACOS, the ACOS population had later onset of asthma, higher proportion of mortality, and more frequent emergency department visits before COPD diagnosis. The adjusted hazard ratios of ACOS and cumulative exposures to PM2.5 (per 10 μg/m(3)) and O3 (per 10 ppb) were 2.78 (95% confidence interval, 1.62-4.78) and 1.31 (95% confidence interval, 0.71-2.39), respectively. Individuals exposed to higher levels of air pollution had nearly threefold greater odds of developing ACOS. Minimizing exposure to high levels of air pollution may decrease the risk of ACOS.

  20. Burden of Outdoor Air Pollution in Kerala, India—A First Health Risk Assessment at State Level.

    PubMed

    Tobollik, Myriam; Razum, Oliver; Wintermeyer, Dirk; Plass, Dietrich

    2015-08-28

    Ambient air pollution causes a considerable disease burden, particularly in South Asia. The objective of the study is to test the feasibility of applying the environmental burden of disease method at state level in India and to quantify a first set of disease burden estimates due to ambient air pollution in Kerala. Particulate Matter (PM) was used as an indicator for ambient air pollution. The disease burden was quantified in Years of Life Lost (YLL) for the population (30 + years) living in urban areas of Kerala. Scenario analyses were performed to account for uncertainties in the input parameters. 6108 (confidence interval (95% CI): 4150-7791) of 81,636 total natural deaths can be attributed to PM, resulting in 96,359 (95% CI: 65,479-122,917) YLLs due to premature mortality (base case scenario, average for 2008-2011). Depending on the underlying assumptions the results vary between 69,582 and 377,195 YLLs. Around half of the total burden is related to cardiovascular deaths. Scenario analyses show that a decrease of 10% in PM concentrations would save 15,904 (95% CI: 11,090-19,806) life years. The results can be used to raise awareness about air quality standards at a local level and to support decision-making processes aiming at cleaner and healthier environments.

  1. [Perception of health risks due to air pollution among adolescents in Mexico City].

    PubMed

    Catalán-Vázquez, Minerva; Riojas-Rodríguez, Horacio; Jarillo-Soto, Edgar C; Delgadillo-Gutiérrez, Héctor Javier

    2009-01-01

    Analyze the relations established between air pollution and health-disease-death in a sample of students in Mexico City. Survey of 1274 students from 14 secondary schools in five areas in Mexico City was conducted between March and April of 2003. We used a multi-stage sampling, based in a basic geostatistical areas (AGEB). A total of 84.4% believed that Mexico City has a high, or very high air pollution; that valuation decreases as it approaches the most immediate place in which the students live. The health risks range from effects on respiratory health, 66.9%, to other effects on daily life, 2.2%. The predictors that air pollution is perceived as serious/very serious are: 1) that they associate it with the possibility of causing death (OR= 1.35, 95% CI=1.02-1.77), and 2) that they attend schools located in the La Merced zone, (OR= 2.23, 95% CI= 1.56-3.21). Determinants of perception, such as gender, zone where the school is located and the differences in air quality perceived in the city/area/schools, suggest that focalizing components must be involved in environmental policies, in order to make environmental programs more effective at the local level.

  2. Critical loads and their exceedances at intensive forest monitoring sites in Europe.

    PubMed

    Lorenz, Martin; Nagel, Hans-Dieter; Granke, Oliver; Kraft, Philipp

    2008-10-01

    Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies.

  3. Détente from the Air: Monitoring Air Pollution during the Cold War.

    PubMed

    Rothschild, Rachel

    During the period of détente in the 1970s, a Norwegian proposal to construct an air pollution monitoring network for the European continent resulted in the first concrete collaboration between the communist and capitalist blocs after the 1975 Helsinki Accords. Known as the "European-wide monitoring programme" or EMEP, the network earned considerable praise from diplomats for facilitating cooperation across the Iron Curtain. Yet as this article argues, EMEP was strongly influenced by the politics of détente and the constraints of the Cold War even as it helped to decrease tensions. Concerns about national security and sharing data with the enemy shaped both the construction of the monitoring network and the modeling of pollution transport. The article also proposes that environmental monitoring systems like EMEP reveal the ways in which observational technologies can affect conceptions of the natural world and the role of science in public policy.

  4. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-08-01

    Exposure to ambient air pollution has been associated with endothelial dysfunction as reflected by short-term alterations in circulating biomarkers, but the chemical constituents and pollution sources behind the association has been unclear. We investigated the associations between various ambient air pollutants including gases and 31 chemical constituents and seven sources of fine particles (PM2.5) and biomarkers of endothelial function, including endothelin-1 (ET-1), E-selectin, soluble intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), based on 462 repeated measurements in a panel of 40 college students who were followed for three study periods before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. Air pollution data were obtained from central air-monitoring stations. Linear mixed-effects models were used to estimate the changes in biomarkers associated with exposures. Total PM2.5 mass showed few appreciable associations with examined biomarkers. However, several PM2.5 constituents and related sources showed significant associations with examined biomarkers. PM2.5 from dust/soil and several crustal and transition metals, including strontium, iron, titanium, cobalt and magnesium, were significantly associated with increases in ET-1 at 1-day average; manganese and potassium were significantly associated with increases in ICAM-1 at 2-day average; and PM2.5 from industry and metal cadmium were significantly associated with decreases in VCAM-1 at 1-day average. In addition, carbon monoxide was significantly associated with increasing ICAM-1 at 1-day and 2-day averages, whereas nitric oxide was significantly associated with decreasing ICAM-1 at 1-day and 3-day averages. Our results suggest that certain PM2.5 metal constituents were more closely associated with circulating biomarkers of endothelial function than PM2.5, and therefore highlight the research necessity to examine pollution chemical constituents in future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [The association between emergency clinic visits for asthmatic attacks and fluctuating environmental factors].

    PubMed

    Shimizu, S; Kagawa, J; Ishiguro, M

    2001-07-01

    The number of nocturnal visits of asthmatic attack patients to the emergency room of Yokohama Medical Association's Clinic from January 1990 to December 1991 was compared to daily levels of air pollution (NO, NO2, SO2 and SPM) and weather (temperature and relative humidity) variables measured in Yokohama City. Trend-cycle components (Trend) that control for the weekly effects, other irregular variance for asthmatic attack incidence and environmental parameter measurements were estimated from the original data series using the method of Akaike and Ishiguro (1980). The rate of increase for each environmental parameter was then calculated from its trend-cycle components. We classified the data into four stages on the basis of rising and falling temperature and humidity. For each stage of temperature and humidity, fluctuation we estimated correlations between the number of asthmatic attack visits and original data series measurements, estimated trend-cycle components, and calculated rates of increase for each of the air pollutants. The daily number of asthmatic attack visits was negatively correlated to the daily mean values of all air pollutants, but positively correlated to the daily mean temperature and relative humidity. The trend-cycle components of the air pollutants were also negatively correlated to the frequencies of asthmatic attacks (p < 0.01 for all pollutants except NO2). In contrast, the number of asthmatic attack visits were in general positively correlated with increasing levels of pollutants. Furthermore, when both temperature and relative humidity decreased, significant correlations (r > 0.31, p < 0.001) between the number of asthmatic attacks and increased rates of all air pollutants were observed (r: NO2 > NO > SO2 > SPM).

  6. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives

    NASA Astrophysics Data System (ADS)

    Andrade, Maria de Fatima; Kumar, Prashant; de Freitas, Edmilson Dias; Ynoue, Rita Yuri; Martins, Jorge; Martins, Leila D.; Nogueira, Thiago; Perez-Martinez, Pedro; de Miranda, Regina Maura; Albuquerque, Taciana; Gonçalves, Fabio Luiz Teixeira; Oyama, Beatriz; Zhang, Yang

    2017-06-01

    We present a comprehensive review of published results from the last 30 years regarding the sources and atmospheric characteristics of particles and ozone in the Metropolitan Area of São Paulo (MASP). During the last 30 years, many efforts have been made to describe the emissions sources and to analyse the primary and secondary formation of pollutants under a process of increasing urbanisation in the metropolitan area. From the occurrence of frequent violations of air quality standards in the 1970s and 1980s (due to the uncontrolled air pollution sources) to a substantial decrease in the concentrations of the primary pollutants, many regulations have been imposed and enforced, although those concentrations do not yet conform to the World Health Organization guidelines. The greatest challenge currently faced by the São Paulo State Environmental Protection Agency and the local community is controlling secondary pollutants such as ozone and fine particles. Understanding the formation of these secondary pollutants, by experimental or modelling approaches, requires the description of the atmospheric chemical processes driven by biofuel, ethanol and biodiesel emissions. Exposure to air pollution is the cause of many injuries to human health, according to many studies performed not only in the region but also worldwide, and affects susceptible populations such as children and the elderly. The MASP is the biggest megacity in the Southern Hemisphere, and its specifics are important for other urban areas that are facing the challenge of intensive growth that puts pressure on natural resources and worsens the living conditions in urban areas. This text discusses how imposing regulations on air quality and emission sources, mainly related to the transportation sector, has affected the evolution of pollutant concentrations in the MASP.

  7. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school.

    PubMed

    Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-González, Elisabet; Donaire-Gonzalez, David; Cirach, Marta; de Castro, Montserrat; Esnaola, Mikel; Basagaña, Xavier; Dadvand, Payam; Nieuwenhuijsen, Mark; Sunyer, Jordi

    2017-12-01

    A few studies have found associations between the exposure to traffic-related air pollution at school and/or home and cognitive development. The impact on cognitive development of the exposure to air pollutants during commuting has not been explored. We aimed to assess the role of the exposure to traffic-related air pollutants during walking commute to school on cognitive development of children. We performed a longitudinal study of children (n = 1,234, aged 7-10 y) from 39 schools in Barcelona (Catalonia, Spain) who commuted by foot to school. Children were tested four times during a 12-month follow-up to characterize their developmental trajectories of working memory (d' of the three-back numbers test) and inattentiveness (hit reaction time standard error of the Attention Network Test). Average particulate matter ≤2.5 μm (PM 2.5 ), Black Carbon (BC) and NO 2 concentrations were estimated using Land Use Regression for the shortest walking route to school. Differences in cognitive growth were evaluated by linear mixed effects models with age-by-pollutant interaction terms. Exposure to PM 2.5 and BC from the commutes by foot was associated with a reduction in the growth of working memory (an interquartile range increase in PM 2.5 and BC concentrations decreased the annual growth of working memory by 5.4 (95% CI [-10.2, -0.6]) and 4.6 (95% CI [-9.0, -0.1]) points, respectively). The findings for NO 2 were not conclusive and none of the pollutants were associated with inattentiveness. Efforts should be made to implement pedestrian school pathways through low traffic streets in order to increase security and minimize children's exposure to air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sensor-based demand controlled ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Almeida, A.T.; Fisk, W.J.

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less

  9. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  10. Identification and influence of spatio-temporal outliers in urban air quality measurements.

    PubMed

    O'Leary, Brendan; Reiners, John J; Xu, Xiaohong; Lemke, Lawrence D

    2016-12-15

    Forty eight potential outliers in air pollution measurements taken simultaneously in Detroit, Michigan, USA and Windsor, Ontario, Canada in 2008 and 2009 were identified using four independent methods: box plots, variogram clouds, difference maps, and the Local Moran's I statistic. These methods were subsequently used in combination to reduce and select a final set of 13 outliers for nitrogen dioxide (NO 2 ), volatile organic compounds (VOCs), total benzene, toluene, ethyl benzene, and xylene (BTEX), and particulate matter in two size fractions (PM 2.5 and PM 10 ). The selected outliers were excluded from the measurement datasets and used to revise air pollution models. In addition, a set of temporally-scaled air pollution models was generated using time series measurements from community air quality monitors, with and without the selected outliers. The influence of outlier exclusion on associations with asthma exacerbation rates aggregated at a postal zone scale in both cities was evaluated. Results demonstrate that the inclusion or exclusion of outliers influences the strength of observed associations between intraurban air quality and asthma exacerbation in both cities. The box plot, variogram cloud, and difference map methods largely determined the final list of outliers, due to the high degree of conformity among their results. The Moran's I approach was not useful for outlier identification in the datasets studied. Removing outliers changed the spatial distribution of modeled concentration values and derivative exposure estimates averaged over postal zones. Overall, associations between air pollution and acute asthma exacerbation rates were weaker with outliers removed, but improved with the addition of temporal information. Decreases in statistically significant associations between air pollution and asthma resulted, in part, from smaller pollutant concentration ranges used for linear regression. Nevertheless, the practice of identifying outliers through congruence among multiple methods strengthens confidence in the analysis of outlier presence and influence in environmental datasets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes.

    PubMed

    van der Zee, Saskia C; Fischer, Paul H; Hoek, Gerard

    2016-07-01

    Although the health effects of long term exposure to air pollution are well established, it is difficult to effectively communicate the health risks of this (largely invisible) risk factor to the public and policy makers. The purpose of this study is to develop a method that expresses the health effects of air pollution in an equivalent number of daily passively smoked cigarettes. Defined changes in PM2.5, nitrogen dioxide (NO2) and Black Carbon (BC) concentration were expressed into number of passively smoked cigarettes, based on equivalent health risks for four outcome measures: Low Birth Weight (<2500g at term), decreased lung function (FEV1), cardiovascular mortality and lung cancer. To describe the strength of the relationship with ETS and air pollutants, we summarized the epidemiological literature using published or new meta-analyses. Realistic increments of 10µg/m(3) in PM2.5 and NO2 concentration and a 1µg/m(3) increment in BC concentration correspond to on average (standard error in parentheses) 5.5 (1.6), 2.5 (0.6) and 4.0 (1.2) passively smoked cigarettes per day across the four health endpoints, respectively. The uncertainty reflects differences in equivalence between the health endpoints and uncertainty in the concentration response functions. The health risk of living along a major freeway in Amsterdam is, compared to a counterfactual situation with 'clean' air, equivalent to 10 daily passively smoked cigarettes.. We developed a method that expresses the health risks of air pollution and the health benefits of better air quality in a simple, appealing manner. The method can be used both at the national/regional and the local level. Evaluation of the usefulness of the method as a communication tool is needed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Air pollution sources and childhood asthma attacks in Catano, Puerto Rico.

    PubMed

    Loyo-Berríos, Nilsa I; Irizarry, Rafael; Hennessey, Joseph G; Tao, Xuguang Grant; Matanoski, Genevieve

    2007-04-15

    Asthma prevalence in the Cataño Air Basin of Puerto Rico is 27% for children aged 13-14 years and 45% for children aged 5-6 years. There is concern that these rates are related to air pollution. The authors conducted a nested case-control study to evaluate whether proximity to air pollution point sources was associated with increased risk of asthma attacks. For 1997-2001, 1,382 asthma-related medical visits (International Classification of Diseases, Ninth Revision, codes 493 and 493.9) in children under 17 were identified through health insurance claims. Controls were children with no asthma attacks who were randomly selected from enrollees in two health insurance companies by incidence density sampling (1:5) and matched to cases on gender, age, insurance company, and event date. The distance from a point source to the subject's residence area represented a surrogate exposure measurement. Odds ratios for a 1-km decrease in distance were obtained by conditional logistic regression. Risk of asthma attack was associated with residing near a grain mill (odds ratio (OR) = 1.35), petroleum refinery (OR = 1.44), asphalt plant (OR = 1.23), or power plant (OR = 1.28) (all p's < 0.05). Residence near major air emissions sources (>100 tons/year) increased asthma attack risk by 108% (p < 0.05). These results showed that proximity to some air pollution sources is associated with increased risks of asthma attacks.

  13. Saturday Driving Restrictions Fail to Improve Air Quality in Mexico City.

    PubMed

    Davis, Lucas W

    2017-02-02

    Policymakers around the world are turning to license-plate based driving restrictions in an effort to address urban air pollution. The format differs across cities, but most programs restrict driving once or twice a week during weekdays. This paper focuses on Mexico City, home to one of the oldest and best-known driving restriction policies. For almost two decades Mexico City's driving restrictions applied during weekdays only. This changed recently, however, when the program was expanded to include Saturdays. This paper uses hourly data from pollution monitoring stations to measure the effect of the Saturday expansion on air quality. Overall, there is little evidence that the program expansion improved air quality. Across eight major pollutants, the program expansion had virtually no discernible effect on pollution levels. These disappointing results stand in sharp contrast to estimates made before the expansion which predicted a 15%+ decrease in vehicle emissions on Saturdays. To understand why the program has been less effective than expected, the paper then turns to evidence from subway, bus, and light rail ridership, finding no evidence that the expansion was successful in getting drivers to switch to lower-emitting forms of transportation.

  14. Saturday Driving Restrictions Fail to Improve Air Quality in Mexico City

    NASA Astrophysics Data System (ADS)

    Davis, Lucas W.

    2017-02-01

    Policymakers around the world are turning to license-plate based driving restrictions in an effort to address urban air pollution. The format differs across cities, but most programs restrict driving once or twice a week during weekdays. This paper focuses on Mexico City, home to one of the oldest and best-known driving restriction policies. For almost two decades Mexico City’s driving restrictions applied during weekdays only. This changed recently, however, when the program was expanded to include Saturdays. This paper uses hourly data from pollution monitoring stations to measure the effect of the Saturday expansion on air quality. Overall, there is little evidence that the program expansion improved air quality. Across eight major pollutants, the program expansion had virtually no discernible effect on pollution levels. These disappointing results stand in sharp contrast to estimates made before the expansion which predicted a 15%+ decrease in vehicle emissions on Saturdays. To understand why the program has been less effective than expected, the paper then turns to evidence from subway, bus, and light rail ridership, finding no evidence that the expansion was successful in getting drivers to switch to lower-emitting forms of transportation.

  15. Saturday Driving Restrictions Fail to Improve Air Quality in Mexico City

    PubMed Central

    Davis, Lucas W.

    2017-01-01

    Policymakers around the world are turning to license-plate based driving restrictions in an effort to address urban air pollution. The format differs across cities, but most programs restrict driving once or twice a week during weekdays. This paper focuses on Mexico City, home to one of the oldest and best-known driving restriction policies. For almost two decades Mexico City’s driving restrictions applied during weekdays only. This changed recently, however, when the program was expanded to include Saturdays. This paper uses hourly data from pollution monitoring stations to measure the effect of the Saturday expansion on air quality. Overall, there is little evidence that the program expansion improved air quality. Across eight major pollutants, the program expansion had virtually no discernible effect on pollution levels. These disappointing results stand in sharp contrast to estimates made before the expansion which predicted a 15%+ decrease in vehicle emissions on Saturdays. To understand why the program has been less effective than expected, the paper then turns to evidence from subway, bus, and light rail ridership, finding no evidence that the expansion was successful in getting drivers to switch to lower-emitting forms of transportation. PMID:28151487

  16. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  17. Traffic-Related Air Pollution and Selected Birth Defects in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Tager, Ira B.; Carmichael, Suzan L.; Hammond, S. Katharine; Yang, Wei; Lurmann, Frederick W.; Shaw, Gary M.

    2014-01-01

    BACKGROUND Birth defects are a leading cause of infant morbidity and mortality. Studies suggest associations between environmental contaminants and some structural anomalies, although evidence is limited and several anomalies have not been investigated previously. METHODS We used data from the California Center of the National Birth Defects Prevention Study and the Children's Health and Air Pollution Study to estimate the odds of 26 congenital birth defect phenotypes with respect to quartiles of seven ambient air pollutant and traffic exposures in California during the first 2 months of pregnancy, 1997 to 2006 (874 cases and 849 controls). We calculated odds ratios (adjusted for maternal race/ethnicity, education, and vitamin use; aOR) for 11 phenotypes that had at least 40 cases. RESULTS Few odds ratios had confidence intervals that did not include 1.0. Odds of esophageal atresia were increased for the highest versus lowest of traffic density (aOR = 2.8, 95% confidence interval [CI], 1.1–7.4) and PM10 exposure (aOR 4.9; 95% CI, 1.4–17.2). PM10 was associated with a decreased risk of hydrocephaly (aOR= 0.3; 95% CI, 0.1–0.9) and CO with decreased risk of anotia/microtia (aOR = 0.4; 95% CI, 0.2–0.8) and transverse limb deficiency (aOR = 0.4; 95% CI, 0.2–0.9), again reflecting highest versus lowest quartile comparisons. CONCLUSION Most analyses showed no substantive association between air pollution and the selected birth defects with few exceptions of mixed results. PMID:24108522

  18. Traffic-related air pollution and selected birth defects in the San Joaquin Valley of California.

    PubMed

    Padula, Amy M; Tager, Ira B; Carmichael, Suzan L; Hammond, S Katharine; Yang, Wei; Lurmann, Frederick W; Shaw, Gary M

    2013-11-01

    Birth defects are a leading cause of infant morbidity and mortality. Studies suggest associations between environmental contaminants and some structural anomalies, although evidence is limited and several anomalies have not been investigated previously. We used data from the California Center of the National Birth Defects Prevention Study and the Children's Health and Air Pollution Study to estimate the odds of 26 congenital birth defect phenotypes with respect to quartiles of seven ambient air pollutant and traffic exposures in California during the first 2 months of pregnancy, 1997 to 2006 (874 cases and 849 controls). We calculated odds ratios (adjusted for maternal race/ethnicity, education, and vitamin use; aOR) for 11 phenotypes that had at least 40 cases. Few odds ratios had confidence intervals that did not include 1.0. Odds of esophageal atresia were increased for the highest versus lowest of traffic density (aOR = 2.8, 95% confidence interval [CI], 1.1-7.4) and PM10 exposure (aOR 4.9; 95% CI, 1.4-17.2). PM₁₀ was associated with a decreased risk of hydrocephaly (aOR= 0.3; 95% CI, 0.1-0.9) and CO with decreased risk of anotia/microtia (aOR = 0.4; 95% CI, 0.2-0.8) and transverse limb deficiency (aOR = 0.4; 95% CI, 0.2-0.9), again reflecting highest versus lowest quartile comparisons. Most analyses showed no substantive association between air pollution and the selected birth defects with few exceptions of mixed results. Copyright © 2013 Wiley Periodicals, Inc.

  19. Association of traffic-related air pollution with cognitive development in children.

    PubMed

    Freire, Carmen; Ramos, Rosa; Puertas, Raquel; Lopez-Espinosa, Maria-Jose; Julvez, Jordi; Aguilera, Inmaculada; Cruz, Francisco; Fernandez, Mariana-Fatima; Sunyer, Jordi; Olea, Nicolas

    2010-03-01

    Air pollution from traffic has been associated with cardiorespiratory diseases in children and adults, but there is little information on its potential neurotoxic effects. This study aimed to investigate the association between exposure to nitrogen dioxide (NO(2)), as a marker of traffic-related air pollution, and cognitive development in children. A population-based birth cohort from southern Spain was followed from the age of 4 years for 1 year. Complete data for analyses were gathered on 210 children living in urban and rural areas. NO(2) exposure was predicted by means of land use regression models. A standardised version of the McCarthy Scales of Children's Abilities (MSCA) was used to assess children's motor and cognitive abilities. Multivariate analyses were performed to evaluate the relation between exposure to NO(2) and MSCA outcomes, adjusting for potential confounders. A negative effect of NO(2) was found across all MSCA subscales, despite low predicted NO(2) exposure levels (5-36 microg/m(3)). Children exposed to higher NO(2) (>24.75 microg/m(3)) showed a decrease of 4.19 points in the general cognitive score and decreases of 6.71, 7.37 and 8.61 points in quantitative, working memory and gross motor areas, respectively. However, except for gross motor function, associations were not statistically significant. Although results were not statistically significant, the associations found between exposure to NO(2) and cognitive functions suggest that traffic-related air pollution may have an adverse effect on neurodevelopment, especially early in life, even at low exposure levels.

  20. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.

  1. Influence of air contaminants on planar, self-breathing hydrogen PEM fuel cells in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Biesdorf, Johannes; Zamel, Nada; Kurz, Timo

    2014-02-01

    In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.

  2. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Huang, Xiao-Feng; Zhu, Qiao; Cao, Li-Ming; Zhang, Bin; He, Ling-Yan

    2017-07-01

    The emission of pollutants is extremely reduced during the annual Chinese Spring Festival (SF) in Shenzhen, China. During the SF, traffic flow drops by ˜ 50 % and the industrial plants are almost entirely shut down in Shenzhen. To characterize the variation in ambient air pollutants due to the Spring Festival effect, various gaseous and particulate pollutants were measured in real time in urban Shenzhen over three consecutive winters (2014-2016). The results indicate that the concentrations of NOx, volatile organic compounds (VOCs), black carbon (BC), primary organic aerosols, chloride, and nitrate in submicron aerosols decrease by 50-80 % during SF periods relative to non-Spring Festival periods, regardless of meteorological conditions. This decrease suggests that these pollutants are mostly emitted or secondarily formed from urban local emissions. The concentration variation in species mostly from regional or natural sources, however, is found to be much less, such as for bulk fine particulate matter (PM2. 5). More detailed analysis of the Spring Festival effect reveals an urgent need to reduce emissions of SO2 and VOCs on a regional scale rather than on an urban scale to reduce urban PM2. 5 in Shenzhen, which can also be useful as a reference for other megacities in China.

  3. Economic transition and environmental sustainability: effects of economic restructuring on air pollution in the Russian Federation.

    PubMed

    Cherp, Aleg; Kopteva, Irina; Mnatsakanian, Ruben

    2003-06-01

    Economic liberalization in former socialist countries may have various implications for their environmental sustainability. Positive effects of this process are potentially associated with improved efficiency, investments into cleaner technologies, responsiveness to environmentally aware markets, and ending subsidies to heavy industries. On the other hand, market liberalization may result in weaker environmental controls, economic instabilities distracting attention from environmental issues, and increasing orientation towards profit-making leading to more intensive exploitation of natural resources. In addition, trade liberalization may result in shifts towards more pollution and resource-intensive industries. This article seeks to quantify effects of economic restructuring in Russia on air pollution from productive economic sectors in the 1990s. Air pollution in Russia had significantly declined in 1991-1999, however, this decline was largely due to economic decline, as the overall pollution intensity of the economy had decreased only slightly. The factors that affected the pollution intensity are: (1) a decrease in the combined share of industrial and transport activities in the economy and (2) changing pollution intensities of the industrial and transport sectors. The pollution intensity of the Russian industry had remained relatively stable during the 1990s. This was the result of the two opposite and mutually canceling trends: (a) increasing shares of pollution-intensive branches such as metal smelting and oil production vs. less pollution intensive manufacturing and (b) decline in pollution intensities within the industrial branches. The article proposes a methodology by which the contribution of both factors to the overall pollution intensity of the industrial sector can be quantified. The pollution intensity of the Russian transport sector appears to have declined in the first half of the 1990s and increased in the second half. The most recent trend can be explained by a rising proportion of private motorcars used for transportation of people and goods instead of traditional rail and other public transport. The findings of the paper demonstrate that shifts towards more pollution-, resource- and energy-intensive industries as a result of economic liberalization emerges as a significant negative factor of the process of economic transition threatening sustainability of emerging market economies. A research agenda to further investigate these impacts is proposed.

  4. Chemical composition and source apportionment of PM2.5 during heavy pollution episodes in 2013-2015 in Handan, China

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wang, L.; Tan, J.; Meng, C.; Zhang, F.; Ma, S.; Wei, Z.; Zhang, C.; Zhao, L.; Ji, S.

    2017-12-01

    To investigate the formation mechanism of heavy air pollution in Handan, China, a comprehensive dataset including continuous online hourly observations of the meteorological parameters and air pollutants, i.e., SO2 NO, NO2, NOx, CO, O3, in January, 2013-2015, as well as water-soluble inorganic ions (WSII) (NO3-, SO42-, NH4+, Cl-, Na+, Mg2+, K+, Ca2+), carbon components (OC, EC) and inorganic elements in PM2.5 are analyzed in this study. The HYSPLIT Trajectory Model is applied to analyze the transport pathway of air mass. NO, SO2 and PM2.5 showed an obvious decreasing trend. Compared with 2013, NO, SO2 and PM2.5 decreased by 12.1%, 25.5%, 7.6% and 12.5%, 33.5%, 30.9% in 2014 and 2015, respectively. Heavy pollution episodes were often observed in winter during this period. A severe pollution episode was occurred from 2 to 20 January 2013. The peak concentrations of PM2.5 and PM10 were 1144.3 μg/m3 and 780.2 μg/m3 on 11 January 2013, respectively. The polluted level of heavy pollution episodes in 2014 and 2015 were slighter than 2013, but still can't be ignored. Their durations were short and generally lasted about 4-7 days, however, the frequency of occurrence was increased. Low temperature and wind speed and high humidity were always observed during these pollution episodes. The concentrations of chemical compositions of PM2.5 during heavy pollution episodes were significantly higher than those in clean day. The concentrations of SNA (SO42-, NO3- and NH4+) and OC peaked at 12 January 2013, 16 January 2014 and 15 January 2015, respectively, which is consistent with the previous analysis. The average monthly concentrations of SO42- and NH4+ were in the order of: 2013>2014>2015, indicating that this was related to the decrease of SO2 concentration. Cu, Zn, Pb were highly enriched elements, indicating the industrial pollution, especially from iron and steel smelting had a significant contribution to PM2.5 in Handan. Additionally, Cr in 2015, Mn, Co in 2014 and 2015 were highly enriched elements, respectively. Finally, the major spatial sources of pollutants in Handan are local emissions and from Hebei Province. The short-distance trajectories in January accounted for 63%, 64%, 50%, respectively.

  5. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    NASA Astrophysics Data System (ADS)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided with statistically significant high fire activity, concentrations in Delhi averaged 304 μg m-3, or more than 1000% above the 24-h PM2.5 guideline (25 μg m-3) of the World Health Organization. These results suggest that providing viable alternatives to agricultural residue burning could help improve post-monsoon air quality for a growing population of 63 million (39% in urban areas) within Delhi's airshed.

  6. Seasonal Impact of Regional Outdoor Biomass Burning on Air Pollution in Three Indian Cities: Delhi, Bengaluru, and Pune

    NASA Technical Reports Server (NTRS)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2017-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or "airsheds," for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM(sub 10) anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM(sub 10) increases by 16.34 micrograms per cubic meter, visibility decreases by 0.097 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM(sub 2.5) in the 2013 post-monsoon burning season, which coincided with statistically significant high fire activity, concentrations in Delhi averaged 304 micrograms per cubic meter, or more than 1000% above the 24-h PM(sub 2.5) guideline (25 micrograms per cubic meter) of the World Health Organization. These results suggest that providing viable alternatives to agricultural residue burning could help improve post-monsoon air quality for a growing population of 63 million (39% in urban areas) within Delhi's airshed.

  7. Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases.

    PubMed

    Hori, Aya; Hashizume, Masahiro; Tsuda, Yoko; Tsukahara, Teruomi; Nomiyama, Tetsuo

    2012-01-01

    We examined the effect of ambient temperature, air pressure and air pollutants on daily emergency admissions by identifying the cause of admission for each type of stroke and cardiovascular disease using generalized linear Poisson regression models allowing for overdispersion, and controlling for seasonal and inter-annual variations, days of the week and public holidays, levels of influenza and respiratory syncytial viruses. Every 1°C decrease in mean temperature was associated with an increase in the daily number of emergency admissions by 7.83% (95% CI 2.06-13.25) for acute coronary syndrome (ACS) and heart failure, by 35.57% (95% CI 15.59-59.02) for intracerebral haemorrhage (ICH) and by 11.71% (95% CI 4.1-19.89) for cerebral infarction. An increase of emergency admissions due to ICH (3.25% (95% CI 0.94-5.51)), heart failure (3.56% (95% CI 1.09-5.96)) was observed at every 1 hPa decrease in air pressure from the previous days. We found stronger detrimental effect of cold on stroke than cardiovascular disease.

  8. 76 FR 39357 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... the California State Implementation Plan, Imperial County Air Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution Control District AGENCY... the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control...

  9. Filtration effectiveness of HVAC systems at near-roadway schools.

    PubMed

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  10. Inferring frail life expectancies in Chicago from daily fluctuations in elderly mortality.

    PubMed

    Murray, Christian J; Lipfert, Frederick W

    2013-07-01

    Susceptible sub-populations with existing disease have exhibited stronger relationships between air quality and mortality in time-series studies, but their associated life expectancies have largely been overlooked. Murray and Nelson developed a new time-series model that estimated a small unobserved (frail) sub-population and their resulting life expectancies in Philadelphia, including environment relationships. As a further example in a different geographic area, we used this model with 1987-2000 daily mortality data in Chicago and found a stable frail population at risk of ∼900 persons with a mean life expectancy of ∼11 days; fewer than two daily deaths were associated with air pollution. We considered daily concentrations of CO, NO₂, O₃, PM₁₀ and SO₂, and found PM₁₀ and O₃ to have stronger associations with frail mortality. Our estimates of life expectancy and air pollution and temperature relationships are similar to those found in other studies that used different methods. Temperature was more important than air pollution during the 1995 heat wave, when mortality risks increased dramatically after 2 d exposure and life expectancies decreased to 3-5 d. Modeling this event separately had substantial effects on lagged mortality--air pollution relationships and the population at risk. The premises of the Murray-Nelson model were supported by simultaneously considering an additional subgroup of non-frail individuals; they contributed only ∼1% of total elderly deaths. We conclude that frail life expectancies estimated by the Murray-Nelson model are robust, and that under these conditions non-frail persons have little risk of acute mortality, with or without contributions from air pollution.

  11. Role of persistent low-level clouds in mitigating air quality impacts of wintertime cold pool conditions

    NASA Astrophysics Data System (ADS)

    VanReken, Timothy M.; Dhammapala, Ranil S.; Jobson, B. Thomas; Bottenus, Courtney L.; VanderSchelden, Graham S.; Kaspari, Susan D.; Gao, Zhongming; Zhu, Qiurui; Lamb, Brian K.; Liu, Heping; Johnston, Jeff

    2017-04-01

    The Yakima Air Wintertime Nitrate Study (YAWNS) was conducted in January 2013 to investigate the drivers of elevated levels of fine particulate matter (PM2.5) frequently present in the region during winter stagnation periods. An extended stagnation period occurred during the study. For the first four days of the event, skies were clear and the strong diel variation in air pollution patterns were consistent with the expected effects of strong low-level nighttime temperature inversions with moderate mixing during daylight hours. Later in the event a low-level cloud layer formed that persisted over the Yakima Valley for the next seven days while regional conditions remained stagnant. Coincident with the onset of cloud, the levels of all measured primary pollutants, including CO2, CO, NOx, particle number concentration, and black carbon, dropped dramatically and remained low with negligible diel variation for as long as the cloud layer was present. The observed patterns for these air pollutants are consistent with decreased stability and enhanced mixing associated with the cloud-topped boundary layer. Interestingly, levels of secondary pollutants, most notably particulate ammonium nitrate, did not exhibit the same decline. This difference may be due to shifts in the chemical production of secondary pollutants during cloudy conditions, or may merely reflect a further influence of mixing. The results imply that the best strategies for managing wintertime air quality during episodes of persistent cloud are likely different from those needed during clear-sky stagnation events.

  12. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.

    PubMed

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M

    2015-10-01

    Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.

  13. Mitigation of severe urban haze pollution by a precision air pollution control approach.

    PubMed

    Yu, Shaocai; Li, Pengfei; Wang, Liqiang; Wu, Yujie; Wang, Si; Liu, Kai; Zhu, Tong; Zhang, Yuanhang; Hu, Min; Zeng, Liming; Zhang, Xiaoye; Cao, Junji; Alapaty, Kiran; Wong, David C; Pleim, Jon; Mathur, Rohit; Rosenfeld, Daniel; Seinfeld, John H

    2018-05-25

    Severe and persistent haze pollution involving fine particulate matter (PM 2.5 ) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM 2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM 2.5 peak concentrations by more than 60% from above 300 μg m -3 to below 100 μg m -3 , while requiring ~30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.

  14. Lacrimal Cytokines Assessment in Subjects Exposed to Different Levels of Ambient Air Pollution in a Large Metropolitan Area

    PubMed Central

    Matsuda, Monique; Bonatti, Rodolfo; Marquezini, Mônica V.; Garcia, Maria L. B.; Santos, Ubiratan P.; Braga, Alfésio L. F.; Alves, Milton R.

    2015-01-01

    Background Air pollution is one of the most environmental health concerns in the world and has serious impact on human health, particularly in the mucous membranes of the respiratory tract and eyes. However, ocular hazardous effects to air pollutants are scarcely found in the literature. Design Panel study to evaluate the effect of different levels of ambient air pollution on lacrimal film cytokine levels of outdoor workers from a large metropolitan area. Methods Thirty healthy male workers, among them nineteen professionals who work on streets (taxi drivers and traffic controllers, high pollutants exposure, Group 1) and eleven workers of a Forest Institute (Group 2, lower pollutants exposure compared to group 1) were evaluated twice, 15 days apart. Exposure to ambient PM2.5 (particulate matter equal or smaller than 2.5 μm) was 24 hour individually collected and the collection of tears was performed to measure interleukins (IL) 2, 4, 5 and 10 and interferon gamma (IFN-γ) levels. Data from both groups were compared using Student’s t test or Mann- Whitney test for cytokines. Individual PM2.5 levels were categorized in tertiles (lower, middle and upper) and compared using one-way ANOVA. Relationship between PM2.5 and cytokine levels was evaluated using generalized estimating equations (GEE). Results PM2.5 levels in the three categories differed significantly (lower: ≤22 μg/m3; middle: 23–37.5 μg/m3; upper: >37.5 μg/m3; p<0.001). The subjects from the two groups were distributed unevenly in the lower category (Group 1 = 8%; Group 2 = 92%), the middle category (Group 1 = 89%; Group 2 = 11%) and the upper category (Group 1 = 100%). A significant relationship was found between IL-5 and IL-10 and PM2.5 levels of the group 1, with an average decrease of 1.65 pg/mL of IL-5 level and of 0.78 pg/mL of IL-10 level in tear samples for each increment of 50 μg/m3 of PM2.5 (p = 0.01 and p = 0.003, respectively). Conclusion High levels of PM2.5 exposure is associated with decrease of IL-5 and IL-10 levels suggesting a possible modulatory action of ambient air pollution on ocular surface immune response. PMID:26588473

  15. Managing Air Quality - Air Pollutant Types

    EPA Pesticide Factsheets

    Describes the types of air pollutants, including common or criteria pollutants, and hazardous air pollutants and links to additional information. Also links to resources on other air pollution issues.

  16. Challenges and Opportunities of Air Quality Management in Mexico City

    NASA Astrophysics Data System (ADS)

    Paramo, V.

    2013-05-01

    The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among others.

  17. Acute effects of PM2.5 on lung function parameters in schoolchildren in Nanjing, China: a panel study.

    PubMed

    Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian

    2018-03-17

    The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.

  18. Relationship of ambient air pollutants and hazardous household factors with birth weight among Bedouin-Arabs.

    PubMed

    Yitshak-Sade, Maayan; Novack, Lena; Landau, Daniella; Kloog, Itai; Sarov, Batia; Hershkovitz, Reli; Karakis, Isabella

    2016-10-01

    Air pollution and meteorology exposures during pregnancy have been suggested to be associated with Birth Weight (BW). Yet, the individual medical background and close household environment is rarely addressed. We aimed to evaluate the independent association of BW with meteorological and air pollution exposures during pregnancy, in addition to individual, parental and household risk factors, among the Bedouin-Arab population in Southern Israel; a semi nomadic population, featured by low socio-economic levels and poor housing and household environment. In a retrospective cohort study we enrolled pregnant women upon their arrival in the local hospital for delivery during December 2011-April 2013. We interviewed the women and collected data on socio-demographic characteristics, medical history and household environmental hazards. Air pollution (NO2, SO2, CO, Ozone and Particulate Matter <2.5 μ and 10 μ in diameter) and meteorological data (temperature, relative humidity), retrieved from 13 monitoring sites, were linked to each woman based on the proximity of her residential address. A total of 959 women were eligible for the study, half of them resided in temporary tribal localities. Ozone IQR elevation in the 3rd trimester was associated with 0.119 gr decrease in BW (95%CI -0.127 gr; -0.112 gr); temperature IQR elevation in the 3rd trimester was associated with 0.002 gr (95%CI -0.004 gr; -0.001 gr) decrease in BW. Waste in the house surroundings was associated with a decrease of 117.27 gr in BW (95%CI -209.19 gr; -25.34 gr). Although exposure to high levels of temperature and O3 were associated with lower BW, the contribution of poor household environment indicators to BW reduction was substantially higher. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Aerosol impacts on regional trends in atmospheric stagnation

    NASA Astrophysics Data System (ADS)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.

    2017-12-01

    Extreme pollution events pose a significant threat to human health and are a leading cause of premature mortality worldwide. While emissions of atmospheric pollutants and their precursors are projected to decrease in the future due to air quality legislation, future climate change may affect the underlying meteorological conditions that contribute to extreme pollution events. Stagnation events, characterized by weak winds and an absence of precipitation, contribute to extreme pollution by halting the removal of pollutants via advection and wet deposition. Here, we use a global climate model (GFDL-CM3) to show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds have produced significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US has increased the number of stagnant summer days. Significant drying over eastern China in response to aerosol forcing contributed to increased stagnation. Additionally, this region was found to be particularly sensitive to changes in local emissions, indicating that improving air quality will also lessen stagnation. In Europe, we find a dipole pattern wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. We hypothesize that this is due to changes in the large-scale circulation patterns associated with a poleward shift of the North Atlantic storm track. We find that in the future, the combination of declining aerosol emissions and the continued rise of greenhouse gas emissions will lead to a reversal of the historical stagnation trends.

  20. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.

    2017-08-01

    The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.

  1. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  2. Air pollutant emissions from straw open burning: A case study in Tianjin

    NASA Astrophysics Data System (ADS)

    Guan, Yanan; Chen, Guanyi; Cheng, Zhanjun; Yan, Beibei; Hou, Li'an

    2017-12-01

    Straw open burning is a primary source of air pollution and difficult to forbid in China. To have a better understanding of the pollution status of straw open burning in Tianjin, an accurate pollutant emission inventory was established based on the county-level statistical data from 1996 to 2014 in Tianjin. Results showed that the emission of CO, VOCs, PM10, PM2.5, CH4, NOx, OC, SO2, NH3 and BC have decreased by 41.66%, 58.74%, 54.55%, 55.01%, 58.42%, 47.03%, 48.71%, 44.85%, 64.60%, 51.56% from 1996 to 2000, and then gradually increased by 44.05%, 53.48%, 59.43%, 59.49%, 51.24%, 55.05%, 53.09%, 22.73%, 56.25%, and 64.29% from 2000 to 2014, respectively. Spatially, counties of Wuqing, Baodi and Jixian were the largest contributors to the total emissions with the contribution of 25.98%, 22.69% and 18.87% respectively through the study period. The Monte Carlo simulation was also used to estimate the uncertainty and its confidence intervals of the pollutant emissions. The uncertainty of total pollutant emissions for each year is within ±80.35%. This study provides more accurate estimation for the pollutant emissions from straw open burning and reliable guidance for the policy formulation to improve the air quality in Tianjin.

  3. Health benefits from improved outdoor air quality and intervention in China.

    PubMed

    Li, Shanshan; Williams, Gail; Guo, Yuming

    2016-07-01

    China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Impact of Geocoding Methods on Associations between Long-term Exposure to Urban Air Pollution and Lung Function

    PubMed Central

    Jacquemin, Bénédicte; Lepeule, Johanna; Boudier, Anne; Arnould, Caroline; Benmerad, Meriem; Chappaz, Claire; Ferran, Joane; Kauffmann, Francine; Morelli, Xavier; Pin, Isabelle; Pison, Christophe; Rios, Isabelle; Temam, Sofia; Künzli, Nino; Slama, Rémy

    2013-01-01

    Background: Errors in address geocodes may affect estimates of the effects of air pollution on health. Objective: We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults. Methods: We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant’s address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects. Results: Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: –0.56, –6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: –0.14, –3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted –2.81 (95% CI: –0.26, –5.35) using NavTEQ, or 2.08 (95% CI –4.63, 0.47, p = 0.11) using Google Maps]. Conclusions: Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model. Citation: Jacquemin B, Lepeule J, Boudier A, Arnould C, Benmerad M, Chappaz C, Ferran J, Kauffmann F, Morelli X, Pin I, Pison C, Rios I, Temam S, Künzli N, Slama R, Siroux V. 2013. Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function. Environ Health Perspect 121:1054–1060; http://dx.doi.org/10.1289/ehp.1206016 PMID:23823697

  5. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010

    PubMed Central

    Clark, Lara P.; Millet, Dylan B.

    2017-01-01

    Background: Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. Objective: This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. Methods: We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Results: Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (−6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (−4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite–white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Conclusions: Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959 PMID:28930515

  6. Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010.

    PubMed

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2017-09-14

    Disparities in exposure to air pollution by race-ethnicity and by socioeconomic status have been documented in the United States, but the impacts of declining transportation-related air pollutant emissions on disparities in exposure have not been studied in detail. This study was designed to estimate changes over time (2000 to 2010) in disparities in exposure to outdoor concentrations of a transportation-related air pollutant, nitrogen dioxide (NO2), in the United States. We combined annual average NO2 concentration estimates from a temporal land use regression model with Census demographic data to estimate outdoor exposures by race-ethnicity, socioeconomic characteristics (income, age, education), and by location (region, state, county, urban area) for the contiguous United States in 2000 and 2010. Estimated annual average NO2 concentrations decreased from 2000 to 2010 for all of the race-ethnicity and socioeconomic status groups, including a decrease from 17.6 ppb to 10.7 ppb (-6.9 ppb) in nonwhite [non-(white alone, non-Hispanic)] populations, and 12.6 ppb to 7.8 ppb (-4.7 ppb) in white (white alone, non-Hispanic) populations. In 2000 and 2010, disparities in NO2 concentrations were larger by race-ethnicity than by income. Although the national nonwhite-white mean NO2 concentration disparity decreased from a difference of 5.0 ppb in 2000 to 2.9 ppb in 2010, estimated mean NO2 concentrations remained 37% higher for nonwhites than whites in 2010 (40% higher in 2000), and nonwhites were 2.5 times more likely than whites to live in a block group with an average NO2 concentration above the WHO annual guideline in 2010 (3.0 times more likely in 2000). Findings suggest that absolute NO2 exposure disparities by race-ethnicity decreased from 2000 to 2010, but relative NO2 exposure disparities persisted, with higher NO2 concentrations for nonwhites than whites in 2010. https://doi.org/10.1289/EHP959.

  7. Evaluation of air quality indicators in Alberta, Canada - An international perspective.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2016-01-01

    There has been an increase in oil sands development in northern Alberta, Canada and an overall increase in economic activity in the province in recent years. An evaluation of the state of air quality was conducted in four Alberta locations - urban centers of Calgary and Edmonton, and smaller communities of Fort McKay and Fort McMurray in the Athabasca Oil Sands Region (AOSR). Concentration trends, diurnal hourly and monthly average concentration profiles, and exceedances of provincial, national and international air quality guidelines were assessed for several criteria air pollutants over the period 1998 to 2014. Two methods were used to evaluate trends. Parametric analysis of annual median 1h concentrations and non-parametric analysis of annual geometric mean 1h concentrations showed consistent decreasing trends for NO2 and SO2 (<1ppb per year), CO (<0.1ppm per year) at all stations, decreasing for THC (<0.1ppm per year) and increasing for O3 (≤0.52ppb per year) at most stations and unchanged for PM2.5 at all stations in Edmonton and Calgary over a 17-year period. Little consistency in trends was observed among the methods for the same air pollutants other than for THC (increasing in Fort McKay <0.1ppm per year and no trend in Fort McMurray), PM2.5 in Fort McKay and Fort McMurray (no trend) and CO (decreasing <0.1ppm per year in Fort McMurray) over the same period. Levels of air quality indicators at the four locations were compared with other Canadian and international urban areas to judge the current state of air quality. Median and annual average concentrations for Alberta locations tended to be the smallest in Fort McKay and Fort McMurray. Other than for PM2.5, Calgary and Edmonton tended to have median and annual average concentrations comparable to and/or below that of larger populated Canadian and U.S. cities, depending upon the air pollutant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Traffic contribution to air pollution in urban street canyons: Integrated application of the OSPM, moss biomonitoring and spectral analysis

    NASA Astrophysics Data System (ADS)

    Lazić, Lazar; Urošević, Mira Aničić; Mijić, Zoran; Vuković, Gordana; Ilić, Luka

    2016-09-01

    To investigate the air pollutant distribution within the ambient of urban street canyon, Operational Street Pollution Model (OSPM) was used to predict hourly content of NOX, NO, NO2, O3, CO, BNZ and PM10. The study was performed in five street canyons in Belgrade (Serbia) during 10-week summer period. The model receptors were located on each side of street canyons at 4 m, 8 m and 16 m height. To monitor airborne trace element content, the moss bag biomonitors were simultaneously exposed with the model receptors at two heights-4 m and 16 m. The results of both methods, modelling and biomonitoring, showed significantly decreasing trend of the air pollutants with height. The results indirectly demonstrate that biomonitoring, i.e., moss bag technique could be a valuable tool to verify model performance. In addition, spectral analysis was applied to investigate weekly variation of the daily background and modelled data set. Typical periodicities and weekend effect, caused by anthropogenic influences, have been identified.

  9. Significantly Reduced Health Burden from Ambient Air Pollution in the United States under Emission Reductions from 1990 to 2016

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; West, J. J.; Mathur, R.; Xing, J.; Hogrefe, C.; Roselle, S. J.; Bash, J. O.; Pleim, J. E.; Gan, C. M.; Wong, D. C.; Tong, D.; van Donkelaar, A.; Martin, R.

    2017-12-01

    The 2015 Global Burden of Disease (GBD) study has listed air pollution as the fourth-ranking global mortality risk factor. Few studies have attempted to understand how these burdens change through time, especially in the United States (US). Here we aim to estimate air pollution-related mortality in the continental US for each year from 1990 to 2016, to understand the trend over this time period. We also analyze the relative contributions of changes in air pollutant concentrations, population, and baseline mortality to the overall trend and to the inter-annual variability in mortality estimates. To achieve this goal, we use a 21-year model simulation of PM2.5 and O3 concentrations from 1990 to 2010, with grid resolution of 36km×36km. We will also use two additional datasets informed by satellite observations: one from the North American Chemical Reanalysis project, which uses OMI NO2 and MODIS AOD observations for data assimilation to constrain ozone and PM2.5 between 2006-2016, and the other from satellite-derived estimates of ground-level PM2.5 using satellite AOD combined with the GEOS-Chem chemical transport model between 1998-2015. For the 21-year simulation, we find that the PM2.5-related mortality burden from ischemic heart disease, chronic obstructive pulmonary disease, lung cancer, and stroke, has steadily decreased, with a reduction of 51% from 1990 to 2010. The PM2.5 -related mortality burden would have decreased only by 27% if the PM2.5 concentrations had stayed at the 1990 level, due to decreases in baseline mortality rates for major diseases affected by PM2.5. The O3 mortality burden has smaller inter-annual variability than the PM2.5-related burden from 1990 to 2010, but the variability for the concentration-change only mortality burden is higher for O3 than for PM2.5. The O3-related mortality burden increased by 12% from 1990 to 2010, despite ozone decreases, mainly due to increases in the baseline mortality rates and population. The O3-related mortality burden would have increased by 61% if the O3 concentration had stayed at the 1990 level. Our preliminary results suggest that air quality improvements have significantly reduced the health burden over the past two decades.

  10. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    USGS Publications Warehouse

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50 states and on many tribal lands. High concentrations of mercury in wildlife are also widespread and have multiple adverse effects. ??? Air quality programs, such as those stemming from the 1990 Clean Air Act Amendments, have helped decrease air pollution even as population and energy demand have increased. Yet, they do not adequately protect ecosystems from long-term damage. Moreover they do not address ammonia emissions. ??? A stronger ecosystem basis for air pollutant policies could be established through adoption of science-based thresholds. Existing monitoring programs track vital information needed to measure the response to policies, and could be expanded to include appropriate chemical and biological indicators for terrestrial and aquatic ecosystems and establishment of a national ecosystem monitoring network for mercury. The development and use of air pollution thresholds for ecosystem protection and management is increasing in the United States, yet threshold approaches remain underutilized. Ecological thresholds for air pollution, such as critical loads for nitrogen and sulfur deposition, are not currently included in the formal regulatory process for emissions controls in the United States, although they are now considered in local management decisions by the National Park Service and U.S. Forest Service. Ecological thresholds offer a scientifically sound approach to protecting and restoring U.S. ecosystems and an important tool for natural resource management and policy. ?? The Ecological Society of America.

  11. Toxic exposure in America: estimating fetal and infant health outcomes from 14 years of TRI reporting.

    PubMed

    Agarwal, Nikhil; Banternghansa, Chanont; Bui, Linda T M

    2010-07-01

    We examine the effect of exposure to a set of toxic pollutants that are tracked by the Toxic Release Inventory (TRI) from manufacturing facilities on county-level infant and fetal mortality rates in the United States between 1989 and 2002. Unlike previous studies, we control for toxic pollution from both mobile sources and non-TRI reporting facilities. We find significant adverse effects of toxic air pollution concentrations on infant mortality rates. Within toxic air pollutants we find that releases of carcinogens are particularly problematic for infant health outcomes. We estimate that the average county-level decreases in various categories of TRI concentrations saved in excess of 13,800 infant lives from 1989 to 2002. Using the low end of the range for the value of a statistical life that is typically used by the EPA of $1.8M, the savings in lives would be valued at approximately $25B.

  12. Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma.

    PubMed

    Friedman, M S; Powell, K E; Hutwagner, L; Graham, L M; Teague, W G

    2001-02-21

    Vehicle exhaust is a major source of ozone and other air pollutants. Although high ground-level ozone pollution is associated with transient increases in asthma morbidity, the impact of citywide transportation changes on air quality and childhood asthma has not been studied. The alternative transportation strategy implemented during the 1996 Summer Olympic Games in Atlanta, Ga, provided such an opportunity. To describe traffic changes in Atlanta, Ga, during the 1996 Summer Olympic Games and concomitant changes in air quality and childhood asthma events. Ecological study comparing the 17 days of the Olympic Games (July 19-August 4, 1996) to a baseline period consisting of the 4 weeks before and 4 weeks after the Olympic Games. Children aged 1 to 16 years who resided in the 5 central counties of metropolitan Atlanta and whose data were captured in 1 of 4 databases. Citywide acute care visits and hospitalizations for asthma (asthma events) and nonasthma events, concentrations of major air pollutants, meteorological variables, and traffic counts. During the Olympic Games, the number of asthma acute care events decreased 41.6% (4.23 vs 2.47 daily events) in the Georgia Medicaid claims file, 44.1% (1.36 vs 0.76 daily events) in a health maintenance organization database, 11.1% (4.77 vs 4.24 daily events) in 2 pediatric emergency departments, and 19.1% (2.04 vs 1.65 daily hospitalizations) in the Georgia Hospital Discharge Database. The number of nonasthma acute care events in the 4 databases changed -3.1%, +1.3%, -2.1%, and +1.0%, respectively. In multivariate regression analysis, only the reduction in asthma events recorded in the Medicaid database was significant (relative risk, 0.48; 95% confidence interval, 0.44-0.86). Peak daily ozone concentrations decreased 27.9%, from 81.3 ppb during the baseline period to 58.6 ppb during the Olympic Games (P<.001). Peak weekday morning traffic counts dropped 22.5% (P<.001). Traffic counts were significantly correlated with that day's peak ozone concentration (average r = 0.36 for all 4 roads examined). Meteorological conditions during the Olympic Games did not differ substantially from the baseline period. Efforts to reduce downtown traffic congestion in Atlanta during the Olympic Games resulted in decreased traffic density, especially during the critical morning period. This was associated with a prolonged reduction in ozone pollution and significantly lower rates of childhood asthma events. These data provide support for efforts to reduce air pollution and improve health via reductions in motor vehicle traffic.

  13. A comparison of self reported air pollution problems and GIS-modeled levels of air pollution in people with and without chronic diseases

    PubMed Central

    Piro, Fredrik Niclas; Madsen, Christian; Næss, Øyvind; Nafstad, Per; Claussen, Bjørgulf

    2008-01-01

    Objective To explore various contributors to people's reporting of self reported air pollution problems in area of living, including GIS-modeled air pollution, and to investigate whether those with respiratory or other chronic diseases tend to over-report air pollution problems, compared to healthy people. Methods Cross-sectional data from the Oslo Health Study (2000–2001) were linked with GIS-modeled air pollution data from the Norwegian Institute of Air Research. Multivariate regression analyses were performed. 14 294 persons aged 30, 40, 45, 60 or 75 years old with complete information on modeled and self reported air pollution were included. Results People who reported air pollution problems were exposed to significantly higher GIS-modeled air pollution levels than those who did not report such problems. People with chronic disease, reported significantly more air pollution problems after adjustment for modeled levels of nitrogen dioxides, socio-demographic variables, smoking, depression, dwelling conditions and an area deprivation index, even if they had a non-respiratory disease. No diseases, however, were significantly associated with levels of nitrogen dioxides. Conclusion Self reported air pollution problems in area of living are strongly associated with increased levels of GIS-modeled air pollution. Over and above this, those who report to have a chronic disease tend to report more air pollution problems in area of living, despite no significant difference in air pollution exposure compared to healthy people, and no associations between these diseases and NO2. Studies on the association between self reported air pollution problems and health should be aware of the possibility that disease itself may influence the reporting of air pollution. PMID:18307757

  14. Can citizen science produce good science? Testing the OPAL Air Survey methodology, using lichens as indicators of nitrogenous pollution.

    PubMed

    Tregidgo, Daniel J; West, Sarah E; Ashmore, Mike R

    2013-11-01

    Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  16. Spatiotemporal Variations and Driving Factors of Air Pollution in China.

    PubMed

    Zhan, Dongsheng; Kwan, Mei-Po; Zhang, Wenzhong; Wang, Shaojian; Yu, Jianhui

    2017-12-08

    In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP) witness the strongest and most significant positive effects on air pollution ratio.

  17. Spatiotemporal Variations and Driving Factors of Air Pollution in China

    PubMed Central

    Zhan, Dongsheng; Zhang, Wenzhong; Wang, Shaojian; Yu, Jianhui

    2017-01-01

    In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP) witness the strongest and most significant positive effects on air pollution ratio. PMID:29292783

  18. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant influence on air quality due to inversion cap over the valley. Nevertheless, formation of an inversion showed strong diurnal variability. For example, on the 18th Feb. early morning shallow inversion quickly disappeared within less than 2 hours. According to this study tethered balloon measurements has proved to be a good tool for completion comprehensive ground air quality measurements.

  19. Effects of traffic-related outdoor air pollution on respiratory illness and mortality in children, taking into account indoor air pollution, in Indonesia.

    PubMed

    Kashima, Saori; Yorifuji, Takashi; Tsuda, Toshihide; Ibrahim, Juliani; Doi, Hiroyuki

    2010-03-01

    To evaluate the effects of outdoor air pollution, taking into account indoor air pollution, in Indonesia. The subjects were 15,242 children from 2002 to 2003 Indonesia Demographic and Health Survey. The odds ratios and their confidence intervals for adverse health effects were estimated. Proximity increased the prevalence of acute respiratory infection both in urban and rural areas after adjusting for indoor air pollution. In urban areas, the prevalence of acute upper respiratory infection increased by 1.012 (95% confidence intervals: 1.005 to 1.019) per 2 km proximity to a major road. Adjusted odds ratios tended to be higher in the high indoor air pollution group. Exposure to traffic-related outdoor air pollution would increase adverse health effects after adjusting for indoor air pollution. Furthermore, indoor air pollution could exacerbate the effects of outdoor air pollution.

  20. Wildfire air pollution hazard during the 21st century

    NASA Astrophysics Data System (ADS)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  1. Does consideration of larger study areas yield more accurate estimates of air pollution health effects? An illustration of the bias-variance trade-off in air pollution epidemiology.

    PubMed

    Pedersen, Marie; Siroux, Valérie; Pin, Isabelle; Charles, Marie Aline; Forhan, Anne; Hulin, Agnés; Galineau, Julien; Lepeule, Johanna; Giorgis-Allemand, Lise; Sunyer, Jordi; Annesi-Maesano, Isabella; Slama, Rémy

    2013-10-01

    Spatially-resolved air pollution models can be developed in large areas. The resulting increased exposure contrasts and population size offer opportunities to better characterize the effect of atmospheric pollutants on respiratory health. However the heterogeneity of these areas may also enhance the potential for confounding. We aimed to discuss some analytical approaches to handle this trade-off. We modeled NO2 and PM10 concentrations at the home addresses of 1082 pregnant mothers from EDEN cohort living in and around urban areas, using ADMS dispersion model. Simulations were performed to identify the best strategy to limit confounding by unmeasured factors varying with area type. We examined the relation between modeled concentrations and respiratory health in infants using regression models with and without adjustment or interaction terms with area type. Simulations indicated that adjustment for area limited the bias due to unmeasured confounders varying with area at the costs of a slight decrease in statistical power. In our cohort, rural and urban areas differed for air pollution levels and for many factors associated with respiratory health and exposure. Area tended to modify effect measures of air pollution on respiratory health. Increasing the size of the study area also increases the potential for residual confounding. Our simulations suggest that adjusting for type of area is a good option to limit residual confounding due to area-associated factors without restricting the area size. Other statistical approaches developed in the field of spatial epidemiology are an alternative to control for poorly-measured spatially-varying confounders. © 2013 Elsevier Ltd. All rights reserved.

  2. 76 FR 39303 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... the California State Implementation Plan, Imperial County Air Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution Control District AGENCY... approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air...

  3. 46 CFR 504.4 - Categorical exclusions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... they do not increase or decrease air, water or noise pollution or the use of fossil fuels, recyclables... fossil fuels or energy), they shall, by written submission to the Secretary, explain in detail their...

  4. 46 CFR 504.4 - Categorical exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... they do not increase or decrease air, water or noise pollution or the use of fossil fuels, recyclables... fossil fuels or energy), they shall, by written submission to the Secretary, explain in detail their...

  5. 46 CFR 504.4 - Categorical exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... they do not increase or decrease air, water or noise pollution or the use of fossil fuels, recyclables... fossil fuels or energy), they shall, by written submission to the Secretary, explain in detail their...

  6. 46 CFR 504.4 - Categorical exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... they do not increase or decrease air, water or noise pollution or the use of fossil fuels, recyclables... fossil fuels or energy), they shall, by written submission to the Secretary, explain in detail their...

  7. 46 CFR 504.4 - Categorical exclusions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... they do not increase or decrease air, water or noise pollution or the use of fossil fuels, recyclables... fossil fuels or energy), they shall, by written submission to the Secretary, explain in detail their...

  8. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  9. Burden of Outdoor Air Pollution in Kerala, India—A First Health Risk Assessment at State Level

    PubMed Central

    Tobollik, Myriam; Razum, Oliver; Wintermeyer, Dirk; Plass, Dietrich

    2015-01-01

    Ambient air pollution causes a considerable disease burden, particularly in South Asia. The objective of the study is to test the feasibility of applying the environmental burden of disease method at state level in India and to quantify a first set of disease burden estimates due to ambient air pollution in Kerala. Particulate Matter (PM) was used as an indicator for ambient air pollution. The disease burden was quantified in Years of Life Lost (YLL) for the population (30 + years) living in urban areas of Kerala. Scenario analyses were performed to account for uncertainties in the input parameters. 6108 (confidence interval (95% CI): 4150–7791) of 81,636 total natural deaths can be attributed to PM, resulting in 96,359 (95% CI: 65,479–122,917) YLLs due to premature mortality (base case scenario, average for 2008–2011). Depending on the underlying assumptions the results vary between 69,582 and 377,195 YLLs. Around half of the total burden is related to cardiovascular deaths. Scenario analyses show that a decrease of 10% in PM concentrations would save 15,904 (95% CI: 11,090–19,806) life years. The results can be used to raise awareness about air quality standards at a local level and to support decision-making processes aiming at cleaner and healthier environments. PMID:26343701

  10. Phytomonitoring of air pollution around a thermal power plant

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  11. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    PubMed

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  12. On the influence of Aerosols in measurement of electric field from Earth surface using a Field-Mill

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Sundar De, Syam; Paul, Suman; Hazra, Pranab; Guha, Gautam

    2016-07-01

    Aerosol particles influence the electrical conductivity of air. The value is reduced through the removal of small ions responsible for the conductivity. The metropolitan city, Kolkata (latitude 22.56° N, longitude 88.5° E) is densely populated surrounded by various types of Industries. Air is highly invaded by pollutant particles here for which the city falls under small-scale fair-weather condition where electric field and air-earth current get perturbed by ionization and different aerosols produced locally. Fine particles having diameter < 0.1 μm (Aitken nuclei) are distributed in air which decreases the electrical conductivity and increases the columnar resistance. Aerosol particles steadily change the status at different times of the day through coagulation, sedimentation, charge-transfer initiated by precipitation. The diurnal variation of potential gradient is caused mainly due to urbanization, emission from industry and traffic. The rate of production of haze (atmospheric suspension) and their vertical transportation control the daily variation of atmospheric potential. The nuclei of pollutant particles combine with ions and decrease the concentration of small ions thereby reducing the conductivity. The pollutants, influenced by CO _{2} and other green house gas emission from fossil fuels are also responsible for the variation of electric field. Variation in consumption of Oil and Gasoline due to traffic in the city contributes a high Aitken count and there are changes in atmospheric dispersion following reduction of conductivity of the medium. Outcome of some important measurement of potential gradient and air-earth current will be presented. Different parameters like air-conductivity, relative abundance of smoke, visibility would offer new signatures of aerosol-influence on electric potential gradient. Some of those will be reported here.

  13. Study of temporal variation in ambient air quality during Diwali festival in India.

    PubMed

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  14. Air pollution and chronic airway diseases: what should people know and do?

    PubMed

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.

  15. Air pollution and chronic airway diseases: what should people know and do?

    PubMed Central

    Jiang, Xu-Qin; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251

  16. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study

    PubMed Central

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross

    2017-01-01

    Abstract Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design Retrospective population based cohort study. Setting Greater London and surrounding counties up to the M25 motorway (2317 km2), UK, from 2006 to 2010. Participants 540 365 singleton term live births. Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results Average air pollutant exposures across pregnancy were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 nitrogen oxides (NOx), 14 μg/m3 particulate matter with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/m3 particulate matter with aerodynamic diameter <10 μm (PM10), and 32 μg/m3 ozone (O3). Average daytime (LAeq,16hr) and night-time (Lnight) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO2, NOx, PM2.5, PM10, and source specific PM2.5 from traffic exhaust (PM2.5 traffic exhaust) and traffic non-exhaust (brake or tyre wear and resuspension) (PM2.5 traffic non-exhaust) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM2.5 traffic exhaust and PM2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM2.5>13.8 μg/m3during pregnancy. Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. PMID:29208602

  17. AirData

    EPA Pesticide Factsheets

    The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about where air pollution comes from (emissions) and how much pollution is in the air outside our homes and work places (monitoring).

  18. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A. C.; Krol, M. C.; Visschedijk, A. J. H.; Schaap, M.; Röckmann, T.

    2015-07-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that, in general, the air quality in 2020 is significantly improved compared to the current situation in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict European regulations: annually averaged CO, NOx and PM2.5 over the model domain decrease by 15%, 30% and 20% respectively. The additional improvement brought by replacing 50% or 100% of traditionally-fueled vehicles by H2 vehicles is smaller in absolute terms. If 50% of vehicles are using H2, the CO, NOx and PM2.5 decrease by 1%, 10% and 1% respectively, compared to the future scenario without H2 cars. When all vehicles run on H2, then additional decreases in CO, NOx and PM2.5 are 5%, 40%, and 5% relative to the no-H2 cars future scenario. Our study shows that H2 vehicles may be an effective pathway to fulfill the strict future EU air quality regulations. O3 has a more complicated behavior - its annual average decreases in background areas, but increases in the high-NOx area in western Europe, with the decrease in NOx. A more detailed analysis shows that the population exposure to high O3 levels decreases nevertheless. In all future scenarios, traffic emissions account for only a small proportion of the total anthropogenic emissions, thus it becomes more important to better regulate emissions of non-traffic sectors. Although atmospheric H2 increases significantly in the high-leakage scenarios considered, the additional H2 added into the atmosphere does not have a significant effect on the ground level air pollution in Europe.

  19. Air pollution "holiday effect" resulting from the Chinese New Year

    NASA Astrophysics Data System (ADS)

    Tan, Pei-Hua; Chou, Chia; Liang, Jing-Yi; Chou, Charles C.-K.; Shiu, Chein-Jung

    Our study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods. This holiday effect can be applied to other countries with similar national or cultural holidays. Hourly and daily surface measurements of six major air pollutants from thirteen air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods were used. We documented evidence of a "holiday effect", where air pollutant concentrations were significantly different between holidays (CNY) and non-holidays (NCNY), in the Taipei metropolitan area over the past thirteen years (1994-2006). The concentrations of NO x, CO, NMHC, SO 2 and PM 10 were lower in the CNY than in the NCNY period, while the variation in the concentration of O 3 was reversed, which was mainly due to the NO titration effect. Similar differences in these six air pollutants between the CNY and NCNY periods were also found in the diurnal cycle and in the interannual variation. For the diurnal cycle, a common traffic-related double-peak variation was observed in the NCNY period, but not in the CNY period. Impacts of dust storms were also observed, especially on SO 2 and PM 10 in the CNY period. In the 13-year period of 1994-2006, decreasing trends of NO x and CO in the NCNY period implied a possible reduction of local emissions. Increasing trends of SO 2 and PM 10 in the CNY period, on the other hand, indicated a possible enhancement of long-range transport. These two mechanisms weakened the holiday effect.

  20. Process and apparatus for afterburning of combustible pollutants from an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, P.A.

    1978-07-04

    In a process for the afterburning of the combustible pollutants from an internal combustion engine, in order to automatically reduce the secondary induction rate when power increases without using a controlling valve actuatd by the carburetor venturi depression, there is provided a volumetric efficiency of the secondary air pump linked to and activated by the engine and a volumetric efficiency which decreases when the ratio between its back pressure and suction pressure increases, this reduction being achieved through the proper selection of the pump volumetric compression ratio r: between 0.6 c and 1.3 c when a steeply decreasing trend ismore » required, and above 1.3 c if a slower and slower decreasing trend is required. To perform this process an afterburner apparatus has a nitrogen oxide reducing catalyst placed inside the afterburner reactor on the gas stream immediately at the outlet of a torus, in which the gases are homogenized and their reaction with preinjection air is terminated.« less

  1. Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction.

    PubMed

    Evdokimova, Galina A; Mozgova, Natalya P

    2015-01-01

    The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.

  2. Assessment of long-term and large-scale even-odd license plate controlled plan effects on urban air quality and its implication

    NASA Astrophysics Data System (ADS)

    Zhao, Suping; Yu, Ye; Qin, Dahe; Yin, Daiying; He, Jianjun

    2017-12-01

    To solve traffic congestion and to improve urban air quality, long-lasting and large-scale even-odd license plate controlled plan was implemented by local government during 20 November to 26 December 2016 in urban Lanzhou, a semi-arid valley city of northwest China. The traffic control measures provided an invaluable opportunity to evaluate its effects on urban air quality in less developed cities of northwest China. Based on measured simultaneously air pollutants and meteorological parameters, the abatement of traffic-related pollutants induced by the implemented control measures such as CO, PM2.5 and PM10 (the particulate matter with diameter less than 2.5 μm and 10 μm) concentrations were firstly quantified by comparing the air quality data in urban areas with those in rural areas (uncontrolled zones). The concentrations of CO, NO2 from motor vehicles and fine particulate matter (PM2.5) were shown to have significant decreases of 15%-23% during traffic control period from those measured before control period with hourly maximum CO, PM2.5, and NO2/SO2 reduction of 43%, 35% and 141.4%, respectively. The influence of the control measures on AQI (air quality index) and ozone was less as compared to its effect on other air pollutants. Therefore, to alleviate serious winter haze pollution in China and to protect human health, the stringent long-term and large-scale even-odd license plate controlled plan should be implemented aperiodically in urban areas, especially for the periods with poor diffusion conditions.

  3. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  4. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhu, T.; Zheng, J.; Zhang, R. Y.; Zhang, S. Q.; Xie, X. X.; Han, Y. Q.; Li, Y.

    2009-06-01

    China implemented systematic air pollution control measures during the 2008 Beijing Summer Olympics and Paralympics to improve air quality. This study used an innovative mobile laboratory to conduct in situ monitoring of on-road air pollutants along Beijing's 4th Ring Road on 31 selected days before, during, and after the Olympics air pollution control period. A suite of instruments with response times of less than 30 s was used to measure temporal and spatial variations in traffic-related air pollutants, including NOx, CO, PM1.0 surface area (SPM1), black carbon (BC), and benzene, toluene, ethylbenzene, and m-, p-, and o-xylene (BTEX). During the Olympics (8-23 August 2008), on-road air pollutant concentrations decreased significantly by up to 54% for CO, 41% for NOx, 70% for SO2, 66% for BTEX, 12% for BC, and 18% for SPM1 compared to the pre-control period (before 20 July). Concentrations increased again after the control period ended (after 20 September), with average increases of 33% for CO, 42% for NOx, 60% for SO2, 40% for BTEX, 26% for BC, and 37% for SPM1. Variations in pollutants concentrations were correlated with changes in traffic speed and the number and types of vehicles on the road. Throughout the measurement periods, the concentrations of NOx, CO, and BTEX varied markedly with the numbers of light- and medium-duty vehicles (LDVs and MDVs, respectively) on the road. Only after 8 August was a noticeable relationship between BC and SPM1 and the number of heavy-duty vehicles (HDVs) found. Additionally, BC and SPM1 showed a strong correlation with SO2 before the Olympics, indicating possible industrial sources from local emissions as well as regional transport activities in the Beijing area. Such factors were identified in measurements conducted on 6 August in an area southwest of Beijing. The ratio of benzene to toluene, a good indicator of traffic emissions, shifted suddenly from about 0.26 before the Olympics to approximately 0.48 after the Olympics began. This finding suggests that regulations on traffic volume and restrictions on the use of painting solvents were effective after the Olympics began. This study demonstrated the effectiveness of air pollution control measures and identified local and regional pollution sources within and surrounding the city of Beijing. The findings will be invaluable for emission inventory evaluations and model verifications.

  5. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhu, T.; Zheng, J.; Zhang, R. Y.; Zhang, S. Q.; Xie, X. X.; Han, Y. Q.; Li, Y.

    2009-11-01

    China implemented systematic air pollution control measures during the 2008 Beijing Summer Olympics and Paralympics to improve air quality. This study used a versatile mobile laboratory to conduct in situ monitoring of on-road air pollutants along Beijing's Fourth Ring Road on 31 selected days before, during, and after the Olympics air pollution control period. A suite of instruments with response times of less than 30 s was used to measure temporal and spatial variations in traffic-related air pollutants, including NOx, CO, PM1.0 surface area (S(PM1)), black carbon (BC), and benzene, toluene, the sum of ethylbenzene, and m-, p-, and o-xylene (BTEX). During the Olympics (8-23 August, 2008), on-road air pollutant concentrations decreased significantly, by up to 54% for CO, 41% for NOx, 70% for SO2, 66% for BTEX, 12% for BC, and 18% for SPM1, compared with the pre-control period (before 20 July). Concentrations increased again after the control period ended (after 20 September), with average increases of 33% for CO, 42% for NOx, 60% for SO2, 40% for BTEX, 26% for BC, and 37% for S(PM1), relative to the control period. Variations in pollutants concentrations were correlated with changes in traffic speed and the number and types of vehicles on the road. Throughout the measurement periods, the concentrations of NOx, CO, and BTEX varied markedly with the numbers of light- and medium-duty vehicles (LDVs and MDVs, respectively) on the road. Only after 8 August was a noticeable relationship found between BC and S(PM1) and the number of heavy-duty vehicles (HDVs). Additionally, BC and S(PM1) showed a strong correlation with SO2 before the Olympics, indicating possible industrial sources from local emissions as well as regional transport activities in the Beijing area. Such factors were identified in measurements conducted on 6 August in an area southwest of Beijing. The ratio of benzene to toluene, a good indicator of traffic emissions, shifted suddenly from about 0.26 before the Olympics to approximately 0.48 after the Olympics began. This finding suggests that regulations on traffic volume and restrictions on the use of painting solvents were effective after the Olympics began. This study demonstrated the effectiveness of air pollution control measures and identified local and regional pollution sources within and surrounding the city of Beijing. The findings will be invaluable for emission inventory evaluations and model verifications.

  6. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  7. Effects of air pollution on children’s pulmonary health

    NASA Astrophysics Data System (ADS)

    Tabaku, Afrim; Bejtja, Gazmend; Bala, Silvana; Toci, Ervin; Resuli, Jerina

    2011-12-01

    IntroductionMany reports regarding the effects of air pollution on children's respiratory health have appeared in the scientific literature. Some investigators found increases in persistent cough and phlegm, bronchitis, and early respiratory infections in communities with poor air quality. The purpose of this survey was to compare the pulmonary function of children living in urban area of Tirana city with children living in suburban area of the city. Material and methodsThis survey is carried out during 2004-2005 period on 238 children living in urban area and in 72 children living in suburban area, measuring dynamic pulmonary function. A questionnaire was used to collect data on sex, current respiratory symptoms, allergy diagnosed by the physician, parent education and smoking habit of parents, presence of animals, synthetic carpets and moulds in their houses. The selection of schools, and children included in this survey was done by randomized method. Also, we have measured and classic air pollutants. ResultsComparing the results of values of pulmonary function of two groups of children, we have shown that differences were significant ( p 0.001), whereas comparing symptoms were for cough ( p 0.011) and for phlegm ( p 0.032). The level of particulate matter (PM10) and total suspended matter (TSP) were over the recommended limit values, whereas the levels of other pollutants have resulted within recommended levels of World Health Organization (WHO) ConclusionsThe results of this survey suggest that air pollution is associated with respiratory health of children causing a slight decrease in values of pulmonary function in children of urban area compared with those of suburban area.

  8. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  9. The impact of a forced reduction in traffic volumes on urban air pollution

    NASA Astrophysics Data System (ADS)

    Yuval; Flicstein, Bernanda; Broday, David M.

    The Middle East military conflict of summer 2006 resulted in a few weeks in which the city of Haifa, Israel, and its environs experienced very profound variations in the commercial and personal activities. Large industrial plants continued almost normal operations but activities of small scale industry, shopping, and personal commuting were drastically reduced, leading to a dramatic decrease in the commercial and personal traffic volumes. This period of reduced activity serves as a real life experiment for assessment and demonstration of the impact that human activity, and mainly road traffic, may have on the air pollution levels in a bustling middle-sized city. The analysis is made especially sharp and reliable due to the abruptness of the beginning and the end of the reduced activity period, its length, and the stable summer meteorological conditions in the eastern Mediterranean region. The reduced traffic volumes resulted in lowered levels of NO 2, hydrocarbons and particulate matter. The decrease in these pollutants' mean concentration was significantly larger than the reduction in the mean traffic volume. Slightly higher mean O 3 concentrations were observed during the reduced traffic period.

  10. Researchers Examine Nanoparticles' Impact on Fuel Emissions and Air Pollution

    EPA Pesticide Factsheets

    Nanoparticle catalysts offer an opportunity to increase fuel efficiency. While overall particle emissions may decrease, the emissions of some species may increase and changes to the particle size distribution can impact health.

  11. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation.

    PubMed

    De Marco, Alessandra; Proietti, Chiara; Cionni, Irene; Fischer, Richard; Screpanti, Augusto; Vitale, Marcello

    2014-11-01

    Defoliation is an indicator for forest health in response to several stressors including air pollutants, and one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The study aims to estimate crown defoliation in 2030, under three climate and one nitrogen deposition scenarios, based on evaluation of the most important factors (meteorological, nitrogen deposition and chemical soil parameters) affecting defoliation of twelve European tree species. The combination of favourable climate and nitrogen fertilization in the more adaptive species induces a generalized decrease of defoliation. On the other hand, severe climate change and drought are main causes of increase in defoliation in Quercus ilex and Fagus sylvatica, especially in Mediterranean area. Our results provide information on regional distribution of future defoliation, an important knowledge for identifying policies to counteract negative impacts of climate change and air pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Impacts of air pollution and climate on materials in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, John; Tzanis, Chris G.; Varotsos, Costas A.; Ferm, Martin; Tidblad, Johan

    2017-01-01

    For more than 10 years now the National and Kapodistrian University of Athens, Greece, has contributed to the UNECE (United Nations Economic Commission for Europe) ICP Materials (International Co-operative Programme on Effects on Materials including Historic and Cultural Monuments) programme for monitoring the corrosion/soiling levels of different kinds of materials due to environmental air-quality parameters. In this paper we present the results obtained from the analysis of observational data that were collected in Athens during the period 2003-2012. According to these results, the corrosion/soiling of the particular exposed materials tends to decrease over the years, except for the case of copper. Based on this long experimental database that is applicable to the multi-pollutant situation in the Athens basin, we present dose-response functions (DRFs) considering that dose stands for the air pollutant concentration, response for the material mass loss (normally per annum) and function, the relationship derived by the best statistical fit to the data.

  13. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia.

    PubMed

    Qiu, Xionghui; Duan, Lei; Cai, Siyi; Yu, Qian; Wang, Shuxiao; Chai, Fahe; Gao, Jian; Li, Yanping; Xu, Zhaoming

    2017-07-01

    The national Air Pollution Prevention and Control Action Plan required significant decreases in PM 2.5 levels over China. To explore more effective emission abatement strategies in industrial cities, a case study was conducted in Baotou to evaluate the current national control measures. The total emissions of SO 2, NO X , PM 2.5 and NMVOC (non-methane volatile organic compounds) in Baotou were 211.2Gg, 156.1Gg, 28.8Gg, and 48.5Gg, respectively in 2013, and they would experience a reduction of 30.4%, 26.6%, 15.1%, and 8.7%, respectively in 2017 and 39.0%, 32.0%, 24.4%, and 12.9%, respectively in 2020. The SO 2 , NO X and PM 2.5 emissions from the industrial sector would experience a greater decrease, with reductions of 37%, 32.7 and 24.3%, respectively. From 2013 to 2020, the concentrations of SO 2 , NO 2 , and PM 2.5 are expected to decline by approximately 30%, 10% and 14.5%, respectively. The reduction rate of SNA (sulfate, nitrate and ammonium) concentrations was significantly higher than that of PM 2.5 in 2017, implying that the current key strategy toward controlling air pollutants from the industrial sector is more powerful for SNA. Although air pollution control measures implemented in the industrial sector could greatly reduce total emissions, constraining the emissions from lower sources such as residential coal combustion would be more effective in decreasing the concentration of PM 2.5 from 2017 to 2020. These results suggest that even for a typical industrial city, the reduction of PM 2.5 concentrations not only requires decreases in emissions from the industrial sector, but also from the low emission sources. The seasonal variation in sulfate concentration also showed that emission from coal-burning is the key factor to control during the heating season. Copyright © 2016. Published by Elsevier B.V.

  14. Future global mortality from changes in air pollution attributable to climate change

    DOE PAGES

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; ...

    2017-07-31

    Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less

  15. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    NASA Technical Reports Server (NTRS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  16. Gas measurements on Western Pacific in Mirai MR01-K02 cruise

    NASA Astrophysics Data System (ADS)

    KATO, S.; Matsumoto, J.; Kajii, Y.

    2001-12-01

    The Japanese investigation ship, Mirai, cruised in the Western Pacific in May 2001. The cruise is a part of ACE-ASIA project. During the cruise, we measured atmospheric gas components on the ship. CO, O3, NO, NOx, SO2 were measured continuously by commercial instruments, and 40 canisters were sampled for hydrocarbon measurements and were analyzed by GC-FID and GC-MS in the laboratory in Tokyo. Since the shipped area is located in the east of Japan main island, most of the air masses would be affected by the pollutants emitted in Japan. In May, the wind is mostly coming from the west, and long range transport of polluted air and aerosol would be observed. After leaving the port near Tokyo, the concentrations of CO, O3, SO2, NO and NOx decreased gradually as expected. NO and NOx are sensitive to the influence of the exhaust emitted from the ship itself. SO2 is also sensitive to the exhaust from the ship, but there are some small, and broad peaks which are not corresponding to the NO and NOx peaks. The concentration of O3 and hydrocarbons decreased drastically after the front passage. Westerly wind polluted in Japan was dominant in most case, but the clean maritime air came from east or south when low pressure passed. The backward trajectories explain the concentration changes of hydrocarbons well. When the air came quickly from Japan, high concentrations were observed. There are good correlation between O3 and hydrocarbons.

  17. Future global mortality from changes in air pollution attributable to climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François

    Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less

  18. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  19. What can individuals do to reduce personal health risks from air pollution?

    PubMed Central

    Laumbach, Robert; Meng, Qingyu

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or risk highlight the primary importance of reducing emissions of air pollutants at their sources. PMID:25694820

  20. What can individuals do to reduce personal health risks from air pollution?

    PubMed

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or risk highlight the primary importance of reducing emissions of air pollutants at their sources.

  1. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  2. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  3. Air pollution, deprivation and health: understanding relationships to add value to local air quality management policy and practice in Wales, UK.

    PubMed

    Brunt, H; Barnes, J; Jones, S J; Longhurst, J W S; Scally, G; Hayes, E

    2017-09-01

    Air pollution exposure reduces life expectancy. Air pollution, deprivation and poor-health status combinations can create increased and disproportionate disease burdens. Problems and solutions are rarely considered in a broad public health context, but doing so can add value to air quality management efforts by reducing air pollution risks, impacts and inequalities. An ecological study assessed small-area associations between air pollution (nitrogen dioxide and particulate matter), deprivation status and health outcomes in Wales, UK. Air pollution concentrations were highest in 'most' deprived areas. When considered separately, deprivation-health associations were stronger than air pollution-health associations. Considered simultaneously, air pollution added to deprivation-health associations; interactions between air pollution and deprivation modified and strengthened associations with all-cause and respiratory disease mortality, especially in 'most' deprived areas where most-vulnerable people lived and where health needs were greatest. There is a need to reduce air pollution-related risks for all. However, it is also the case that greater health gains can result from considering local air pollution problems and solutions in the context of wider health-determinants and acting on a better understanding of relationships. Informed and co-ordinated air pollution mitigation and public health action in high deprivation and pollution areas can reduce risks and inequalities. To achieve this, greater public health integration and collaboration in local air quality management policy and practice is needed. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development and Validation of a UAV Based System for Air Pollution Measurements

    PubMed Central

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-01-01

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820

  5. Development and Validation of a UAV Based System for Air Pollution Measurements.

    PubMed

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  6. PM2.5 Pollution in China and How It Has Been Exacerbated by Terrain and Meteorological Conditions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Wang, X., , Dr; Dickinson, R. E.; Su, L.; Zhou, C.

    2017-12-01

    The recent severe and frequent PM2.5 (i.e., fine particles smaller than 2.5 μm) pollution in China has aroused unprecedented public concern. The first two-years of PM2.5 measurements in China are reported and compared with those of Europe and the U.S. The average PM2.5 concentration in China is approximately five times of that over Europe and America. The contribution of atmospheric dispersion to such air quality is evaluated in this study. Air stagnation or its absence is a good indicator of the atmosphere's capability to disperse its pollutants, but the NOAA definition of an air stagnation event is found to not be applicable to China since it depends on vertical mixing that is weakened in China by the effects of terrain. To address this deficiency, a new threshold for air stagnation events is proposed that depends on the 10 m wind speed, boundary layer height and occurrence of precipitation. This new defined air stagnation closely tracks the day-to-day variation of PM2.5 concentrations. Such events are more frequent over China than over Europe and the U.S during autumn and winter, especially over the Sichuan Basin and Jing-Jin-Ji region of China. If China had the same frequency of air stagnation as the U.S or Europe, 67% and 82% of its stations would improve their current air quality during autumn and winter, e.g., an average of 12% decrease in PM2.5 concentrations for Jing-Jin-Ji region in wintertime. Its severe pollution and frequent air stagnation conditions make controls on emission less effective in China than elsewhere.

  7. More than clean air and tranquillity: Residential green is independently associated with decreasing mortality.

    PubMed

    Vienneau, Danielle; de Hoogh, Kees; Faeh, David; Kaufmann, Marco; Wunderli, Jean Marc; Röösli, Martin

    2017-11-01

    Green space may improve health by enabling physical activity and recovery from stress or by decreased pollution levels. We investigated the association between residential green (greenness or green space) and mortality in adults using the Swiss National Cohort (SNC) by mutually considering air pollution and transportation noise exposure. To reflect residential green at the address level, two different metrics were derived: normalised difference vegetation index (NDVI) for greenness, and high resolution land use classification data to identify green spaces (LU-green). We used stratified Cox proportional hazard models (stratified by sex) to study the association between exposure and all natural cause mortality, respiratory and cardiovascular disease (CVD), including ischemic heart disease, stroke and hypertension related mortality. Models were adjusted for civil status, job position, education, neighbourhood socio-economic position (SEP), geographic region, area type, altitude, air pollution (PM 10 ), and transportation noise. From the nation-wide SNC, 4.2 million adults were included providing 7.8years of follow-up and respectively 363,553, 85,314 and 232,322 natural cause, respiratory and CVD deaths. Hazard ratios (and 95%-confidence intervals) for NDVI [and LU-green] per interquartile range within 500m of residence were highly comparable: 0.94 (0.93-0.95) [0.94 (0.93-0.95)] for natural causes; 0.92 (0.91-0.94) [0.92 (0.90-0.95)] for respiratory; and 0.95 (0.94-0.96) [0.96 (0.95-0.98)] for CVD mortality. Protective effects were stronger in younger individuals and in women and, for most outcomes, in urban (vs. rural) and in the highest (vs. lowest) SEP quartile. Estimates remained virtually unchanged after incremental adjustment for air pollution and transportation noise, and mediation by these environmental factors was found to be small. We found consistent evidence that residential green reduced the risk of mortality independently from other environmental exposures. This suggests the protective effect goes beyond the absence of pollution sources. Environmental public health measures should not only aim at reducing pollutant exposure, but additionally maintain existing and increase residential green in areas where lacking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Linking Atmospheric Pollution to Cryospheric Changes over the Third Pole

    NASA Astrophysics Data System (ADS)

    Kang, S.; Zhang, Q.; Ji, Z.; Li, Y.; Chen, J.; Zhang, G.; Li, C.; Cong, Z.; Chen, P.; Guo, J.; Huang, J.; Tripathee, L.; Rupakheti, D.; Li, X.; Zhang, Y.; Panday, A. K.; Rupakheti, M.

    2016-12-01

    Known as "the Third Pole" (TP), the Tibetan Plateau and surrounding mountains hold the largest aggregate of glaciers outside the pole regions. Recent monitoring and projection indicated an accelerated glacier decline and increasing glacier runoff. The long-range transport of South Asian atmospheric pollutants, including light absorbing impurities (LAIs) such as black carbon (BC) and mineral dust (MD), can absorb the solar radiation in the atmosphere and reduce albedo after being deposited onto the cryosphere, thereby promoting glacier and snow melt. A coordinated atmospheric pollution monitoring network has been launched covering the TP with emphasis on trans-Himalayan transects since 2013. TSP were collected for 24h at an interval of 3-6 days. BC/OC, polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured. Results reveal a consistent decrease in almost all analyzed parameters from south to north across the Himalayas. Geochemical signatures of carbonaceous aerosols indicate dominant sources of biomass burning and vehicle exhaust, in line with results of PAHs. Integrated analysis of satellite images and air mass trajectories suggest that the trans-boundary air pollution occurred episodically and concentrated in pre-monsoon seasons via upper air circulation, through-valley wind, and local convection. Simulation results showed that carbonaceous aerosols produced positive/negative shortwave radiative forcing in the atmosphere/ground surface. Aerosols increased surface air temperatures by 0.1-0.5° over the TP and decreased temperatures in South Asia during the monsoon season. Surface snow/ice samples were collected from benchmark glaciers to estimate the impacts of LAIs on glacier melt with model assistance. BC (37%) and MD (32%) contribute to the summer melting of Laohugou Glacier in the northern TP. MD (38%) contributed more glacier melt than BC (11%) on Zhadang Glacier in the southern TP. In the southeastern TP, BC and MD contribute to 30% of the total glacier melt, up to 350 mm w.e. yr-1. The monitoring network and ongoing studies point to trans-boundary pollution as an increasing stressor for the TP environment, and highlighted the link between atmospheric pollution and cryospheric changes as well as other surface ecosystems over high mountain regions.

  9. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  10. Immunotoxicity and environment: immunodysregulation and systemic inflammation in children.

    PubMed

    Calderón-Garcidueñas, Lilian; Macías-Parra, Mercedes; Hoffmann, Hans J; Valencia-Salazar, Gildardo; Henríquez-Roldán, Carlos; Osnaya, Norma; Monte, Ofelia Camacho-Del; Barragán-Mejía, Gerardo; Villarreal-Calderon, Rodolfo; Romero, Lina; Granada-Macías, Margarita; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Maronpot, Robert R

    2009-02-01

    Environmental pollutants, chemicals, and drugs have an impact on children's immune system development. Mexico City (MC) children exposed to significant concentrations of air pollutants exhibit chronic respiratory inflammation, systemic inflammation, neuroinflammation, and cognitive deficits. We tested the hypothesis that exposure to severe air pollution plays a role in the immune responses of asymptomatic, apparently healthy children. Blood measurements for markers of immune function, inflammatory mediators, and molecules interacting with the lipopolysaccharide recognition complex were obtained from two cohorts of matched children (aged 9.7 +/- 1.2 years) from southwest Mexico City (SWMC) (n = 66) and from a control city (n = 93) with criteria pollutant levels below current standards. MC children exhibited significant decreases in the numbers of natural killer cells (p = .003) and increased numbers of mCD14+ monocytes (p < .001) and CD8+ cells (p = .02). Lower concentrations of interferon gamma (p = .009) and granulocyte-macrophage colony-stimulating factor (p < .001), an endotoxin tolerance-like state, systemic inflammation, and an anti-inflammatory response were also present in the highly exposed children. C-reactive protein and the prostaglandin E metabolite levels were positively correlated with twenty-four- and forty-eight-hour cumulative concentrations of PM(2.5). Exposure to urban air pollution is associated with immunodysregulation and systemic inflammation in children and is a major health threat.

  11. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    PubMed Central

    Coker, Eric; Kizito, Samuel

    2018-01-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region. PMID:29494501

  12. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies.

    PubMed

    Coker, Eric; Kizito, Samuel

    2018-03-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  13. Analysing the causes of chronic cough: relation to diesel exhaust, ozone, nitrogen oxides, sulphur oxides and other environmental factors

    PubMed Central

    Groneberg-Kloft, Beatrix; Kraus, Thomas; Mark, Anke van; Wagner, Ulrich; Fischer, Axel

    2006-01-01

    Air pollution remains a leading cause of many respiratory diseases including chronic cough. Although episodes of incidental, dramatic air pollution are relatively rare, current levels of exposure of pollutants in industrialized and developing countries such as total articles, diesel exhaust particles and common cigarette smoke may be responsible for the development of chronic cough both in children and adults. The present study analyses the effects of common environmental factors as potential causes of chronic cough. Different PubMed-based researches were performed that related the term cough to various environmental factors. There is some evidence that chronic inhalation of diesel can lead to the development of cough. For long-term exposure to nitrogen dioxide (NO2), children were found to exhibit increased incidences of chronic cough and decreased lung function parameters. Although a number of studies did not show that outdoor pollution directly causes the development of asthma, they have demonstrated that high levels pollutants and their interaction with sunlight produce ozone (O3) and that repeated exposure to it can lead to chronic cough. In summary, next to the well-known air pollutants which also include particulate matter and sulphur dioxide, a number of other indoor and outdoor pollutants have been demonstrated to cause chronic cough and therefore, environmental factors have to be taken into account as potential initiators of both adult and pediatric chronic cough. PMID:16722555

  14. Investigating the influence of photocatalytic cool wall adoption on meteorology and air quality in the Los Angeles basin

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.

    2017-12-01

    Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant transport in the basin, temperature induced changes in photochemistry and aerosol phase partitioning, and changes to secondary organic aerosol.

  15. Acute Respiratory Inflammation in Children and Black Carbon in Ambient Air before and during the 2008 Beijing Olympics

    PubMed Central

    Lin, Weiwei; Huang, Wei; Hu, Min; Brunekreef, Bert; Zhang, Yuanhang; Liu, Xingang; Cheng, Hong; Gehring, Ulrike; Li, Chengcai; Tang, Xiaoyan

    2011-01-01

    Background: Epidemiologic evidence for a causative association between black carbon (BC) and health outcomes is limited. Objectives: We estimated associations and exposure–response relationships between acute respiratory inflammation in schoolchildren and concentrations of BC and particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) in ambient air before and during the air pollution intervention for the 2008 Beijing Olympics. Methods: We measured exhaled nitric oxide (eNO) as an acute respiratory inflammation biomarker and hourly mean air pollutant concentrations to estimate BC and PM2.5 exposure. We used 1,581 valid observations of 36 subjects over five visits in 2 years to estimate associations of eNO with BC and PM2.5 according to generalized estimating equations with polynomial distributed-lag models, controlling for body mass index, asthma, temperature, and relative humidity. We also assessed the relative importance of BC and PM2.5 with two-pollutant models. Results: Air pollution concentrations and eNO were clearly lower during the 2008 Olympics. BC and PM2.5 concentrations averaged over 0–24 hr were strongly associated with eNO, which increased by 16.6% [95% confidence interval (CI), 14.1–19.2%] and 18.7% (95% CI, 15.0–22.5%) per interquartile range (IQR) increase in BC (4.0 μg/m3) and PM2.5 (149 μg/m3), respectively. In the two-pollutant model, estimated effects of BC were robust, but associations between PM2.5 and eNO decreased with adjustment for BC. We found that eNO was associated with IQR increases in hourly BC concentrations up to 10 hr after exposure, consistent with effects primarily in the first hours after exposure. Conclusions: Recent exposure to BC was associated with acute respiratory inflammation in schoolchildren in Beijing. Lower air pollution levels during the 2008 Olympics also were associated with reduced eNO. PMID:21642045

  16. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.

    PubMed

    Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit

    2014-11-04

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.

  17. Impacts of changes in precursor emissions from the San Francisco Bay Area on ozone in the North Central Coast and San Joaquin Valley air basins. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.G.; Stoeckenius, T.E.; Austin, B.S.

    1991-02-01

    The study examined the effect of emissions reductions in the San Francisco Bay Area (SFBA) on ozone levels in the North Central Coast (NCC) and San Joaquin Valley (SJV) air basins. It included an emissions trends analysis for the SFBA, NCC, and SJV air basins; identification of possible transport days and an analysis of ozone trends in both the source and receptor basins on transport and no-transport days; and calculation of interbasin pollutant fluxes using air-quality modeling results. The emissions trends analysis indicated that the SFBA achieved large decreases in emissions of reactive organic gases (ROG) and oxides of nitrogenmore » (NOx) between 1979 and 1988. Despite the large decreases in emissions no significant ozone trends were observed on either transport or no-transport days. Ozone concentrations at the downwind monitors were higher on transport days. Results of the flux plane calculations indicate that elimination of SFBA emissions would significantly reduce ozone concentrations in the NCC and SJV during meteorological conditions conducive to transport and that the lower concentrations in the downwind air basins would be due primarily to a reduction in the amount of precursor pollutants that are transport from the SFBA to the receptor basins.« less

  18. 40 CFR 52.11 - Prevention of air pollution emergency episodes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Prevention of air pollution emergency... Prevention of air pollution emergency episodes. (a) Each subpart identifies portions of the air pollution.... (c) Where a State plan does not provide for public announcement regarding air pollution emergency...

  19. 40 CFR 52.11 - Prevention of air pollution emergency episodes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Prevention of air pollution emergency... Prevention of air pollution emergency episodes. (a) Each subpart identifies portions of the air pollution.... (c) Where a State plan does not provide for public announcement regarding air pollution emergency...

  20. 40 CFR 60.2141 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air pollution control device inspection? 60.2141 Section 60.2141 Protection of Environment... initial air pollution control device inspection? (a) The initial air pollution control device inspection... startup. (b) Within 10 operating days following an air pollution control device inspection, all necessary...

  1. 40 CFR 52.11 - Prevention of air pollution emergency episodes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Prevention of air pollution emergency... Prevention of air pollution emergency episodes. (a) Each subpart identifies portions of the air pollution.... (c) Where a State plan does not provide for public announcement regarding air pollution emergency...

  2. 40 CFR 60.2141 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2141 Section 60.2141 Protection of Environment... initial air pollution control device inspection? (a) The initial air pollution control device inspection... startup. (b) Within 10 operating days following an air pollution control device inspection, all necessary...

  3. 40 CFR 52.11 - Prevention of air pollution emergency episodes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Prevention of air pollution emergency... Prevention of air pollution emergency episodes. (a) Each subpart identifies portions of the air pollution.... (c) Where a State plan does not provide for public announcement regarding air pollution emergency...

  4. 40 CFR 52.11 - Prevention of air pollution emergency episodes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Prevention of air pollution emergency... Prevention of air pollution emergency episodes. (a) Each subpart identifies portions of the air pollution.... (c) Where a State plan does not provide for public announcement regarding air pollution emergency...

  5. 78 FR 52857 - Approval and Promulgation of Implementation Plans; State of Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Health Rules and Regulations, Chapter V, Air Pollution. The revisions reflect updates to the Iowa..., Chapter V, ``Air Pollution,'' as a revision to the SIP. In order for the local program's ``Air Pollution..., ``Air Pollution.'' The local agency routinely revises its ``Air Pollution'' regulations to be consistent...

  6. Challenges and future direction of molecular research in air pollution-related lung cancers.

    PubMed

    Shahadin, Maizatul Syafinaz; Ab Mutalib, Nurul Syakima; Latif, Mohd Talib; Greene, Catherine M; Hassan, Tidi

    2018-04-01

    Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of Health Impact of Air Pollution Between China and Other Countries.

    PubMed

    Tian, Linwei; Sun, Shengzhi

    2017-01-01

    Air pollution is the world's largest single environmental risk according to the World Health Organization (WHO), which caused around seven million deaths in 2012. Extensive epidemiological studies have been carried out worldwide to examine the health impacts of ambient air pollution, consistently demonstrating significant health impacts of ambient air pollution. Air pollution problem in China is especially serious; it has become the fourth biggest threat to the health of the Chinese people. In this review, we summarized existing literature, compared health impact of air pollution between China and other countries, and found substantial heterogeneity in the risk estimates of air pollution. The effect heterogeneities may be due to the differences in the characteristics of populations (e.g., the proportion of the elder population and people with preexisting diseases), exposure profile (e.g., air pollution concentrations and composition), and regional climate. Although the magnitude of relative risk estimates of air pollution is generally similar with that in other parts of the world, air pollution is one of China's most serious environmental health problems given the huge number of people exposed to high concentration levels of air pollution in China.

  8. Pet exposure in utero and postnatal decreases the effects of air pollutants on hypertension in children: A large population based cohort study.

    PubMed

    Lawrence, Wayne R; Yang, Mo; Lin, Shao; Wang, Si-Quan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Hu, Li-Wen; Dong, Guang-Hui

    2018-07-01

    The effect of ambient air pollution exposure on childhood hypertension has emerged as a concern in China, and previous studies suggested pet ownership is associated with lower blood pressure (BP). However, limited information exists on the interactive effects pet ownership and air pollution exposure has on hypertension. We investigated the interactions between exposure to pet ownership and air pollutants on hypertension in Chinese children. 9354 students in twenty-four elementary and middle schools (aged 5-17 years) in Northeastern China were evaluated during 2012-2013. Four-year average concentrations of particulate matter with aerodynamic diameter of ≤10 μm (PM 10 ), SO 2 , NO 2 , and O 3 , were collected in the 24 districts from 2009 to 2012. Hypertension was defined as average diastolic or systolic BP (three time measurements) in the 95th percentile or higher based on height, age, and sex. To examine effects, two-level regression analysis was used, controlling covariates. Consistent interactions between exposure to pet and air pollutants were observed. Compared to children exposed to pet, those not exposed exhibited consistently stronger effects of air pollution. The highest odds ratios (ORs) per 30.6 μg/m 3 increase in PM 10 were 1.79 (95%confidence interval [95%CI]: 1.29-2.50) in children without current pet exposure compared to 1.24 (95%CI: 0.85-1.82) in children with current pet exposure. As for BP, only O 3 had an interaction for all exposure to pet ownership types, and showed lower BP in children exposed to pet. The increases in mean diastolic BP per 46.3 μg/m 3 increase in O 3 were 0.60  mmHg (95%CI: 0.21, 0.48) in children without pet exposure in utero compared with 0.34  mmHg (95%CI: 0.21, 0.48) in their counterparts. When stratified by age, pet exposure was more protective among younger children. In conclusion, in this large population-based cohort, pet ownership is associated with smaller associations between air pollution and hypertension in children, suggesting pet ownership reduces susceptibility to the health effects of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants,...; long term or potential risks are of concern for asbest, radon,... A complex and bad known pathology is described in a lot of modern buildings as the "Sick Building Syndrom". Indoor air quality is very dependant of the quality of ventilation and possible air treatment. It may be considered in all urban epidemiological studies about air pollution.

  10. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  11. A study of the influence of regional environmental expenditure on air quality in China: the effectiveness of environmental policy.

    PubMed

    He, Lingyun; Wu, Meng; Wang, Deqing; Zhong, Zhangqi

    2018-03-01

    Based on the panel data model, data on environmental expenditures, the air quality index, economic aggregates, industrial structures, etc., of seven seriously polluted cities in China, from the period 2007-2015, were collected, and this paper estimates the general relationship between environmental expenditures and the air quality index. Besides, the impact of the fuel tax policy on air quality as well as on the relationship between environmental expenditure and the air quality index is tested using the method of regression discontinuity. We find that there is a long-term equilibrium relationship between environmental expenditure and air quality index as well as a 0.0507% positive effect of the former on the latter. Second, for Beijing, Taiyuan, Chongqing, and Lanzhou, a 1% increase in environmental expenditure leads to 0.0773, 0.0125, 0.0965, and 0.0912% decreases in the air quality index, respectively; however, for Shijiazhuang, Ji'nan, and Urumqi, effect of environmental expenditure on air quality is insignificant. Third, both economic growth and optimization of the industrial structure can lead to an improvement of air quality. Fourth, since the implementation of the fuel tax policy in 2009, the air quality of the sample cities has improved, and the pulling effect of environmental expenditure on the air quality index has decreased from 0.0507 to 0.0048%. Our findings cannot only clarify the effect of environmental expenditures on air quality but can also objectively judge the effectiveness of environmental policies of China to a certain extent. It may benefit Chinese government to effectively govern air pollution with fiscal tools in conjunction with economic and environmental characteristics.

  12. Air pollution and stroke - an overview of the evidence base.

    PubMed

    Maheswaran, Ravi

    2016-08-01

    Air pollution is being increasingly recognized as a significant risk factor for stroke. There are numerous sources of air pollution including industry, road transport and domestic use of biomass and solid fuels. Early reports of the association between air pollution and stroke come from studies investigating health effects of severe pollution episodes. Several daily time series and case-crossover studies have reported associations with stroke. There is also evidence linking chronic air pollution exposure with stroke and with reduced survival after stroke. A conceptual framework linking air pollution exposure and stroke is proposed. It links acute and chronic exposure to air pollution with pathways to acute and chronic effects on stroke risk. Current evidence regarding potential mechanisms mainly relate to particulate air pollution. Whilst further evidence would be useful, there is already sufficient evidence to support consideration of reduction in air pollution as a preventative measure to reduce the stroke burden globally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Methods for Environments and Contaminants: Criteria Air Pollutants

    EPA Pesticide Factsheets

    EPA’s Office of Air Quality Planning and Standards (OAQPS) has set primary (health-based) National Ambient Air Quality Standards (NAAQS) for six common air pollutants, often referred to as criteria air pollutants (or simply criteria pollutants).

  14. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  15. Public-health impact of outdoor air pollution for 2(nd) air pollution management policy in Seoul metropolitan area, Korea.

    PubMed

    Leem, Jong Han; Kim, Soon Tae; Kim, Hwan Cheol

    2015-01-01

    Air pollution contributes to mortality and morbidity. We estimated the impact of outdoor air pollution on public health in Seoul metropolitan area, Korea. Attributable cases of morbidity and mortality were estimated. Epidemiology-based exposure-response functions for a 10 μg/m3 increase in particulate matter (PM2.5 and PM10) were used to quantify the effects of air pollution. Cases attributable to air pollution were estimated for mortality (adults ≥ 30 years), respiratory and cardiovascular hospital admissions (all ages), chronic bronchitis (all ages), and acute bronchitis episodes (≤18 years). Environmental exposure (PM2.5 and PM10) was modeled for each 3 km × 3 km. In 2010, air pollution caused 15.9% of total mortality or approximately 15,346 attributable cases per year. Particulate air pollution also accounted for: 12,511 hospitalized cases of respiratory disease; 20,490 new cases of chronic bronchitis (adults); 278,346 episodes of acute bronchitis (children). After performing the 2(nd) Seoul metropolitan air pollution management plan, the reducible death number associated with air pollution is 14,915 cases per year in 2024. We can reduce 57.9% of death associated with air pollution. This assessment estimates the public-health impacts of current patterns of air pollution. Although individual health risks of air pollution are relatively small, the public-health consequences are remarkable. Particulate air pollution remains a key target for public-health action in the Seoul metropolitan area. Our results, which have also been used for economic valuation, should guide decisions on the assessment of environmental health-policy options.

  16. Lichen deterioration about a coal-fired steam electric generating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, E.L.; Zeyen, R.J.

    1979-01-01

    A survey of three common epiphytic species of foliose lichens was conducted about a coal-fired steam electric station in North-Central Minnesota during the summer of 1977 to assess general lichen health on a gradient basis from a point-source of air pollution. Health, as judged by abnormal form and color, of nearly 3500 lichen specimens was recorded in 35 vegetation survey plots from a total of 291 trees. Lichen discoloration and degeneration decreased with increased distance from the power plant, and little deterioration was observed beyond 3 miles. Within the plant vicinity, lichen damage was noted on tree boles facing themore » plant which were impacted with fly ash. Maximum damage of lichens followed the pattern of prevailing winds (NW-SE). Sulfur analysis of lichen thalli was not correleated with visible damage distribution tended to decrease at the most distant plots (30 mi. from source). Considering the sensitivity of foliose lichens to declining air quality (especially SO/sub 2/ pollution), pollution sources in the rural environment are bound to affect lichen communities, as this study indicates. More sophisticated lichen surveys coupled with future monitoring of pollution would be a valuable contribution to the general environmental impact assessment of coal-fired electrical energy production. 19 references, 3 figures, 1 table.« less

  17. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control device inspection), you must complete the air pollution control...

  18. 40 CFR 60.2151 - By what date must I conduct the annual air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2151 Section 60.2151 Protection of Environment... annual air pollution control device inspection? On an annual basis (no more than 12 months following the previous annual air pollution control device inspection), you must complete the air pollution control...

  19. “Air pollution in Delhi: Its Magnitude and Effects on Health”

    PubMed Central

    Rizwan, SA; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution. PMID:23559696

  20. 75 FR 18061 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution From Motor Vehicles AGENCY... Chapter 114, Control of Air Pollution from Motor Vehicles. These revisions consist of the new Rebate Grant... air pollution regulations and control strategies to ensure that air quality meets the National Ambient...

  1. Self-reported history of stroke and long-term living conditions near air pollution sources: results of a national epidemiological study in Lebanon.

    PubMed

    Salameh, Pascale; Farah, Rita; Hallit, Souheil; Zeidan, Rouba Karen; Chahine, Mirna N; Asmar, Roland; Hosseini, Hassan

    2018-02-20

    Stroke is a disease related to high mortality and morbidity, particularly in developing countries. Some studies have linked self-reported indoor and outdoor pollution to stroke and mini-stroke, while some others showed no association. Our objective was to assess this association in Lebanon, a Middle Eastern developing country. A national cross-sectional study was conducted all over Lebanon. In addition to self-reported items of pollution exposure, we assessed potential predictors of stroke and mini-stroke, including sociodemographic characteristics, self-reported health information, and biological measurements. Moreover, we assessed dose-effect relationship of pollution items in relation with stroke. Self-reported indoor pollution exposure was associated with stroke and mini-stroke, with or without taking biological values into account. Moreover, we found a dose-effect relationship of exposure with risk of disease, but this effect did not reach statistical significance after adjustment for sociodemographics and biological characteristics. No association was found for any outdoor pollution item. Although additional studies would be necessary to confirm these findings, sensitizing the population about the effect of pollution on chronic diseases, working on reducing pollution, and improving air quality should be implemented to decrease the burden of the disease on the population and health system.

  2. Air pollutants and cough.

    PubMed

    Joad, Jesse P; Sekizawa, Shin-ichi; Chen, Chao-Yin; Bonham, Ann C

    2007-01-01

    Epidemiological studies have shown that exposure to air pollution is associated with respiratory symptoms and decreases in lung function. This paper reviews recent literature showing that exposure to particulate matter, irritant gases, environmental tobacco smoke (ETS), mixed pollutants, and molds is associated with an increase in cough and wheeze. Some pollutants, like particulate matter and mixed pollutants, appear to increase cough at least as much as wheeze. Others, like irritant gases, appear to increase wheeze more than cough. For ETS, exposure during childhood is associated with cough and wheeze in adulthood, suggesting that the pollutant permanently alters some important aspect of the lungs, immune system or nervous system. We have shown in animal studies that pollutants change the neural control of airways and cough. Second hand smoke (SHS) exposure lengthened stimulated apnoea, increased the number of stimulated coughs, and augmented the degree of stimulated bronchoconstriction. The mechanisms included enhanced reactivity of the peripheral sensory neurones and second-order neurones in the nucleus tractus solitarius (NTS). NTS effects were due to a substance P mechanism at least in part. Ozone and allergen increased the intrinsic excitability of second-order neurones in the NTS. The animal studies suggest that the cough and wheeze experienced by humans exposed to pollutants may involve plasticity in the nervous system.

  3. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  4. An Experiment with Air Purifiers in Delhi during Winter 2015-2016

    PubMed Central

    Vyas, Sangita

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi’s during the winter. PMID:27978542

  5. Assessment of air pollution of settlement areas in Ulaanbaatar city, Mongolia

    NASA Astrophysics Data System (ADS)

    Ch, Sonomdagva; Ch, Byambatseren; Batdelger, B.

    2017-05-01

    The purpose of this study is to analyses mass concentration varied by its measurement of air pollution in Ulaanbaatar city, Mongolia. Ulaanbaatar city will have been increasing air pollution due to rapidly expanding vehicular population, growing industrial sector in last 10 years ago. In addition, people use to heat the carbon from 10 month in every year. This becomes a base cause of air pollution in Ulaanbaatar. We studied a change of mass concentration an air pollution elements in Ulaanbaatar, Mongolia. To research work, we used information that based on data of my measurements of air pollution and Metropolitan air quality agency until 2006 to 2016. This research important result is air pollution levels are limited to the areas around Ulaanbaatar areas are the most polluted in the center of city are the least polluted areas whereas Tolgoit, Sapporo, 1st Khoroolol, Amgalan, Shar Khad are moderately polluted and the areas around Baruun 4 zam, Factory, Zaisan, Nisekh are normally polluted. The results of pollution are illustrated four zones. By dividing the polluted areas into such zones, we are trying to make it easier to take preventive measures against the pollution itself and protective measures for safeguarding the health of mass population.

  6. Characterizing ultrafine particles and other air pollutants in and around school buses.

    PubMed

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter < 100 nm). Children are particularly at risk because of their immature respiratory systems and higher breathing rates per body mass. This study aimed to characterize UFP, PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter), and other vehicular-emitted pollutants in and around school buses. Four sub-studies were conducted, including: 1. On-road tests to measure in-cabin air pollutant levels while school buses were being driven; 2. Idling tests to determine the contributions of tailpipe emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age, window position, driving speed, driving route, and operating conditions. Emissions from idling school buses increased the PNC close to the tailpipe by a factor of up to 26.0. Under some circumstances, tailpipe emissions of idling school buses increased the in-cabin PNC by factors ranging from 1.2 to 5.8 in the 10-30 nm particle size range. Retrofit systems significantly reduced the tailpipe emissions of idling school buses. With both DOC and CFS installed, PNC in tailpipe emissions dropped by 20%-94%. No unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The operation of the air conditioning (AC) unit and the pollutant concentrations in the surrounding ambient air played more important roles than retrofit technologies in determining in-cabin air quality. The use of a HEPA air purifier removed up to 50% of in-cabin particles. Because each sub-study tested only a subset of the 24 school buses, the results should be seen as more exploratory than definitive.

  7. Comparison of air pollution in Shanghai and Lanzhou based on wavelet transform.

    PubMed

    Su, Yana; Sha, Yongzhong; Zhai, Guangyu; Zong, Shengliang; Jia, Jiehua

    2017-04-21

    For a long-period comparative analysis of air pollution in coastal and inland cities, we analyzed the continuous Morlet wavelet transform on the time series of a 5274-day air pollution index in Shanghai and Lanzhou during 15 years and studied the multi-scale variation characteristic, main cycle, and impact factor of the air pollution time series. The analysis showed that (1) air pollution in the two cities was non-stationary and nonlinear, had multiple timescales, and exhibited the characteristics of high in winter and spring and low in summer and autumn. (2) The monthly variation in air pollution in Shanghai was not significant, whereas the seasonal variation of air pollution in Lanzhou was obvious. (3) Air pollution in Shanghai showed an ascending tendency, whereas that in Lanzhou presented a descending tendency. Overall, air pollution in Lanzhou was higher than that in Shanghai, but the situation has reversed since 2015. (4) The primary cycles of air pollution in these two cities were close, but the secondary cycles were significantly different. The aforementioned differences were mainly due to the impact of topographical and meteorological factors in Lanzhou, the weather process and the surrounding environment in Shanghai. These conclusions have reference significance for Shanghai and Lanzhou to control air pollution. The multi-timescale variation and local features of the wavelet analysis method used in this study can be applied to varied aspects of air pollution analysis. The identification of cycle characteristics and the monitoring, forecasting, and controlling of air pollution can yield valuable reference.

  8. Defense and avoidance of ozone under global change

    Treesearch

    Michael Tausz; Nancy E. Grulke; Gerhard Wieser

    2007-01-01

    The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing...

  9. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.

    PubMed

    Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai

    2012-05-01

    Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

  10. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    NASA Astrophysics Data System (ADS)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM 2.5 and NO 2 levels into account.

  11. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Magnetic biomonitoring of industrial air pollution in SW Finland

    NASA Astrophysics Data System (ADS)

    Salo, Hanna; Mäkinen, Joni

    2015-04-01

    Moss bags made of Sphagnum papillosum were exposed along 8 km transects near Harjavalta Industrial Park in SW Finland. Previous studies have identified Cu-Ni smelter's pipe as the main source of air pollution. Our research hypothesis is that nowadays the local pollution load of airborne particulate matter from Industrial Park is mainly caused by other emission sources than the smelter's pipe. To identify possible magnetic fingerprints, industrial samples (fiberglass filters from the smokestacks of Cu-Ni smelter and Ni-dryer, final Cu-slag, granulated Ni-slag, Cu-concentrates, Ni-concentrates) were investigated. Mass-specific susceptibility and heavy metal levels were significantly higher near Industrial Park and showed a decreasing trend with increasing distance from the source. The magnetic mineralogy of moss bags, smelter's filter and Cu-slag was dominated by a low-coercivity magnetite while high-coercivity minerals were observed in dryer's filter, Ni-slag and majority of concentrates including all Ni-concentrates. Angular and sharp-edged particles prevailed in moss bags and industrial samples, except for smelter's filter and granulated Ni-slag in which spherical particles dominated. Seven air pollution impact zones were distinguished around Industrial Park on the basis of magnetic susceptibility and previous studies. Overall, industrial area's influence is observable up to 4 km and even further distances in SE and NW along prevailing wind directions and Kokemäenjoki River valley. The heaviest anthropogenic air pollution load is deposited at 0.5-1 km distances. Particle morphology and magnetic data of the moss bags indicate that the particulate matter in the hot spot area, which spatial emphasis is in S-SW-W-NW in the upwind from the smelter, originate mainly from the dust emissions from other sources rather than the smelter's pipe. The industrial activities in and nearby hot spot area include handling and moving of concentrates and slags as well as heavy traffic. This study shows that air pollution from various dust-providing sources outweighs the fly-ash load from the Cu-Ni smelter's pipe especially at short distances. Furthermore, active magnetic monitoring by moss bags is spatially detailed sampling method for the identification of air pollutants and emission sources.

  13. Children's exposure to indoor air in urban nurseries--Part II: Gaseous pollutants' assessment.

    PubMed

    Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-10-01

    This study, Part II of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: (i) evaluate nursery schools' indoor concentrations of several air pollutants in class and lunch rooms; and (ii) analyse them according to guidelines and references. Indoor continuous measurements were performed, and outdoor concentrations were obtained to determine indoor/outdoor ratios. The influence of outdoor air seemed to be determinant on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) indoor concentrations. The peak concentrations of formaldehyde and volatile organic compounds (VOC) registered (highest concentrations of 204 and 2320 µg m(-3) respectively), indicated the presence of specific indoor sources of these pollutants, namely materials emitting formaldehyde and products emitting VOC associated to cleaning and children's specific activities (like paints and glues). For formaldehyde, baseline constant concentrations along the day were also found in some of the studied rooms, which enhances the importance of detailing the study of children's short and long-term exposure to this indoor air pollutant. While CO, NO2 and O3 never exceeded the national and international reference values for IAQ and health protection, exceedances were found for formaldehyde and VOC. For this reason, a health risk assessment approach could be interesting for future research to assess children's health risks of exposure to formaldehyde and to VOC concentrations in nursery schools. Changing cleaning schedules and materials emitting formaldehyde, and more efficient ventilation while using products emitting VOC, with the correct amount and distribution of fresh air, would decrease children's exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Papers Presented at the American Medical Association's Air Pollution Medical Research Conference (New Orleans, Louisiana, October 5-7, 1970).

    ERIC Educational Resources Information Center

    American Medical Association, Chicago, IL.

    This is a collection of twenty speeches presented at the American Medical Association's Air Pollution Medical Conference, October 5-7, 1970. Speeches included: Air Pollution Control: The Physician's Role; Air Pollution Problems in Nuclear Power Development; Airway Resistance and Collateral Ventilation; Asbestos Air Pollution in Urban Areas;…

  15. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  16. Changes in the chemistry of small Irish lakes.

    PubMed

    Burton, Andrew W; Aherne, Julian

    2012-03-01

    A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.

  17. China's international trade and air pollution: 2000 - 2009

    NASA Astrophysics Data System (ADS)

    Ni, Ruijing; Lin, Jintai; Pan, Da; Wang, Jingxu; Yan, Yingying; Zhang, Qiang

    2016-04-01

    As the world's top trading country, China is now the most polluted country. However, a large portion of pollution produced in China is associated with its production of goods for foreign consumption via international trade. Along with China's rapid economic growth in recent years, its economic-trade structure and volume has been changing all the time, resulting in large changes in total emissions and the shares of trade-related emissions. Here, we assess the influence of China's changing total and export-related emissions between 2000 and 2009 on its atmospheric pollution loadings and transport, by exploiting simulations of a global chemical transport model GEOS-Chem. We find that both air pollution related to Chinese exports (PRE) which including nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), black carbon (BC), and primary organic aerosol (POA), and its share in total Chinese pollution have experienced continuous rapid growth until 2007, exposing more and more people to severely polluted air. After 2007, PRE decreases due to strengthened emission controls accompanied by declined exports as a result of the global financial crisis. Although production for exports contribute less than 35% SO2 over China in any year, the increasing trend of trade-related SO2 contributes 51% of integral trend. The changing PRE of China also affects its downwind regions such as the western United States. The contribution of export-related Chinese pollution to surface sulfate concentrations over the western United States has increased from 3% in 2000 to 12% in 2007. Overall, we find that the interannual variation of trade and associated production is a critical factor driving the trend of pollution over China and its downwind regions.

  18. Effects of income and urban form on urban NO2: global evidence from satellites.

    PubMed

    Bechle, Matthew J; Millet, Dylan B; Marshall, Julian D

    2011-06-01

    Urban air pollution is among the top 15 causes of death and disease worldwide, and a problem of growing importance with a majority of the global population living in cities. A important question for sustainable development is to what extent urban design can improve or degrade the environment and public health. We investigate relationships between satellite-derived estimates of nitrogen dioxide concentration (NO(2), a key component of urban air pollution) and urban form for 83 cities globally. We find a parsimonious yet powerful relationship (model R(2) = 0.63), using as predictors population, income, urban contiguity, and meteorology. Cities with highly contiguous built-up areas have, on average, lower urban NO(2) concentrations (a one standard deviation increase in contiguity is associated with a 24% decrease in average NO(2) concentration). More-populous cities tend to have worse air quality, but the increase in NO(2) associated with a population increase of 10% may be offset by a moderate increase (4%) in urban contiguity. Urban circularity ("compactness") is not a statistically significant predictor of NO(2) concentration. Although many factors contribute to urban air pollution, our findings suggest that antileapfrogging policies may improve air quality. We find that urban NO(2) levels vary nonlinearly with income (Gross Domestic Product), following an "environmental Kuznets curve"; we estimate that if high-income countries followed urban pollution-per-income trends observed for low-income countries, NO(2) concentrations in high-income cities would be ∼10× larger than observed levels.

  19. Air pollution in India and related adverse respiratory health effects: past, present, and future directions.

    PubMed

    Khilnani, Gopi C; Tiwari, Pawan

    2018-03-01

    The review describes current status of air pollution in India, summarizes recent research on adverse health effects of ambient and household air pollution, and outlines the ongoing efforts and future actions required to improve air quality and reduce morbidity and mortality because of air pollution in India. Global burden of disease data analysis reveals more than one million premature deaths attributable to ambient air pollution in 2015 in India. More than one million additional deaths can be attributed to household air pollution. Particulate matter with diameter 2.5 μm or less has been causatively linked with most premature deaths. Acute respiratory tract infections, asthma, chronic obstructive pulmonary disease, exacerbations of preexisting obstructive airway disease and lung cancer are proven adverse respiratory effects of air pollution. Targeting air quality standards laid by WHO can significantly reduce morbidity and mortality because of air pollution in India. India is currently exposed to high levels of ambient and household air pollutants. Respiratory adverse effects of air pollution are significant contributors to morbidity and premature mortality in India. Substantial efforts are being made at legislative, administrative, and community levels to improve air quality. However, much more needs to be done to change the 'status quo' and attain the target air quality standards. VIDEO ABSTRACT: http://links.lww.com/COPM/A24.

  20. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  1. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Fractional kalman filter to estimate the concentration of air pollution

    NASA Astrophysics Data System (ADS)

    Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik

    2018-04-01

    Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).

  3. Reduction in Heart Rate Variability with Traffic and Air Pollution in Patients with Coronary Artery Disease

    PubMed Central

    Zanobetti, Antonella; Gold, Diane R.; Stone, Peter H.; Suh, Helen H.; Schwartz, Joel; Coull, Brent A.; Speizer, Frank E.

    2010-01-01

    Introduction Ambient particulate pollution and traffic have been linked to myocardial infarction and cardiac death risk. Possible mechanisms include autonomic cardiac dysfunction. Methods In a repeated-measures study of 46 patients 43–75 years of age, we investigated associations of central-site ambient particulate pollution, including black carbon (BC) (a marker for regional and local traffic), and report of traffic exposure with changes in half-hourly averaged heart rate variability (HRV), a marker of autonomic function measured by 24-hr Holter electrocardiogram monitoring. Each patient was observed up to four times within 1 year after a percutaneous intervention for myocardial infarction, acute coronary syndrome without infarction, or stable coronary artery disease (4,955 half-hour observations). For each half-hour period, diary data defined whether the patient was home or not home, or in traffic. Results A decrease in high frequency (HF; an HRV marker of vagal tone) of −16.4% [95% confidence interval (CI), −20.7 to −11.8%] was associated with an interquartile range of 0.3-μg/m3 increase in prior 5-day averaged ambient BC. Decreases in HF were independently associated both with the previous 2-hr averaged BC (−10.4%; 95% CI, −15.4 to −5.2%) and with being in traffic in the previous 2 hr (−38.5%; 95% CI, −57.4 to −11.1%). We also observed independent responses for particulate air matter with aerodynamic diameter ≤ 2.5 μm and for gases (ozone or nitrogen dioxide). Conclusion After hospitalization for coronary artery disease, both particulate pollution and being in traffic, a marker of stress and pollution, were associated with decreased HRV. PMID:20064780

  4. Prior exposure to ozone potentiates subsequent response to sulfur dioxide in adolescent asthmatic subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, J.Q.; Covert, D.S.; Hanley, Q.S.

    The objective of this study was to test whether prior exposure to a low concentration of ozone (120 ppb) would condition airways in asthmatic subjects to respond to a subthreshold concentration of sulfur dioxide (100 ppb). Eight male and five female subjects 12 to 18 yr of age participated. They all had allergic asthma and exercise-induced bronchospasm. Subjects were exposed to three test atmosphere sequences during intermittent moderate exercise (a 45-min exposure to one pollutant followed by a 15-min exposure to the second pollutant). The sequences were: air followed by 100 ppb SO2, 120 ppb O3 followed by 120 ppbmore » O3, and 120 ppb O3 followed by 100 ppb SO2. The pulmonary function measurements assessed were FEV1, total respiratory resistance (RT), and maximal flow (Vmax50). Air-SO2 and O3-O3 exposures did not cause significant changes in pulmonary function. On the other hand, exposure to 100 ppb SO2 after a 45-min exposure to 120 ppb O3 caused a significant (8%) decrease in FEV1 (p = 0.046), a significant (19%) increase in RT (p = 0.048), and a significant (15%) decrease in Vmax50 (p = 0.008). It is concluded that prior O3 exposure increased bronchial hyperresponsiveness in these subjects such that they responded to an ordinarily subthreshold concentration of SO2. These data suggest that assessment of pulmonary changes to single pollutant challenges overlooks the interactive effects of common coexisting or sequentially occurring air pollutants.« less

  5. [Analysis About Spatial and Temporal Distribution of SO2 and An Ambient SO2 Pollution Process in Beijing During 2000-2014].

    PubMed

    Cheng, Nian-liang; Zhang, Da-wei; Li, Yun-ting; Chen, Tian; Li, Jin-xiang; Dong, Xin; Sun, Rui-wen; Meng, Fan

    2015-11-01

    Spatial and temporal distribution of SO2 during 2000-2014 was all analyzed based on the SO2 monitoring data that Beijing Municipal Environmental Monitoring Center released and the formation mechanism of a typical air pollution episode in January 2014 was also investigated by combining numerical model CAM(x). Analysis results showed that mass concentration of ρ(SO2) in Beijing in 2014 decreased 69% compared to that in 2000 with an annual gradient from 2000 to 2014 of - 3.5 μg x (m3 x a)(-1). Monthly average concentration of SO2 changed in a U shape curve and from the lowest to the highest, and seasonal variations of SO2 concentrations were as follows: winter > spring > autumn > summer; concentration of SO2 in heating season was significantly higher than that in non heating season. Annual average concentration of SO2 was lower in northern and western regions while higher in six city area and southern area. Concentrations of SO2 at Shijingshan, Dongsi, Tongzhou monitoring sites were significantly decreased related to SO2 emission reduction measures. During a heavy air pollution process in January 14 - 18th 2014 there was obviously SO2 regional transportation and model simulation analysis based on PAST showed that the contribution of SO2 regional transport to Beijing was 83% with elevated power plants surrounding Beijing accounting for 21% and the four major Beijing power plants contributing about 3.5% to the SO2 concentration during this heavy air pollution process.

  6. Time Trends of Polycyclic Aromatic Hydrocarbon Exposure in New York City from 2001 to 2012: Assessed by Repeat Air and Urine Samples

    PubMed Central

    Jung, Kyung Hwa; Liu, Bian; Lovinsky-Desir, Stephanie; Yan, Beizhan; Camann, David; Sjodin, Andreas; Li, Zheng; Perera, Frederica; Kinney, Patrick; Chillrud, Steven; Miller, Rachel L.

    2014-01-01

    Background Exposure to air pollutants including polycyclic aromatic hydrocarbons (PAH), and specifically pyrene from combustion of fuel oil, coal, traffic and indoor sources, has been associated with adverse respiratory health outcomes. However, time trends of airborne PAH and metabolite levels detected via repeat measures over time have not yet been characterized. We hypothesized that PAH levels, measured repeatedly from residential indoor and outdoor monitors, and children’s urinary concentrations of PAH metabolites, would decrease following policy interventions to reduce traffic-related air pollution. Methods Indoor PAH (particle- and gas-phase) were collected for two weeks prenatally (n=98), at age 5/6 years (n=397) and age 9/10 years (n=198) since 2001 and at all three age-points (n=27). Other traffic-related air pollutants (black carbon and PM2.5) were monitored indoors simultaneous with PAH monitoring at ages 5/6 (n=403) and 9/10 (n=257) between 2005 and 2012. One third of the homes were selected across seasons for outdoor PAH, BC and PM2.5 sampling. Using the same sampling method, ambient PAH, BC and PM2.5 also were monitored every two weeks at a central site between 2007 and 2012. PAH were analyzed as semivolatile PAH (e.g., pyrene; MW 178–206) and the sum of eight nonvolatile PAH (Σ8PAHnonvolatile; MW 228–278). A spot urine sample was collected from children at child ages 3, 5, 7 and 9 between 2001 and 2012 and analyzed for 10 PAH metabolites. Results Modest declines were detected in indoor BC and PM2.5 levels between 2005 and 2012 (Annual percent change [APC]=−2.08% [p=0.010] and −2.18% [p=0.059] for BC and PM2.5, respectively), while a trend of increasing pyrene levels was observed in indoor and outdoor samples, and at the central site during the comparable time periods (APC=4.81%, 3.77% and 7.90%, respectively; p<0.05 for all). No significant time trend was observed in indoor Σ8PAHnonvolatile levels between 2005 and 2012; however, significant opposite trends were detected when analyzed seasonally (APC=−8.06% [p<0.01], 3.87% [p<0.05] for nonheating and heating season, respectively). Similarly, heating season also affected the annual trends (2005–2012) of other air pollutants: the decreasing BC trend (in indoor/outdoor air) was observed only in the nonheating season, consistent with dominating traffic sources that decreased with time; the increasing pyrene trend was more apparent in the heating season. Outdoor PM2.5 levels persistently decreased over time across the seasons. With the analyses of data collected over a longer period of time (2001–2012), a decreasing trend was observed in pyrene (APC=−2.76%; p<0.01), mostly driven by measures from the nonheating season (APC=−3.54%; p<0.01). In contrast, levels of pyrene and naphthalene metabolites, 1-hydroxypyrene and 2-naphthol, increased from 2001 to 2012 (APC=6.29% and 7.90% for 1-hydroxypyrene and 2-naphthol, respectively; p<0.01 for both). Conclusions Multiple NYC legislative regulations targeting traffic-related air pollution may have led to decreases in Σ8PAHnonvolatile and BC, especially in the nonheating season. Despite the overall decrease in pyrene over the 2001–2012 periods, a rise in pyrene levels in recent years (2005–2012), that was particularly evident for measures collected during the heating season, and 2-naphthol, indicates the contribution of heating oil combustion and other indoor sources to airborne pyrene and urinary 2-naphthol. PMID:24709094

  7. Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.

  8. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  9. Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States.

    PubMed

    Jones, Donna Lee

    2010-09-01

    This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or "demonstration" cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA's major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.

  10. Environmental Perception and Citizen Response: a Denver, Colorado Air Pollution Case Study.

    NASA Astrophysics Data System (ADS)

    Naomi, Leaura M.

    Denver, a high altitude city, suffers from air pollution. Automobile emissions, as well as wood and coal burning contribute to Denver's air pollution. In order to reduce its air pollution, Denver hosted a no-drive campaign, The Better Air Campaign. This study examined how Denver -area citizens perceived their air pollution, responded to their air pollution, and responded to their no-drive campaign. First, I conducted personal interviews of twenty Denver air pollution decision-makers to ascertain their perceptions and definitions of Denver's air pollution problem. Second, I created a theoretical model of environmental perception and behavioral response to air pollution. Third, I conducted a telephone survey of 500 Denver-area residents to examine the usefulness of the model. By segmenting a sample of 500 Denver-area residents via a modified values and lifestyles (VALS) technique included in a telephone survey, the perceptions and behaviors of residents fell into a clear pattern. This values and lifestyles pattern coincided with a conventional innovation-adoption pattern, including innovators, the bandwagon, and laggards. Thus, the research determined the population's perceptions and behavioral responses to their air pollution. The research also pointed a direction for Denver's air pollution decision-makers to follow in order to reduce use of the gasoline-powered automobile. And, for those interested in encouraging public acceptance of ecological sustainability, it suggested application of the VALS technique for reaching the public.

  11. [The correlations between air quality and heart rate variability in aged susceptible people during Beijing Olympic Games 2008].

    PubMed

    Jia, Yu-ping; Guo, Yu-ming; Wang, Zhen-yu; Xie, Yong-zhen; Tang, Xiao-yan; Zhu, Tong; Wang, Sheng; Pan, Xiao-chuan

    2009-08-01

    To observe the variations of the concentrations of air pollutants and explore the correlation between the heart rate variability (HRV) of the aged people and the air quality during Beijing Olympic Games 2008. A panel study design was adopted. A total of twenty-six over 55-year-old patients with coronary heart disease or angina pectoris or a symptom of myocardial ischemia at least for one year were enrolled as a panel and followed up five times by measuring HRV index and other related indexes from June to September in 2008. The correlations between the HRV of the aged people and the air quality was analyzed with the linear mixed-effect models according to the data of air pollutants and meteorological conditions collected simultaneously from Beijing Environmental Protection Bureau and Beijing Meteorological Bureau. In single-pollutant mixed-effect models, the significant correlation was observed in the reduction of ambient PM(10), SO(2) and NO(2) with the improvement of the total power and high-frequency power (HF) of HRV in the panel subjects, and a 10 microg/m(3) decrease in PM(10), SO(2) and NO(2) level was correlated with 2.51% (95%CI: -3.80% - -1.22%, t = -1.99, P = 0.0497), 31.39% (95%CI: -52.24% - -10.53%, t = -1.99, P = 0.0497) and 42.72% (95%CI: -75.06% - -10.38%, t = -1.99, P = 0.0497) rises in total power of HRV respectively. A 10 microg/m(3) decrease in PM(10), SO(2) and NO(2) level was correlated with 3.46% (95%CI: -5.14% - -1.77%, t = -2.11, P = 0.0378), 40.63% (95%CI: -68.70% - -12.56%, t = -2.11, P = 0.0378) and 53.76% (95%CI: -97.97% - -9.56%, t = -2.11, P = 0.0378) rises in high-frequency power (HF) of HRV respectively. It suggests that the air pollution reduction could improve the cardiovascular functions of the susceptible population.

  12. Indoor Air Pollution in Non Ac Passenger Bus

    NASA Astrophysics Data System (ADS)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  13. Air Pollution Prevention and Control Policy in China.

    PubMed

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  14. Evaluating the effectiveness of air quality interventions.

    PubMed

    van Erp, Annemoon M M; O'Keefe, Robert; Cohen, Aaron J; Warren, Jane

    2008-01-01

    Evaluating the extent to which air quality regulations improve public health--sometimes referred to as accountability--is part of an emerging effort to assess the effectiveness of environmental regulatory policies. Air quality has improved substantially in the United States and Western Europe in recent decades, with far less visible pollution and decreasing concentrations of several major pollutants. In large part, these gains were achieved through increasingly stringent air quality regulations. The costs associated with compliance and, importantly, the need to ensure that the regulations are achieving the intended public health benefits underscore the importance of accountability research. To date, accountability research has emphasized measuring the effects of actions already taken to improve air quality. Such research may also contribute to estimating the burden of disease that might be avoided in the future if certain actions are taken. The Health Effects Institute (HEI) currently funds eight ongoing studies on accountability, which cover near-term interventions to improve air quality including (1) a ban on the sale of coal, (2) replacing old wood stoves with cleaner ones, (3) decreasing sulfur content in fuel, (4) measures to reduce traffic, and (5) longer term, wide-ranging actions or events (such as complex changes associated with the reunification of Germany). HEI is also funding the development of methods and research to assess regulations that are implemented incrementally over extended periods of time, such as Title IV of the 1990 Clean Air Act Amendments, which reduces sulfur dioxide emissions from power plants in the eastern United States.

  15. Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya

    PubMed Central

    Kinney, Patrick L.; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K.; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N.; Sclar, Elliott

    2011-01-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM2.5) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of traffic-related PM2.5 was carried out in the city of Nairobi, Kenya, a model city for sub-Saharan Africa, in July 2009. Sampling was carried out using portable filter-based air samplers carried in backpacks by technicians on weekdays over two weeks at several sites in and around Nairobi ranging from high-traffic roadways to rural background. Mean daytime concentrations of PM2.5 ranged from 10.7 at the rural background site to 98.1 μg/m3 on a sidewalk in the central business district. Horizontal dispersion measurements demonstrated a decrease in PM2.5 concentration from 128.7 to 18.7 μg/m3 over 100 meters downwind of a major intersection in Nairobi. A vertical dispersion experiment revealed a decrease from 119.5 μg/m3 at street level to 42.8 μg/m3 on a third-floor rooftop in the central business district. Though not directly comparable to air quality guidelines, which are based on 24-hour or annual averages, the urban concentrations we observed raise concern with regard to public health and related policy. Taken together with survey data on commuting patterns within Nairobi, these results suggest that many Nairobi residents are exposed on a regular basis to elevated concentrations of fine particle air pollution, with potentially serious long-term implications for health. PMID:21779151

  16. Clinical effects of air pollution on the central nervous system; a review.

    PubMed

    Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J

    2017-09-01

    The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Athletic performance and urban air pollution.

    PubMed Central

    Shephard, R J

    1984-01-01

    Air pollution may affect athletic performance. In Los Angeles, contaminants include carbon monoxide, ozone, peroxyacetylnitrate (PAN) and nitrogen oxides, whereas in older European cities, such as Sarajevo, "reducing smog" of sulfur dioxide is the main hazard. The carbon monoxide and ozone levels expected in Los Angeles this summer could affect the athletes' performance in endurance events at the Olympic Games. Carbon monoxide may also impair psychomotor abilities, and PAN causes visual disturbances. The only likely physiologic consequence from reducing smog is an increase in the workload of the respiratory system and thus a decrease in endurance performance. While carbon monoxide has been blamed for myocardial infarctions, nitrogen oxides for pulmonary edema and sulfur dioxide for deaths due to respiratory failure, the only illnesses that are likely to be more frequent than usual among young athletes exposed to high levels of these pollutants are upper respiratory tract infections. Therapeutic tactics include the avoidance of pollution, the administration of oxygen, vitamin C and vitamin E, and general reassurance. PMID:6744156

  18. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false California air pollution emergency plan... pollution emergency plan. (a) Since the California Air Pollution Emergency Plan does not provide complete... District (SCAQMD). (2) Sacramento County Air Pollution Control District. (3) Monterey Bay Unified APCD...

  19. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false California air pollution emergency plan... pollution emergency plan. (a) Since the California Air Pollution Emergency Plan does not provide complete... District (SCAQMD). (2) Sacramento County Air Pollution Control District. (3) Monterey Bay Unified APCD...

  20. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false California air pollution emergency plan... pollution emergency plan. (a) Since the California Air Pollution Emergency Plan does not provide complete... District (SCAQMD). (2) Sacramento County Air Pollution Control District. (3) Monterey Bay Unified APCD...

  1. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false California air pollution emergency plan... pollution emergency plan. (a) Since the California Air Pollution Emergency Plan does not provide complete... District (SCAQMD). (2) Sacramento County Air Pollution Control District. (3) Monterey Bay Unified APCD...

  2. 76 FR 30025 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... the California State Implementation Plan, Placer County Air Pollution Control District and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... Pollution Control District (PCAPCD) and Ventura County Air Pollution Control District (VCAPCD) portion of...

  3. 77 FR 214 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval of revisions to the San Joaquin Valley Air Pollution Control District (SJVUAPCD) portion of the... used by the California Air Resources Board and air districts for evaluating air pollution control...

  4. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC dimming has altered both the north-south gradients in sea surface temperatures and land-ocean contrast in surface temperatures, which in turn slow down the monsoon circulation and decrease rainfall over the continents. On the other hand, heating by black carbon warms the atmosphere at elevated levels from 2 to 6 km, where most tropical glaciers are located, thus strengthening the effect of GHGs on retreat of snow packs and glaciers in the Hindu Kush-Himalaya-Tibetan glaciers. Globally, the surface cooling effect of ABCs may have masked as much 47% of the global warming by greenhouse gases, with an uncertainty range of 20-80%. This presents a dilemma since efforts to curb air pollution may unmask the ABC cooling effect and enhance the surface warming. Thus efforts to reduce GHGs and air pollution should be done under one common framework. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.

  5. 75 FR 53907 - Revisions to the Arizona State Implementation Plan, Maricopa County

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... health and the environment, including premature mortality, aggravation of respiratory and cardiovascular disease, decreased lung function, visibility impairment, and damage to vegetation and ecosystems. Section... protection, Air pollution control, Intergovernmental relations, Particulate matter, Reporting and...

  6. [Development and current status of atmospheric pollution].

    PubMed

    Elichegaray, C; Bouallala, S; Maitre, A; Ba, M

    2009-02-01

    Air quality is a public health issue and this article includes a reminder of the related causes and issues and a description of the monitoring of ambient air quality in France. It also provides a review of major developments in recent years of the pollutants measured. Emissions of major air pollutants have declined significantly since the 1970s, and this is reflected in an overall improvement in the quality of ambient air. Nevertheless, various forms of air pollution remain a concern (in the case of photochemical pollution) and health data show that air pollution is still a cause of morbidity and mortality. The fight against air pollution must remain a priority and requires multi-pollutant and multi-effect approaches. The National Health and Environment Program adopted during the Grenelle environment stakeholder consultation processes includes targets for reducing human exposure to air pollution, especially particulate matter, as well as measures to improve indoor air quality. In a context dominated by the struggle against the emission of greenhouse gases, problems of air quality should not be underestimated and policies relating to climate protection must be taken into account.

  7. The Impacts of Policies To Meet The UK Climate Change Act Target on Air Quality - An Explicit Modelling Study

    NASA Astrophysics Data System (ADS)

    Williams, M.; Beevers, S.; Lott, M. C.; Kitwiroon, N.

    2016-12-01

    This paper presents a preliminary analysis of different pathways to meet the UK Climate Change Act target for 2050, of an 80% reduction in carbon dioxide equivalent emissions on a base year of 1990. The pathways can result in low levels of air pollution emissions through the use of renewables and nuclear power. But large increases in biomass burning and the continued use of diesel cars they can result in larger air quality impacts. The work evaluated the air quality impacts in several pathways using an energy system optimisation model (UK TIMES) and a chemical transport model (CMAQ). The work described in this paper goes beyond the `damage cost' approach where only emissions in each are assessed. In this work we used scenarios produced by the UK TIMES model which we converted into air pollution emissions. Emissions of ammonia from agriculture are not attributed to the energy system and are thus not captured by energy system models, yet are crucial in forming PM2.5, acknowledged to be currently the most important pollutant associated with premature deaths. Our model includes these emissions and other non-energy sources of hydrocarbons which lead to the formation of ozone, another significant cause of air pollution health impacts. A key policy issue is how much biogenic hydrocarbons contribute to ozone formation compared with man-made emissions. We modelled pollution concentrations at a resolution of 7 km across the UK and at 2km in urban areas. These results allow us to estimate changes in premature mortality and morbidity associated with the changes in air pollution and subsequently the economic cost of the impacts on public health. The work shows that in the `clean' scenario, urban exposures to particles (PM2.5) and NO2 could decrease by very large amounts, but ozone exposures are likely to increase without further significant reductions world-wide. Large increases in biomass use however could lead to increases in urban levels of carcinogens and primary PM.

  8. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  9. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  10. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  11. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  12. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  13. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  14. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  15. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  16. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  17. 76 FR 5277 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... the California State Implementation Plan, Santa Barbara Air Pollution Control District, Antelope Valley Air Quality Management District, Ventura County Air Pollution Control District and Placer County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final...

  18. 76 FR 5319 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... the California State Implementation Plan, Santa Barbara Air Pollution Control District, Placer County Air Pollution Control District, Antelope Valley Air Quality Management District, and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule...

  19. Air pollution and vulnerability: solving the puzzle of prioritization.

    PubMed

    Wright, Caradee Y; Diab, Roseanne

    2011-01-01

    While ambient air pollution levels in excess of prescribed health standards are generally unacceptable, the exceedance is even more serious in areas where people reside. Vulnerability caused by poverty, disease, lack of education, and poor living conditions exacerbates the problem. Air quality management plans identify prioritized strategies for improved air quality independent of consideration of vulnerability. A population exposure and vulnerability risk prioritization framework comprising five themes (air pollution sources; air pollution levels; air pollution potential; community awareness, observations, perceptions, and actions; and vulnerability factors) was proposed and applied to the eThekwini Municipality (Durban, South Africa). Data were scored according to predetermined risk threshold values to ascertain at-risk communities. While those urban wards located in a known air pollution hotspot had the highest air pollution levels, a periurban ward with moderate exposure levels was most vulnerable. This framework will prove invaluable for the development of focused interventions to reduce vulnerability and air pollution-associated adverse health impacts.

  20. The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants

    PubMed Central

    Weyens, Nele; Thijs, Sofie; Popek, Robert; Witters, Nele; Przybysz, Arkadiusz; Espenshade, Jordan; Gawronska, Helena; Vangronsveld, Jaco; Gawronski, Stanislaw W.

    2015-01-01

    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented. PMID:26516837

  1. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants.

    PubMed

    Weyens, Nele; Thijs, Sofie; Popek, Robert; Witters, Nele; Przybysz, Arkadiusz; Espenshade, Jordan; Gawronska, Helena; Vangronsveld, Jaco; Gawronski, Stanislaw W

    2015-10-26

    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant-microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.

  2. Projected change in characteristics of near surface temperature inversions for southeast Australia

    NASA Astrophysics Data System (ADS)

    Ji, Fei; Evans, Jason Peter; Di Luca, Alejandro; Jiang, Ningbo; Olson, Roman; Fita, Lluis; Argüeso, Daniel; Chang, Lisa T.-C.; Scorgie, Yvonne; Riley, Matt

    2018-05-01

    Air pollution has significant impacts on human health. Temperature inversions, especially near surface temperature inversions, can amplify air pollution by preventing convective movements and trapping pollutants close to the ground, thus decreasing air quality and increasing health issues. This effect of temperature inversions implies that trends in their frequency, strength and duration can have important implications for air quality. In this study, we evaluate the ability of three reanalysis-driven high-resolution regional climate model (RCM) simulations to represent near surface inversions at 9 sounding sites in southeast Australia. Then we use outputs of 12 historical and future RCM simulations (each with three time periods: 1990-2009, 2020-2039, and 2060-2079) from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project to investigate changes in near surface temperature inversions. The results show that there is a substantial increase in the strength of near surface temperature inversions over southeast Australia which suggests that future inversions may intensify poor air quality events. Near surface inversions and their future changes have clear seasonal and diurnal variations. The largest differences between simulations are associated with the driving GCMs, suggesting that the large-scale circulation plays a dominant role in near surface inversion strengths.

  3. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi‐year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night‐time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  4. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools.

    PubMed

    Sá, Juliana P; Branco, Pedro T B S; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2017-05-31

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO₂, CO, NO₂, O₃, CH₂O, total volatile organic compounds (VOC), PM₁, PM 2.5 , PM 10 , Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM 2.5 , PM 10 , CO₂ and CH₂O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO₂. However, mitigation measures were not always sufficient to decrease the pollutants' concentrations till values considered safe to protect human health.

  5. Fibrin clot structure is affected by levels of particulate air pollution exposure in patients with venous thrombosis.

    PubMed

    Pan, Xiaoxi; Gong, Yun Yun; Martinelli, Ida; Angelici, Laura; Favero, Chiara; Bertazzi, Pier Alberto; Mannucci, Pier M; Ariëns, Robert A S; Routledge, Michael N

    2016-01-01

    Particulate air pollution is a risk factor for cardiovascular diseases and thrombosis. Long-term exposure to particulate matter with a diameter<10μm (PM10) has been associated with an increased risk of venous thrombosis. The aim of this study was to investigate whether or not particulate air pollution alters fibrin clot structure and thus modulates thrombosis risk. We investigated fibrin polymerization by turbidity (maximum absorbance mOD), clot structure by confocal microscopy (fibre number per μm) and fibrin pore size by permeability (Ks×10(-10)cm(2)) in 103 patients with deep vein thrombosis and 121 healthy controls, for whom levels of air pollution exposure had been recorded. Exposure groups were defined by mean PM10 concentrations over the 730days before the event. We found a higher average number of fibres per clot area in patients than controls, but no difference in Ks or fibre thickness. When the two groups were divided into high or low exposure to PM10, a significantly denser fibrin clot network structure with thicker fibres (higher maximum absorbance, p<0.05), decreased permeability (lower Ks value, p<0.05) and higher average fibre numbers per clot area (p<0.05) was observed in patients in the high exposure group compared to those with low exposure. There were no significant differences in fibrin clot structure between the two exposure levels in healthy subjects. PM10 levels are associated with altered fibrin clot structure in patients with deep vein thrombosis but not in controls, suggesting that air pollution may trigger differences in fibrin clot structure only in patients predisposed to thrombotic disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  7. Outdoor air pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study.

    PubMed

    Wong, Jason Y Y; Margolis, Helene G; Machiela, Mitchell; Zhou, Weiyin; Odden, Michelle C; Psaty, Bruce M; Robbins, John; Jones, Rena R; Rotter, Jerome I; Chanock, Stephen J; Rothman, Nathaniel; Lan, Qing; Lee, Jennifer S

    2018-07-01

    Mosaic loss of chromosome Y (mLOY) can occur in a fraction of cells as men age, which is potentially linked to increased mortality risk. Smoking is related to mLOY; however, the contribution of air pollution is unclear. We investigated whether exposure to outdoor air pollution, age, and smoking were associated with mLOY. We analyzed baseline (1989-1993) blood samples from 933 men ≥65 years of age from the prospective Cardiovascular Health Study. Particulate matter ≤10 μm (PM 10 ), carbon monoxide, nitrogen dioxide, sulfur dioxide, and ozone data were obtained from the U.S. EPA Aerometric Information Retrieval System for the year prior to baseline. Inverse-distance weighted air monitor data were used to estimate each participants' monthly residential exposure. mLOY was detected with standard methods using signal intensity (median log-R ratio (mLRR)) of the male-specific chromosome Y regions from Illumina array data. Linear regression models were used to evaluate relations between mean exposure in the prior year, age, smoking and continuous mLRR. Increased PM 10 was associated with mLOY, namely decreased mLRR (p-trend = 0.03). Compared with the lowest tertile (≤28.5 μg/m 3 ), the middle (28.5-31.0 μg/m 3 ; β = -0.0044, p = 0.09) and highest (≥31 μg/m 3 ; β = -0.0054, p = 0.04) tertiles had decreased mLRR, adjusted for age, clinic, race/cohort, smoking status and pack-years. Additionally, increasing age (β = -0.00035, p = 0.06) and smoking pack-years (β = -0.00011, p = 1.4E-3) were associated with decreased mLRR, adjusted for each other and race/cohort. No significant associations were found for other pollutants. PM 10 may increase leukocyte mLOY, a marker of genomic instability. The sample size was modest and replication is warranted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    PubMed

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  9. A national day with near zero emissions and its effect on primary and secondary pollutants

    NASA Astrophysics Data System (ADS)

    Levy, Ilan

    2013-10-01

    Traffic related air pollution is a major health concern in many countries. The potential costs and benefits of different abatement policies are usually estimated by either models, case studies or previously implemented intervention measures. Such estimations have, however, limited ability to predict the effect of a reduction in primary pollutants' emissions on secondary pollutants such as ozone, because of the nonlinear nature of the photochemical reactions. This study examines the short term effects of a drastic change in emissions on a national scale during the Jewish holiday of Day of Atonement (DA) in Israel. During the holiday nearly all anthropogenic emission sources are ceased for a period of 25 h, including all vehicles, commercial, industrial and recreational activities. DAs during the 15 years period of 1998-2012 are analyzed at three sites with respect to primary and secondary air pollutants, and in greater details for 2001. A dramatic decrease in primary pollutants emissions (83-98% in NO) causes an 8 ppbv increase in ozone at the urban core. Downwind (27 km), ozone decreases by only 5 ppbv. Nighttime O3 is shown to increase to 20 ppbv at the urban sites and 30 ppbv downwind. In spite of the striking reduction in emissions, changes in ozone are not greater than what is reported in the literature about less significant events like the ozone weekend effect. Changes in ambient pollution levels observed during DA provide some indication to the possible outcomes of a major change in anthropogenic emissions. These may be considered as the best case scenario for emissions reduction intervention measures and thus aid policy makers in evaluating potential benefits of such measures.

  10. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  11. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  12. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils'…

  13. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  14. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  15. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  16. [Air pollutant emissions of aircraft in China in recent 30 years].

    PubMed

    He, Ji-Cheng

    2012-01-01

    Although aircrafts are of great importance in transportation in China, there has been rare study on air pollutant emissions of aircrafts until now. Based on the annually statistical data collected by the Statistic Center of Civil Aviation of China, using the emission factor method derived from fuel consumption, the air pollutant emissions of aircrafts during 1980-2009 were calculated, and their emission intensities and dynamic characteristics were analyzed. The results show that the emissions of SO2, CO, NO(x) and HC from aircrafts of China Civil Aviation increased from 0.31 thousand, 1.89 thousand, 2.25 thousand and 3.14 thousand tons in 1980 to 11.83 thousand, 72.98 thousand, 87.05 thousand and 121.59 thousand tons in 2009, indicating a increase of 0.397 thousand, 2.45 thousand, 2.92 thousand and 4.08 thousand tons per year, respectively. The emission intensities of SO2, CO, NO(x) and HC decreased significantly from 0.624, 3.806, 4.53 and 6.322 g x (t x km)(-1) in 1980 to 0.275, 1.697, 2.025 and 2.828 g x (t x km)(-1) in 2009, respectively. SO2, CO, NO(x) emissions of aircrafts of China Civil Aviation accounted very little of each total emissions in China, and the air pollutant emissions from aircrafts of China Civil Aviation was less than those from other industries in China.

  17. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt...

  18. The Association between Air Pollution and Population Health Risk for Respiratory Infection: A Case Study of Shenzhen, China.

    PubMed

    Xia, Xiaolin; Zhang, An; Liang, Shi; Qi, Qingwen; Jiang, Lili; Ye, Yanjun

    2017-08-23

    Nowadays, most of the research on air pollution and its adverse effects on public health in China has focused on megacities and heavily-polluted regions. Fewer studies have focused on cities that are slightly polluted. Shenzhen used to have a favorable air environment, but its air quality has deteriorated gradually as a result of development in recent years. So far, no systematic investigations have been conducted on the adverse effects of air pollution on public health in Shenzhen. This research has applied a time series analysis model to study the possible association between different types of air pollution and respiratory hospital admission in Shenzhen in 2013. Respiratory hospital admission was divided into two categories for comparison analysis among various population groups: acute upper respiratory infection and acute lower respiratory infection. The results showed that short-term exposure to ambient air pollution was significantly associated with acute respiratory infection hospital admission in Shenzhen in 2013. Children under 14 years old were the main susceptible population of acute respiratory infection due to air pollution. PM 10 , PM 2.5 and NO₂ were the primary air pollutants threatening respiratory health in Shenzhen. Though air pollution level is generally relatively low in Shenzhen, it will benefit public health to control the pollution of particulate matter as well as other gaseous pollutants.

  19. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  20. Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Okada, K.; Zaizen, Y.; Makino, Y.

    2003-07-01

    Aircraft observation of aerosols was conducted in February 2000, for spatial and vertical distributions of dicarboxylic acids in the free troposphere over the western to central North Pacific. Oxalic, malonic, adipic and azelaic acids were detected in the aerosol samples as the major species. Concentrations of these diacids decreased exponentially with an increase in altitude. They were higher in the western North Pacific (130°E) and decrease eastward. Local flights conducted over Naha (Okinawa), Iwo-jima and Saipan showed that diacid concentrations decreased from the lower to upper troposphere. In the atmosphere over Saipan, where the air is not strongly affected from polluted East Asia, diacid concentrations were almost below the detection limit. Vertical profiles of diacids over Naha and Iwo-jima would be typical over the western North Pacific during winter, suggesting that diacids were significantly injected to the free troposphere from East Asia. Backward air mass trajectories also suggested that the diacids in the free troposphere over the North Pacific are strongly affected by the outflow from East Asia. Diacids, which were produced by both primary emission and secondary photochemical processes in polluted air of East Asia, could alter the physico-chemical properties of aerosols in the free troposphere over the western North Pacific.

Top