Sample records for decrease blood glucose

  1. Is reducing variability of blood glucose the real but hidden target of intensive insulin therapy?

    PubMed

    Egi, Moritoki; Bellomo, Rinaldo; Reade, Michael C

    2009-01-01

    Since the first report that intensive insulin therapy reduced mortality in selected surgical critically ill patients, lowering of blood glucose levels has been recommended as a means of improving patient outcomes. In this initial Leuven trial, blood glucose control by protocol using insulin was applied to 98.7% of patients in the intensive group but to only 39.2% (P < 0.0001) of patients in the control group. If appropriately applied, such protocols should decrease both the mean blood glucose concentration and its variability (variation of blood glucose concentration). Thus, it is logically possible that the benefit of intensive insulin therapy in the first Leuven trial was due to a decrease in mean glucose levels, a decrease in their variability, or both. Several recent studies have confirmed significant associations between variability of blood glucose levels and patient outcomes. Decreasing the variability of blood glucose levels might be an important dimension of glucose management, a possible mechanism by which an intensive insulin protocol exerts its putative beneficial effects, and an important goal of glucose management in the intensive care unit. Clinicians need to be aware of this controversy when considering the application of intensive insulin therapy and interpreting future trials.

  2. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    PubMed

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  3. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy.

    PubMed

    Rudolph, A M

    2018-04-24

    Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.

  4. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients.

    PubMed

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok; Kang, Myung-Hee

    2015-02-01

    Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

  5. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  6. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients

    PubMed Central

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok

    2015-01-01

    BACKGROUND/OBJECTIVES Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes. PMID:25671068

  7. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer.

    PubMed

    Koepsell, Hermann

    2017-02-01

    Orally applied SGLT2 (SLC5A2) inhibitors that enter the blood and decrease renal reabsorption of glucose have been approved as antidiabetic drugs. They decrease blood glucose levels, slightly reduce body weight and blood pressure, and decrease the risk for diabetic nephropathy. The SGLT2 inhibitor empagliflozin has been shown to reduce the risk of severe cardiac failure. This review summarizes knowledge about the functions of SGLT2 and the pathophysiology of type 2 diabetes (T2D) and diabetic follow-up diseases. In addition, proposed pathophysiological mechanisms of therapeutic effects and of side effects of SGLT2 inhibitors are described. A recently investigated strategy to employ orally applied SGLT1 (SLC5A1) inhibitors for treatment of diabetes is discussed. The SGLT1 inhibitors reduce glucose absorption and decrease blood glucose excursions after the intake of glucose-rich food. Knowledge concerning the expression of SGLT1 in different organs is compiled and potential side effects of SGLT1 inhibitors entering the blood are discussed. Because selective targeting of SGLT1 expression presents a strategy to decrease SGLT1-mediated glucose absorption, current knowledge about the regulation of SGLT1 is also discussed. This includes the possibility to decrease SGLT1 abundance in the small intestinal brush-border membrane by a peptide derived from protein RS1 (RSC1A1) that regulates membrane trafficking. Finally the possibility to employ SGLT1 and SGLT2 as targets for anticancer therapy is discussed. SGLT1 and SGLT2 are expressed in various tumors where they supply the tumor cells with glucose for euglycemic glycolysis. Tumor growth of carcinoma expressing SGLT2 can be slowed down by an SGLT2 inhibitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model

    PubMed Central

    Kim, Chea-Ha

    2015-01-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level. PMID:25792867

  9. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    PubMed

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  10. The effect of unabsorbable carbohydrate on gut hormones. Modification of post-prandial GIP secretion by guar.

    PubMed

    Morgan, L M; Goulder, T J; Tsiolakis, D; Marks, V; Alberti, K G

    1979-08-01

    Five healthy volunteers and 6 diabetics were given a mixed test meal on two occasions--once with and once without 10 g guar flour. Addition of guar caused a 47% decrease in maximum post-prandial GIP levels, a 48% decrease in blood glucose and a 48% decrease in plasma insulin in normal subjects. In diabetics, addition of guar caused a 30% reduction in maximum post-prandial GIP and 58% decrease in blood glucose. Four normal and 6 diabetic subjects were given a predominantly carbohydrate meal, again with and without 10 g guar. Addition of guar caused a 78% decrease in blood glucose and a 59% decrease in plasma insulin in normal subjects. In diabetics addition of guar caused a 71% decrease in maximum post-prandial plasma GIP and a 68% decrease in blood glucose. Lowering of post-prandial blood glucose, plasma insulin and GIP levels by guar was statistically significant in every case. Addition of guar to the predominantly carbohydrate meal caused a decrease in total plasma GLI in both normal and diabetic subjects but reached statistical significance only in the normal subjects. There was a highly significant correlation (r = 0.83; p less than 0.0005) between peak post-prandial insulin levels in normal subjects and the corresponding plasma GIP concentration. The reduction of GIP or GLI secretion may, therefore, be partly responsible for the smaller rise in plasma insulin observed in normal volunteers when guar is added to meals.

  11. Glucose alert system improves health professional responses to adverse glycaemia and reduces the number of hyperglycaemic episodes in non-critical care inpatients.

    PubMed

    Kyi, M; Wraight, P R; Rowan, L M; Marley, K A; Colman, P G; Fourlanos, S

    2018-06-01

    To investigate the effect of a novel glucose alert system, comprising the Melbourne Glucose Alert Pathway and glucose-alert-capable networked blood glucose meters, on nursing and hospital medical officer responses to adverse glycaemia. A prospective, pre- and post-observational study was undertaken in non-critical care wards of a tertiary hospital over 4 months (n=148 or 660 patient-days). The intervention consisted of two components designed to promote a consistent staff response to blood glucose measurements: (1) a clinical escalation pathway, the Melbourne Glucose Alert Pathway, and (2) networked blood glucose meters, which provide a visual alert for out-of-range blood glucose measurement. All consecutive inpatients with diabetes were assessed for diabetes management and capillary blood glucose. The primary outcome was documented nursing and medical staff action in response to episodes of adverse glycaemia (blood glucose >15 mmol/l or <4 mmol/l). Secondary outcomes consisted of glycaemic measures. In response to episodes of adverse glycaemia, nursing action increased (proportion with nursing action: 45% to 73%; P<0.001), and medical action increased (proportion with medical action: 49% to 67%; P=0.011) with the glucose alert system in place. Patient-days with hyperglycaemia (any blood glucose value >15 mmol/l: 24% vs 16%; P=0.012) and patient-days with mean blood glucose >15 mmol/l (7.4% vs 2.6%; P=0.005) decreased. There was no difference in hypoglycaemia incidence. Use of a novel glucose alert system improved health professional responses to adverse glycaemia and decreased hyperglycaemia in the hospital setting. © 2018 Diabetes UK.

  12. Efficacy of Additional Canagliflozin Administration to Type 2 Diabetes Patients Receiving Insulin Therapy: Examination of Diurnal Glycemic Patterns Using Continuous Glucose Monitoring (CGM).

    PubMed

    Matsumura, Mihoko; Nakatani, Yuki; Tanka, Seiichi; Aoki, Chie; Sagara, Masaaki; Yanagi, Kazunori; Suzuki, Kunihiro; Aso, Yoshimasa

    2017-08-01

    The efficacy of administering a sodium-glucose cotransporter 2 inhibitor during insulin therapy has not been established. In this study, we examined its effects based on diurnal glycemic patterns using continuous glucose monitoring (CGM). The subjects were 15 patients who had received insulin therapy for 1 year or more. A CGM device was attached to all subjects for 1 week. The administration of canagliflozin at 100 mg was started 4 days after attachment. The mean glucose concentrations, standard deviation (SD), mean amplitude of glycemic excursions (MAGE), mean of daily difference of blood glucose (MODD), and area under the curve (AUC) (≥180, <70 mg h/dL) after the start of administration were compared with the pretreatment values. In addition, we compared changes in the number of insulin units between basal and bolus insulin. Furthermore, we investigated the influence of canagliflozin on oxidative stress markers and cytokines using 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), and adiponectin as parameters. The mean glucose concentrations decreased from 161.1 to 139.1 mg/dL (P < 0.01). The SD decreased from 36.5 to 29.6 mg/dL (P = 0.05). The MAGE decreased from 89.2 to 77.4 mg/dL (P < 0.01), and the MODD decreased from 34.3 to 25.5 mg/dL (P < 0.05). All parameters showed significant improvements in diurnal changes. AUC of ≥180, i.e., the total area of blood glucose levels at or above 180 on the blood glucose curve of CGM, decreased from 339.1 to 113.6 mg/dL (P < 0.05). AUC of <70, i.e., the total area of blood glucose levels below 70 on the blood glucose curve of CGM, slightly decreased from 1.6 to 0.3 mg/dL (P = 0.08). The total number of basal insulin units decreased from 128 to 76, and that of bolus insulin decreased from 266 to 154; the dose of insulin could be markedly decreased. In addition, the mean 8-OHdG level decreased from 11.4 to 10.8 ng/mg Cre (P < 0.05), and the mean TNF-α level decreased from 2.31 to 1.79 pg/mL (P = 0.10). The mean adiponectin level increased from 5.01 to 5.53 μg/mL (P < 0.05). Canagliflozin improved blood glucose changes in type 2 diabetes using insulin. In addition, the results suggest its antioxidant actions. University Hospital Medical Information Network (UMIN no. 000019429).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redies, C.; Hoffer, L.J.; Beil, C.

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less

  14. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  15. Glucose supply and insulin demand dynamics of antidiabetic agents.

    PubMed

    Monte, Scott V; Schentag, Jerome J; Adelman, Martin H; Paladino, Joseph A

    2010-03-01

    For microvascular outcomes, there is compelling historical and contemporary evidence for intensive blood glucose reduction in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). There is also strong evidence to support macrovascular benefit with intensive blood glucose reduction in T1DM. Similar evidence remains elusive for T2DM. Because cardiovascular outcome trials utilizing conventional algorithms to attain intensive blood glucose reduction have not demonstrated superiority to less aggressive blood glucose reduction (Action to Control Cardiovascular Risk in Diabetes; Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; and Veterans Affairs Diabetes Trial), it should be considered that the means by which the blood glucose is reduced may be as important as the actual blood glucose. By identifying quantitative differences between antidiabetic agents on carbohydrate exposure (CE), hepatic glucose uptake (HGU), hepatic gluconeogenesis (GNG), insulin resistance (IR), peripheral glucose uptake (PGU), and peripheral insulin exposure (PIE), we created a pharmacokinetic/pharmacodynamic model to characterize the effect of the agents on the glucose supply and insulin demand dynamic. Glucose supply was defined as the cumulative percentage decrease in CE, increase in HGU, decrease in GNG, and decrease in IR, while insulin demand was defined as the cumulative percentage increase in PIE and PGU. With the glucose supply and insulin demand effects of each antidiabetic agent summated, the glucose supply (numerator) was divided by the insulin demand (denominator) to create a value representative of the glucose supply and insulin demand dynamic (SD ratio). Alpha-glucosidase inhibitors (1.25), metformin (2.20), and thiazolidinediones (TZDs; 1.25-1.32) demonstrate a greater effect on glucose supply (SD ratio >1), while secretagogues (0.69-0.81), basal insulins (0.77-0.79), and bolus insulins (0.62-0.67) demonstrate a greater effect on insulin demand (SD ratio <1). Alpha-glucosidase inhibitors, metformin, and TZDs demonstrate a greater effect on glucose supply, while secretagogues, basal insulin, and bolus insulin demonstrate a greater effect on insulin demand. Because T2DM cardiovascular outcome trials have not demonstrated macrovascular benefit with more aggressive blood glucose reduction when using conventional algorithms that predominantly focus on insulin demand, it would appear logical to consider a model that incorporates both the extent of blood glucose lowering (hemoglobin A1c) and the means by which the blood glucose was reduced (SD ratio) when considering macrovascular outcomes. (c) 2010 Diabetes Technology Society.

  16. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse

    PubMed Central

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523

  17. Hypoglycemic effect of cooked Lupinus mutabilis and its purified alkaloids in subjects with type-2 diabetes.

    PubMed

    Baldeón, M E; Castro, J; Villacrés, E; Narváez, L; Fornasini, M

    2012-01-01

    Developing countries are experiencing an epidemic of chronic non-communicable chronic diseases with high socio-economic costs. Studies of traditional foods with beneficial health properties could contribute to diminish these problems. Legumes rich in proteins like Lupinus mutabilis decreases blood glucose and improves insulin sensitivity in animals and humans. We report the results of a phase II clinical trial conducted to assess the role of cooked L. mutabilis and its purified alkaloids on blood glucose and insulin in volunteers with diabetes. Results indicate that consumption of cooked L. mutabilis or its purified alkaloids decreased blood glucose and insulin levels. The decreases in serum glucose concentrations from base line to 90 minutes were statistically significant within both treatment groups; however, there were not differences between groups. Serum insulin levels were also decreased in both groups however the differences were not statistically significant. None of the volunteers in either group presented side effects.

  18. Alterations in brain glucose utilization accompanying elevations in blood ethanol and acetate concentrations in the rat.

    PubMed

    Pawlosky, Robert J; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L

    2010-02-01

    Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Rats were infused with solutions of sodium acetate, ethanol, or saline containing (13)C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs' cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of (13)C-glucose into the brain compared to controls and the concentration of brain (13)C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg(2+) in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, alpha-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD(+)]/[NADH] was lower, the free mitochondrial [NAD(+)]/[NADH] and [CoQ]/[CoQH(2)] were oxidized and the DeltaG' of ATP lowered by acetate infusion from -61.4 kJ to -59.9 kJ/mol. Animals with elevated levels of blood ethanol or acetate had decreased (13)C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in (13)C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in DeltaG' of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form.

  19. Alterations in Brain Glucose Utilization Accompanying Elevations in Blood Ethanol and Acetate Concentrations in the Rat

    PubMed Central

    Pawlosky, Robert J.; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T.; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L.

    2010-01-01

    Background Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Methods Rats were infused with solutions of sodium acetate, ethanol, or saline containing 13C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs’ cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Results Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of 13C-glucose into the brain compared to controls and the concentration of brain 13C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg2+ in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, α-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD+]/[NADH] was lower, the free mitochondrial [NAD+]/[NADH] and [CoQ]/[CoQH2] were oxidized and the ΔG′ of ATP lowered by acetate infusion from −61.4 kJ to −59.9 kJ/mol. Conclusions Animals with elevated levels of blood ethanol or acetate had decreased 13C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in 13C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in ΔG′ of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form. PMID:19951290

  20. Caffeoylsophorose, a new natural alpha-glucosidase inhibitor, from red vinegar by fermented purple-fleshed sweet potato.

    PubMed

    Matsui, Toshiro; Ebuchi, Sumi; Fukui, Keiichi; Matsugano, Kazusato; Terahara, Norihiko; Matsumoto, Kiyoshi

    2004-11-01

    The suppressive effect on the postprandial blood glucose rise through alpha-glucosidase (AGH) inhibition was investigated in this study in order to clarify an antihyperglycemic function of 6-O-caffeoylsophorose (CS) from diacylated anthocyanin. The administration of CS (100 mg/kg) following maltose (2 g/kg) to Sprague-Dawley rats resulted in the maximal blood glucose level after 30 min being significantly decreased by 11.1% compared to the control. A reduction in the serum insulin secretion was also observed in parallel to the decrease in blood glucose level. No blood glucose change was apparent when sucrose or glucose was ingested, suggesting that the antihyperglycemic effect of CS was achieved by maltase inhibition, rather than by sucrase or glucose transport inhibition. An AGH inhibitory assay demonstrated that the non-competitive maltase inhibition of CS was partly due to acylation by phenolic acid with sugar, the presence of hydroxyl groups in the aromatic ring, and the presence of an unsaturated alkyl chain in the acylated moiety.

  1. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test.

    PubMed

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko; Polotsky, Vsevolod Y

    2017-04-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (S I ), insulin independent glucose disposal [glucose effectiveness (S G )], and the insulin response to glucose (AIR G ) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased S G but did not affect S I and AIR G Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased S G , whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. Copyright © 2017 the American Physiological Society.

  2. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko

    2017-01-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (SI), insulin independent glucose disposal [glucose effectiveness (SG)], and the insulin response to glucose (AIRG) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased SG but did not affect SI and AIRG. Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased SG, whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. PMID:28104753

  3. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood.

    PubMed

    Thomé-Duret, V; Reach, G; Gangnerau, M N; Lemonnier, F; Klein, J C; Zhang, Y; Hu, Y; Wilson, G S

    1996-11-01

    The development of a hypoglycemic alarm system using a subcutaneous glucose sensor implies that a decrease in blood glucose is rapidly followed by a decrease in the signal generated by the sensor. In a first set of experiments the linearity and the kinetics of the response of sensors implanted in the subcutaneous tissue of normal rats were investigated during a progressive increase in plasma glucose concentration: the sensitivities determined between 5 and 10 mM and between 10 and 15 mM were not significantly different, and a 5-10 min delay in the sensor's response was observed. In a second set of experiments, performed in diabetic rats, the kinetics of the decrease in subcutaneous glucose concentration following insulin administration was monitored during a decrease in plasma glucose level, from 15 to 3 mmol/L. During the 20 first min following insulin administration, the sensor monitored glucose concentration in subcutaneous tissue with no lag time. Subsequently, the decrease in the estimation of subcutaneous glucose concentration preceded that of plasma glucose. This phenomenon was not observed when the same sensors were investigated in vitro during a similar decrease in glucose concentration and may be due to a mechanism occurring in vivo, such as the effect of insulin on glucose transfer from the interstitial space to the cells surrounding the sensor. It reinforces the interest of the use of implantable glucose sensors as a part of a hypoglycemic alarm.

  4. Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic mRNA levels for genes involved in regulation of food intake and metabolism

    USDA-ARS?s Scientific Manuscript database

    Chickens are characterized by rather unique glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic cells, and large resistance to exogenous insulin. In mammals, insulin regulates blood glucose level but also plays a key role in appetite regulation ...

  5. Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Wang, Zhixin; Xiang, Hongding

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum.

  6. Acarbose Reduces Blood Glucose by Activating miR-10a-5p and miR-664 in Diabetic Rats

    PubMed Central

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Wang, Zhixin; Xiang, Hongding

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum. PMID:24260283

  7. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.

    PubMed

    Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi

    2018-03-01

    To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.

  8. Repaglinide improves blood glucose control in sulphonylurea-naive type 2 diabetes.

    PubMed

    Van Gaal, L F; Van Acker, K L; De Leeuw, I H

    2001-09-01

    The prandial glucose regulator repaglinide has a rapid onset of action, a short half-life and is metabolised mainly by the liver. Here we report the findings of a 10-week, double-blind, parallel, placebo controlled, randomised trial with repaglinide in 25 diet-treated, sulphonylurea-naïve patients with Type 2 diabetes. Repaglinide was titrated, based on capillary blood glucose, from 0.5 mg to a maximum of 4 mg, preprandially with breakfast and dinner. After 10 weeks, repaglinide was associated with a decrease in HbA(1c) of 2.3%Hb relative to the placebo group (P=0.018). This reflected a 30% decrease within the repaglinide group from a mean HbA(1c) of 7.0 to 4.9%Hb (P<0.002). Repaglinide was also associated with a decrease in fructosamine, by 0.88 mmol/l, relative to placebo (P<0.001), with a 20% decrease (from 3.80 to 3.04 mmol/l) within the repaglinide group (P<0.001). Fasting and postprandial blood glucose concentrations decreased in association with repaglinide by 3.6 and 6.4 mmol/l, respectively, relative to placebo (P<0.001 in each case). Within the repaglinide group fasting and postprandial blood glucose decreased by 3.9 and 6.2 mmol/l, respectively (P<0.001 in each case). The number of patients reporting hypoglycaemia in the repaglinide group was similar to placebo (15 vs. 20, respectively; NS). Test meal assessments confirmed that repaglinide effectively controls glucose levels by stimulating mealtime insulin secretion. Fasting serum insulin concentration was not raised compared to baseline or placebo during repaglinide therapy, albeit that fasting glucose levels were decreased by repaglinide. Twice-daily meal-related insulin secretagogue therapy with repaglinide, a new short and rapid-acting prandial glucose regulator, is capable of improving all measures of glycaemic control without increased hypoglycaemia or fasting hyperinsulinaemia.

  9. Blood Glucose Monitoring Before and After Type 1 Diabetes Clinic Visits.

    PubMed

    Driscoll, Kimberly A; Johnson, Suzanne Bennett; Wang, Yuxia; Wright, Nancy; Deeb, Larry C

    2017-12-23

    To determine patterns of blood glucose monitoring in children and adolescents with type 1 diabetes (T1D) before and after routine T1D clinic visits. Blood glucose monitoring data were downloaded at four consecutive routine clinic visits from children and adolescents aged 5-18 years. Linear mixed models were used to analyze patterns of blood glucose monitoring in patients who had at least 28 days of data stored in their blood glucose monitors. In general, the frequency of blood glucose monitoring decreased across visits, and younger children engaged in more frequent blood glucose monitoring. Blood glucose monitoring increased before the T1D clinic visits in younger children, but not in adolescents. It declined after the visit regardless of age. Members of the T1D care team need to consider that a T1D clinic visit may prompt an increase in blood glucose monitoring when making treatment changes and recommendations. Tailored interventions are needed to maintain that higher level of adherence across time. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Use of a plastic insulin dosage guide to correct blood glucose levels out of the target range and for carbohydrate counting in subjects with type 1 diabetes.

    PubMed

    Kaufman, F R; Halvorson, M; Carpenter, S

    1999-08-01

    To improve glycemic control, a hand-held plastic Insulin Dosage Guide was developed to correct blood glucose levels outside of the target range. Protocol 1: Some 40 children (mean age 10.6+/-4.6 years) were randomly assigned for 3 months to use a written-on-paper algorithm or the Insulin Dosage Guide to correct abnormal blood glucose levels. Mean HbA1c and blood glucose levels and time to teach insulin dosage correction were compared. Protocol 2: The Insulin Dosage Guide was used by 83 subjects (mean age 11.4+/-4.3 years) for 1 year, and mean HbA1c levels, blood glucose levels, and number of consecutive high blood glucose values taken before and after the year were compared. Protocol 3: Some 20 patients (mean age 10.1+/-3.7 years) using rapid-acting insulin and 64 patients (mean age 15.9+/-3.6 years) using an insulin pump and rapid-acting insulin used the Insulin Dosage Guide and had mean blood glucose levels, HbA1c, and percentage of blood glucose levels outside of the target range determined. Protocol 1: There was a significant reduction in mean HbA1c (P = 0.04) and blood glucose levels (P = 0.05) and in the time needed to teach how to correct blood glucose values using the Insulin Dosage Guide compared with the paper algorithm. Protocol 2: There was a decrease in mean HbA1c levels (P = 0.0001) and a decrease in the mean number of consecutive blood glucose levels (P = 0.001) over the 1-year time period. Protocol 3: With rapid-acting insulin, there was a significant increase in the percentage of blood glucose levels within the target range (1 month, P = 0.04; at 3 months, P = 0.03). With the insulin pump, there was a high rate (90%) of blood glucose levels in the target range during pump initiation when the Insulin Dosage Guide was used. This inexpensive hand-held plastic card, which is portable and easy to use, may help patients improve glycemia and successfully manage diabetes.

  11. Effect of decrease in both postprandial blood glucose (PBG) and fasting blood glucose (FBG) levels in normal beagle dogs with nateglinide enteric coated granules and immediate release tablets.

    PubMed

    Makino, Chisato; Ninomiya, Nobutaka; Sakai, Hidetoshi; Orita, Haruo; Okano, Akira; Yabuki, Akira

    2006-04-01

    Nateglinide is a new quick action/short duration (QRSD) type of oral blood glucose regulator, and nateglinide immediate release tablets are used for patients with mild diabetes under the trade name of Fastic((R)) tablets. In this study, we attempted to determine if it was possible to control both post-prandial blood glucose level (PBG) and fasting blood glucose level (FBG) for moderate or severe diabetes through controlled release of nateglinide. Enteric coated granules were selected for the administration form for controlled release of nateglinide, and three types of enteric coated granules were prepared having dissolution pH values of 5.5, 6.5 and 7.2. The three types of enteric coated granules were each administered separately or the enteric coated granules having an dissolution pH of 6.5 were administered simultaneous to administration of nateglinide immediate release tablets to normal beagle dogs just before feeding followed by measurement of plasma nateglinide concentration, plasma insulin concentration and blood glucose level. In the case of administering enteric coated granules alone (nateglinide: 9 mg/kg), the absorption of nateglinide was confirmed to tend to be delayed as the dissolution pH increased. In the case of an dissolution pH of 5.5, decreases in both PBG and FBG were observed. In the case of dissolution pH values of 6.5 and 7.2, only decrease in FBG was observed. In case of nateglinide immediate release tablets (nateglinide: 9 mg/kg), only decrease in PBG was observed. Decreases in both PBG and FBG were observed in the case of simultaneous administration of dissolution pH 6.5 enteric coated granules and nateglinide immediate release tablets just before feeding (nateglinide: 90 mg/head+60 mg/head). A correlation was observed between plasma nateglinide concentrations and blood glucose levels. On the other hand, there were no correlations observed between changes in plasma insulin concentrations and blood glucose levels. In case of nateglinide immediate release tablets (nateglinide: 150 mg/head), Decreases in both PBG and FBG were observed. However, the nateglinide controlled release formulation is more useful than the nateglinide immediate release tablets from the view point of avoidance of side effect, or of easy control of both PBG and FBG. On the basis of these results, the design of a controlled release formulation that contains nateglinide was suggested to enable control of both PBG and FBG for moderate and severe diabetes patients.

  12. Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration.

    PubMed

    Perinpam, Majuran; Ware, Erin B; Smith, Jennifer A; Turner, Stephen T; Kardia, Sharon L R; Lieske, John C

    2017-10-01

    Urinary citrate (Ucit) protects against urinary stone formation. Acid base status and diet influence Ucit. However, the effect of demographics, diet, and glucose metabolism on Ucit excretion, urinary pH (U-pH) and net gastrointestinal alkali absorption (NAA) are not known. Twenty-four hour urine samples, blood glucose, creatinine, and cystatin C were obtained from non-Hispanic white sibships in Rochester, MN ( n  = 446; 64.5 ± 9 years; 58% female). Diet was assessed by a food frequency questionnaire. The impact of blood glucose, demographics and dietary elements on Ucit excretion, U-pH, and NAA were evaluated in bivariate and multivariable models and interaction models that included age, sex, and weight. NAA significantly associated with Ucit and U-pH In multivariate models Ucit increased with age, weight, eGFR C ys , and blood glucose, but decreased with loop diuretic and thiazide use. U-pH decreased with serum creatinine, blood glucose, and dietary protein but increased with dietary potassium. NAA was higher in males and increased with age, weight, eGFR C ys and dietary potassium. Significant interactions were observed for Ucit excretion with age and blood glucose, weight and eGFR C ys, and sex and thiazide use. Blood glucose had a significant and independent effect on U-pH and also Ucit. This study provides the first evidence that blood glucose could influence urinary stone risk independent of urinary pH, potentially providing new insight into the association of obesity and urinary stone disease. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. [Study on the hypoglycemic activity of different extracts of wild Psidium guajava leaves in Panzhihua Area].

    PubMed

    Wang, Bo; Liu, Heng-Chuan; Ju, Chang-Yan

    2005-11-01

    To illuminate the role of water-soluble, 650 ml/L edible alcohol and 950 ml/L edible alcohol-soluble extracts of wild Psidium guajava leaves in Panzhihua Area in decreasing blood glucose. High-level blood glucose models were made by use of male Kunming mice given intraperitoneal injection of glucose, subcutaneous injection of adrenaline and intraperitoneal injection of streptozotocin (STZ), respectively. Blood glucose concentration was measured after oral administration (gastrogavage) of the soluble extracts of Psidium guajava leaves, respectively. Body weight and organ morphology were observed, and organ index was obtained. The All available indexes were statistically analyzed in comparing the study groups and control group. three extracts resisted the rise of blood glucose level induced by exogenous glucose and adrenaline to various degrees. The extracts of water, 650 ml/L alcohol and 950 ml/L alcohol significantly decreased the blood glucose level in STZ-induced diabetic mice by 36.3%, 33.5% and 31.3% respectively. Furthermore, among three extracts, water-soluble extract showed little influence on the growth of mice. The water-soluble, 650 ml/L edible alcohol and 950 ml/L edible alcohol-soluble extracts of wild Psidium guajava leaves in Panzhihua area may have different hypoglycemic potential.

  14. [Life style interventions study on the effects of impaired glucose regulations in Shanghai urban communities].

    PubMed

    Zhou, Jianjun

    2011-05-01

    To access the effects of life style interventions on impaired glucose regulation (IGR) in Shanghai urban communities, China. Two communities were randomly cluster-sampled to be carried out epidemiological intervention trial. Totally, 232 subjects with IGR were randomly allocated into 4 groups: control group,sports intervention group, diet intervention group, and sports and diet intervention group with the physical examinations in the baseline and end of this study respectively. Tests for fasting blood glucose, OGTT, HbA1c, total cholesterol,etc. were done. Data statistical analysis was occupied in SPSS 16.0. Compared to subjects of control group,fasting blood glucose, OGTT, HbAlc,total cholesterol,BMI,waist hip ratio and blood pressures were significantly decreased among subjects with three interventions (P < 0.05). Triglyceride were significantly decreased among subjects with sports intervention and sports and diet intervention (P < 0.05). High density lipids was significantly increased among subjects with sports and diet intervention (P < 0.05). There was a significant difference in 6 months cumulative incidence of diabetes mellitus between control group and interventions groups (8.6% vs. 0, Fisher' s exact P = 0.002), and the rate of transferring into normal blood glucose levels (fasting blood glucose < 5.6 mmol/L and 2 hours OGTT < 7.8 mmol/L) in control group was lower than those in three interventions group (3.4% vs. 8.6%, 14.0% and 16.9%, respectively) but only significant difference was observed between control group and sports and diet intervention group (OR = 5.74, 95% CI 1. 19-27. 64, P = 0.029). The life style interventions could decrease the risk of diabetes mellitus, help their transferring into normal blood glucose, and improve diabetic measures for the IGR population in Shanghai urban communities.

  15. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure.

    PubMed

    White, Michel; Lepage, Serge; Lavoie, Joel; De Denus, Simon; Leblanc, Marie-Hélène; Gossard, Denis; Whittom, Lucette; Racine, Normand; Ducharme, Anique; Dabouz, Farida; Rouleau, Jean-Lucien; Touyz, Rhian

    2007-03-01

    We assessed the effects of candesartan in addition to angiotensin-converting enzyme (ACE) inhibitors on N-terminal pro-type natriuretic peptide (Nt-proBNP), systemic markers of inflammation and oxidative stress as well as on glucose regulation in patients with heart failure (HF). Eighty patients with HF ages 62.5 +/- 8.4 years presenting mostly with New York Heart Association class II symptoms (class II = 57.5%, III = 41.3%), and mean left ventricular ejection fraction 27.1 +/- 7.3% were recruited. The patients were randomized to receive candesartan titrated to 32 mg 1 per day versus placebo in double-blind fashion for 6 months. Nt-proBNP, markers of inflammation and oxidative stress, glucose, insulin, and fasting insulin resistance index were analyzed. Candesartan decreased Nt-proBNP (median value = 12.4% versus -20.4%; [candesartan] P = .05), and high-sensitivity C-reactive protein (hsCRP) (+5.32% versus -20.3% [candesartan]; P = 0.046), without significantly influencing serum interleukin-6, interleukin-18, adhesion molecules, or markers of oxidative stress. Blood glucose decreased in patients treated with candesartan with a significantly greater effect in patients with higher blood glucose levels (P < .01 for interaction). The addition of candesartan to ACE inhibitor and beta-blocker decreases Nt-proBNP and hsCRP, but does not change the other markers of inflammation or oxidative stress in patients with heart failure. Dual angiotensin-II suppression also decreased blood glucose with a greater impact in patients with higher blood glucose level.

  16. Effects of rehabilitation management on gastric emptying function in older adults with diabetes.

    PubMed

    Shao, Z M; Yao, J F; Chen, J; Yu, Z W; Yu, X F; Zheng, J J; Tang, X

    2014-01-24

    The relationship between gastric emptying dysfunction and blood glucose concentration in elderly with type 2 diabetes mellitus was investigated, and the effect of rehabilitation exercise prescription training on gastric emptying in the geriatric diabetic patients was evaluated. A total of 160 older type 2 diabetic adults and 30 cases of non-diabetic patients were studied with regard to the gastric half emptying time (GET1/2) of solid meals radiolabelled with 99mTc. Eighty delayed gastric emptying diabetic patients were randomly divided into 4 four groups: rehabilitation exercise + mosapride group (N = 20), rehabilitation exercise group (N = 20), mosapride group (N = 20), and control group (N = 20). The level of blood glucose was measured every six months in a two-year follow-up. The solid GET1/2 of regulated blood glycemic control patients showed no statistically significant differences from non-diabetic patients (P > 0.05). However, the value for poor blood glycemic control patients exhibited significant statistical differences compared with both non-diabetic (P < 0.01) and regulated blood glycemic control group patients (P < 0.01). It showed that the gastric emptying time improved in the rehabilitation exercise group, mosapride group and rehabilitation exercise group + mosapride group after two years of treatment (P < 0.05). Fasting blood glucose in both rehabilitation exercise group and rehabilitation exercise + mosapride group was significantly decreased. Postprandial blood glucose in the rehabilitation exercise group, mosapride group, rehabilitation exercise group + mosapride group was significantly decreased. High blood glucose level can delay gastric emptying in older type 2 diabetic patients. Gastric emptying and blood glucose control affect each other. It was shown that appropriate rehabilitation exercise combined with prokinetic agent may improve gastric emptying in some geriatric type 2 diabetic patients and help control their blood glucose.

  17. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  18. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.

    PubMed

    Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan

    2017-10-01

    Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.

  19. Novel nutraceutic therapies for the treatment of metabolic syndrome

    PubMed Central

    Martínez-Abundis, Esperanza; Méndez-del Villar, Miriam; Pérez-Rubio, Karina G; Zuñiga, Laura Y; Cortez-Navarrete, Marisol; Ramírez-Rodriguez, Alejandra; González-Ortiz, Manuel

    2016-01-01

    Nutraceutic therapies such as berberine, bitter melon, Gymnema sylvestre, Irvingia gabonensis, resveratrol and ursolic acid have been shown to help control metabolic syndrome (MetS). The effect of berberine on glucose and lipid metabolism, hypertension, obesity and MetS has been evaluated in animal models and humans. Most clinical trials involving bitter melon have been conducted to evaluate its effect on glucose metabolism; nevertheless, some studies have reported favorable effects on lipids and blood pressure although there is little information about its effect on body weight. Gymnema sylvestre helps to decrease body weight and blood sugar levels; however, there is limited information on dyslipidemia and hypertension. Clinical trials of Irvingia gabonensis have shown important effects decreasing glucose and cholesterol concentrations as well decreasing body weight. Resveratrol acts through different mechanisms to decrease blood pressure, lipids, glucose and weight, showing its effects on the population with MetS. Finally, there is evidence of positive effects with ursolic acid in in vitro and in vivo studies on glucose and lipid metabolism and on body weight and visceral fat. Therefore, a review of the beneficial effects and limitations of the above-mentioned nutraceutic therapies is presented. PMID:27076875

  20. Preabsorptive insulin release and hypoglycemia in rats.

    PubMed

    Louis-Sylvestre, J

    1976-01-01

    Peripheral blood glucose and immunologically reactive insulin levels were determined in freely moving normal rats which were submitted either to a free oral glucose load or to a gastric administration of the glucose load. Identical determinations were performed in ventromedial hypothalamic nucleus-(VMH) lesioned and vagotomized rats after the same oral intake. It was demonstrated that: 1) a free oral glucose intake was immediately followed by two peaks of insulun release and a resultant decrease in blood glucose; 2) a gastric glucose load resulted in a single peak of insulin release and the concomitant decline in blood glucose; 3) the recorded blood glucose level was the resultant of the insulin-induced hypoglycemia and the postabsorptive hyperglycemia; and 4) the responses were largely exaggerated in VMH-lesioned rats and abolished by vagotomy. It is concluded that the early prandial insulin release reflexly induced by food-related stimuli temporarily enhances the metabolic conditions which provoke feeding.

  1. Microdialysis of glucose in subcutaneous adipose tissue up to 3 weeks in healthy volunteers.

    PubMed

    Wientjes, K J; Vonk, P; Vonk-van Klei, Y; Schoonen, A J; Kossen, N W

    1998-09-01

    To measure possible changes in dialysate glucose concentrations over time, to validate the diffusional model for glucose transport from tissue to the probe, and to evaluate the actual glucose concentration in adipose tissue. Glucose concentrations in the subcutaneous adipose tissue of five healthy subjects (age 25 +/- 2.7 years, BMI 23.2 +/- 2.3 kg/m2 [mean +/- SD]) were measured by the microdialysis technique and compared with blood glucose. We applied microdialysis probes with hollow fibers of various membrane length (10-35 mm), used eight perfusion flow rates (0.5-20 microl/min), and perfused four glucose solutions (0.0, 2.8, 8.3, 11.1 mmol/l). After implantation, a substantial decrease in glucose recovery to the lowest value of 26 +/- 10% of the final plateau value was noted during the first few hours (n = 4). Recovery increased and stabilized after 5-9 days at 84.0 +/- 7.4% of capillary blood glucose when a flow rate of 0.5 microl/min was applied. According to the zero net-flux method, the glucose concentration in equilibrium, Cequi, with the surrounding tissue can be obtained. This concentration also decreases; however, 1 h after recovery, Cequi increases again over 1 or 2 days to a stable value that is not significantly different from the measured capillary blood glucose (P < 0.05). Using various perfusion flow rates and probes (membrane length 10-35 mm), it is shown that diffusion is the rate-limiting process for glucose transport through tissue. Insertion of the microdialysis probes causes damage to the adipose cells and the vascular bed around the probe. Glucose recovery decreases because of a lower blood supply. In 5-9 days, glucose recovery increases; apparently, this time is needed to repair the microstructure of tissue around the probe. After stabilization of the recovery, no loss of probe permeability, which is due to biocompatibility problems, was seen. The change during the 2 days in equilibrium concentration is probably caused by an inflammation reaction that consumes glucose around the probe. The individual increase in recovery during the 1st days after probe insertion until a stable plateau value is reached (flow rate >0 microl/min) is complicated for short-term clinical glucose measurements in adipose tissue. After stabilization, the mean equilibrium concentration of all subjects was equal to the mean capillary blood glucose concentration. Therefore, we conclude that capillary blood glucose concentration probably is the driving force for diffusion through the capillary wall into the probe and is not some interstitial concentration.

  2. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    PubMed

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  3. The Influence of Insulin Injections and Infusions on Eating and Blood Glucose Level in the Rat,

    DTIC Science & Technology

    then a sudden rise ensues. Continuous infusion of insulin in normal rats induces hyperphagia : blood glucose decreases slowly to 50 mg%; at which...insulin into static obese hypothalamic subjects (whose daily food intake is fairly normal) leads to renewed hyperphagia , but the fluctuations in blood

  4. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  5. Testosterone is protective against impaired glucose metabolism in male intrauterine growth-restricted offspring

    PubMed Central

    Dasinger, John Henry; Fahling, Joel M.; Backstrom, Miles A.; Alexander, Barbara T.

    2017-01-01

    Placental insufficiency alters the intrauterine environment leading to increased risk for chronic disease including impaired glucose metabolism in low birth weight infants. Using a rat model of low birth weight, we previously reported that placental insufficiency induces a significant increase in circulating testosterone in male intrauterine growth-restricted offspring (mIUGR) in early adulthood that is lost by 12 months of age. Numerous studies indicate testosterone has a positive effect on glucose metabolism in men. Female growth-restricted littermates exhibit glucose intolerance at 6 months of age. Thus, the aim of this paper was to determine whether mIUGR develop impaired glucose metabolism, and whether a decrease in elevated testosterone levels plays a role in its onset. Male growth-restricted offspring were studied at 6 and 12 months of age. No impairment in glucose tolerance was observed at 6 months of age when mIUGR exhibited a 2-fold higher testosterone level compared to age-matched control. Fasting blood glucose was significantly higher and glucose tolerance was impaired with a significant decrease in circulating testosterone in mIUGR at 12 compared with 6 months of age. Castration did not additionally impair fasting blood glucose or glucose tolerance in mIUGR at 12 months of age, but fasting blood glucose was significantly elevated in castrated controls. Restoration of elevated testosterone levels significantly reduced fasting blood glucose and improved glucose tolerance in mIUGR. Thus, our findings suggest that the endogenous increase in circulating testosterone in mIUGR is protective against impaired glucose homeostasis. PMID:29145418

  6. The albumin-exendin-4 recombinant protein E2HSA improves glycemic control and β-cell function in spontaneous diabetic KKAy mice.

    PubMed

    Li, Caina; Hou, Shaocong; Liu, Shuainan; Huan, Yi; Sun, Sujuan; Liu, Quan; Shen, Zhufang

    2017-06-19

    E2HSA is a genetic fusion protein that consists of two tandem exendin-4 molecules that are covalently bonded to recombinant human serum albumin via a peptide linker. Previous studies have demonstrated that E2HSA significantly decreased blood glucose levels, improved β-cell function and promoted β-cell proliferation in diabetic db/dB mice. This study aimed to evaluate the benefits of E2HSA on glucose and lipid metabolism in a spontaneous diabetes animal model, KKAy mice. E2HSA was acutely administered at doses of 1, 3 and 9 mg/kg by subcutaneous injection in diabetic KKAy mice with exendin-4 (2 μg/kg) as a positive reference, and then the non-fasting blood glucose and food intake levels were dynamically monitored. In addition, different doses of E2HSA were injected once daily, as well as with exendin-4 twice daily, for 7 weeks to evaluate the effect on glucose and lipid metabolism, as well as the body weight, food and water intake. Single injection of E2HSA decreased non-fasting blood glucose and food intake levels in a dose-dependent manner for 4 days and 2 days, respectively. Repeated injections with E2HSA significantly decreased variations in blood glucose levels with a reduction of HbA1c levels by 1.6% at a 9 mg/kg dose, simultaneously increased fasting blood insulin levels, inhibited fasting blood glucagon levels, improved the impaired oral glucose tolerance and enhanced glucose infusion rate, which is the gold standard for evaluating β-cell function. Moreover, repeated injections with E2HSA also ameliorated the dyslipidemia and reduced body weight, food and water intake in diabetic KKAy mice. E2HSA significantly reduced blood glucose levels over a prolonged duration, enhanced β-cell function, and ameliorated dyslipidemia and obesity in diabetic KKAy mice. Thus, E2HSA may be a new candidate for the treatment of type 2 diabetes.

  7. Glucose monitoring system using nanopellets.

    PubMed

    Rajasekaran, C; Nirmala, Madian; Jayanthi, K B

    2017-02-01

    The combination of the fields of software engineering, gadgets, and science has stood out among the most revolutionary future innovations. Health issues have been the focus of various engaging and explanatory studies. One such health-related dilemma is diabetes. Diabetes at its serious stage results in impaired vision. Increase in the glucose level is a critical parameter that could result in hyperglycaemia, hypoglycaemia, massive heart attack, strokes, and aneurysms. Monitoring the glucose level in blood is one of the control measures for diabetes in the affected population. A glucose monitoring framework interminably measures and screens the glucose level in blood. A novel framework for measuring the glucose level is proposed in this study. This study employs nanopellets that evaluate the glucose level. When the glucose level increases or decreases, it is continuously recorded and displayed using a microcontroller (mixed signal processor (MSP) 430). The data are then sent to the physician through global system for mobile communication. The typical blood glucose level of human being ranges from 70 to 110 mg/dl. When the insulin level builds up to certain point, hyperglycaemia occurs. When decreases, hypoglycaemia occurs. Hyperglycaemia leads to cataracts, oedema, hypertension, polyuria, and polydipsia. Hypoglycaemia causes perplexity, energy, insensateness, coma, and death.

  8. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    PubMed

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  9. Shinrin-yoku (forest-air bathing and walking) effectively decreases blood glucose levels in diabetic patients

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Y.; Yabunaka, Noriyuki; Takayama, Shigeru

    The influence of ''shinrin-yoku'' (forest-air bathing and walking) on blood glucose levels in diabetic patients was examined. Eighty-seven (29 male and 58 female) non-insulin-dependent diabetic patients [61 (SEM 1) years old] participated in the present study. Shinrin-yoku was performed nine times over a period of 6 years. The patients were divided into two parties. They then walked in the forest for 3 km or 6 km according to their physical ability and/or the existence of diabetic complications. The mean blood glucose level after forest walking changed from 179 (SEM 4) mg . 100 ml-1 to 108 (SEM 2) mg . 100 ml-1 (P<0.0001). The level of glycated haemoglobin A1c also decreased from 6.9 (SEM 0.2)% (before the first shinrin-yoku) to 6.5 (SEM 0.1)% (after the last shinrin-yoku; P<0.05). Blood glucose values declined by 74 (SEM 9) mg . 100 ml-1 and 70 (SEM 4) mg . 100 ml-1 after short- and long-distance walking respectively. There was no significant difference between these values. Since the forest environment causes changes in hormonal secretion and autonomic nervous functions, it is presumed that, in addition to the increased calorie consumption and improved insulin sensitivity, walking in a forest environment has other beneficial effects in decreasing blood glucose levels.

  10. Effect of intrapleural oxytocin injection on blood glucose level in rat (rattus norvegicous).

    PubMed

    Dezhkam, Y; Dezhkam, N

    2014-01-01

    The effect of Oxytocin on energy metabolism is still question. The aim of the present study was to investigate the effect of exogenous oxytocin injection in different dose and timetable on blood glucose level in rat. In this study 16 adult female rats were divided into 2 groups (Treatment 1(T1) and Treatment 2(T2)). T1 with 8 adult female rats received 0.2 IU/Kg oxytocin via intrapleural (IP) and blood glucose level was tested at 0th, 20th, 40th and 60th min after injection by collecting the blood from jugular vein. In T2 eight female rats received 0.4 IU/kg oxytocin via IP taking blood glucose measure at the same minutes as T1. The experiment tested in three replicates. Blood glucose meter (Model: 3TMSO1G) was used with glucose smart blood glucose monitoring system to the measurement of blood glucose level in rats. Data were analyzed using the GLM procedure of SAS (SAS, version 9) PDIFF was used to compare least square means among treatments adjusting by tukey test. There were hypoglycemic tendency in the changes of the blood glucose level in both T1 and T2, 20th min after injection (88.79 ± 3.28, 68.58 ± 3.63, respectively), while in the remaining subjects (4th and 60th min) blood glucose level increased (115.54 ± 4, 79.7 ± 2.09 and 136.33 ± 5.8, 123.54 ± 0.9, respectively). These results showed that blood glucose level in T1 significantly higher than T2 (p < 0.0001). These in vivo results showed that exogenous oxytocin can be good choice to decrease the blood glucose level very fast.

  11. Impaired cerebral development in fetuses with congenital cardiovascular malformations: Is it the result of inadequate glucose supply?

    PubMed

    Rudolph, Abraham M

    2016-08-01

    Cerebral development may be impaired in fetuses with congenital cardiovascular malformations, particularly hypoplastic left heart syndrome (HLHS) and aortopulmonary transposition (APT). The decreased cerebral arterial pusatility index observed in some of these fetuses led to the belief that cerebral vascular resistance was reduced as a result of arterial hypoxemia and cerebral hypoxia is thought to be responsible for impaired cerebral growth. However, other hemodynamic factors could affect pulsatility index. I propose that cerebral blood flow is reduced in fetuses with HLHS and that reduced glucose, rather than oxygen, delivery interferes with cerebral development. This is based on the fact that most of these fetuses do not have lactate accumulation in the brain.In fetuses with APT, umbilical venous blood, containing oxygen and glucose derived across the placenta, is distributed to the lungs and lower body; venous blood, with low oxygen and glucose content, is delivered to the ascending aorta and brain. Oxygen and glucose delivery may further be reduced by decreased cerebral blood flow resulting from run-off of aortic blood through the ductus arteriosus to the pulmonary circulation during diastole. In APT fetuses, lack of lactate in the brain also supports my proposal that glucose deficiency interferes with cerebral development.

  12. Physical and mathematical aspects of blood-glucose- and insulin-level kinetics in patients with coronary heart disease and high risk of its development

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinova, Lidia I.; Malinov, Igor A.

    2001-05-01

    The intravenous glucose tolerance test was performed to estimate the kinetics of blood glucose and insulin levels. Glucose was injected in individual standardized dose (0.5 g. per 1 kg of body weight). Three groups of patients were checked up: 1) patients with coronary heart disease verified by cicatricial alterations in myocardium found by electrocardiographic and echocardiographic methods; 2) children of patients with transmural myocardial infarction practically healthy at the moment of study; 3) persons practically healthy at the moment of study without any indications on cardiovascular diseases and non-insulin dependent diabetes mellitus among all ancestors and relatives who frequently were long-livers. Last groups didn't differ by age and sex. Peripheral blood glucose level, immunoreactive and free insulin (tested by muscular tissue) were studied just before glucose injection (on an empty stomach) and 4 times after it. The received discrete data were approximated by high degree polynomials, the estimation of blood glucose and insulin time functions symmetric was performed. The deceleration of degradation of insulin circulating in peripheral blood and the time decrease of second phase of insulin secretion were analytically established. This fact proves the complicated mechanism of insulin alterations in atherosclerosis, consisting not only of insulin resistance of peripheral tissues but of decrease of plastic processes in insulin- generating cells.

  13. Atypical blood glucose response to continuous and interval exercise in a person with type 1 diabetes: a case report.

    PubMed

    Moser, Othmar; Tschakert, Gerhard; Mueller, Alexander; Groeschl, Werner; Pieber, Thomas R; Koehler, Gerd; Eckstein, Max L; Bracken, Richard M; Hofmann, Peter

    2017-06-30

    Therapy must be adapted for people with type 1 diabetes to avoid exercise-induced hypoglycemia caused by increased exercise-related glucose uptake into muscles. Therefore, to avoid hypoglycemia, the preexercise short-acting insulin dose must be reduced for safety reasons. We report a case of a man with long-lasting type 1 diabetes in whom no blood glucose decrease during different types of exercise with varying exercise intensities and modes was found, despite physiological hormone responses. A Caucasian man diagnosed with type 1 diabetes for 24 years performed three different continuous high-intensity interval cycle ergometer exercises as part of a clinical trial (ClinicalTrials.gov identifier NCT02075567). Intensities for both modes of exercises were set at 5% below and 5% above the first lactate turn point and 5% below the second lactate turn point. Short-acting insulin doses were reduced by 25%, 50%, and 75%, respectively. Measurements taken included blood glucose, blood lactate, gas exchange, heart rate, adrenaline, noradrenaline, cortisol, glucagon, and insulin-like growth factor-1. Unexpectedly, no significant blood glucose decreases were observed during all exercise sessions (start versus end, 12.97 ± 2.12 versus 12.61 ± 2.66 mmol L -1 , p = 0.259). All hormones showed the expected response, dependent on the different intensities and modes of exercises. People with type 1 diabetes typically experience a decrease in blood glucose levels, particularly during low- and moderate-intensity exercises. In our patient, we clearly found no decline in blood glucose, despite a normal hormone response and no history of any insulin insensitivity. This report indicates that there might be patients for whom the recommended preexercise therapy adaptation to avoid exercise-induced hypoglycemia needs to be questioned because this could increase the risk of severe hyperglycemia and ketosis.

  14. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  15. Effect of a new hypoglycemic agent, A-4166 [(-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine], on postprandial blood glucose excursion: comparison with voglibose and glibenclamide.

    PubMed

    Ikenoue, T; Okazaki, K; Fujitani, S; Tsuchiya, Y; Akiyoshi, M; Maki, T; Kondo, N

    1997-04-01

    (-)-N-(trans-4-Isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166) is a new nonsulfonylurea hypoglycemic agent that lowers blood glucose by stimulating insulin release. In the present study, we examined the effects of A-4166, voglibose (an alpha-glucosidase inhibitor), and glibenclamide (a sulfonylurea) on the postprandial glycemic increase in rats with or without diabetes mellitus. Oral administration of A-4166 (25-100 mg/kg) dose-dependently decreased blood glucose with a rapid onset and short duration in normal rats. On the other hand, glibenclamide (1-4 mg/kg) showed a slower onset of its hypoglycemic action, and voglibose (0.2 mg/kg) had no effect. In the case of postprandial glucose excursion, the carbohydrate-induced increase in blood glucose was reduced by oral administration of either A-4166 or voglibose without causing sustained hypoglycemia in both normal and neonatal streptozotocin-induced diabetic rats. However, the efficacy of voglibose varied with the type of carbohydrate load. Glibenclamide produced a prolonged decrease in blood glucose without any appreciable effect on the initial glucose excursion. After sucrose loading, plasma insulin levels during the initial 1 h were significantly higher in A-4166-treated rats than in control rats, while voglibose completely inhibited the insulin response to sucrose. In glibenclamide-treated rats, an augmented insulin response was not seen. In conclusion, unlike other hypoglycemic agents, A-4166 suppresses postprandial glucose excursions by stimulating the early phase of insulin secretion.

  16. Effect of aqueous extract of tops of date palm leaves on blood glucose of diabetic rats.

    PubMed

    Ismail, Mohamed Saleh; Abuzaid, Omar Ibrahim; El-Ashmawy, Ibrahim Mohamed

    2017-09-01

    Present study was carried out to examine the effect of tops of date palm leaves extract on blood glucose of streptozotocin induced diabetic rats. Forty male Sprague Dawely rats (120-130g) were housed individually and randomly allocated to two main groups; diabetic group (n=30), and normal group (n=10) in the animal lab, Faculty of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia. An aqueous extracts were prepared from tops of date palm leaves (EDPL) and were orally administered to rats. Later, the determination of glucose, BUN, creatinine, uric acid, ALT, and AST was examined. Pancreas sample were taken for histopathological examination. It was clear that the higher the concentration of EDPL the lower the weight gain (P<0.001). Glucose concentration of normal group changed by - 0.79% and decreased by -20.4% among diabetic control group, while feeding 1% and 2% EDPL had no significant effects, and the higher the amount of EDPL the higher the concentration of blood glucose. The thought that tea made from date palm leaves decrease blood glucose level has been denied by the results of this study and this tea may worsen diabetes patient's status.

  17. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  18. Hypoglycaemic and hypolipidaemic effects of low GI and medium GL Indian diets in type 2 diabetics for a period of 4 weeks: a prospective study.

    PubMed

    Pande, Ashwini; Krishnamoorthy, Geetha; Moulick, N D

    2012-09-01

    This prospective study reports significant hypoglycaemic and hypolipidaemic effects in type 2 diabetic subjects who were provided the complete diet plan to be on low glycaemic index (GI) and low-medium glycaemic load (GL) Indian vegetarian snacks and mixed meals for 4 continuous weeks. Five millilitres of fasting blood sample drawn at weekly intervals for 4 weeks were analysed for blood glucose, HbA1c and lipid profile. Four weeks later mean blood glucose level of 173.6 mg% decreased to 137.8 mg%, HbA1c of 8% also decreased to 7.1% which reflected the blood glucose level during the study period and hence correlated well with the fall in blood glucose level. Triglyceride level of 244.5 mg% decreased to 164.7 mg% (p < 0.0001) and total cholesterol of 173.5 mg% decreased to 134.6 mg% (p < 0.0001). High-density lipoprotein cholesterol of 33 mg% increased to 39.8 mg% (p < 0.003), very low density lipoprotein (VLDL) cholesterol of 48.9 mg% decreased to 32.9 mg% (p < 0.0001) and low-density lipoprotein cholesterol of 90.1 mg% decreased to 64.3 (p < 0.009). This significant outcome can be improved further if compliance to low GI and low-to-medium GL diet is continued. This may achieve desired glycaemic control and that's limit oxidative stress.

  19. The effect of electroacupuncture at the MA-IC 3 endocrine ear acupoint on fasting blood glucose levels in type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Simadibrata, C.; Budihardjo, F. A.; Srilestari, A.

    2017-08-01

    The management of diabetes mellitus (DM) involves education, nutritional intervention, and physical exercise, in addition to pharmacological interventions, with the long-term goal of preventing complications through the control of blood glucose levels. Several studies have shown that acupuncture, both conventional acupuncture and electroacupuncture, is useful for lowering blood glucose levels in patients with DM. This study aimed to determine the additional effect of electroacupuncture at the MA-IC 3 Endocrine ear acupoint on fasting blood glucose levels in patients with Type 2 DM who were receiving oral hypoglycemic agents at Banjar General Hospital. In this randomized controlled study, fifty-four study participants who were being treated with oral antidiabetics were allocated into two groups, receiving either electroacupuncture (EA) at the MA-IC 3 ear acupoint with dense disperse wave for 30 minutes or acupuncture at the same point and for the same duration but without EA (No EA). Fasting blood glucose levels were measured before and after the intervention. In Group A (EA), the mean fasting blood glucose (FBG) level decreased from 157.26±24.485 to 142.59±26.771 (p < 0.05), whereas in Group B (No EA), the mean FBG decreased from 149.67±21.485 to 148.74±21.326 (p < 0.05). The difference in the amount of FBG decrease between Group A (EA) and Group B (No EA) was statistically significant (p < 0.05). EA at the MA-IC 3 Endocrine lowers FBG levels to a greater degree than acupuncture with no EA in patients with type 2 DM.

  20. [Effects of barley flake on metabolism of glucose and lipids in the patients with impaired fasting glucose].

    PubMed

    Bi, Mingxin; Niu, Yucun; Li, Xue; Li, Ying; Sun, Changhao

    2013-09-01

    To investigate the effects of barley flake (BF) on the glucose-lipid metabolism in patients with impaired fasting glucose (IFG). 100 patients with IFG were divided into the oat meal (OM) control group and barley flake experimental group for three months intervention according to randomized controlled trail (RCT). Biochemical indicators, glucose-lipid metabolism related enzymes, the area under curve (AUC) of blood glucose and insulin after oral glucose tolerance test (OGTT) were assessed before and after intervention. In addition, the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated by FBG (mmol/L) x INS (microU/L)/ 22.5. At the end of the three month active intervention, the mean fasting blood glucose (FBG) and insulin (INS) in the patients with BF treatment decreased by 9.26% (P < 0.001) and 13.37% (P = 0.001) separately compared with that in patients with OM treatment; meanwhile, total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in patients with BF treatment also decreased by 7.20% (P < 0.001) and 9.42% (P = 0. 002), respectively. Glycosylated hemoglobin (HbA1c), HOMA-IR, total glyceride (TG), Apo-B, the AUC of blood glucose and insulin after OGTT were also significantly decreased separately (P < 0.01 or < 0.05 ). However, statistically significant differences failed to be found in HDL-C, Apo-A, ALP and SOD between these two groups. BF had favorable effect on improvement of glucose-lipid metabolism in the patients with impaired fasting glucose.

  1. Effect of exercise on food consumption and appetite sensations in subjects with diabetes.

    PubMed

    Dubé, Marie-Christine; Tremblay, Angelo; Lavoie, Carole; John Weisnagel, S

    2013-12-01

    Evaluate appetite sensations following 60-min moderate intensity exercise and to predict energy intake in adults with diabetes. Visual analogue scales measured appetite sensations before and after a fixed test meal. Fasting appetite sensations, 1h post-prandial area under the curve (AUC) and the satiety quotient predicted energy intake. Two measures of energy intake were recorded: (1) following an ad libitum test lunch and (2) a 3-day self-report dietary record. Appetite sensations were assessed in a control condition (rest, C) and when two exercise sessions were performed: one associated with a free (F) blood glucose decrease and one with limited blood glucose decreases i.e. maintained (M) above 4 mmol/l by dextrose infusion. 16 generally well-controlled (HbA1c: 7.0 ± 0.6%) subjects (12 with type 1 diabetes, 4 with type 2 diabetes) ate 1020 ± 519, 1170 ± 282 and 1020 ± 304 kcal (NS between conditions nor diabetes type) during the buffet meal following the C, F and M conditions, respectively. Exercise induced a mean blood glucose decrease of 3.7 ± 0.6 and 3.1 ± 0.6 mmol/l for the F and M conditions, respectively. The greater the blood glucose decrease, the greater the appetite sensations of hunger and prospective food consumption measured fasting and before the test meal (all p<0.05) in the whole group. One-hour post-prandial AUC for hunger and desire to eat represented the strongest predictors of ad libitum test lunch energy intake (p<0.05), especially in type 1 diabetes. These results suggest that appetite sensations are predictors of spontaneous energy intake in both diabetes type. Moderate intensity exercise for 60 min induced a positive effect by lowering blood glucose which was associated with appetite sensations. These results support the glucostatic theory of food intake control which protects against exercised-induced blood glucose declines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Impulsiveness, postprandial blood glucose, and glucoregulation affect measures of behavioral flexibility.

    PubMed

    Riby, Leigh M; Lai Teik Ong, Derek; Azmie, Nurulnadia Binti Mohamad; Ooi, Ee Lyn; Regina, Caroline; Yeo, Eugene Ki Wai; Massa, Jacqueline; Aquili, Luca

    2017-12-01

    Behavioral flexibility (BF) performance is influenced by both psychological and physiological factors. Recent evidence suggests that impulsivity and blood glucose can affect executive function, of which BF is a subdomain. Here, we hypothesized that impulsivity, fasting blood glucose (FBG), glucose changes (ie, glucoregulation) from postprandial blood glucose (PBG) following the intake of a 15-g glucose beverage could account for variability in BF performance. The Stroop Color-Word Test and the Wisconsin Card Sorting Test (WCST) were used as measures of BF, and the Barratt Impulsiveness Scale (BIS-11) to quantify participants' impulsivity. In Study 1, neither impulsivity nor FBG could predict performance on the Stroop or the WCST. In Study 2, we tested whether blood glucose levels following the intake of a sugary drink, and absolute changes in glucose levels following the intake of the glucose beverage could better predict BF. Results showed that impulsivity and the difference in blood glucose between time 1 (postprandial) and time 2, but not blood glucose levels at time 2 per se could account for variation in performance on the WCST but not on the Stroop task. More specifically, lower impulsivity scores on the BIS-11, and smaller differences in blood glucose levels from time 1 to time 2 predicted a decrease in the number of total and perseverative errors on the WCST. Our results show that measures of impulsivity and glucoregulation can be used to predict BF. Importantly our data extend the work on glucose and cognition to a clinically relevant domain of cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Performance of Stochastic Targeted Blood Glucose Control Protocol by virtual trials in the Malaysian intensive care unit.

    PubMed

    Jamaludin, Ummu K; M Suhaimi, Fatanah; Abdul Razak, Normy Norfiza; Md Ralib, Azrina; Mat Nor, Mohd Basri; Pretty, Christopher G; Humaidi, Luqman

    2018-08-01

    Blood glucose variability is common in healthcare and it is not related or influenced by diabetes mellitus. To minimise the risk of high blood glucose in critically ill patients, Stochastic Targeted Blood Glucose Control Protocol is used in intensive care unit at hospitals worldwide. Thus, this study focuses on the performance of stochastic modelling protocol in comparison to the current blood glucose management protocols in the Malaysian intensive care unit. Also, this study is to assess the effectiveness of Stochastic Targeted Blood Glucose Control Protocol when it is applied to a cohort of diabetic patients. Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling. Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients. It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of u en model is also a must to adapt with the diabetic cohort. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effectiveness of MiniMed 640G with SmartGuard® System for prevention of hypoglycemia in pediatric patients with type 1 diabetes mellitus.

    PubMed

    Villafuerte Quispe, Beatriz; Martín Frías, María; Roldán Martín, M Belén; Yelmo Valverde, Rosa; Álvarez Gómez, M Ángeles; Barrio Castellanos, Raquel

    2017-04-01

    Treatment with the MiniMed 640G-SmartGuard ® system (640G-SG, sensor-augmented insulin pump system with low predicted glucose suspension feature) has been shown to decrease risk of hypoglycemia without altering metabolic control in patients with T1DM. The study purpose was to assess the impact of 640G-SG on hipoglycemia frequency and on metabolic control in a pediatric population with T1DM. A retrospective study on 21 children treated with 640G-SG. HbA1C, mean blood glucose (mg/dl), glucose variation coefficient, frequency of hypoglycemia (<70mg/dl) and hyperglycemia (>180mg/dl), daily capillary blood glucose measurements, ketosis/diabetic ketoacidosis, and severe hypoglycemic episodes were analyzed and compared before and during use of the system. Fasting blood glucose, frequency of sensor use and number and duration of system suspension events were also assessed in the last month of use of the system. All patients used the system continuously (5.0±2.1 months), with a median sensor use of 92%. Significant decreases were seen in hypoglycemia frequency (10.4±5.2% to 7.6±3.3%, p=.044) and number of capillary blood glucose measurements (11.3±2,2 to 8.1±2,1, p<.001), and there was no increase in hyperglycemia frequency (p=.65). Mean system suspension time was 3.1±1.2hours/day (37.3% of overnight stops). Changes in HbA1c, mean blood glucose, and variation coefficient were not significant. No patient experienced diabetic ketoacidosis or severe hypoglycemia. The sensor-augmented pump with the predictive low glucose suspension management system, as implemented in the 640G-SG system, can help avoid risk of hypoglycemia without significantly affecting metabolic control or causing diabetic ketoacidosis, and decrease the burden of additional capillary blood glucose measurements in our pediatric cohort. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Effect of barley flour, crude cinnamon, and their combination on glycemia, dyslipidemia, and adipose tissue hormones in type 2 diabetic rats.

    PubMed

    Shatwan, Israa Ali; Ahmed, Lamiaa Ali; Badkook, Maha Mohamed

    2013-07-01

    This study aimed to evaluate the effects of barley flour, crude cinnamon, and their combination on blood glucose, serum insulin, serum lipid profile, and serum adipose tissue hormones in streptozotocin-induced diabetic rats. Male Wistar rats (n=35) were divided into five groups: nondiabetic, diabetic, diabetic group fed 5% cinnamon, diabetic group fed 30% barley, and diabetic group fed 5% cinnamon and 30% barley. Fasting blood glucose, insulin, lipid profile, adiponectin, and leptin were measured after 8 weeks. Blood glucose significantly decreased in all treated diabetic rats compared with the diabetic group. Serum insulin and high-density lipoprotein significantly increased, while cholesterol, triglycerides, and low-density lipoprotein were significantly decreased after 8 weeks. Adiponectin significantly increased, while leptin significantly decreased with administration of either cinnamon, barley, or their combination. No significant differences were observed among the three treated groups on all parameters. A cinnamon and barley combination caused obvious improvement in insulin-positive cells of pancreatic tissue. In conclusion, consuming diets containing either cinnamon, barley, or their combination regulates blood glucose, lipid profile, and adipose tissue hormones in type 2 diabetic rats. The most effective treatment was the cinnamon and barley combination.

  6. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kim, Jeong Hwan; Kim, Jong Sang; Kim, Hyo Jung

    2012-02-01

    Our previous in vitro study demonstrated that glyceollins help normalize glucose homeostasis by potentiating β-cell function and survival in insulinoma cells as well as improving glucose utilization in adipocytes. Here, we investigated whether fermented soybeans containing glyceollins had an antidiabetic action in type 2 diabetic animals. The diabetic mice, their diabetes induced by intraperitoneal injections of streptozotocin (20 mg/kg bw), were administered a high fat diet with no soybeans (control), 10% unfermented soybeans and 10% fermented soybeans containing glyceollins, respectively, (FSG) for 8 weeks. As positive controls, rosiglitazone (20 mg/kg/bw) was given to diabetic mice fed a no soybean diet and non-diabetic mice were also placed on the same diet. Among the diabetic mice, FSG-treated mice exhibited the lowest peak for blood glucose levels with an elevation of serum insulin levels during the first part of oral glucose tolerance testing. FSG also made blood glucose levels drop quickly after the peak and it decreased blood glucose levels more than the control during insulin tolerance testing. This improvement was associated with increased hepatic glycogen accumulation and decreased triglyceride storage. The phosphorylation of Akt, AMP-kinase, and acetyl-CoA carboxylase in the liver was potentiated by FSG, whereas phosphoenolpyruvate carboxykinase expression decreased. The enhancement of glucose homeostasis was comparable to the effect induced by rosiglitazone, a commercial peroxisome proliferator-activated receptor-γ agonist, but it did not match the level of glucose homeostasis in the non-diabetic mice. Glyceollin-containing FSG improves glucose homeostasis, partly by enhancing hepatic insulin sensitivity in type 2 diabetic mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome after radical gastrectomy.

    PubMed

    Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing

    2018-06-01

    This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (p<0.05). One month after operation, blood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (p<0.05). Incidence of complications at 1 and 3 months after operation was significantly lower in the normal groups than that in the corresponding abnormal groups (p<0.05). Postoperative recovery was significantly better in the normal groups than that in the corresponding abnormal groups (p<0.05). Logistic regression analysis showed that the incidence of postoperative complications was related to fasting blood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (p<0.05). The results show that, control of blood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.

  8. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    PubMed

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  9. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake. In healthy subjects, both leucine and isoleucine reduced blood glucose in response to a mixed-nutrient drink but did not affect subsequent energy intake. The mechanisms underlying glucose lowering appear to differ; leucine stimulated insulin, whereas isoleucine acted insulin independently. These trials were registered at www.anzctr.org.au as 12613000899741 and 12614000837628. © 2016 American Society for Nutrition.

  10. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    PubMed

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  11. Acarbose, the α-glucosidase inhibitor, attenuates the blood pressure and splanchnic blood flow responses to meal in elderly patients with postprandial hypotension concomitant with abnormal glucose metabolism.

    PubMed

    Qiao, Wei; Li, Jing; Li, Ying; Qian, Duan; Chen, Lei; Wei, Xiansen; Jin, Jiangli; Wang, Yong

    2016-02-01

    Postprandial hypotension (PPH) is a unique clinical phenomenon in the elderly, but its underlying pathogenesis has not been completely elucidated, and drug treatment is still in clinical exploratory stage. The aim of the study was to evaluate the relationship between the fall in postprandial blood pressure and splanchnic blood flow, and to provide a theoretical basis for the treatment of PPH by taking acarbose. The study included 20 elderly inpatients diagnosed with PPH concomitant with abnormal glucose metabolism at stable condition. They were treated with 50 mg acarbose with their meal to observe the changes in blood pressure, heart rate, and blood glucose level, and to monitor the hemodynamics of the superior mesenteric artery (SMA) before and after treatment. Without acarbose treatment, patients after a meal had significantly decreased systolic and diastolic blood pressure, faster postprandial heart rate, higher postprandial glucose level at each period, and increased postprandial SMA blood flow compared with that at fasting state (P<0.05). Acarbose treatment significantly attenuated the decrease of postprandial systolic blood pressures from 35.50±12.66 to 22.25±6.90 mmHg (P=0.000), the increase of heart rate from 9.67±5.94 to 5.33±3.20 beats/min (P=0.016), the increase of postprandial blood glucose from 3.55±1.69 to 2.28±1.61 mmol/l (P=0.000), the increase of postprandial SMA blood flow from 496.80±147.15 to 374.55±97.89 ml/min (P=0.031), and the incidence of PPH, syncope, falls, dizziness, weakness, and angina pectoris (P<0.05). The maximal decrease of postprandial systolic blood pressure was positively associated with the maximal increase in postprandial SMA blood flow (r=0.351, P=0.026). Acarbose treatment showed no significant side effects. The increase in postprandial splanchnic perfusion is one of the reasons for PPH formation. Acarbose may exert its role in PPH treatment by reducing postprandial gastrointestinal blood perfusion. Giving 50 mg acarbose with a meal to treat PPH concomitant with abnormal glucose metabolism is effective and safe in very old patients.

  12. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients.

    PubMed

    Nakamura, Masataka; Oda, Shigeto; Sadahiro, Tomohito; Watanabe, Eizo; Abe, Ryuzo; Nakada, Taka-Aki; Morita, Yasumasa; Hirasawa, Hiroyuki

    2012-12-12

    The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.

  13. Interaction of insulin with prokinetic drugs in STZ-induced diabetic mice

    PubMed Central

    Shalaby, Mohamed A Fouad; Latif, Hekma A Abd El; Sayed, Mostafa E El

    2013-01-01

    AIM: To study the possible interactions of metoclopramide, domperidone and erythromycin in streptozotocin-induced diabetic mice treated with insulin by various parameters. METHODS: Effects of the individual as well as combined drugs were studied in diabetic mice via estimation of the blood glucose and serum insulin levels, small intestinal transit (SIT), gastric emptying (GE), xylose absorption and glucose tolerance tests. Groups were given insulin 2 IU/kg s.c., metoclopramide 20 mg/kg p.o., domperidone 20 mg/kg p.o. and erythromycin 6 mg/kg p.o. individually and in combination. There were also normal and diabetic control groups. The first set of experiments was carried out to investigate the subchronic effect on blood glucose and serum insulin levels in diabetic mice of one week of daily dose administration of the tested drugs individually as well as the combination of insulin with each prokinetic drug. The other five sets of experiments were carried out to investigate the acute effect of a single dose of each drug individually and in combination on blood glucose and serum insulin levels, SIT, GE, oral xylose absorption and glucose tolerance tests. RESULTS: The study included the prokinetic drugs metoclopramide (20 mg/kg), domperidone (20 mg/kg) and erythromycin (6 mg/kg), as well as insulin (2 IU/kg), which was individually effective in decreasing SIT, enhancing GE and increasing xylose absorption significantly in diabetic mice. Erythromycin tended to decrease blood glucose level and increase serum insulin level after 1 wk of daily administration in diabetic mice. Erythromycin potentiated the effect of insulin on blood glucose level and serum insulin level whereas other prokinetic agents failed to do so after repeated dose administration in diabetic mice. Metoclopramide or erythromycin in combination with insulin significantly decreased SIT, in diabetic mice, to lower levels than with insulin alone. Administration of prokinetic drugs along with insulin antagonized the action of insulin on xylose absorption. These combinations also increased the rate of glucose absorption from the gut. CONCLUSION: The present study suggests that prokinetic drugs could potentially improve glycemic control in diabetic gastroparesis by allowing a more predictable absorption of nutrients, matched to the action of exogenous insulin. The use of prokinetics, such as erythromycin, may be interesting in the clinic in decreasing the need for insulin in diabetic patients. The dose of insulin may be safely decreased with erythromycin in chronic treatments. PMID:23667771

  14. Comparison of three point-of-care blood glucose meters for use in adult and juvenile alpacas.

    PubMed

    Tennent-Brown, Brett S; Koenig, Amie; Williamson, Lisa H; Boston, Raymond C

    2011-08-01

    To compare the performance of 3 point-of-care glucose meters in adult and juvenile alpacas with that of a laboratory-based analyzer. Evaluation study. 35 adult alpacas and 21 juvenile alpacas. Whole blood samples obtained via jugular venipuncture were tested with all 3 point-of-care glucose meters; plasma samples were also tested with 1 of those meters. Glucose concentrations determined by use of the point-of-care meters were compared with results from the laboratory-based analyzer. Plasma glucose concentrations determined by use of the laboratory-based analyzer ranged from 36 to 693 mg/dL. Over the entire range of glucose concentrations tested, the Lin concordance correlation coefficient (agreement) was significant and excellent for all comparisons. Concordance decreased for 1 glucometer when testing whole blood samples over a narrower range of glucose concentrations (50 to 200 mg/dL). Bias was typically small (< 10 mg/dL) for 3 of the 4 comparisons but considerable for 1 meter with the use of whole blood. The limits of agreement were wide for all comparisons over the entire range of glucose concentrations tested but decreased to within acceptable limits when the narrower glucose range (50 to 200 mg/dL) was analyzed for 3 of the comparisons. For samples with a PCV < 25%, bias and the limits of agreement were greater for one of the meters tested. Discrepancies between point-of-care glucose meters and reference techniques can be considerable in alpacas, emphasizing the importance of assessing individual meter performance in a target population.

  15. Anti-hyperglycemic effect of Aloe vera peel extract on blood sugar level of alloxan-induced Wistar rats

    NASA Astrophysics Data System (ADS)

    Peniati, E.; Setiadi, E.; Susanti, R.; Iswari, R. S.

    2018-03-01

    Aloe vera peel contains flavonoids, alkaloids, tannins, saponins, and sterols as its secondary metabolites. This research explores the effect of Aloe vera peel extract on blood glucose levels of alloxan-induced Wistar rats in a laboratory experimental scale. Blood glucose examination was performed by using GOD-PAP method. Twenty five 2 months old-white rat (Rattus norvegicus) male wistar strain weigh 150-200 grams body weight, and in healthy condition, was randomly divided into five groups. Those five groups were negative control group (K-), positive control group (K+), treatment group 1 (P1), treatment group 2 (P 2), and treatment group 3 (P 3). Each group was fed by standard diet and ad-libitum drinking. Treatments were given for 28 days. On the day 29, blood glucose level of all groups were analyzed. The results showed that the highest blood glucose levels in control group rat were positive (191.2 mg/dl). Aloe vera extract was able to decrease blood sugar level up to 104,6mg/dl in P3 group treatment rats (served Aloe vera extract 350 mg/kg BW/day). It comes to the conclusion that giving Aloe vera peel extract for 28 days decreases blood sugar level of hyperglycemic rat.

  16. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa

    2010-05-01

    The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  18. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.

    PubMed

    Li, Kaikai; Yao, Fen; Du, Jing; Deng, Xiangyi; Li, Chunmei

    2018-02-21

    Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin-starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC 50 values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose.

  19. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    PubMed Central

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  20. A randomized, double-blind clinical study to determine the effect of ANKASCIN 568 plus on blood glucose regulation.

    PubMed

    Wang, Yin-Ruei; Liu, Sheng-Fu; Shen, You-Cheng; Chen, Chien-Li; Huang, Chine-Ning; Pan, Tzu-Ming; Wang, Chin-Kun

    2017-04-01

    Diabetes is the fourth major cause of death in Taiwan. High blood glucose can lead to macrovascular diseases, small vessel diseases (retinopathy, kidney disease), and neuropathy. This study aimed to investigate whether Monascus-fermented products (ANKASCIN 568 plus) can regulate blood glucose and blood lipids. This study enrolled 39 patients with a fasting blood glucose level between 100 mg/dL and 180 mg/dL, and a glycated hemoglobin (HbA1c) level of <9%. All patients were randomly divided into placebo (n=20) and experimental (n=19) groups. Each patient received two placebo capsules (maltodextrin) or ANKASCIN 568 plus capsules daily for 12 weeks. The patients were screened during follow-up 4 weeks after the administration of sample or placebo had been discontinued. Blood and urine samples were collected at the initial, 6 th week, 12 th week, and 16 th week. The anthropometric indicators of blood pressure, fasting plasma glucose level, postprandial plasma glucose level, insulin level, insulin resistance, blood lipid changes, and liver, kidney, and thyroid function indices were measured. After 6 weeks, changes in fasting blood glucose, low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) levels showed that ANKASCIN 568 plus had a more favorable effect than the placebo. Compared to baseline, a statistically significant decrease of 8.5%, 10.3%, and 7.5% was observed in fasting blood glucose, LDL-C and, TC levels, respectively (p<0.05 for all pairs). Therefore, ANKASCIN 568 plus produced by Monascus purpureus NTU 568 fermentation may be a potentially useful agent for the regulation of blood glucose and blood lipids and for treatment of coronary artery diseases. Copyright © 2016. Published by Elsevier B.V.

  1. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  2. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Park, Chan Joo; Han, Ji-Sook

    2015-01-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on α-glucosidase activity, α-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against α-glucosidase and α-amylase. The IC50 values of jicama extract against α-glucosidase and α-amylase were 0.083±0.004 and 0.091±0.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.75±11.54 and 402.50±15.32 mg/dL at 30 and 60 min after a meal and decreased to 349.67±11.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.00±15.73, 367.00±13.00, and 329.67±12.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting α-glucosidase. PMID:26175995

  3. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice.

    PubMed

    Park, Chan Joo; Han, Ji-Sook

    2015-06-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on α-glucosidase activity, α-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against α-glucosidase and α-amylase. The IC50 values of jicama extract against α-glucosidase and α-amylase were 0.083±0.004 and 0.091±0.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.75±11.54 and 402.50±15.32 mg/dL at 30 and 60 min after a meal and decreased to 349.67±11.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.00±15.73, 367.00±13.00, and 329.67±12.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting α-glucosidase.

  4. Efficacy of sitagliptin on blood glucose fluctuation in Japanese type 2 diabetic patients with basal-supported oral therapy.

    PubMed

    Takahara, Mitsuyoshi; Shiraiwa, Toshihiko; Kaneto, Hideaki; Katakami, Naoto; Matsuoka, Taka-Aki; Shimomura, Iichiro

    2012-01-01

    We retrospectively investigated the effect of adding dipeptidyl peptidase-4 (DPP-4) inhibitor and tapering sulfonylurea on blood glucose fluctuation in Asian patients with type 2 diabetes mellitus under basal-supported oral therapy (BOT). We recruited twenty-two consecutive Japanese patients with type 2 diabetes mellitus who had blood glucose fluctuation under the combination therapy of insulin glargine and glimepiride and had sitagliptin initiated with glimepiride tapared. Their hemoglobin A1c levels and mean blood glucose profiles of seven points in self-monitoring blood glucose (SMBG) were 7.4 ± 0.6% and 8.6 ± 2.0 mmol/L, respectively. Sitagliptin was initiated with the dose of 50 mg per day and titrated up to 100 mg per day when necessary. Glimepiride was withdrawn if possible. Blood glucose fluctuation was evaluated with SMBG by calculating M-value, its range (the difference of maximum and minimum blood glucose levels), and its coefficient of variation (CV). Two months after sitagliptin add-on, M-value was decreased from 19 ± 13 to 13 ± 8 (p = 0.04). Blood glucose range and CV were also improved from 9.6 ± 2.9 mmol/L to 7.9 ± 2.6 mmol/L (p = 0.01), and from 33 ± 8% to 29 ± 8% (p < 0.01), respectively. Hemoglobin A1c levels and mean blood glucose profiles were unchanged (p = 0.93 and 0.47). In conclusion, blood glucose fluctuation was significantly improved two months after adding sitagliptin and tapering glimepiride in type 2 diabetic Japanese patients who were treated by BOT with insulin glargine and glimepiride.

  5. Changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session.

    PubMed

    Martins Cunha, Raphael; Raiana Bentes, Mariana; Araújo, Victor H; DA Costa Souza, Mayara C; Vasconcelos Noleto, Marcelo; Azevedo Soares, Ademar; Machado Lehnen, Alexandre

    2016-12-01

    Blood glucose changes response during and after exercise are modulated by the postabsorptive state, intensity and duration of exercise, and the level of physical fitness as well. This study focused on the idea that high-intensity interval exercise, as mini-trampoline class, can reduce blood glucose. Thus, we examined acute changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session. Twenty-four normoglycemic adult subjects were enrolled in the study. After physical assessment they were randomly assigned to either the experimental (N.=12) or the control group (N.=12). The experimental group performed a 50-minute session of moderate-to-high intensity (70 to 85% HRmax) exercise on a mini-trampoline commonly used in fitness classes. The control group did not perform any exercise, and all procedures were otherwise similar to the experimental group. Capillary blood glucose was measured before and every 15 minutes during the exercise session. The effects of exercise on blood glucose levels (group; time; and group interaction) were estimated using a generalized estimating equation (GEE) followed by Bonferroni's post-hoc Test (P<0.05). The experimental group showed a decrease in blood glucose levels from baseline (108.7 mg/dL): 26.1% reduction (15 min; P<0.001), 24.2% (30 min; P<0.001), and 15.7% (45 min; P<0.001). Compared to the control group, blood glucose levels in the experimental group were reduced by 18.8% (15 min; P<0.001), 14.3% (30 min; P<0.001) and 6.9% (45 min; P=0.025). The study results provide good evidence that a prescribed exercise program on a mini-trampoline can be used for reducing blood glucose levels and thus can potentially control blood glucose.

  6. Sustained Liver Glucose Release in Response to Adrenaline Can Improve Hypoglycaemic Episodes in Rats under Food Restriction Subjected to Acute Exercise

    PubMed Central

    Babata, Lucas K. R.; Pedrosa, Maria M. D.; Garcia, Rosângela F.; Peicher, Márcia V.; de Godoi, Vilma Aparecida Ferreira

    2014-01-01

    Background. As the liver is important for blood glucose regulation, this study aimed at relating liver glucose release stimulated by glucagon and adrenaline to in vivo episodes of hypoglycaemia. Methods. The blood glucose profile during an episode of insulin-induced hypoglycaemia in exercised and nonexercised male Wistar control (GC) and food-restricted (GR, 50%) rats and liver glucose release stimulated by glucagon and adrenaline were investigated. Results. In the GR, the hypoglycaemic episodes showed severe decreases in blood glucose, persistent hypoglycaemia, and less complete glycaemic recovery. An exercise session prior to the episode of hypoglycaemia raised the basal blood glucose, reduced the magnitude of the hypoglycaemia, and improved the recovery of blood glucose. In fed animals of both groups, liver glucose release was activated by glucagon and adrenaline. In fasted GR rats, liver glycogenolysis activated by glucagon was impaired, despite a significant basal glycogenolysis, while an adrenaline-stimulated liver glucose release was recorded. Conclusions. The lack of liver response to glucagon in the GR rats could be partially responsible for the more severe episodes of hypoglycaemia observed in vivo in nonexercised animals. The preserved liver response to adrenaline can partially account for the less severe hypoglycaemia in the food-restricted animals after acute exercise. PMID:24719616

  7. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats

    PubMed Central

    Thomsen, Maria; Rosenkilde, Mette Marie

    2018-01-01

    Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment. PMID:29558502

  8. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus.

    PubMed

    Whitehead, N; White, H

    2013-04-01

    Compounds other than macronutrients have been shown to influence blood glucose concentrations and insulin sensitivity in people with diabetes, with caffeine being one such substance. The present study systematically reviewed the evidence of the effects of caffeine on blood glucose concentrations and/or insulin sensitivity in people with diabetes. Four databases, including MEDLINE and EMBASE, were searched up to 1 February 2012. Randomised controlled trials (RCTs) investigating the effects of caffeine on blood glucose and/or insulin sensitivity in humans, diagnosed with type I, type II or gestational diabetes mellitus (GDM), were included. Quality assessment and data extraction were conducted and agreed by both authors. Of 253 articles retrieved, nine trials (134 participants) were identified. Trials in people with type II diabetes demonstrated that the ingestion of caffeine (approximately 200-500 mg) significantly increased blood glucose concentrations by 16-28% of the area under the curve (AUC) and insulin concentrations by 19-48% of the AUC when taken prior to a glucose load, at the same time as decreasing insulin sensitivity by 14-37%. In type I diabetes, trials indicated enhanced recognition and a reduced duration of hypoglycaemic episodes following ingestion of 400-500 mg caffeine, without altering glycated haemoglobin. In GDM, a single trial demonstrated that approximately 200 mg of caffeine induced a decrease in insulin sensitivity by 18% and a subsequent increase in blood glucose concentrations by 19% of the AUC. Evidence indicates a negative effect of caffeine intake on blood glucose control in individuals with type II diabetes, as replicated in a single trial in GDM. Larger-scale RCTs of longer duration are needed to determine the effects of timing and dose. Early indications of a reduced duration and an improved awareness of hypoglycaemia in type I diabetes require further confirmation. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  9. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kuranov, Roman V.; Sapozhnikova, Veronika V.; Prough, Donald S.; Cicenaite, Inga; Esenaliev, Rinat O.

    2006-08-01

    Recently, our in vivo studies demonstrated a strong correlation between blood glucose concentration and the slope of the optical coherence tomography (OCT) signal when the probing beam was scanned over a straight line. To improve the sensitivity of OCT for blood glucose monitoring, two-dimensional (2D) lateral scanning of the OCT probing beam was proposed. Depth-dependent changes in pig skin properties with variation of blood glucose concentration were revealed due to significant suppression of speckle noise and motion artefacts in 2D scanning mode. The correlation coefficient of the OCT signal slope with blood glucose concentration varied periodically in the range from -0.9 to +0.9 depending on depth. The period of variation of the correlation coefficient was 100-150 µm that corresponded to the distance between neighbour collagen bundles. We also observed a decrease of skin thickness by 10 ± 7.5 µm with an increase of blood glucose concentration by 277 ± 56 mg dl-1. Mechanisms of glucose-induced changes in skin properties owing to tissue layer shift caused by dehydration associated with the glucose osmotic effect were considered.

  10. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  11. Effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load.

    PubMed

    Hiramitsu, Shinya; Miyagishima, Kenji; Ishii, Junichi; Matsui, Shigeru; Naruse, Hiroyuki; Shiino, Kenji; Kitagawa, Fumihiko; Ozaki, Yukio

    2012-11-01

    The clinical benefit of ezetimibe, an intestinal cholesterol transporter inhibitor, for treatment of postprandial hyperlipidemia was assessed in subjects who ingested a high-fat and high-glucose test meal to mimic westernized diet. We enrolled 20 male volunteers who had at least one of the following: waist circumference ≥ 85 cm, body mass index ≥ 25 kg/m(2), or triglycerides (TG) from 150 to 400mg/dL. After 4 weeks of treatment with ezetimibe (10mg/day), the subjects ingested a high-fat and high-glucose meal. Then changes in serum lipid and glucose levels were monitored after 0, 2, 4, and 6h, and the area under the curve (AUC) was calculated for the change in each parameter. At 4 and 6h postprandially, TG levels were decreased (p<0.01) after 4 weeks of ezetimibe treatment, and the AUC for TG was also decreased (p<0.01). Apolipoprotein B48 (apo-B48) levels at 4 and 6h postprandially were significantly decreased after ezetimibe treatment (p<0.01 and p<0.001, respectively), and the AUC for apo-B48 was also significantly decreased (p<0.01). Blood glucose and insulin levels at 2h postprandially were significantly decreased by ezetimibe (p<0.05). The AUCs for blood glucose and insulin were also significantly decreased (p<0.05 and p<0.01, respectively). Since ezetimibe improved postprandial lipid and glucose metabolism, this drug is likely to be beneficial for dyslipidemia in patients with postprandial metabolic abnormalities. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Diadenosine tetraphosphate (Ap4A) induces a diabetogenic situation: its impact on blood glucose, plasma insulin, gluconeogenesis, glucose uptake and GLUT-4 transporters.

    PubMed

    Verspohl, E J; Hohmeier, N; Lempka, M

    2003-12-01

    Diadenosine polyphosphates such as Ap4A are physiologically released compounds for which both receptors as well as a role as second messengers for influencing insulin release have been shown. So far little is known about their pathophysiological impact on diabetes with respect to blood glucose and plasma insulin, glucose production via gluconeogenesis, glucose uptake and GLUT-4 expression. Rats given an intravenous bolus of Ap4A (0.75 mg/kg) developed a rapid and dramatic increase in blood glucose. Plasma insulin was only transiently increased (for 4 min), but did not follow the normally stimulatory effect of the elevated blood glucose. A bolus of 25 microg Ap4A quickly increased glucose release from perfused rat liver. Glucose uptake was reduced in 3T3 adipocytes. Reduced amounts of translocated GLUT-4 were found in 3T3 cell membranes incubated with 10 microM Ap4A. Thus, Ap4A itself induces a diabetic situation which is likely to be mediated by an increase in gluconeogenesis and/or an insulin resistance caused by a decrease in GLUT-4 and an attenuation of glucose uptake.

  13. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits.

    PubMed

    El-Houssieny, Boushra M; Wahman, Lobna F; Arafa, Nadia M S

    2010-02-01

    This study is an extension of the previous enhancement of dissolution properties of repaglinide using liquisolid compacts. The development and validation of a highperformance liquid chromatography (HPLC) assay for the determination of repaglinide concentration in rabbit plasma for pharmacokinetic studies is described. Repaglinide optimizing formula was orally administered to rabbits and blood samples were used to determine the pharmacokinetic parameters of repaglinide, which were compared to pharmacokinetic parameters of marketed tablets (Novonorm 2 mg). Also, to investigate the biological activity of this new formula, in comparison with the commercial product, oral glucose tolerance tests (OGTT), area under the curve and insulin levels were studied. Moreover, we studied the efficacy and safety of this new formula in several potencies (0.5, 1, and 2 mg) and blood glucose, insulin, kidney and liver functions. The relative bioavailability of repaglinide from its liquisolid compact formula was found to be increased significantly in comparison to that of the marketed tablet. In regard to urea and creatinine, no significant change was recorded after the administration of the commercial and the three potencies of the new formulation compared with the control group. Similarly, in liver function tests (serum glutamic pyruvic transaminase, SGPT), there were no changes observed in its level. Regarding insulin levels, the commercial formula increased insulin levels insignificantly (3.52% change) while the new formula increased the insulin level significantly with a percent change of 37.6%. The results of the glucose tolerance test showed that the blood glucose level was decreased significantly after the commercial drug (percent change, 18.1%) while in groups treated with the new formulation the decrease was highly significant (p < 0.01) with a percent change of 29.98%. The change in area under the curve for blood glucose was significantly higher in the commercial drug plus glucose load than in the new formulation plus glucose load group (p < 0.05) in the periods of 30-45 min and 45-60 min. Furthermore, the new repaglinide formulation significantly decreased blood glucose levels more than the commercial formula.

  15. Effects of Intragastric Administration of Tryptophan on the Blood Glucose Response to a Nutrient Drink and Energy Intake, in Lean and Obese Men.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope C E; Giesbertz, Pieter; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2018-04-08

    Tryptophan stimulates plasma cholecystokinin and pyloric pressures, both of which slow gastric emptying. Gastric emptying regulates postprandial blood glucose. Tryptophan has been reported to decrease energy intake. We investigated the effects of intragastric tryptophan on the glycaemic response to, and gastric emptying of, a mixed-nutrient drink, and subsequent energy intake. Lean and obese participants ( n = 16 each) received intragastric infusions of 1.5 g ("Trp-1.5g") or 3.0 g ("Trp-3.0g") tryptophan, or control, and 15 min later consumed a mixed-nutrient drink (56 g carbohydrates). Gastric emptying ( 13 C-acetate breath-test), blood glucose, plasma C-peptide, glucagon, cholecystokinin and tryptophan concentrations were measured ( t = 0-60 min). Energy intake was assessed between t = 60-90 min. In lean individuals, Trp-3.0g, but not Trp-1.5g, slowed gastric emptying, reduced C-peptide AUC and increased glucagon AUC (all P < 0.05), but did not significantly decrease the blood glucose response to the drink, stimulate cholecystokinin or reduce mean energy intake, compared with control. In obese individuals, Trp-3.0g, but not Trp-1.5g, tended to slow gastric emptying ( P = 0.091), did not affect C-peptide AUC , increased glucagon AUC ( P < 0.001) and lowered blood glucose at t = 30 min ( P < 0.05), and did not affect cholecystokinin or mean energy intake. In obese individuals, intragastrically administered tryptophan may reduce postprandial blood glucose by slowing gastric emptying; the lack of effect on mean energy intake requires further investigation.

  16. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  17. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation.

    PubMed

    Shilo, Malka; Berenstein, Peter; Dreifuss, Tamar; Nash, Yuval; Goldsmith, Guy; Kazimirsky, Gila; Motiei, Menachem; Frenkel, Dan; Brodie, Chaya; Popovtzer, Rachela

    2015-12-28

    Diabetes mellitus is a chronic metabolic disease, characterized by high blood glucose levels, affecting millions of people around the world. Currently, the main treatment for diabetes requires multiple daily injections of insulin and self-monitoring of blood glucose levels, which markedly affect patients' quality of life. In this study we present a novel strategy for controlled and prolonged glucose regulation, based on the administration of insulin-coated gold nanoparticles (INS-GNPs). We show that both intravenous and subcutaneous injection of INS-GNPs into a mouse model of type 1 diabetes decreases blood glucose levels for periods over 3 times longer than free insulin. We further showed that conjugation of insulin to GNPs prevented its rapid degradation by the insulin-degrading-enzyme, and thus allows controlled and adjustable bio-activity. Moreover, we assessed different sizes and concentrations of INS-GNPs, and found that both parameters have a critical effect in vivo, enabling specific adjustment of blood glucose levels. These findings have the potential to improve patient compliance in diabetes mellitus.

  18. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation

    NASA Astrophysics Data System (ADS)

    Shilo, Malka; Berenstein, Peter; Dreifuss, Tamar; Nash, Yuval; Goldsmith, Guy; Kazimirsky, Gila; Motiei, Menachem; Frenkel, Dan; Brodie, Chaya; Popovtzer, Rachela

    2015-12-01

    Diabetes mellitus is a chronic metabolic disease, characterized by high blood glucose levels, affecting millions of people around the world. Currently, the main treatment for diabetes requires multiple daily injections of insulin and self-monitoring of blood glucose levels, which markedly affect patients' quality of life. In this study we present a novel strategy for controlled and prolonged glucose regulation, based on the administration of insulin-coated gold nanoparticles (INS-GNPs). We show that both intravenous and subcutaneous injection of INS-GNPs into a mouse model of type 1 diabetes decreases blood glucose levels for periods over 3 times longer than free insulin. We further showed that conjugation of insulin to GNPs prevented its rapid degradation by the insulin-degrading-enzyme, and thus allows controlled and adjustable bio-activity. Moreover, we assessed different sizes and concentrations of INS-GNPs, and found that both parameters have a critical effect in vivo, enabling specific adjustment of blood glucose levels. These findings have the potential to improve patient compliance in diabetes mellitus.

  19. Optimal glucose management in the perioperative period.

    PubMed

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. Published by Elsevier Inc.

  20. Inhibitory effects of alcohol on glucose transport across the blood-brain barrier leads to neurodegeneration: preventive role of acetyl-L: -carnitine.

    PubMed

    Abdul Muneer, P M; Alikunju, Saleena; Szlachetka, Adam M; Haorah, James

    2011-04-01

    Evidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose. Here we examined whether interference of glucose uptake and transport at the endothelium by alcohol leads to BBB dysfunction and neuronal degeneration. We tested the hypothesis in cell culture of human brain endothelial cells, neurons and alcohol intake in animal by immunofluorescence, Western blotting and glucose uptake assay methods. We found that decrease in glucose uptake correlates the reduction of glucose transporter protein 1 (GLUT1) in cell culture after 50 mM ethanol exposure. Decrease in GLUT1 protein levels was regulated at the translation process. In animal, chronic alcohol intake suppresses the transport of glucose into the frontal and occipital regions of the brain. This finding is validated by a marked decrease in GLUT1 protein expression in brain microvessel (the BBB). In parallel, alcohol intake impairs the BBB tight junction proteins occludin, zonula occludens-1, and claudin-5 in the brain microvessel. Permeability of sodium fluorescein and Evans Blue confirms the leakiness of the BBB. Further, depletion of trans-endothelial electrical resistance of the cell monolayer supports the disruption of BBB integrity. Administration of acetyl-L: -carnitine (a neuroprotective agent) significantly prevents the adverse effects of alcohol on glucose uptake, BBB damage and neuronal degeneration. These findings suggest that alcohol-elicited inhibition of glucose transport at the blood-brain interface leads to BBB malfunction and neurological complications.

  1. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate.

    PubMed

    Patet, Camille; Quintard, Hervé; Suys, Tamarah; Bloch, Jocelyne; Daniel, Roy T; Pellerin, Luc; Magistretti, Pierre J; Oddo, Mauro

    2015-10-15

    Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4 ± 2.3 to 5.4 ± 2.9 mmol/L), pyruvate (126.9 ± 65.1 to 172.3 ± 74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27 ± 6 to 35 ± 9; all, p < 0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r = 0.56; p < 0.0001), while an inverse correlation (r = -0.11; p = 0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r = 0.62 to r = 0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.

  2. Identifying metabolic syndrome in African American children using fasting HOMA-IR in place of glucose.

    PubMed

    Sharma, Sushma; Lustig, Robert H; Fleming, Sharon E

    2011-05-01

    Metabolic syndrome (MetS) is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR) with the use of fasting blood glucose to identify MetS in African American children. We performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls) aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of blood glucose, insulin, triglycerides, and high-density lipoprotein cholesterol were measured. We found that HOMA-IR is a stronger indicator of MetS in children than blood glucose. Using HOMA-IR as 1 of the 5 components, we found a 38% prevalence of MetS in this sample of African American children and the proportion of false negatives decreased from 94% with blood glucose alone to 13% with HOMA-IR. The prevalence of MetS was higher in obese than overweight children and higher among girls than boys. Using HOMA-IR was preferred to fasting blood glucose because insulin resistance was more significantly interrelated with the other 4 MetS components.

  3. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose.

    PubMed

    Powell, David R; Smith, Melinda; Greer, Jennifer; Harris, Angela; Zhao, Sharon; DaCosta, Christopher; Mseeh, Faika; Shadoan, Melanie K; Sands, Arthur; Zambrowicz, Brian; Ding, Zhi-Ming

    2013-05-01

    LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.

  4. Performance of a continuous glucose monitoring system during controlled hypoglycaemia in healthy volunteers.

    PubMed

    Cheyne, E H; Cavan, D A; Kerr, D

    2002-01-01

    It has been suggested that the continuous glucose monitoring system may be a useful tool for detecting unrecognised hypoglycaemia, especially at times when finger prick testing is difficult or impossible (e.g., at night). Studies suggest that subcutaneous glucose levels closely mimic blood glucose levels with a lag time of only a few minutes. However, no studies have been published to show how well the sensor performs during sustained or in recovery from hypoglycaemia. This study involved using a hyperinsulinaemic glucose clamp (60 mU/m2) in nine healthy volunteers. Each subject had two sensors inserted the day before the study. Blood glucose levels were maintained at euglycaemia for the first 60 min, then decreased to 45 mg/dL (2.5 mmol/L) for 60 min, and finally restored to euglycaemia. Blood glucose measurements were compared with interstitial values recorded by the sensor. Sensor profiles showed acceptable agreement with blood glucose levels at each of the three plateaus with a correlation coefficient of 0.79, slope of 0.85, and mean absolute error of 7%. The sensor drop closely matched the drop in blood glucose, but the recovery from hypoglycaemia was delayed by an average of 26 min. Continuous glucose sensing provides a useful means of detecting unrecognised hypoglycaemia in type 1 diabetes, although the duration of hypoglycaemia may be overestimated.

  5. The influence of maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat.

    PubMed

    Vecera, Rostislav; Orolin, Jan; Skottová, Nina; Kazdová, Ludmila; Oliyarnik, Olena; Ulrichová, Jitka; Simánek, Vilím

    2007-06-01

    This work focused on the effect of Maca on lipid, anti-oxidative, and glucose parameters in hereditary hypertriglyceridemic (HHTg) rat. Maca (1%) was administred to rats as a part of a high-sucrose diet (HSD) for 2 weeks. Rosiglitazone (0.02%) was used as a positive control. Maca significantly decreased the levels of VLDL (very low density lipoproteins), LDL (low density lipoproteins), and total cholesterol, and also the level of TAG (triacylglycerols) in the plasma, VLDL, and liver. Maca, as well as rosiglitazone, significantly improved glucose tolerance, as the decrease of AUC (area under the curve) of glucose showed, and lowered levels of glucose in blood. The activity of SOD (superoxide dismutase) in the liver, the GPX (glutathione peroxidase) in the blood, and the level of GSH (glutathione) in liver increased in all cases significantly. Results demonstrate that maca seems to be promising for a positive influence on chronic human diseases (characterized by atherogenous lipoprotein profile, aggravated antioxidative status, and impaired glucose tolerance), and their prevention.

  6. In vitro hypoglycemic effects of hot water extract from Auricularia polytricha (wood ear mushroom).

    PubMed

    Wu, Ni-Jung; Chiou, Fu-Jing; Weng, Yih-Ming; Yu, Zer-Ran; Wang, Be-Jen

    2014-06-01

    Viscous dietary fibers were shown to alleviate postprandial blood glucose. Auricularia polytricha (wood ear mushroom, WEM) contains rich amount fibers and water extract WEM was highly viscous. This study aimed to investigate whether WEM extract exhibited hypoglycemic effect in vitro. The effects of WEM extract on glucose adsorption, glucose diffusion, starch digestion and α-amylase activity were examined and compared to those of two high soluble fibers, psyllium and oat fiber and one insoluble fiber, cellulose. Our results showed that WEM extract and psyllium possessed similar ability to adsorb glucose which may thus decrease the level of dialysis glucose. The decrease of dialysis rate is dose-dependent. WEM extract can also suppress the activity of α-amylase which may thus inhibit the digestion of polysaccharides. Since WEM extract exhibited the ability to adsorb glucose and to suppress the activity of α-amylase; it might contribute a beneficial effect on postprandial levels of blood sugar.

  7. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    PubMed

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2017-08-01

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  8. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Dahikar, P. B., E-mail: pbdahikar@rediffmail.com

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of bloodmore » sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.« less

  9. Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Lin, Chih-Hsueh; Lin, Cheng-Chieh; Shibu, Marthandam Asokan; Liu, Chiu-Shong; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hsieh, Cheng-Hong; Chen, Yi-Hsing; Huang, Chih-Yang

    2014-02-01

    Impaired regulation of blood glucose levels in diabetes mellitus (DM) patients and the associated elevation of blood glucose levels are known to increase the risk of diabetic cardiomyopathy (DC). In the present study, a probiotic bacterium, Lactobacillus reuteri GMN-32, was evaluated for its potential to reduce blood glucose levels and to provide protection against DC risks in streptozotocin (STZ)-induced DM rats. The blood glucose levels of the STZ-induced DM rats when treated with L. reuteri GMN-32 decreased from 4480 to 3620 mg/l (with 10⁷ colony-forming units (cfu)/d) and 3040 mg/l (with 10⁹ cfu/d). Probiotic treatment also reduced the changes in the heart caused by the effects of DM. Furthermore, the Fas/Fas-associated protein with death domain pathway-induced caspase 8-mediated apoptosis that was observed in the cardiomyocytes of the STZ-induced DM rats was also found to be controlled in the probiotic-treated rats. The results highlight that L. reuteri GMN-32 treatment reduces blood glucose levels, inhibits caspase 8-mediated apoptosis and promotes cardiac function in DM rats as observed from their ejection fraction and fractional shortening values. In conclusion, the administration of L. reuteri GMN-32 probiotics can regulate blood glucose levels, protect cardiomyocytes and prevent DC in DM rats.

  10. Characterization of the Impaired Glucose Homeostasis Produced in C57BL/6 Mice by Chronic Exposure to Arsenic and High-Fat Diet

    PubMed Central

    Paul, David S.; Walton, Felecia S.; Saunders, R. Jesse

    2011-01-01

    Background: Type 2 diabetes is characterized by glucose intolerance and insulin resistance. Obesity is the leading cause of type 2 diabetes. Growing evidence suggests that chronic exposure to inorganic arsenic (iAs) also produces symptoms consistent with diabetes. Thus, iAs exposure may further increase the risk of diabetes in obese individuals. Objectives: Our goal was to characterize diabetogenic effects of iAs exposure and high-fat diet (HFD) in weaned C57BL/6 mice. Methods: Mice were fed HFD or low-fat diet (LFD) while exposed to iAs in drinking water (25 or 50 ppm As) for 20 weeks; control HFD and LFD mice drank deionized water. Body mass and adiposity were monitored throughout the study. We measured glucose and insulin levels in fasting blood and in blood collected during oral glucose tolerance tests (OGTT) to evaluate the diabetogenic effects of the treatment. Results: Control mice fed HFD accumulated more fat, had higher fasting blood glucose, and were more insulin resistant than were control LFD mice. However, these diabetes indicators decreased with iAs intake in a dose-dependent manner. OGTT showed impaired glucose tolerance for both control and iAs-treated HFD mice compared with respective LFD mice. Notably, glucose intolerance was more pronounced in HFD mice treated with iAs despite a significant decrease in adiposity, fasting blood glucose, and insulin resistance. Conclusions: Our data suggest that iAs exposure acts synergistically with HFD-induced obesity in producing glucose intolerance. However, mechanisms of the diabetogenic effects of iAs exposure may differ from the mechanisms associated with the obesity-induced type 2 diabetes. PMID:21592922

  11. Estimating glucose requirements of an activated immune system in growing pigs.

    PubMed

    Kvidera, S K; Horst, E A; Mayorga, E J; Sanz-Fernandez, M V; Abuajamieh, M; Baumgard, L H

    2017-11-01

    Activated immune cells become obligate glucose utilizers, and a large i.v. lipopolysaccharide (LPS) dose causes insulin resistance and severe hypoglycemia. Therefore, study objectives were to quantify the amount of glucose needed to maintain euglycemia following an endotoxin challenge as a proxy of leukocyte glucose requirements. Fifteen fasted crossbred gilts (30.3 ± 1.7 kg) were bilaterally jugular catheterized and assigned 1 of 2 i.v. bolus treatments: control (CON; 10 mL sterile saline; = 7) or LPS challenge + euglycemic clamp (LPS-Eu; 055:B5; 5 μg/kg BW; 50% dextrose infusion to maintain euglycemia; = 8). Following administration, blood glucose was determined every 10 min and dextrose infusion rates were adjusted in LPS-Eu pigs to maintain euglycemia for 8 h. Pigs were fasted for 8 h prior to the bolus and remained fasted throughout the challenge. Rectal temperature was increased in LPS-Eu pigs relative to CON pigs (39.8 vs. 38.8°C; < 0.01). Relative to the baseline, CON pigs had 20% decreased blood glucose from 300 to 480 min postbolus ( = 0.01) whereas circulating glucose content in LPS-Eu pigs did not differ ( = 0.96) from prebolus levels. A total of 116 ± 8 g of infused glucose was required to maintain euglycemia in LPS-Eu pigs. Relative to CON pigs, overall plasma insulin, blood urea nitrogen, β-hydroxybutrate, lactate, and LPS-binding protein were increased in LPS-Eu pigs (295, 108, 29, 133, and 13%, respectively; ≤ 0.04) whereas NEFA was decreased (66%; < 0.01). Neutrophils in LPS-Eu pigs were decreased 84% at 120 min postbolus and returned to CON levels by 480 min ( < 0.01). Overall, lymphocytes, monocytes, eosinophils, and basophils were decreased in LPS-Eu pigs relative to CON pigs (75, 87, 70, and 50%, respectively; ≤ 0.05). These alterations in metabolism and the large amount of glucose needed to maintain euglycemia indicate nutrient repartitioning away from growth toward the immune system. Glucose is an important fuel for the immune system, and data from this study established that the glucose requirements of an intensely and acutely activated immune system in growing pigs are approximately 1.1 g/kg BW/h.

  12. Combat Stress Decreases Memory of Warfighters in Action.

    PubMed

    Delgado-Moreno, Rosa; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier

    2017-08-01

    The present research aimed to analyze the effect of combat stress in the psychophysiological response and attention and memory of warfighters in a simulated combat situation. Variables of blood oxygen saturation, heart rate, blood glucose, blood lactate, body temperature, lower body muscular strength manifestation, cortical arousal, autonomic modulation, state anxiety and memory and attention through a postmission questionnaire were analyzed before and after a combat simulation in 20 male professional Spanish Army warfighters. The combat simulation produces a significant increase (p < 0.05) in explosive leg strength, rated perceived exertion, blood glucose, blood lactate, somatic anxiety, heart rate, and low frequency domain of the HRV (LF) and a significant decrease of high frequency domain of the heart rate variability (HF). The percentage of correct response in the postmission questionnaire parameters show that elements more related with a physical integrity threat are the most correctly remembered. There were significant differences in the postmission questionnaire variables when participants were divided by the cortical arousal post: sounds no response, mobile phone correct, mobile phone no response, odours correct. The correlation analysis showed positive correlations: LF post/body temperature post, HF post/correct sound, body temperature post/glucose post, CFFTpre/lactate post, CFFT post/wrong sound, glucose post/AC pre, AC post/wrong fusil, AS post/SC post and SC post/wrong olfactory; and negative correlations: LF post/correct sound, body temperature post/lactate post and glucose post/lactate post. This data suggest that combat stress actives fight-flight system of soldiers. As conclusion, Combat stress produces an increased psychophysiological response that cause a selective decrease of memory, depending on the nature, dangerous or harmless of the objects.

  13. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats.

    PubMed

    Asad, Munnaza; Munir, Tahir Ahmad; Afzal, Nasir

    2011-03-01

    To evaluate the hypoglycaemic and anti-platelet aggregation effect of aqueous methanol extract of Acacia Nilotica (AN) leaves compared with glyburide on streptozotocin induced diabetic rats. Diabetes mellitus was induced in 90 out of 120 albino rats by administering 50 mg/kg body weight (b.w) streptozotocin and was confirmed by measuring fasting blood glucose level >200 mg/dL on 4th post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetic rats treated with AN extract) and group D (diabetic rats treated with glyburide). The rats of group C and D were given 300 mg/kg b.w AN extract and 900 microgm/kg b.w glyburide respectively for 3 weeks. Blood glucose was measured by glucometer, platelet aggregation by Dia-Med method and insulin and beta-thromboglobulin by ELISA technique. A significant increase (p<0.05) in fasting blood glucose, beta-thromboglobulin and platelet aggregation and a significant decrease (p<0.05) in insulin levels was observed in streptozotocin induced diabetic rats than the normal controls. The rats treated with AN extract and glyburide showed a significant decrease (p<0.05) in fasting blood glucose and increase (p<0.05) in insulin levels than the diabetic control rats. However, the levels in both the treatment groups remained significantly different than the normal controls. A significant decrease (p<0.05) in beta-thromboglobulin levels was seen in diabetic rats treated with glyburide than the diabetic control rats and diabetic rats treated with AN extract. AN leaves extract result into hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide.

  14. Effects of Intragastric Administration of Tryptophan on the Blood Glucose Response to a Nutrient Drink and Energy Intake, in Lean and Obese Men

    PubMed Central

    Ullrich, Sina S.; Fitzgerald, Penelope C. E.; Giesbertz, Pieter; Steinert, Robert E.; Horowitz, Michael; Feinle-Bisset, Christine

    2018-01-01

    Tryptophan stimulates plasma cholecystokinin and pyloric pressures, both of which slow gastric emptying. Gastric emptying regulates postprandial blood glucose. Tryptophan has been reported to decrease energy intake. We investigated the effects of intragastric tryptophan on the glycaemic response to, and gastric emptying of, a mixed-nutrient drink, and subsequent energy intake. Lean and obese participants (n = 16 each) received intragastric infusions of 1.5 g (“Trp-1.5g”) or 3.0 g (“Trp-3.0g”) tryptophan, or control, and 15 min later consumed a mixed-nutrient drink (56 g carbohydrates). Gastric emptying (13C-acetate breath-test), blood glucose, plasma C-peptide, glucagon, cholecystokinin and tryptophan concentrations were measured (t = 0–60 min). Energy intake was assessed between t = 60–90 min. In lean individuals, Trp-3.0g, but not Trp-1.5g, slowed gastric emptying, reduced C-peptideAUC and increased glucagonAUC (all P < 0.05), but did not significantly decrease the blood glucose response to the drink, stimulate cholecystokinin or reduce mean energy intake, compared with control. In obese individuals, Trp-3.0g, but not Trp-1.5g, tended to slow gastric emptying (P = 0.091), did not affect C-peptideAUC, increased glucagonAUC (P < 0.001) and lowered blood glucose at t = 30 min (P < 0.05), and did not affect cholecystokinin or mean energy intake. In obese individuals, intragastrically administered tryptophan may reduce postprandial blood glucose by slowing gastric emptying; the lack of effect on mean energy intake requires further investigation. PMID:29642492

  15. The Effect of Fasting Duration on Baseline Blood Glucose Concentration, Blood Insulin Concentration, Glucose/Insulin Ratio, Oral Sugar Test, and Insulin Response Test Results in Horses.

    PubMed

    Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E

    2016-09-01

    Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    PubMed Central

    Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR

    2014-01-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778

  17. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  18. Peptide correction of age-related hormonal dysfunction of the pancreas in monkeys.

    PubMed

    Goncharova, N D; Vengerin, A A; Khavinson, V Kh; Lapin, B A

    2004-07-01

    We studied the effect of Epithalon on the function of pancreatic islets and regulation of blood glucose level in female rhesus monkeys of various ages. Epithalon corrected the age-related decrease in glucose tolerance and restored the dynamics of insulin level in response to glucose load.

  19. Effect of additional administration of acarbose on blood glucose fluctuations and postprandial hyperglycemia in patients with type 2 diabetes mellitus under treatment with alogliptin.

    PubMed

    Kusunoki, Yoshiki; Katsuno, Tomoyuki; Myojin, Makiko; Miyakoshi, Kana; Ikawa, Takashi; Matsuo, Toshihiro; Ochi, Fumihiro; Tokuda, Masaru; Murai, Kazuki; Miuchi, Masayuki; Hamaguchi, Tomoya; Miyagawa, Jun-ichiro; Namba, Mitsuyoshi

    2013-01-01

    Acarbose was administered at 300 mg/day to patients with type 2 diabetes mellitus (T2DM) who had been taking 25 mg/day of alogliptin, and levels of blood glucose were analyzed by continuous glucose monitoring (CGM) for 3 days. The mean blood glucose level with acarbose (136.4 ± 30.7 mg/dL) did not differ significantly from that without acarbose (141.7 ± 28.3 mg/dL). However, in the condition of the combination therapy, there were significant decreases in the standard deviation of the mean blood glucose levels for the 24-hour period (27.6 ± 9.1 vs. 16.2 ± 6.9 mg/dL, p<0.001) and mean amplitude of glycemic excursions (MAGE) (65.8 ± 26.1 vs. 38.8 ± 19.2 mg/dL, p=0.010). In addition, a meal tolerance test was conducted to monitor changes in insulin secretion and active GLP-1 and total GIP values. Ten subjects (5 males, 5 females) of 54.9 ± 6.9 years with BMI 25.9 ± 5.2 kg/m² and HbAlc 9.2 ± 1.2% were enrolled. In the meal tolerance test, active GLP-1 values before and after acarbose administration were 17.0 ± 5.8 and 24.1 ± 9.3 pmol·hr/mL (p=0.054), respectively, showing an increasing tendency, and total GIP(AUC0-180) values were 685.9 ± 209.7 and 404.4 ± 173.7 pmol·hr/mL, respectively, showing a significant decrease (p=0.010). The results indicate that the combined administration of both inhibitors is effective not only in decreasing blood glucose fluctuations and preventing postprandial insulin secretion. The beneficial effects may also protect the endocrine pancreas and inhibit body weight gain.

  20. [Insulin concentration in polytraumatized patients during infusion of glucose, fructose and sorbitol].

    PubMed

    Förster, H; Steuer, A; Albrecht, H; Quadbeck, R; Dudziak, R

    1978-08-01

    Serum insulin concentration was measured during infusion of glucose, fructose or sorbitol for several days in polytraumatized patients. The patients are divided in two groups, one group with normal glucose tolerance and a second group, where an extreme disturbance of the glucose utilization was found. In patients with normal glucose tolerance the glucose substitutes had the same metabolic effects as in metabolically healthy volunteers. In patients with disturbed glucose tolerance the glucose substitutes (fructose as well as sorbitol) effected an increase in blood glucose concentration and in serum insulin concentration. It is concluded that the increase in blood glucose concentration causes the increase in serum insulin concentration. Obviously, in a certain group of polytraumatized patients a "metabolic insulin resistence" exists. Therefore, glucose utilization is decreased despite an increase in serum insulin. In most cases the metabolic disturbance in these patients is mastered, if glucose substitutes are used instead of glucose as energy source. However, in many cases glucose can be administered only if insulin is given additionally.

  1. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.

    PubMed

    Sindurani, J A; Rajamohan, T

    2000-01-01

    The effect of neutral detergent fiber (NDF) from coconut kernel (Cocos nucifera L) in rats fed 5%, 15% and 30% level on the concentration of blood glucose, serum insulin and excretion of minerals was studied. Increase in the intake of fiber resulted in significant decrease in the level of blood glucose and serum insulin. Faecal excretion of Cu, Cr, Mn, Mg, Zn and Ca was found to increase in rats fed different levels of coconut fiber when compared to fiber free group. The result of the present investigation suggest that inclusion of coconut fiber in the diet results in significant hypoglycemic action.

  2. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    PubMed

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  3. T3 supplementation affects ventilatory timing & glucose levels in type 2 diabetes mellitus model.

    PubMed

    Bollinger, Stephen S; Weltman, Nathen Y; Gerdes, A Martin; Schlenker, Evelyn H

    2015-01-01

    Type II diabetes mellitus (T2DM) can affect ventilation, metabolism, and fasting blood glucose levels. Hypothyroidism may be a comorbidity of T2DM. In this study T2DM was induced in 20 female Sprague Dawley rats using Streptozotocin (STZ) and Nicotinamide (N). One of experimental STZ/N groups (N=10 per group) was treated with a low dose of triiodothyronine (T3). Blood glucose levels, metabolism and ventilation (in air and in response to hypoxia) were measured in the 3 groups. STZ/N-treated rats increased fasting blood glucose compared to control rats eight days and 2 months post-STZ/N injections indicating stable induction of T2DM state. Treatments had no effects on ventilation, metabolism or body weight. After one month of T3 supplementation, there were no physiological indications of hyperthyroidism, but T3 supplementation altered ventilatory timing and decreased blood glucose levels compared to STZ/N rats. These results suggest that low levels of T3 supplementation could offer modest effects on blood glucose and ventilatory timing in this T2M model. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Noninvasive Ultrasound Transdermal Insulin Delivery and Glucose Monitoring Using a Low-Profile Cymbal Array

    NASA Astrophysics Data System (ADS)

    Park, E.-J.; Luis, J.; Meyer, R. J.; Pishko, M. V.; Smith, N. B.

    2006-05-01

    Recent studies have shown that ultrasound mediated transdermal drug delivery offers promising results for noninvasive drug administration. The purpose of this study was to demonstrate ultrasonic transdermal insulin delivery and in vivo sensing glucose with a novel, low-profile ultrasound array based on the cymbal transducer. As a practical device, the array composed of circular cymbal transducers was thin (< 7mm) and weighed less than 22g. Using this array on hyperglycemic rats, our previous experiments demonstrated that blood glucose would decrease by 296.7 mg/dL from 60 minutes of ultrasound exposure. With a similar intensity, our goal was to evaluate the feasibility of insulin delivery with large animals (rabbits and pigs) and noninvasively determine the glucose level of hyperglycemic rats with the array system. Ultrasound was exposed for 60 minutes at Isptp=100 mW/cm2. With the same procedure, a preliminary experiment of large animal was performed on a pig (12 kg) at Isptp=50 mW/cm2. For the control experiments in insulin delivery, the blood glucose level varied little from the initial baseline. However, for the ultrasound and insulin exposure experiment, the glucose level was found to decrease by 132.6 mg/dL in 60 minutes and continued to decrease by 208.1 mg/dL in 90 minutes. From the preliminary pig experiment, the blood glucose level decreased by 120 mg/dL in 90 minutes. To noninvasively determine the glucose level, ultrasound exposure experiments with an electrochemical glucose biosensor were performed on hyperglycemic rats. After 20 minutes ultrasound exposure, the biosensor was placed at the exposure area to determine the concentration of glucose diffused through the skin. The glucose level of rats determined by the biosensor was 408 mg/dL which was very similar to the results of conventional glucose meter reading 396.7 mg/dL. Recently, a rectangular cymbal transducer was developed to obtain a larger sonication area without an increase in array size. Preliminary experiments were performed on hyperglycemic rabbits to evaluate the new transducer design. The results showed that the rectangular array has enhanced performance compared to the circular array. All results of ultrasound application indicate the feasibility of using a low-cost, light-weight cymbal array for enhanced noninvasive transdermal insulin delivery and glucose monitoring.

  5. Changes in glucose disposal after a caloric restriction-induced weight loss program in obese postmenopausal women: characteristics of positive and negative responders in a Montreal-Ottawa New Emerging Team study.

    PubMed

    Myette-Côté, Étienne; Doucet, Éric; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Brochu, Martin

    2015-01-01

    This study aims to investigate individual characteristics that explain interindividual variations in glucose disposal in response to a 6-month weight loss program in obese postmenopausal women. The cohort was divided into tertiles based on changes in glucose disposal after weight loss. Only women in the upper tertile (positive responders: Δ glucose disposal ≥ 0.92 mg/kg/min; n = 19) and lower tertile (negative responders: Δ glucose disposal ≤ -0.23 mg/kg/min; n = 19) were considered for analyses. Outcome measures included body weight, lean body mass (LBM), LBM index (= LBM / height [m]), fat mass (FM), FM index (= FM / height [m]), visceral fat, subcutaneous abdominal fat, high-sensitivity C-reactive protein (hsCRP) levels, interleukin-6, lipid profile, physical activity levels, fasting blood glucose and insulin levels, glucose disposal by hyperinsulinemic-euglycemic clamp technique, and resting blood pressure. At baseline, positive responders had higher triglycerides and hsCRP levels and lower glucose disposal (0.01 < P < 0.05) than negative responders. Except for visceral fat, the entire cohort showed significant decreases in all measures of body composition (P < 0.005) after weight loss, with greater decreases in body weight, body mass index, and FM index in positive responders (P < 0.005). Finally, data revealed that only positive responders showed decreases in LBM, LBM index, and hsCRP levels after weight loss (P between 0.01 and 0.001). An important interindividual variability in changes in glucose disposal after weight loss is observed. Interestingly, participants who display improvements in glucose disposal also show significant decreases in LBM, LBM index, and hsCRP after weight loss.

  6. Prevention of hypoglycemia using risk assessment with a continuous glucose monitoring system.

    PubMed

    Choleau, Carine; Dokladal, Petr; Klein, Jean-Claude; Ward, W Kenneth; Wilson, George S; Reach, Gérard

    2002-11-01

    Due to the lag between sugar intake and the beginning of recovery from hypoglycemia, it is necessary to intervene in an anticipatory way if one wants to prevent, not only detect, hypoglycemia. This article presents the principle of a hypoglycemia prevention system based on risk assessment. The risk situation can be defined as the moment when the system estimates that the glucose concentration is expected to reach a hypoglycemia threshold in less than a given time (e.g., 20 min). Since there are well-known discrepancies between blood and interstitial glucose concentrations, the aim of this experimental study performed in nondiabetic rats was first to validate this strategy, and second to determine whether it can work when the glucose concentration is estimated by a glucose sensor in subcutaneous tissue rather than in blood. We used a model of controlled decrease in blood glucose concentration. A glucose infusion, the profile of which mimicked the appearance of glucose from an intragastric load, was administered either when hypoglycemia was detected or on the basis of risk recognition. Despite the lag between the beginning of the load and that of the increase in blood glucose concentration, which was in all experiments 15-20 min, hypoglycemia was fully prevented without overshoot hyperglycemia in the groups of rats in which the glucose load was started when the hypoglycemia risk was detected, on the basis of either blood or interstitial glucose concentration. This was, of course, not the case when the same glucose load was infused at the detection of the hypoglycemia threshold.

  7. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  8. Brain microvascular function during cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, H.R.; Husum, B.; Waaben, J.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less

  9. Influence of artificial sweetener on human blood glucose concentration.

    PubMed

    Skokan, Ilse; Endler, P Christian; Wulkersdorfer, Beatrix; Magometschnigg, Dieter; Spranger, Heinz

    2007-10-05

    Artificial sweeteners, such as saccharin or cyclamic acid are synthetically manufactured sweetenings. Known for their low energetic value they serve especially diabetic and adipose patients as sugar substitutes. It has been hypothesized that the substitution of sugar with artificial sweeteners may induce a decrease of the blood glucose. The aim of this study was to determine the reliability of this hypothesis by comparing the influence of regular table sugar and artificial sweeteners on the blood glucose concentration. In this pilot-study 16 patients were included suffering from adiposity, pre-diabetes and hypertension. In the sense of a cross-over design, three test trials were performed at intervals of several weeks. Each trial was followed by a test free interval. Within one test trial each patient consumed 150 ml test solution (water) that contained either 6 g of table sugar ("Kandisin") with sweetener free serving as control group. Tests were performed within 1 hr after lunch to ensure conditions comparable to patients having a desert. Every participant had to determine their blood glucose concentration immediately before and 5, 15, 30 and 60 minutes after the intake of the test solution. For statistics an analysis of variance was performed. The data showed no significant changes in the blood glucose concentration. Neither the application of sugar (F(4;60) = 1.645; p = .175) nor the consumption of an artificial sweetener (F(2.068;31.023) = 1.551; p > .05) caused significant fluctuations in the blood sugar levels. Over a time frame of 60 minutes in the control group a significant decrease of the blood sugar concentration was found (F(2.457;36.849) = 4.005; p = .020) as a physiological reaction during lunch digestion.

  10. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice.

    PubMed

    Seki, Taiichiro; Nagase, Ryohei; Torimitsu, Mariko; Yanagi, Megumi; Ito, Yukihiko; Kise, Mitsuo; Mizukuchi, Aya; Fujimura, Naoko; Hayamizu, Kohusuke; Ariga, Toyohiko

    2005-08-01

    The intake of pre-germinated brown rice (PR) instead of white rice (WR) ameliorates the hyperglycemia. To clarify the mechanism(s) to decrease the post-prandial blood glucose concentration, the effect of water-soluble/oil-soluble fraction-depleted PR bran (termed as "DB"; which is destarched and defatted PR bran) on post-prandial blood glucose was compared with that of full-fat PR bran (PB) or WR. The test diets, WR diet, PB diet and DB diet which are containing identical amount of available carbohydrate (1.5 g) were fed to Wistar strain rats. Post-prandial blood glucose concentration and incremental area under the curve (IAUC) for DB diet were lower than those for WR diet, and there was no difference between the DB diet and PB diet. Changes in plasma insulin concentration and the IAUC obtained also revealed the same tendency as those observed in blood glucose concentration. These results indicate that the blood glucose-lowering effect of PB diet may be derived from the properties of PB involving substantially higher content of dietary fiber than WR, and that the potential benefit of intake of PR instead of WR in the prevention of diabetic vascular complications.

  11. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Blood Glucose Levels in Diabetic Patients Following Corticosteroid Injections into the Subacromial Space of the Shoulder.

    PubMed

    Aleem, Alexander W; Syed, Usman Ali M; Nicholson, Thema; Getz, Charles L; Namdari, Surena; Beredjiklian, Pedro K; Abboud, Joseph A

    2017-09-01

    Corticosteroid injections are used to treat a variety of orthopedic conditions with the goal of decreasing pain and inflammation. Administration of systemic or local corticosteroids risks temporarily increasing blood glucose levels, especially diabetic patients. The purpose of this study is to quantify the effects of corticosteroid injections on blood glucose levels in diabetic patients with shoulder pathology. Diabetic patients who regularly monitored their blood glucose levels and were indicated for a subacromial corticosteroid injection were included in this prospective investigation. The typical normal morning fasting glucose and most recent hemoglobin A1c level was recorded for each patient. After injection, patients were contacted daily to confirm their fasting morning glucose level for 10 days post-injection. Seventeen consecutive patients were enrolled. Patients with hemoglobin A1c of <7% had an average rise in blood glucose of 38 mg/dL compared to 98 mg/dL in the poorly controlled group after injection ( P <0.001). Well-controlled patients' glucose levels returned to near baseline levels around post-injection day 8, while poorly controlled patients levels remained elevated. Similarly, insulin-dependent diabetic patients had an average increase in fasting glucose level of 99 mg/dL versus 50 mg/dL in non-insulin-dependent diabetic patients ( P <0.001). After corticosteroid injection, patients with well-controlled diabetes experience smaller elevations and faster return to baseline glucose levels than patients with poor control. Insulin dependent diabetics experienced similar findings as patients with poor control. Future studies are needed to evaluate dosing to optimize the risks of blood glucose elevation while maintaining therapeutic benefit.

  13. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice.

    PubMed

    Kim, Sung Hee; Hyun, Sun Hee; Choung, Se Young

    2006-03-08

    The anti-diabetic effect of Cinnamomi cassiae extract (Cinnamon bark: Lauraceae) in a type II diabetic animal model (C57BIKsj db/db) was studied. Cinnamon extract was administered at different dosages (50, 100, 150 and 200 mg/kg) for 6 weeks. It was found that blood glucose concentration is significantly decreased in a dose-dependent manner (P<0.001) with the most in the 200 mg/kg group compared with the control. In addition, serum insulin levels and HDL-cholesterol levels were significantly higher (P<0.01) and the concentration of triglyceride, total cholesterol and intestinal alpha-glycosidase activity were significantly lower after 6 weeks of the administration. These results suggest that cinnamon extract has a regulatory role in blood glucose level and lipids and it may also exert a blood glucose-suppressing effect by improving insulin sensitivity or slowing absorption of carbohydrates in the small intestine.

  14. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats.

    PubMed

    Farzami, Bijan; Ahmadvand, D; Vardasbi, S; Majin, F J; Khaghani, Sh

    2003-11-01

    The blood glucose lowering effect of Urtica dioica (Stinging Nettle) as a medicinal plant has been noted in old writings such as those of Avicenna. Recently, there has also been other investigators that indicated the hypoglycemic effect of Urtica dioica. But so far, the mechanism of this effect has not been deduced. In this report, a perifusion system is arranged in which an exact number of Langerhans Islets were exposed to several fractions of extracts of Urtica dioica by TLC. The active ingredient fraction named F(1), caused a marked increase in insulin secretion. A simultaneous assay of glucose showed that the increase in insulin level was associated with a decrease in glucose level. Furthermore, the active component of Urtica dioica was found to increase the insulin content of blood sera in normal and streptozotocin diabetic rats that were injected intraperitoneally (i.p.) with the active ingredient of the extract. The in vivo studies presented in this report show that not only an increase in insulin level of blood sera was observed in rats after 30 min from the initial point of injection but a simultaneous decrease of blood sugar was detected when similar sera was tested for glucose. The increase in insulin level was six times during the 120 min of our determination. The decrease in blood sugar was found to be similar both in the level and time of initiation. On the basis of our findings, we assume that F(1) is the active ingredient of plant leaves extract. The results show that the blood lowering effect of the extract was due to the enhancement of insulin secretion by Langerhance Isletes.

  15. Smart point-of-care systems for molecular diagnostics based on nanotechnology: whole blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Devadhasan, Jasmine P.; Kim, Sanghyo

    2015-07-01

    Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.

  16. Quality assessment of patients’ self-monitoring of blood glucose in community pharmacies

    PubMed Central

    Kjome, Reidun L. S.; Granas, Anne G.; Nerhus, Kari; Sandberg, Sverre

    2009-01-01

    Objective To evaluate diabetes patients’ self-monitoring of blood glucose using a community pharmacy-based quality assurance procedure, to investigate whether the procedure improved the quality of the patient performance of self monitoring of blood glucose, and to examine the opinions of the patients taking part in the study. Methods The results of patient blood glucose measurements were compared to the results obtained with HemoCue Glucose 201+ by pharmacy employees in 16 Norwegian community pharmacies. Patient performance was monitored using an eight item checklist. Patients whose blood glucose measurements differed from pharmacy measurements by more than 20% were instructed in the correct use of their glucometer. The patients then re-measured their blood glucose. If the results were still outside the set limits, the control procedure was repeated with a new lot of glucometer strips, and then with a new glucometer. The patients returned for a follow-up visit after three months. Results During the first visit, 5% of the 338 patients had measurements that deviated from pharmacy blood glucose values by more than 20% and user errors were observed for 50% of the patients. At the second visit, there was no significant change in the analytical quality of patient measurements, but the percentage of patients who made user errors had decreased to 29% (p < 0.001). Eighty-five percent of the patients reported that they used their blood glucose results to adjust medication, exercise or meals. Fifty-one percent of the patients reported a greater trust in their measurements after the second visit. Eighty percent of patients wished to have their measurements assessed yearly. Of these patients, 83% preferred to have the assessment done at the community pharmacy. Conclusion A community pharmacy-based quality assessment procedure of patients’ self monitoring of blood glucose significantly reduced the number of user errors. The analytical quality of the patients’ measurements was good and did not improve further during the study. The high analytical quality might be explained by a selection bias of participating patients. Patients also reported increased confidence in their blood glucose measurements after their measurements had been assessed at the pharmacy. PMID:25152795

  17. Effects of intraduodenal administration of the artificial sweetener sucralose on blood pressure and superior mesenteric artery blood flow in healthy older subjects.

    PubMed

    Pham, Hung T; Stevens, Julie E; Rigda, Rachael S; Phillips, Liza K; Wu, Tongzhi; Hausken, Trygve; Soenen, Stijn; Visvanathan, Renuka; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L

    2018-06-06

    Postprandial hypotension (PPH) occurs frequently, particularly in older people and those with type 2 diabetes, and is associated with increased morbidity and mortality. The magnitude of the decrease in blood pressure (BP) induced by carbohydrate, fat, and protein appears to be comparable and results from the interaction of macronutrients with the small intestine, including an observed stimulation of mesenteric blood flow. It is not known whether artificial sweeteners, such as sucralose, which are widely used, affect BP. The aim of this study was to evaluate the effects of intraduodenal sucralose on BP and superior mesenteric artery (SMA) blood flow, compared with intraduodenal glucose and saline (control), in healthy older subjects. Twelve healthy subjects (6 men, 6 women; aged 66-79 y) were studied on 3 separate occasions in a randomized, double-blind, crossover design. After an overnight fast, subjects had concurrent measurements of BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), and blood glucose (glucometer) during intraduodenal infusion of 1) glucose (25% wt:vol, ∼1400 mOsmol/L), 2) sucralose (4 mmol/L, ∼300 mOsmol/L), or 3) saline (0.9% wt:vol, ∼300 mOsmol/L) at a rate of 3 mL/min for 60 min followed by intraduodenal saline for a further 60 min. There was a decrease in mean arterial BP (P < 0.001) during intraduodenal glucose [baseline (mean ± SEM): 91.7 ± 2.6 mm Hg compared with t = 60 min: 85.9 ± 2.8 mm Hg] but not during intraduodenal saline or intraduodenal sucralose. The HR (P < 0.0001) and SMA blood flow (P < 0.0001) also increased during intraduodenal glucose but not during intraduodenal saline or intraduodenal sucralose. As expected, blood glucose concentrations increased in response to glucose (P < 0.0001) but not saline or sucralose. In healthy older subjects, intraduodenal administration of the artificial sweetener sucralose was not associated with changes in BP or SMA blood flow. Further studies are therefore warranted to determine the potential role for artificial sweeteners as a therapy for PPH. This trial was registered at http://www.ANZCTR.org.au as ACTRN12617001249347.

  18. Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats.

    PubMed

    Rendón-Huerta, Juan A; Juárez-Flores, Bertha; Pinos-Rodríguez, Juan M; Aguirre-Rivera, J Rogelio; Delgado-Portales, Rosa E

    2012-03-01

    Fructans contribute significantly to dietary fiber with beneficial effects on gastrointestinal physiology in healthy individuals and offer a promising approach to treating some diseases. Two experiments (Experiment 1 = rats with normal weight; Experiment 2 = obese rats) were developed to compare the effects of three fructan sources (Cichorium intybus L. Asteraceae, Helianthus tuberosus L. Asteraceae and Agave angustifolia ssp. tequilana Haw, Agavaceae) on body weight change, blood metabolites and fecal bacteria in non-diabetic (ND) and diabetic (D) rats. In Experiment 1 total body weight gain and daily feed intake in D and ND rats decreased (P < 0.05) with supplements of fructan. Only in D rats, blood glucose concentrations, fecal Clostrodium spp. counts, and liver steatosis decreased, while blood HDL concentrations and fecal Lactobacillus spp. and Bifidobacterium spp. counts increased due to fructans. In Experiment 2, total body weight gain and feed intake in ND and D rats were also decreased by fructans. In ND rats, fructan decreased blood glucose concentrations. In D rats, fructans from A. angustifolia ssp. tequilana decreased blood cholesterol and LDL and liver steatosis. For both ND and D rats, fecal Lactobacillus spp. and Bifidobacterium spp. counts were higher (P < 0.05) with fructan supplements.

  19. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study.

    PubMed

    Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong

    2017-02-15

    Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.

  20. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats

    PubMed Central

    Swithers, Susan E.; Laboy, Alycia F.; Clark, Kiely; Cooper, Stephanie; Davidson, T.L.

    2012-01-01

    Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety. PMID:22561130

  1. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    PubMed

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  2. A novel model for studies of blood-mediated long-term responses to cellular transplants

    PubMed Central

    Lindblom, Susanne; Hong, Jaan; Nilsson, Bo; Korsgren, Olle; Ronquist, Gunnar

    2015-01-01

    Aims Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. Methods Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. Results Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. Conclusion A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions. PMID:25322825

  3. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.

    PubMed

    Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio; Nakano, Atsushi

    2017-12-12

    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.

  4. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis

    PubMed Central

    Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio

    2017-01-01

    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy. PMID:29231167

  5. The metabolites in peripheral blood mononuclear cells showed greater differences between patients with impaired fasting glucose or type 2 diabetes and healthy controls than those in plasma.

    PubMed

    Kim, Minjoo; Kim, Minkyung; Han, Ji Yun; Lee, Sang-Hyun; Jee, Sun Ha; Lee, Jong Ho

    2017-03-01

    To determine differences between peripheral blood mononuclear cells and the plasma metabolites in patients with impaired fasting glucose or type 2 diabetes and healthy controls. In all, 65 nononobese patients (aged 30-70 years) with impaired fasting glucose or type 2 diabetes and 65 nonobese sex-matched healthy controls were included, and fasting peripheral blood mononuclear cell and plasma metabolomes were profiled. The diabetic or impaired fasting glucose patients showed higher circulating and peripheral blood mononuclear cell lipoprotein phospholipase A 2 activities, high-sensitivity C-reactive protein and tumour necrosis factor-α than controls. Compared with controls, impaired fasting glucose or diabetic subjects showed increases in 11 peripheral blood mononuclear cell metabolites: six amino acids (valine, leucine, methionine, phenylalanine, tyrosine and tryptophan), l-pyroglutamic acid, two fatty acid amides containing palmitic amide and oleamide and two lysophosphatidylcholines. In impaired fasting glucose or diabetic patients, peripheral blood mononuclear cell lipoprotein phospholipase A 2 positively associated with peripheral blood mononuclear cell lysophosphatidylcholines and circulating inflammatory markers, including tumour necrosis factor-α, high-sensitivity C-reactive protein and lipoprotein phospholipase A 2 activities. In plasma metabolites between patients and healthy controls, we observed significant increases in only three amino acids (proline, valine and leucine) and decreases in only five lysophosphatidylcholines. This study demonstrates significant differences in the peripheral blood mononuclear cell metabolome in patients with impaired fasting glucose or diabetes compared with healthy controls. These differences were greater than those observed in the plasma metabolome. These data suggest peripheral blood mononuclear cells as a useful tool to better understand the inflammatory pathophysiology of diabetes.

  6. Evaluation of glucose response to 3 types of insulin using a continuous glucose monitoring system in healthy alpacas.

    PubMed

    Byers, S R; Beemer, O M; Lear, A S; Callan, R J

    2014-01-01

    Persistent hyperglycemia is common in alpacas and typically requires insulin administration for resolution; however, little is known about alpacas' response to different insulin formulations. To evaluate the effects of 3 insulin formulations on blood glucose concentrations and the use of a continuous glucose monitoring (CGM) system in alpacas. Six healthy alpacas. The CGM was installed in the left paralumbar fossa at the start of this crossover study and recorded data every 5 minutes. Regular insulin, NPH insulin, insulin glargine, and dextrose were administered to each alpaca over a 2-week period. Blood samples were collected for glucose testing at 0, 1, 2, 4, 6, 8, and 12 hours, and then every 6 hours after each administration of insulin or dextrose. Data were compared by using method comparison techniques, error grid plots, and ANOVA. Blood glucose concentrations decreased most rapidly after regular insulin administration when administered IV or SC as compared to the other formulations. The NPH insulin produced the longest suppression of blood glucose. The mean CGM interstitial compartment glucose concentrations were typically lower than the intravascular compartment glucose concentrations. The alpacas had no adverse reactions to the different insulin formulations. The NPH insulin might be more appropriate for long-term use in hyperglycemic alpacas because of its extended duration of action. A CGM is useful in monitoring glucose trends and reducing blood collection events, but it should not be the sole method for determining treatment protocols. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  7. Slow recovery of blood glucose in the insulin tolerance test during the prepartum transition period negatively impacts the nutritional status and reproductive performance postpartum of dairy cows.

    PubMed

    Lee, Hsu-Hsun; Kida, Katsuya; Miura, Ryotaro; Inokuma, Hisashi; Miyamoto, Akio; Kawashima, Chiho; Haneda, Shingo; Miyake, Yoh-Ichi; Matsui, Motozumi

    2012-04-01

    In peripartum dairy cows, insulin resistance (IR) increases to adjust the direction of energy to lactation after calving. To investigate the effect of prepartum IR on postpartum reproductive performance, the insulin tolerance test (ITT) was applied to 15 cows at 3 weeks (Pre21) and 10 days (Pre10) before the predicted calving date. Blood glucose area under the curve (AUC(glu)) within 120 min after administration of 0.05 IU/kg-BW insulin was calculated. The occurrence of first ovulation, days to first artificial insemination (AI) and first AI conception rate were recorded. Nutritional status postpartum was evaluated by blood chemical analysis. Based on AUC(glu) changes from Pre21 to Pre10, cows were classified into either the AUC-up group (AUC(glu) increase, n=5) or the AUC-down group (AUC(glu) decrease, n=10). There was no difference in the decrease in blood glucose at 30 min after insulin injection between groups, although glucose recovery from 30 to 60 min during the ITT was slow at Pre10 in the AUC-up group. The AUC-up group had a higher number of days to first AI and high glucose, total protein, globulin, γ-glutamyltransferase, triacylglycerol levels and a low albumin-globulin ratio at the 14th day postpartum. The present study infers that prepartum slow glucose recovery rather than insulin sensitivity might increase the potential for subclinical health problems postpartum and thus suppress reproductive performance. During the prepartum transition period, glucose dynamics in the ITT can be considered as a new indicator for the postpartum metabolic status and reproductive performance of dairy cows.

  8. Hypoglycemic effect of an extract from date seeds on diabetic rats.

    PubMed

    El-Fouhil, Ahmed F; Ahmed, Aly M; Darwish, Hasem H

    2010-07-01

    To investigate the efficacy of an aqueous extract from date seeds on diabetic rats. The study was performed in the Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia between November 2008 and December 2009. Eighty adult albino rats were divided into 4 groups. Group 1 was used as healthy control. Group 2 was given daily ingestions of 10 ml of the date seed extract. Animals of groups 3 and 4 were made diabetic by injection of streptozotocin. Diabetic rats of group 3 received daily subcutaneous injections of 3 IU/day of insulin for 8 weeks while group 4 received ingestions of 10 ml of extract in addition to insulin. Fasting blood glucose levels were measured once weekly. Glycosylated hemoglobin (HbA1c) was also estimated. There is a significant change in the mean blood glucose levels between group 3 and group 4 from week 2. The mean blood glucose levels of group 4, every 2 consecutive weeks, showed a significant decrease until week 6. The HbA1c was significantly lower in group 4 compared to group 3. The hypoglycemic effect of date seed extract combined with insulin, decreases the blood glucose level significantly toward normal when compared to the effect of insulin administered as a single drug for treatment of diabetes.

  9. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.

  10. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.

    PubMed

    Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu

    2018-03-22

    The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.

  12. Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine

    2010-03-01

    Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

  13. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid.

  14. [THE EFFECT OF 5 DAYS IMMERSION IN DEAD SEA WATER ON BLOOD GLUCOSE LEVELS IN TYPE 2 DIABETES MELLITUS PATIENTS].

    PubMed

    Brzezinski Sinai, Isaac; Lior, Yotam; Brzezinski Sinai, Noa; Harari, Marco; Liberty, Idit F

    2016-02-01

    Body immersion in plain water or mineral water induces significant and unique physiological changes in most body systems. In a previous pilot study, a significant reduction in blood glucose levels among diabetes mellitus (DM) patients was found following a single immersion in Dead Sea water but not after immersion in plain water. To study the immediate and long term effects of immersion in mineral water for five consecutive days on blood glucose in patients with type 2 DM. A total of 34 patients with type 2 DM were divided into 2 groups: The first immersed in a plain water pool and the second immersed in a Dead Sea water pool; both pools were warmed to a temperature of 35°C. Immersions for 20 minutes occurred twice daily: two hours after breakfast and before dinner. Seven samples of capillary blood glucose levels were taken: fasting, before and after every immersion, prior to lunch and before bedtime. Hemoglobin A1C (HbA1c) was taken prior to the study and a re-check was conducted during the 12 weeks following the study. Blood glucose levels significantly decreased immediately after immersion both in Dead Sea water and plain water compared to their values prior to immersion (p<0.001). No significant difference was noted between both types of water. A decrease in fasting glucose levels was observed only in the group immersed in Dead Sea water when compared to plain water (6.83±5.68 mg/dl versus 4.37±1.79 respectively and the difference was close to statistical significance (p=0.071. There were no changes in HbA1c levels. Immersion for 20 minutes in water (Dead Sea or plain water) at a temperature of 35°C induced an immediate reduction in glucose levels in patients with type 2 DM.

  15. Pre-exercise blood glucose affects glycemic variation of aerobic exercise in patients with type 2 diabetes treated with continuous subcutaneous insulin infusion.

    PubMed

    Hu, Yun; Zhang, Dan-Feng; Dai, Lu; Li, Zheng; Li, Hui-Qin; Li, Feng-Fei; Liu, Bing-Li; Sun, Xiao-Juan; Ye, Lei; He, Ke; Ma, Jian-Hua

    2018-05-03

    Considering the insulin sensitivity may increase by exercise particularly in patients with type 2 diabetes (T2D), glycemic variation during exercise needs to be studied when the patients are treated with insulin. This study aimed to explore the influence factors of the efficacy and safety of aerobic exercise in patients with T2D treated with Continuous Subcutaneous Insulin Infusion (CSII). A total of 267 patients with T2D, treated with CSII, were included. Glycemic variations were assessed by continuous glucose monitoring (CGM). Patients were asked to complete 30 min aerobic exercise for at least one time during CGM. The patients were divided into effective and ineffective group by incremental glucose area under curve from 0 to 60 min after exercise (AUC 0-60 min ). The patients completed a total of 776 times of aerobic exercises. Blood glucose decreased fastest in the first 60 min of exercise. Pre-exercise blood glucose (PEBG) was negatively correlated with AUC 0-60 min (standardized β = -0.386, P < 0.001) and incremental AUC of blood glucose ≤ 4.4 mmol/L (standardized β = -0.078, P = 0.034), and was significantly higher in effective group than in ineffective group (P < 0.001). The Δglucose AUC 0-60 min during post-dinner was significantly higher than that during pre-lunch, post-lunch and pre-dinner (P < 0.05 for all). PEBG is positively correlated with efficacy of aerobic exercise. Aerobic exercise will not worsen hyperglycemia when the PEBG > 16.7 mmol/L. Post-dinner exercise decreases the blood glucose better than other periods of the day. ChiCTR-ONC-17010400, www.chictr.org.cn. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia.

    PubMed

    Castellani, Laura N; Peppler, Willem T; Sutton, Charles D; Whitfield, Jamie; Charron, Maureen J; Wright, David C

    2017-08-01

    To determine if glucagon is involved in mediating the increase in blood glucose levels caused by the second-generation antipsychotic drug olanzapine. Whole body glucagon receptor deficient mice (Gcgr -/- ) or WT littermate controls were injected with olanzapine (5mg/kg BW IP) and changes in blood glucose measured over the following 120min. Separate cohorts of mice were treated with olanzapine and changes in pyruvate tolerance, insulin tolerance and whole body substrate oxidation were determined. Olanzapine treatment increased serum glucagon and lead to rapid increases in blood glucose concentrations in WT mice. Gcgr -/- mice were protected against olanzapine-induced increases in blood glucose but this was not explained by differences in terminal serum insulin concentrations, enhanced AKT phosphorylation in skeletal muscle, adipose tissue or liver or differences in RER. In both genotypes olanzapine induced an equivalent degree of insulin resistance as measured using an insulin tolerance test. Olanzapine treatment led to an exaggerated glucose response to a pyruvate challenge in WT but not Gcgr -/- mice and this was paralleled by reductions in the protein content of PEPCK and G6Pase in livers from Gcgr -/- mice. Gcgr -/- mice are protected against olanzapine-induced increases in blood glucose. This is likely a result of reductions in liver glucose output, perhaps secondary to decreases in PEPCK and G6Pase protein content. Our findings highlight the central role of the liver in mediating olanzapine-induced disturbances in glucose homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oral administration of Dictyostelium differentiation-inducing factor 1 lowers blood glucose levels in streptozotocin-induced diabetic rats.

    PubMed

    Kawaharada, Ritsuko; Nakamura, Akio; Takahashi, Katsunori; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kubohara, Yuzuru

    2016-06-15

    Differentiation-inducing factor 1 (DIF-1), originally discovered in the cellular slime mold Dictyostelium discoideum, and its derivatives possess pharmacological activities, such as the promotion of glucose uptake in non-transformed mammalian cells in vitro. Accordingly, DIFs are considered promising lead candidates for novel anti-diabetic drugs. The aim of this study was to assess the anti-diabetic and toxic effects of DIF-1 in mouse 3T3-L1 fibroblast cells in vitro and in diabetic rats in vivo. Main methods We investigated the in vitro effects of DIF-1 and DIF-1(3M), a derivative of DIF-1, on glucose metabolism in 3T3-L1 cells by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We also examined the effects of DIF-1 on blood glucose levels in streptozotocin (STZ)-induced rats. CE-TOF-MS revealed that 20μM DIF-1 and 20μM DIF-1(3M) promoted glucose uptake and metabolism in 3T3-L1 cells. Oral administration of DIF-1 (30mg/kg) significantly lowered basal blood glucose levels in STZ-treated rats and promoted a decrease in blood glucose levels after oral glucose loading (2.5g/kg) in the rats. In addition, daily oral administration of DIF-1 (30mg/kg/day) for 1wk significantly lowered the blood glucose levels in STZ-treated rats but did not affect their body weight and caused only minor alterations in the levels of other blood analytes. These results indicate that DIF-1 may be a good lead compound for the development of anti-diabetic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits.

    PubMed

    Xu, Hui-Bi; Huang, Kai-Xun; Zhu, Yu-Shan; Gao, Qiu-Hua; Wu, Qing-Zhi; Tian, Wei-Qun; Sheng, Xi-Qun; Chen, Ze-Xian; Gao, Zhong-Hong

    2002-11-01

    Transmucosal delivery is a suitable route for insulin non-injection administration. In this study, the hypoglycaemic effect of INSULIN BUCCAL SPRAY (IBS), a formulation with soybean lecithin and propanediol combined as absorption enhancer for insulin on diabetic rabbits and rats, were investigated. The hypoglycaemic rate was calculated and the pharmacodynamics and pharmacokinetics of the formulation in rabbits were studied. The results show that when the diabetic rabbits were administrated with IBS in dosages of 0.5, 1.5 and 4.5Ukg(-1), the blood glucose level decreased significantly compared with that of the control group and the hypoglycaemic effect lasted over 5h. The blood glucose decreasing rates are 22.4, 48.1 and 53.5%, respectively. The average bioavailability of IBS by buccal delivery versus subcutaneous injection is 29.2%. Meanwhile, the diabetic rats were administrated with IBS in dosages of 1.0, 3.0 and 9.0Ukg(-1), the blood glucose level decreased significantly compared with that of the control group and the hypoglycaemic effect lasted over 4h. The blood glucose decreasing rates are 24.6, 47.5 and 59.6%, respectively. Furthermore, the penetration of fluorescein isothiocyanate (FITC)-labelled insulin through rabbit buccal mucosa was investigated by scanning the distribution of the fluorescent probe in the epithelium using confocal laser scanning microscopy. The results revealed that FITC-insulin can pass through the buccal mucosa promoted by the enhancer and the passage of insulin across the epithelium includes both intracellular and paracellular routes. From the rabbit and rat experimental results showed that IBS is an effective buccal delivery system, which is promising for clinical trial and the future clinical application.

  19. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    PubMed

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5.Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use.

  20. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    PubMed Central

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care. However, the uncertainty around the ICERs was large. The net budget impact of publicly funding continuous glucose monitoring assuming a 20% annual increase in adoption of continuous glucose monitoring would range from $8.5 million in year 1 to $16.2 million in year 5. Patient engagement surrounding the topic of continuous glucose monitoring was robust. Patients perceived that these devices provided important social, emotional, and medical and safety benefits in managing type 1 diabetes, especially in children. Conclusions Continuous glucose monitoring was more effective than self-monitoring of blood glucose in managing type 1 diabetes for some outcomes, such as time spent in the target glucose range and time spent outside the target glucose range (moderate certainty in this evidence). We were less certain that continuous glucose monitoring would reduce the number of severe hypoglycemic events. Compared with self-monitoring of blood glucose, the costs of continuous glucose monitoring were higher, with only small increases in health benefits. Publicly funding continuous glucose monitoring for the type 1 diabetes population in Ontario would result in additional costs to the health system over the next 5 years. Adult patients and parents of children with type 1 diabetes reported very positive experiences with continuous glucose monitoring. The high ongoing cost of continuous glucose monitoring devices was seen as the greatest barrier to their widespread use. PMID:29541282

  1. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice.

    PubMed

    Ping, Hua; Zhang, Guijun; Ren, Guixing

    2010-01-01

    The hypoglycemic effect of cinnamon oil (CO) in a type 2 diabetic animal model (KK-A(y) mice) was studied. The main component of CO was cinnamaldehyde, and other nineteen components were also determined. CO was administrated at doses of 25, 50 and 100mg/kg for 35 days. It was found that fasting blood glucose concentration was significantly decreased (P<0.05) with the 100mg/kg group (P<0.01) the most efficient compared with the diabetic control group. In addition, there was significant decrease in plasma C-peptide, serum triglyceride, total cholesterol and blood urea nitrogen levels while serum high density lipoprotein (HDL)-cholesterol levels were significantly increased after 35 days. Meanwhile, glucose tolerance was improved, and the immunoreactive of pancreatic islets beta-cells was promoted. These results suggest that CO had a regulative role in blood glucose level and lipids, and improved the function of pancreatic islets. Cinnamon oil may be useful in the treatment of type 2 diabetes mellitus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis

    PubMed Central

    Fukushima, Atsushi; Loh, Kim; Galic, Sandra; Fam, Barbara; Shields, Ben; Wiede, Florian; Tremblay, Michel L.; Watt, Matthew J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    OBJECTIVE Insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/STAT3-signaling pathways in the liver inhibit the expression of gluconeogenic genes to decrease hepatic glucose output. The insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can serve as direct substrates for the T-cell protein tyrosine phosphatase (TCPTP). Homozygous TCPTP-deficiency results in perinatal lethality prohibiting any informative assessment of TCPTP's role in glucose homeostasis. Here we have used Ptpn2+/− mice to investigate TCPTP's function in glucose homeostasis. RESEARCH DESIGN AND METHODS We analyzed insulin sensitivity and gluconeogenesis in chow versus high-fat–fed (HFF) Ptpn2+/− and Ptpn2+/+ mice and insulin and IL-6 signaling and gluconeogenic gene expression in Ptpn2+/− and Ptpn2+/+ hepatocytes. RESULTS HFF Ptpn2+/− mice exhibited lower fasted blood glucose and decreased hepatic glucose output as determined in hyperinsulinemic euglycemic clamps and by the decreased blood glucose levels in pyruvate tolerance tests. The reduced hepatic glucose output coincided with decreased expression of the gluconeogenic genes G6pc and Pck1 and enhanced hepatic STAT3 phosphorylation and PI3K/Akt signaling in the fasted state. Insulin-induced IR-β–subunit Y1162/Y1163 phosphorylation and PI3K/Akt signaling and IL-6–induced STAT3 phosphorylation were also enhanced in isolated Ptpn2+/− hepatocytes. The increased insulin and IL-6 signaling resulted in enhanced suppression of G6pc and Pck1 mRNA. CONCLUSIONS Liver TCPTP antagonises both insulin and STAT3 signaling pathways to regulate gluconeogenic gene expression and hepatic glucose output. PMID:20484139

  3. Anti-diabetic effect of Alpinia oxyphylla extract on 57BL/KsJ db-/db- mice

    PubMed Central

    Xie, Yiqiang; Xiao, Man; Li, Dan; Liu, Hongqin; Yun, Fenglin; Wei, Yi; Sang, Shenggang; Du, Guankui

    2017-01-01

    Diabetes mellitus is characterized by high blood glucose levels. Increased levels of reactive oxygen species (ROS) may disrupt insulin signaling and result in insulin resistance. The Alpinia oxyphylla extract (AOE) possesses powerful antioxidant activity and may therefore inhibit the development of insulin resistance. The objective of the present study was to determine the effects of AOE on blood glucose, insulin and lipid levels in a type II diabetic nephropathy animal model (C57BIKsj db-/db-). All experiments were performed on male C57BL/Ks DB/DB and db-/db- mice that were left to acclimatize for 1 week prior to the experimental period. AOE was administered to these mice at different dosages (100, 300 and 500 mg/kg) for 8 weeks. The results demonstrated that AOE did not affect mouse weight, while blood glucose concentrations were found to significantly decrease in a dose-dependent manner (P<0.05). The effect of administering 500 mg/kg AOE (AOE500) to db-/db- mice was tested further. Treatment with AOE500 for 8 weeks led to improved glucose tolerance and reduced plasma insulin concentrations (P<0.05), as well as a significant decrease in triglyceride concentrations (P<0.05) and levels of total cholesterol (P<0.05) in db-/db- mice. Furthermore, treatment with AOE500 decreased the concentration of malondialdehyde, elevated the concentration of glutathione and increased the activities of the antioxidant enzymes superoxide dismutase and peroxidase (P<0.05) in the livers of db-/db- mice. Meanwhile, AOE-treated mice exhibited significantly reduced urine albumin, creatinine and blood urea nitrogen excretion (P<0.05). In parallel, the upregulated expression of phosphatase and tensin homolog (PTEN) in the liver and kidneys of db-/db- mice was impaired following AOE500 treatment. The results of the present study suggest that AOE regulates blood glucose and lipid levels and improves renal function by mediating oxidative stress and PTEN expression at the onset of type II diabetes mellitus. PMID:28413472

  4. Effects of a Structured Self-Monitoring of Blood Glucose Method on Patient Self-Management Behavior and Metabolic Outcomes in Type 2 Diabetes Mellitus

    PubMed Central

    Khamseh, Mohammad E; Ansari, Majid; Malek, Mojtaba; Shafiee, Gita; Baradaran, Hamid

    2011-01-01

    Background The purpose of this study was to evaluate the effect of structured self-monitoring of blood glucose (SMBG) on patient self-management behavior and metabolic outcomes in patients with type 2 diabetes mellitus (T2DM). Methods From January to June 2009, 30 patients with basic diabetes education were followed for a period of 90 days. To provide assessment of glycemic control and frequency of dysglycemia, patients, underwent 3 consecutive days of seven-point SMBG during each month for 3 consecutive months, using the ACCU-CHEK 360° View tool. Glucose profiles of the first and third month were used for comparison. Results Hemoglobin A1c (HbA1c) improved significantly during the 90-day period in all patients [confidence interval (CI) 95%, 0.32–1.64%, p < .05] and those with poor metabolic control (group B; CI 95%, 0.86–2.64%, p < .05). Mean blood glucose (MBG) values decreased significantly in group B (CI 95%, 0.56–24.78 mg/dl, p < .05) and all cases (CI 95%, 1.61–19.73 mg/dl, p < .05). Meanwhile, there was an average decrease of 15.7 mg/dl in fasting blood sugar (FBS) levels in the whole subjects. Mean postprandial blood glucose levels (MPP) decreased by 19.3 and 11.3 mg/dl in group B and in all cases, respectively. However, there were no significant changes in HbA1c, MBG, FBS, and MPP in people with good metabolic control. Conclusion A structured SMBG program improves HbA1c, FBS, MPP, and MBG in people with poorly controlled diabetes. This improvement shows the importance of patient self-management behavior on metabolic outcomes in T2DM. PMID:21527110

  5. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C

    1993-07-01

    We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Intrauterine growth retardation promotes fetal intestinal autophagy in rats via the mechanistic target of rapamycin pathway

    PubMed Central

    WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian

    2017-01-01

    Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439

  7. The Fruiting Bodies, Submerged Culture Biomass, and Acidic Polysaccharide Glucuronoxylomannan of Yellow Brain Mushroom Tremella mesenterica Modulate the Immunity of Peripheral Blood Leukocytes and Splenocytes in Rats with Impaired Glucose Tolerance

    PubMed Central

    Hsu, Tai-Hao; Lee, Chien-Hsing; Lin, Fang-Yi; Wasser, Solomon P.; Lo, Hui-Chen

    2014-01-01

    The prevalence of diabetes mellitus (DM), a chronic disease with hyperglycemia and impaired immune function, is increasing worldwide. Progression from impaired glucose tolerance (IGT) to type 2 DM has recently become a target for early intervention. The fruiting bodies (FB) and submerged culture mycelium (CM) of Tremella mesenterica, an edible and medicinal mushroom, have been demonstrated to have antihyperglycemic and immunomodulatory activities in type 1 DM rats. Herein, we investigated the effects of acidic polysaccharide glucuronoxylomannan (GX) extracted from CM on the immunocyte responses. Male Wistar rats were injected with streptozotocin (65 mg/kg) plus nicotinamide (200 mg/kg) for the induction of IGT, and gavaged daily with vehicle, FB, CM, or GX (1 g/kg/day). Rats injected with saline and gavaged vehicle were used as controls. Two weeks later, peripheral blood leukocytes (PBLs) and splenocytes were collected. Ingestion of FB, CM, and GX significantly decreased blood glucose levels in the postprandial period and in oral glucose tolerance test, and partially reversed T-splenocytic proliferation in IGT rats. CM significantly decreased T-helper lymphocytes in the PBLs and B-splenocytes. In addition, FB, CM, and GX significantly reversed the IGT-induced decreases in tumor necrosis factor-α production; GX significantly increased interleukin-6 production in T-lymphocytes in the PBLs and splenocytes; and CM and GX significantly reversed IGT-induced decrease in interferon-γ production in T-lymphocytes in the spleen. In conclusion, FB, CM, and acidic polysaccharide GX of T. mesenterica may increase T-cell immunity via the elevation of proinflammatory and T-helper cytokine production in rats with impaired glucose tolerance. PMID:24872934

  8. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    PubMed

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  9. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes.

    PubMed

    Latha, M; Pari, L

    2004-04-01

    The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 microg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.

  10. [Comparison of efficacy between nateglinide and repaglinide in treating type 2 diabetes: a randomized controlled double-blind clinical trial].

    PubMed

    Li, Jian-wei; Tian, Hao-ming; Yu, Hong-lin; Zhang, Xiang-xun; Zhao, Gui-zhi; Wang, Jia-nan

    2005-03-01

    To compare the efficacy of nateglinide with repaglinide in the treatment of type 2 diabetes mellitus. Forty-six type 2 diabetic patients were randomly treated with repaglinide (group A, 1.0 mg tid, n=23) or nateglinide (group B, 90.0 mg tid, n=23). The trial consisted of a 4-week equilibrated period followed by 12 weeks of treatment course. In group A, the fasting blood glucose (FBG) and 30-, 60-, 120- min postprandial blood glucose (PBG), as well as hemoglobin A1c were decreased significantly (P<0.05). In group B, the 60-min and 120-min PBG decreased remarkably (P<0.05), but FBG, 30-min PBG and A1c decreased with no statistical significance (P>0.05). After 12 weeks treatment, the 30-, 60-, 120-min postprandial insulin level, area under the curve of insulin and C peptide (0 to 120 min) increased in both groups (P<0.05). No significant difference was found between the effects of repaglinide and nateglinide on early phase insulin secretion. The glucose lowering effect of repaglinide at a dosing level of 1.0 mg tid was better than that of nateglinide 90 mg tid on fasting blood glucose and A1c during 12 weeks treatment period, yet the insulinotropic effects of the two drugs were similar.

  11. Improving glucose tolerance by muscle-damaging exercise.

    PubMed

    Ho, Chien-Te; Otaka, Machiko; Kuo, Chia-Hua

    2017-04-01

    Tissue damage is regarded as an unwanted medical condition to be avoided. However, introducing tolerable tissue damages has been used as a therapeutic intervention in traditional and complementary medicine to cure discomfort and illness. Eccentric exercise is known to cause significant necrosis and insulin resistance of skeletal muscle. The purpose of this study was to determine the magnitude of muscle damage and blood glucose responses during an oral glucose tolerance test (OGTT) after eccentric training in 21 young participants. They were challenged by 5 times of 100-meter downhill sprinting and 20 times of squats training at 30 pounds weight load for 3 days, which resulted in a wide spectrum of muscle creatine kinase (CK) surges in plasma, 48 h after the last bout of exercise. Participants were then divided into two groups according the magnitude of CK increases (low CK: +48% ± 0.3; high CK: +137% ± 0.5, P < 0.05). Both groups show comparable decreases in blood glucose levels in OGTT, suggesting that this muscle-damaging exercise does not appear to decrease but rather improve glycemic control in men. The result of the study rejects the hypothesis that eccentric exercise decreases glucose tolerance. Improved glucose tolerance with CK increase implicates a beneficial effect of replacing metabolically weaker muscle fibers by eccentric exercise in Darwinian natural selection fashion.

  12. Altered glucose kinetics in diabetic rats during Gram-negative infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabeticmore » group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge.« less

  13. [Mechanisms of spontaneous hypoglycaemia in the adult (author's transl)].

    PubMed

    Lubetzki, J; Duprey, J; Guillausseau, P J

    1979-06-01

    Hypoglycaemia increases hepatic glucose output; insulin release is suppressed and the secretion of counter regulatory hormones enhanced. Catecholamines and glucagon seem to play a major role. The brain energy content is initially preserved, but the neuronal activity exhibits a 40-60 % decrease. Neither cerebral blood flow, nor oxygen consumption are altered. In addition to glucose, other substrates are metabolized. Cerebral edema may occur. An insulin-storage defect seems to be the main abnormality in insulinoma beta cell function. The most accurate biological tests are the insulin/glucose ratio, stimulation tests and suppression tests such as fasting and insulin-induced hypoglycaemia. Ectopic release of ACTH, HCG, HLP, glucagon or gastrin, is observed in some malignant insulinomas. When inconclusive, classic localising procedures may be effected by selective venous-blood sampling. Hypoglycaemia of extra-pancreatic tumors results from glucose hyperconsumption and decreases in glucose hepatic output, lipolysis and ketogenesis, related to secretion of insulin-like peptides NSILAs or NSILAp. Rare cases of hypoglycaemia related to insulin auto-antibodies of unknown origin have been reported. Alcoholic hypoglycemia results from diminished hepatic glycogen content, alcohol dehydrogenase pathway blockade, reduction of gluconeogenesis defect in the alcohol catabolic catalase pathway and enhancement of peripheral glucose consumption.

  14. Opuntia ficus-indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men.

    PubMed

    Van Proeyen, Karen; Ramaekers, Monique; Pischel, Ivo; Hespel, Peter

    2012-08-01

    The purpose of this study was to investigate the effect of Opuntia ficus-indica (OFI) cladode and fruit-skin extract on blood glucose and plasma insulin increments due to high-dose carbohydrate ingestion, before and after exercise. Healthy, physically active men (n = 6; 21.0 ± 1.6 years, 78.1 ± 6.0 kg) participated in a double-blind placebo-controlled crossover study involving 2 experimental sessions. In each session, the subjects successively underwent an oral glucose tolerance test at rest (OGTT(R)), a 30-min cycling bout at ~75% VO(2max), and another OGTT after exercise (OGTT(EX)). They received capsules containing either 1,000 mg OFI or placebo (PL) 30 min before and immediately after the OGTT(R). Blood samples were collected before (t₀) and at 30-min intervals after ingestion of 75 g glucose for determination of blood glucose and serum insulin. In OGTT(EX) an additional 75-g oral glucose bolus was administered at t₆₀. In OGTT(R), OFI administration reduced the area under the glucose curve (AUC(GLUC)) by 26%, mainly due to lower blood glucose levels at t₃₀ and t₆₀ (p < .05). Furthermore, a higher serum insulin concentration was noted after OFI intake at baseline and at t₃₀ (p < .05). In OGTT(EX), blood glucose at t₆₀ was ~10% lower in OFI than in PL, which resulted in a decreased AUC(GLUC) (-37%, p < .05). However, insulin values and AUC(INS) were not different between OFI and PL. In conclusion, the current study shows that OFI extract can increase plasma insulin and thereby facilitate the clearance of an oral glucose load from the circulation at rest and after endurance exercise in healthy men.

  15. Effect of an aqueous extract of Scoparia dulcis on plasma and tissue glycoproteins in streptozotocin induced diabetic rats.

    PubMed

    Latha, M; Pari, L

    2005-02-01

    The influence of Scoparia dulcis, a traditionally used plant for the treatment of diabetes mellitus, was examined in streptozotocin diabetic rats on dearrangement in glycoprotein levels. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. An aqueous extract of Scoparia dulcis plant was administered orally for 6 weeks. The effect of the Scoparia dulcis extract on blood glucose, plasma insulin, plasma and tissue glycoproteins studied was in comparison to glibenclamide. The levels of blood glucose and plasma glycoproteins were increased significantly whereas the level of plasma insulin was significantly decreased in diabetic rats. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in the liver and kidney of streptozotocin diabetic rats. Oral administration of Scoparia dulcis plant extract (SPEt) to diabetic rats led to decreased levels of blood glucose and plasma glycoproteins. The levels of plasma insulin and tissue sialic acid were increased whereas the levels of tissue hexose, hexosamine and fucose were near normal. The present study indicates that Scoparia dulcis possesses a significant beneficial effect on glycoproteins in addition to its antidiabetic effect.

  16. Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload.

    PubMed

    Gomez, Rosane; Barros, Helena M T

    2003-12-01

    Hyperglycemia modulates brain function, including neuronal excitability, neurotransmitter release and behavioral changes. There may be connections between the GABAergic system, glucose sensing neurons and glucose in the neuronal environment that shed light on the mechanism by which GABA(A) agents influence depressive behavior in diabetic rats submitted to the forced swimming test. We aimed to investigate whether clonazepam (CNZ), a GABA(A) receptor positive modulator, modifies in vivo striatal extracellular glucose levels in diabetic rats under fasting condition or after oral glucose overload. Streptozotocin diabetic and nondiabetic rats were submitted to in vivo striatal microdialysis. Perfusate samples were collected at baseline, during fasting and following administration of CNZ (0.25 mg/kg) and oral glucose overload. Blood glucose and striatal extracellular glucose were measured simultaneously at several time points. Fasting striatal glucose levels were higher in diabetic than in nondiabetic rats and the differences between these animals were maintained after glucose overload. The increases in extracellular striatal glucose after glucose overload were around 40% and blood to brain transference was decreased in diabetics. CNZ treatment paradoxically increased striatal glucose after glucose overload in diabetic rats, which may mark the dysfunction in brain glucose homeostasis.

  17. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes

    PubMed Central

    Meng, Fanxing; Zhu, Lei; Huang, Wenjie; Irwin, David M.; Zhang, Shuyi

    2016-01-01

    Bats have an unusually large volume of endocrine tissue, with a large population of beta cells, and an elevated sensitivity to glucose and insulin. This makes them excellent animal models for studying diabetes mellitus. We evaluated bats as models for diabetes in terms of lifestyle and genetic factors. For lifestyle factors, we generated data sets of 149 body mass index (BMI) and 860 forearm mass index (FMI) measurements for different species of bats. Both showed negative inter-species correlations with blood glucose levels in sixteen bats examined. The negative inter-species correlations may reflect adaptation of a small insectivorous ancestor to a larger frugivore. We identified an 11 bp deletion in the proximal promoter of SLC2A2 that we predicted would disrupt binding sites for the transcription repressor ZNF354C. In frugivorous bats this could explain the relatively high expression of this gene, resulting in a better capacity to absorb glucose and decrease blood glucose levels. PMID:27439361

  18. Chromium and aging

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with increased blood glucose, insulin, blood lipids, and fat mass, and decreased lean body mass leading to increased incidences of diabetes and cardiovascular diseases. Improved chromium nutrition is associated with improvements in all of these variables. Insulin sensitivity de...

  19. Nurse's Desk: food bank-based outreach and screening to decrease unmet referral needs.

    PubMed

    Larsson, Laura S; Kuster, Emilie

    2013-01-01

    The Nurse's Desk health screening project used the Intervention Wheel model to conduct outreach, screening, education, and referral for food bank clients (n = 506). Blood glucose, blood pressure, health care utilization, and unmet referral needs were assessed. Screening results identified 318 clients (62.8%) with 1 or more unmet referral needs, including 6 clients (3.16%) with capillary blood glucose more than 199 mg/dL and 132 (31.9%) with hypertension. Clients had higher-than-average systolic and diastolic blood pressures and undiagnosed diabetes than in the general population. A client-approved method for tracking completed referrals is needed for this potentially high-risk population.

  20. The Influence of Acute Handling Stress on Some Blood Parameters in Cultured Sea Bream (Sparus Aurata Linnaeus, 1758)

    PubMed Central

    Fazio, Francesco; Ferrantelli, Vincenzo; Fortino, Gianluca; Giangrosso, Giuseppe; Faggio, Caterina

    2015-01-01

    The effect of acute handling stress on haematological profile, blood glucose and lactate (secondary stress markers) in cultured sea bream Sparus aurata was evaluated. Sixty six Sparus aurata were used and equally divided into two groups (A and B). Group A was not subjected to stress, Group B was subjected to acute handling stress. From each fish, biometric data and blood samples were collected to evaluate haematological profile, blood glucose and lactate. Unpaired t-test Student was applied to evaluate possible differences in parameters between the two groups. Red blood cells, haematocrit, haemoglobin, white blood cells (WBC), glucose and lactate showed an increase (P<0.05) in Group B compared with Group A, while mean corpuscular volume decreased (P<0.05) in Group B. The results highlight the role of studied parameters in monitoring the stressful conditions of aquaculture production which affect animal welfare and fish products quality. PMID:27800375

  1. Hypoglycemic and Hypolipidemic Effects of Leucine, Zinc, and Chromium, Alone and in Combination, in Rats with Type 2 Diabetes.

    PubMed

    Sadri, Hassan; Larki, Negar Nowroozi; Kolahian, Saeed

    2017-12-01

    For the increasing development of diabetes, dietary habits and using appropriate supplements can play important roles in the treatment or reduction of risk for this disease. The objective of this study was to investigate the effects of leucine (Leu), zinc (Zn), and chromium (Cr) supplementation, alone or in combination, in rats with type 2 diabetes (T2D). Seventy-seven adult male Wistar rats were randomly assigned in 11 groups, using nutritional supplements and insulin (INS) or glibenclamide (GLC). Supplementing Leu significantly reduced blood glucose, triglycerides (TG), nonesterified fatty acids (NEFA), low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) concentrations compared to vehicle-treated T2D animals, and those improvements were associated with reduced area under the 2-h blood glucose response curve (AUC). Supplementation of T2D animals with Zn improved serum lipid profile as well as blood glucose concentrations but was not comparable with the INS, GLC, and Leu groups. Supplementary Cr did not improve blood glucose and AUC in T2D rats, whereas it reduced serum TG and LDL and increased HDL concentrations. In conclusion, supplementation of diabetic rats with Leu was more effective in improving blood glucose and consequently decreasing glucose AUC than other nutritional supplements. Supplementary Zn and Cr only improved serum lipid profile. The combination of the nutritional supplements did not improve blood glucose level. Nevertheless, supplementation with Leu-Zn, Leu-Cr, Zn-Cr, and Leu-Zn-Cr led to an improved response in serum lipid profile over each supplement given alone.

  2. Effects of a statin group drug, pravastatin, on the insulin resistance in patients with metabolic syndrome.

    PubMed

    Güçlü, Feyzullah; Ozmen, Bilgin; Hekimsoy, Zeliha; Kirmaz, Cengiz

    2004-12-01

    In West of Scotland Coronary Prevention Study (WOSCOPS), development of type 2 diabetes mellitus (DM) was found to decrease by 30% in pravastatin-treated patients. In the study, it is suggested that pleiotropic effects of pravastatin may be responsible too as well as its lipid lowering effect. The aim of this study was to assess the effects of pravastatin treatment on the insulin resistance in patients with metabolic syndrome with impaired glucose tolerance (IGT), by Homeostasis Model Assessment (HOMA) test, insulin sensitivity indices and glucose half activation time (glucose t1/2). Study population consisted of 25 women who were diagnosed with metabolic syndrome. At baseline and 10 weeks after the 20 mg/daily tablet pravastatin treatment, waist/hip circumference, body weight and arterial blood pressure measurements, plasma glucose, total cholesterol, triglyceride, high density lipoprotein (HDL)-cholesterol, transaminases, glycosylated haemoglobin (A1C) and insulin level measurements were obtained along with HOMA test and insulin tolerance test after 12 h of fasting. Insulin sensitivity indices and glucose t1/2 were assessed. After the treatment, a statistically significant decrease was observed in arterial blood pressure values (P < 0.0001). While plasma total cholesterol, low density lipoprotein (LDL)-cholesterol, and triglyceride levels were found to decrease significantly and HDL-cholesterol levels increased significantly, a decrease in baseline insulin levels, an increase in insulin sensitivity levels were observed along with an decrease in glucose t1/2. Related to the improvement in aforementioned parameters, statistically significant decreases were noted in HOMA, postprandial and fasting glucose levels and A1C values (P < 0.0001). Our study suggests that using pravastatin in the dyslipidemia treatment of metabolic syndrome with IGT may be an effective approach by its advantageous effects on insulin resistance. Based on this result, it is possible to say that this can be a risk lowering treatment approach for the development of type 2 DM.

  3. Effect of a high-fructose diet on glucose tolerance, plasma lipid and hemorheological parameters during oral contraceptive administration in female rats.

    PubMed

    Olatunji, Lawrence Aderemi; Oyeyipo, Ibukun Peter; Usman, Taofeek Oluwamayowa

    2013-01-01

    Oral contraceptive (OC) use and increased fructose feeding have been associated with altered cardiometabolic effects. The effect of increased dietary fructose during OC use on cardiometabolic parameters is unknown. We investigated the effects of a high-fructose diet on body weight gain, fasting blood glucose, glucose tolerance, plasma lipid and hemorheological parameters in female rats treated with a combination of OC steroids (norgestrel/ethinyl estradiol; NEE). Rats were given (p.o.) vehicle, high-dose NEE (10.0 μg norgestrel/1.0 μg ethinyl estradiol) or low-dose NEE (1.0 μg norgestrel/0.1 μg ethinyl estradiol) with or without high dietary fructose daily for 6 weeks. Results demonstrated that high-dose NEE but not low-dose NEE treatment led to significant increases in hematocrit, blood viscosity, and decreases in body weight gain, glucose tolerance, and plasma HDL-cholesterol level. Both NEE treatments resulted in significant increases in plasma viscosity and triglyceride. Increased dietary fructose without NEE treatment produced significant increases in fasting blood glucose, hematocrit, blood and plasma viscosities, while increased dietary fructose significantly potentiated the effects on blood and plasma viscosities observed during NEE treatment. Conversely, the effects of NEE treatment on body weight gain, glucose tolerance, plasma triglyceride and HDL-cholesterol were significantly attenuated. In conclusion, the results indicate that increase in dietary fructose may worsen abnormal blood rheology. The results also demonstrate that increased dietary fructose may not impact negatively on glucose and lipid metabolisms during OC use. The findings imply that fructose-enriched diet might be an important consideration during OC use regarding blood rheological properties.

  4. Point-of-care blood glucose measurement errors overestimate hypoglycaemia rates in critically ill patients.

    PubMed

    Nya-Ngatchou, Jean-Jacques; Corl, Dawn; Onstad, Susan; Yin, Tom; Tylee, Tracy; Suhr, Louise; Thompson, Rachel E; Wisse, Brent E

    2015-02-01

    Hypoglycaemia is associated with morbidity and mortality in critically ill patients, and many hospitals have programmes to minimize hypoglycaemia rates. Recent studies have established the hypoglycaemic patient-day as a key metric and have published benchmark inpatient hypoglycaemia rates on the basis of point-of-care blood glucose data even though these values are prone to measurement errors. A retrospective, cohort study including all patients admitted to Harborview Medical Center Intensive Care Units (ICUs) during 2010 and 2011 was conducted to evaluate a quality improvement programme to reduce inappropriate documentation of point-of-care blood glucose measurement errors. Laboratory Medicine point-of-care blood glucose data and patient charts were reviewed to evaluate all episodes of hypoglycaemia. A quality improvement intervention decreased measurement errors from 31% of hypoglycaemic (<70 mg/dL) patient-days in 2010 to 14% in 2011 (p < 0.001) and decreased the observed hypoglycaemia rate from 4.3% of ICU patient-days to 3.4% (p < 0.001). Hypoglycaemic events were frequently recurrent or prolonged (~40%), and these events are not identified by the hypoglycaemic patient-day metric, which also may be confounded by a large number of very low risk or minimally monitored patient-days. Documentation of point-of-care blood glucose measurement errors likely overestimates ICU hypoglycaemia rates and can be reduced by a quality improvement effort. The currently used hypoglycaemic patient-day metric does not evaluate recurrent or prolonged events that may be more likely to cause patient harm. The monitored patient-day as currently defined may not be the optimal denominator to determine inpatient hypoglycaemic risk. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-15

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers.

  6. Olfactory stimulation modulates the blood glucose level in rats.

    PubMed

    Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi

    2018-01-01

    In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.

  7. In vivo Investigation of Anti-diabetic Properties of Ripe Onion Juice in Normal and Streptozotocin-induced Diabetic Rats

    PubMed Central

    Lee, Chul-Won; Lee, Hyung-Seok; Cha, Yong-Jun; Joo, Woo-Hong; Kang, Dae-Ook; Moon, Ja-Young

    2013-01-01

    The acute and subacute hypoglycemic and antihyperglycemic effects of drinkable ripe onion juice (Commercial product name is “Black Onion Extract”) were investigated in normal and streptozotocin-induced diabetic rats. For tests of acute and subacute hypoglycemic effects, ripe onion juice (5 and 15 mL/kg b.w.) was administered by oral gavage to normal Sprague Dawley rats and measurements of fasting glucose levels and oral glucose tolerance tests were performed. Tolbutamide was used as a reference drug at a single oral dose of 250 mg/kg b.w. To test anti-hyper-glycemic activity, the ripe onion juice was administered to streptozotocin-induced diabetic rats by oral gavage at single dose of 15 mL/kg b.w. per day for 7 consecutive days. Oral administration of the ripe onion juice at either dosed level of 5 or 15 mL/kg b.w. showed no remarkable acute hypoglycemic effect in normal rats. The two dosed levels caused a relatively small reduction, only 18% and 12% (5 and 15 mL/kg b.w., respectively) decrease in glucose levels at 2 h after glucose loading in normal rats. However, at 3 h after glucose loading, blood glucose levels in the ripe onion juice-dosed rats were decreased to the corresponding blood glucose level in tolbutamide-dosed rats. Although showing weak hypoglycemic potential compared to that of tolbutamide, oral administration of ripe onion juice (15 mL/kg b.w.) for a short period (8 days) resulted in a slight reduction in the blood glucose levels that had elevated in Streptozotocin-induced diabetic rats. In conclusion, these results suggest that the commercial product “Black Onion Extract” may possess anti-hyperglycemic potential in diabetes. PMID:24471128

  8. Changes of blood levels of several hormones, catecholamines, prostaglandins, electrolytes and cAMP in man during emotional stress.

    PubMed

    Tigranian, R A; Orloff, L L; Kalita, N F; Davydova, N A; Pavlova, E A

    1980-01-01

    The levels of several hormones (ACTH, GH, TSH, FSH, LH, parathyroid hormone--PTH, insulin, thyroxine--T4, triiodothyronine--T3, cortisol, testosterone, aldosterone, renin), catecholamines (epinephrine, norepinephrine, dopamin), prostaglandins (F1 alpha, F2 alpha, A + E), electrolytes (Na, K, Ca, Mg), cAMP and glucose in blood were measured before and immediately after the examination in 15 male students aged 28 to 35 years. Simultaneously the blood pressure was measured and hemodynamic measures were registered with the aid of echocardiography. A remarkable increase of catecholamines, ACTH, renin, T3, PTH, cAMP, PG F1 alpha, PG F2 alpha and Ca was found before the examination together with the increase of blood pressure. After the examination the levels of catecholamines, renin, aldosterone, T3, PTH, GH, FSH, LH, testosterone, PG A + E, glucose and Ca were found to be increased, while these of insulin, Na, PG F1 alpha, PG F2 alpha were decreased. The decrease of blood pressure was also found.

  9. Effect of Starvation on the Turnover and Metabolic Response to Leucine

    PubMed Central

    Sherwin, Robert S.

    1978-01-01

    l-Leucine was administered as a primed continuous 3-4-h infusion in nonobese and obese subjects in the postabsorptive state and for 12 h in obese subjects after a 3-day and 4-wk fast. In nonobese and obese subjects studied in the post-absorptive state, the leucine infusion resulted in a 150-200% rise in plasma leucine above preinfusion levels, a small decrease in plasma glucose, and unchanged levels of plasma insulin and glucagon and blood ketones. Plasma isoleucine (60-70%) and valine (35-40%) declined to a greater extent than other amino acids (P < 0.001). After 3 days and 4 wk of fasting, equimolar infusions of leucine resulted in two- to threefold greater increments in plasma leucine as compared to post-absorptive subjects, a 30-40% decline in other plasma amino acids, and a 25-30% decrease in negative nitrogen balance. Urinary excretion of 3-methylhistidine was however, unchanged. Plasma glucose which declined in 3-day fasted subjects after leucine administration, surprisingly rose by 20 mg/100 ml after 4 wk of fasting. The rise in blood glucose occurred in the absence of changes in plasma glucagon and insulin and in the face of a 15% decline in endogenous glucose production (as measured by infusion of [3-3H]glucose). On the other hand, fractional glucose utilization fell by 30% (P < 0.001), thereby accounting for hyperglycemia. The estimated metabolic clearance rate of leucine fell by 48% after 3 days of fasting whereas the plasma delivery rate of leucine was unchanged, thereby accounting for a 40% rise in plasma leucine during early starvation. After a 4-wk fast, the estimated metabolic clearance rate of leucine declined further to 59% below base line. Plasma leucine nevertheless fell to postabsorptive levels as the plasma delivery rate of leucine decreased 65% below postabsorptive values. Conclusions: (a) Infusion of exogenous leucine in prolonged fasting results in a decline in plasma levels of other amino acids, improvement in nitrogen balance and unchanged excretion of 3-methylhistidine, thus suggesting stimulation of muscle protein synthesis, (b) leucine infusion also reduces glucose production and to an even greater extent, glucose consumption, thereby raising blood glucose concentration; and (c) the rise in plasma leucine in early starvation results primarily from a decrease in leucine clearance which drops progressively during starvation. PMID:659610

  10. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro.

    PubMed

    Verspohl, Eugen J; Bauer, Katrin; Neddermann, Eckhard

    2005-03-01

    Rats were given Cinnamomum cassia bark or extracts from Cinnamomum cassia and zeylanicum to evaluate blood glucose and plasma insulin levels in rats under various conditions. The cassia extract was superior to the zeylanicum extract. The cassia extract was slightly more efficacious than the equivalent amount of Cassia bark. A decrease in blood glucose levels was observed in a glucose tolerance test (GTT), whereas it was not obvious in rats that were not challenged by a glucose load. The elevation in plasma insulin was direct since a stimulatory in vitro effect of insulin release from INS-1 cells (an insulin secreting cell line) was observed. Thus the cassia extract has a direct antidiabetic potency. Copyright 2005 John Wiley & Sons, Ltd.

  11. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice.

    PubMed

    Miyazaki, Kazunori; Masamoto, Kazuto; Morimoto, Nobutoshi; Kurata, Tomoko; Mimoto, Takahumi; Obata, Takayuki; Kanno, Iwao; Abe, Koji

    2012-03-01

    The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.

  12. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices.

    PubMed

    Torres, I L; Gamaro, G D; Silveira-Cucco, S N; Michalowski, M B; Corrêa, J B; Perry, M L; Dalmaz, C

    2001-01-01

    It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 microCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  13. Multiple laser pulses in conjunction with an optical clearing agent to improve the curative effect of cutaneous vascular lesions.

    PubMed

    Ma, Jun; Chen, Bin; Li, Dong; Zhang, Yue; Ying, Zhaoxia

    2018-03-14

    Port-wine stain (PWS) birthmark is a congenital microvascular malformation of the skin. A 1064-nm Nd:YAG laser can achieve a deeper treatment, but the weak absorption by blood limits its clinical application. Multiple laser pulses (MLPs) are a potential solution to enhance the curative effect of a Nd:YAG laser. To reduce the pulse number (p n ) required for the thermal destruction of the blood vessel, the effect of glucose in conjunction with MLP was investigated. In vivo experiments were performed on a dorsal skin chamber model. Different concentrations (20, 25, 30, and 40%) of glucose were applied to the sub-dermal side of the hamster skin before laser irradiation. Identical vessels with diameters of 200 ± 30 and 110 ± 20 μm were chosen as representatives of typical PWS vessels. Instant thermal responses of the blood vessel were recorded by a high-speed camera. The required p n for blood vessel damage was compared with that without glucose pretreatment. Results showed that the use of glucose with a concentration of 20% combined with MLP Nd:YAG laser to damage blood vessels is more appropriate because severe hemorrhage or carbonization easily appeared in blood vessels at higher glucose concentration of 25, 30, and 40%. When 20% glycerol is pretreated on the sub-dermal hamster skin, the required p n for blood vessel damage can be significantly decreased for different power densities. For example, p n can be reduced by 40% when the power density is 57 J/cm 2 . In addition, generation of cavitation and bubbles in blood vessels is difficult upon pretreatment with glucose. The combination of glucose with MLP Nd:YAG laser could be an effective protocol for reducing the p n required for blood vessel damage. Randomized controlled trial (RCT) and human trials will be conducted in the future.

  14. The effects of celery leaf (apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics

    PubMed Central

    Yusni, Yusni; Zufry, Hendra; Meutia, Firdalena; Sucipto, Krishna W.

    2018-01-01

    Objectives: To analyze the effect of celery leaf extract on blood glucose and plasma insulin levels in elderly pre-diabetics. Methods: This study was conducted between March and November 2014 at the Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia. A quasi-experimental pretest-posttest with a control group was conducted with elderly pre-diabetic volunteers. The subjects included 16 elderly pre-diabetics older than 60 (6 males and 10 females). The subjects were randomly divided into 2 groups: a control group (placebo-treated) and a treatment group (celery-treated). The treatment consisted of celery leaf extract capsules at the dose of 250 mg, 3 times per day (morning, afternoon and evening), 30 minutes before a meal, for 12 days. Data analysis was performed using the t-test (p<0.05). Results: There was a significant decrease in pre-prandial plasma glucose levels (p=0.01) and post-prandial plasma glucose levels (p=0.00), but no significant increase in plasma insulin levels (p=0.15) after celery leaf treatment in elderly pre-diabetics. Conclusion: Celery was effective at reducing blood glucose levels, but there was a lack of association between blood glucose levels and plasma insulin levels in elderly pre-diabetics. PMID:29436564

  15. Hypoglycemic property of soy isoflavones from hypocotyl in Goto-Kakizaki diabetic rats.

    PubMed

    Jin, Ming; Shen, Ming-Hua; Jin, Mei-Hua; Jin, Ai-Hua; Yin, Xue-Zhe; Quan, Ji-Shu

    2018-03-01

    The present study was carried out to investigate the hypoglycemic effect of soy isoflavones from hypocotyl in GK diabetic rats. A single administration and long-term administration tests were conducted in GK diabetic rats to test the hypoglycemic effect of soy isoflavones. At the end of long-term administration trial, blood protein, cholesterol, triglyceride, glycosylated serum protein, C-reactive protein, insulin, aminotransferase, lipid peroxide, interleukin-6, tumor necrosis factor-α were estimated. Inhibition of soy isoflavones against α-amylase and α-glucosidase, as well as on glucose uptake into brush border membrane vesicles or Caco-2 cells were determined in vitro . In single administration experiment, soy isoflavones reduced postprandial blood glucose levels in GK rats. In long-term administration, hypoglycemic effect of soy isoflavones was first observed at week 12 and maintained till week 16. A significant reduction in fasting blood glucose, C-reactive protein, and lipid peroxide was noted at week 16. However, there was no significant treatment effect on blood insulin. Furthermore, soy isoflavone administration resulted in significant decreases in glycosylated serum protein, tumor necrosis factor-α, and interleukin-6. Other biochemical parameters, such as protein, cholesterol, triglyceride and aminotransferases were not modified, however. The results in vitro showed that soy isoflavones showed a potent inhibitory effect on intestinal α-glucosidase, but not on pancreatic α-amylase. Soy isoflavones also decreased glucose transport potency into brush border membrane vesicles or Caco-2 cells. It is concluded that soy isoflavones from hypocotyl, performs hypoglycemic function in GK rats with type 2 diabetes, maybe via suppression of carbohydrate digestion and glucose uptake in small intestine.

  16. Measure of energy related biochemical metabolites changes during peri-partum period in Makouei breed sheep

    PubMed Central

    Mohammadi, Vahid; Anassori, Ehsan; Jafari, Shoja

    2016-01-01

    Makouei sheep is one of the famous breeds in Iran which is reared in Azerbaijan province for their meat, milk and wool. Fifty clinically healthy Makouei ewes were selected to study the variations in energy-related blood metabolites during peri-partum period. Blood was collected from Jugular vein from each sheep on day 7 before the expected lambing time, day of parturition and also day 7 postpartum to determine total protein, albumin, urea, cholesterol, glucose, triglyceride, β-hydroxybutyrate (BHB) and non- esterified fatty acid (NEFA) levels. Serum total protein and albumin concentrations were gradually decreased during pre-partum period and reached the lowest level after parturition (p > 0.05). Blood urea concentration was significantly decreased to the lowest level at parturition (p < 0.05). Serum cholesterol and triglycerides were gradually decreased and reached low levels after lambing (p < 0.05). Serum glucose concentrations were significantly lower at pre-partum period than post-partum (p < 0.05). The serum NEFA and BHB concentrations were higher before lambing and thereafter decreased (p < 0.05). Current findings regarding the blood parameters may expand our knowledge for the diagnosis and prognosis of reproductive and metabolic diseases in Makouei sheep during these phases. PMID:27226885

  17. Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens.

    PubMed

    Bai, Shiping; Pan, Shuqin; Zhang, Keying; Ding, Xuemei; Wang, Jianping; Zeng, Qiufeng; Xuan, Yue; Su, Zuowei

    2017-09-01

    Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Noninvasive biosensor and wireless interrogating system for glucose in blood

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    Hypoglycemia-abnormal decrease in blood sugar-is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chirality of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin. It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or a laptop computer.

  19. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats

    NASA Technical Reports Server (NTRS)

    Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.

    1992-01-01

    Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Influence of abdominal surgical trauma and intra-operative infusion of glucose on splanchnic glucose metabolism in man.

    PubMed

    Stjernström, H; Jorfeldt, L; Wiklund, L

    1981-10-01

    Abdominal surgery increases blood glucose concentration and peripheral release and splanchnic uptake of gluconeogenic substrates, including alanine. During trauma or sepsis, infusion of glucose fails to depress alanine conversion to glucose. The effect of intra-operative glucose infusion on splanchnic metabolism was examined in the present study. In eight patients undergoing elective cholecystectomy, splanchnic glucose metabolism was investigated before, during and immediately after surgery. Glucose was infused at a constant rate of 1 mmol/min. Splanchnic blood flow and arterio-hepatic venous differences of oxygen, glucose, lactate, glycerol, 3-hydroxybutyrate and alanine were measured. Eight other patients, who received saline instead of glucose, served as a control group. Infusion of glucose resulted in total inhibition of splanchnic glucose release before as well as during and immediately after surgery. This was observed, even before surgery, at an arterial glucose level which was lower than that in the control group at the end of and immediately after surgery, at which no decrease of the splanchnic glucose release was recorded. changes in neuronal and hormonal factors due to the surgical trauma are considered responsible for this difference in glucose homeostasis. Splanchnic alanine uptake increased during surgery in both groups, but tended to be somewhat lower in the glucose group. The arterial glycerol concentration and splanchnic uptake, as well as the arterial concentration and splanchnic release of 3-hydroxybutyrate, were reduced. It is concluded that an intravenous infusion of glucose at the rate of 1 mmol/min during abdominal surgery (a) increases the arterial blood glucose level and abolishes splanchnic glucose release, (b) reduces, but does not totally prevent the increase in splanchnic uptake of gluconeogenic substrates, and (c) diminishes lipolysis and the formation of 3-hydroxybutyrate.

  1. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of Chronic Administration of Forskolin on Glycemia and Oxidative Stress in Rats with and without Experimental Diabetes

    PubMed Central

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant. PMID:24688307

  3. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.

    PubMed

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant.

  4. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    PubMed

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  5. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats

    PubMed Central

    Saravanan, Ramalingam; Pari, Leelavinothan

    2005-01-01

    Background This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. Methods Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. Result Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. Conclusion The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect. PMID:15969768

  6. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview.

    PubMed

    Pallotta, Valeria; Gevi, Federica; D'alessandro, Angelo; Zolla, Lello

    2014-07-01

    Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.

  7. Relationships between obesity, lipids and fasting glucose in the menopause.

    PubMed

    Netjasov, Aleksandra Simoncig; Vujović, Svetlana; Ivović, Miomira; Tancić-Gajić, Milina; Marina, Ljiljana; Barać, Marija

    2013-01-01

    Menopause leads to the development of central adiposity, a more atherogenic lipid profile and increased incidence of metabolic syndrome independent of age and other factors. The aim of the study was to investigate the relationships between anthropometric characteristics, sex hormones, lipids and fasting glucose in menopausal women. The study included 87 menopausal women, who where divided into groups according to two criteria: BMI > or = 26.7 kg/m2 and BMI > or = 25 kg/m2. Anthropometric characteristics and blood pressure were measured. Blood was taken at 08.00 h for fasting glucose, triglycerides, cholesterol, HDL, LDL, apolipoprotein A, apolipoprotein B, lipoprotein(a) (Lp(a)), C-reactive protein, fibrinogen, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol, progesterone, testosterone and sex hormone binding globulin (SHBG). Significant differences between groups were found for weight, BMI, waist, hips circumference, waist/hip ratio (WHR), systolic and diastolic blood pressure, Lp(a), FSH, LH, PRL (for systolic blood pressure p < 0.05, for the rest p < 0.01) and fasting glucose (p < 0.05). In obese and overweight women with BMI > or = 26.7 kg/m2 significant negative correlations were found for FSH and glucose, SHBG and LDL, SHBG and total cholesterol, SHBG and glucose, BMI and HDL, WC and HDL. In obese and overweight women with BMI > or = 25 kg/m2 significant negative correlations were found for BMI and HDL, waist circumference (WC) and HDL, WHR and HDL, FSH and glucose, SHBG and glucose; significant positive correlations were between BMI and glucose, WC and glucose and WHR with triglycerides. Gaining weight and decreased SHBG are related to dyslipidemia and increased fasting glucose confirming increased incidence of metabolic abnormalities in the menopause.

  8. Baseline glucose level is an individual trait that is negatively associated with lifespan and increases due to adverse environmental conditions during development and adulthood.

    PubMed

    Montoya, Bibiana; Briga, Michael; Jimeno, Blanca; Moonen, Sander; Verhulst, Simon

    2018-05-01

    High baseline glucose levels are associated with pathologies and shorter lifespan in humans, but little is known about causes and consequences of individual variation in glucose levels in other species. We tested to what extent baseline blood glucose level is a repeatable trait in adult zebra finches, and whether glucose levels were associated with age, manipulated environmental conditions during development (rearing brood size) and adulthood (foraging cost), and lifespan. We found that: (1) repeatability of glucose levels was 30%, both within and between years. (2) Having been reared in a large brood and living with higher foraging costs as adult were independently associated with higher glucose levels. Furthermore, the finding that baseline glucose was low when ambient temperature was high, and foraging costs were low, indicates that glucose is regulated at a lower level when energy turnover is low. (3) Survival probability decreased with increasing baseline glucose. We conclude that baseline glucose is an individual trait negatively associated with survival, and increases due to adverse environmental conditions during development (rearing brood size) and adulthood (foraging cost). Blood glucose may be, therefore, part of the physiological processes linking environmental conditions to lifespan.

  9. Correlations between metabolic syndrome, serologic factors, and gallstones

    PubMed Central

    Sang, Jae Hong; Ki, Nam Kyun; Cho, Jae Hwan; Ahn, Jae Ouk; Sunwoo, Jae Gun

    2016-01-01

    [Purpose] This study investigated the serologic factors associated with metabolic syndrome and gallstones. [Subjects and Methods] The study evaluated subjects who visited a health promotion center in Seoul from March 2, 2013 to February 28, 2014, and had undergone abdominal ultrasonography. Height, weight, and blood pressure were measured. Blood sampling was performed for high-density lipoprotein cholesterol, triglyceride, fasting blood glucose, total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, uric acid, total cholesterol, low-density lipoprotein cholesterol, thyroid stimulating hormone, and red and white blood cell counts. We conducted logistic regression analysis to assess the risk factors associated with metabolic syndrome. [Results] The risk factors for metabolic syndrome in men, in order of decreasing weight, were red blood cell count, body mass index, maximum size of gallstones, white blood cell count, waist circumference, and uric acid level. The factors in women, in order of decreasing weight, were red blood cell count, presence/absence of gallstones, uric acid level, body mass index, fasting blood glucose, and waist circumference. [Conclusion] Most serum biochemical factors and gallstone occurrence could be used to indicate the presence or absence of metabolic syndrome, independent of gender. PMID:27630427

  10. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies.

    PubMed

    Birech, Zephania; Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1), leucine (1106, 1248, 1302, 1395 cm-1) and isolecucine (1108, 1248, 1437 and 1585 cm-1) were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1), leucine (1395 cm-1) and isoleucine (1437 cm-1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat's) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative efficacy studies between known and new anti-diabetic drugs. Reports on use of Raman spectroscopy in type 2 diabetes mellitus screening with Raman bands associated with leucine and isoleucine molecules acting as reference is rare in literature. The use of Raman spectroscopy in pre-diabetes screening of blood for changes in levels of leucine and isoleucine amino acids is particularly interesting as once elevated levels are noticed, necessary interventions to prevent diabetes development can be initiated.

  11. Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    PubMed Central

    2010-01-01

    Background Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows. Methods The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days post partum during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds. Results There was a breed effect on blood NEFA (P < 0.05) and a time effect on all metabolites concentration (P < 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (P < 0.05), higher glucose concentration 20 (P < 0.01) and 30 min (P < 0.05) after infusion, and higher NEFA concentration before (P < 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40th min nadir (P < 0.01), followed by an increase to the 60th min postinfusion (P < 0.01). Conclusion Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows. PMID:20089161

  12. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2

    PubMed Central

    Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-01-01

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2. PMID:26934556

  13. Endurance exercise in a rat model of metabolic syndrome.

    PubMed

    Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay

    2012-11-01

    We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.

  14. Efficacy and safety of acarbose chewable tablet in patients with type 2 diabetes: a multicentre, randomized, double-blinded, double-dummy positive controlled trial.

    PubMed

    Wu, Qian Lin; Liu, Yu Ping; Lu, Ju Ming; Wang, Chang Jiang; Yang, Tao; Dong, Ji Xiang; Li, Cheng Jiang; Ma, Jian Hua; Xue, Yao Ming; Sun, Rui Hua; Wei, Dong; Tian, Hao Ming

    2012-08-01

    To evaluate the effect and safety of HbA1c and glycemic control of acarbose chewable tablets in patients with type 2 diabetic. A multicentre, randomized, double-blinded, double-dummy, positive controlled clinical trial was conducted. Two hundred thirty-four Chinese patients with type 2 diabetic were enrolled in eight clinical centres, who were divided randomly into the acarbose chewable tablet group (experimental group, n = 116) and the acarbose treatment group (control group, n = 118). Two hundred seven patients (88.5%) took part in the 12-week trial. At the beginning and end of the clinical trial, HbA1c and blood glucose as well as safety indexes were measured. After the treatment, the level of finger two-hour postprandial blood glucose (PPBG) was decreased 4.15 mmol/L (26.82%) and 3.54 mmol/L (22.77%), respectively, in the experiment group and the control group. The levels of venous two-hour PPBG in the experiment group and the control group were decreased 4.04 mmol/L (25.38%) and 2.75 mmol/L (17.26%), respectively, with the means of HbA1c lowering 11.67% and 12.44%, respectively. Fasting blood glucose (FBG) also was reduced significantly in both groups. Patients in both groups showed obvious weight reduction (P < 0.0001). There were no significant differences in the incidence of adverse events between the two groups. In summary, acarbose chewable tablets have a definite curative effect in treating type 2 diabetic patients as HbA1c and blood glucose levels decreased significantly after the 12-week treatment. © 2012 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  15. Type 2 Diabetes and Metformin Influence on Fracture Healing in an Experimental Rat Model.

    PubMed

    La Fontaine, Javier; Chen, Chris; Hunt, Nathan; Jude, Edward; Lavery, Lawrence

    2016-01-01

    Persons with diabetes have a greater incidence of fractures compared with persons without diabetes. However, very little published information is available concerning the deleterious effect of late-stage diabetes on osseous structure and bone healing. The purpose of the present study was to evaluate the role of diabetes on fracture healing in a rat femur repair model. Thirty-six lean and diabetic Zucker rats were subdivided into 3 groups: (1) 12 lean rats as the control group; (2) 12 diabetic rats without blood glucose control (DM group); and (3) 12 diabetic rats treated with 300 mg/kg metformin to reduce the blood glucose levels (DM + Met group). Radiographs were taken every week to determine the incidence of bone repair and delayed union. All the rats were killed at 6 weeks after surgery. In both the sham-operated and the fractured and repaired femurs, significant decreases in the fracture-load/weight and marginal decreases in the fracture-load between the lean and DM groups were found. Metformin treatment significantly reduced the blood glucose and body weight 12 days postoperatively. Furthermore, a decrease in the fracture-load and fracture-load/weight in the repaired femurs was found in the DM + Met group. Diabetes impairs bone fracture healing. Metformin treatment reduces the blood glucose and body weight but had an adverse effect on fracture repair in diabetic rats. Further investigations are needed to reveal the mechanisms responsible for the effects of type 2 diabetes mellitus on bone and bone quality and the effect of medications such as metformin might have in diabetic bone in the presence of neuropathy and vascular disease. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  17. Elucidating Rifampin’s Inducing and Inhibiting Effects on Glyburide Pharmacokinetics and Blood Glucose in Healthy Volunteers: Unmasking the Differential Effect of Enzyme Induction and Transporter Inhibition for a Drug and Its Primary Metabolite

    PubMed Central

    Zheng, HX; Huang, Y; Frassetto, LA; Benet, LZ

    2013-01-01

    The effects of single doses of intravenous ciprofloxacin and rifampin, multiple doses of rifampin, on glyburide exposure and effect on blood glucose levels in 9 healthy volunteers were investigated. The single intravenous dose of rifampin significantly increased the AUCs of glyburide and metabolite. Blood glucose levels dropped significantly in comparison to when glyburide was dosed alone. Multiple doses of rifampin induced liver enzymes leading to a marked decrease in glyburide exposure and in blood glucose measurements. When intravenous rifampin was given after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect, however, relative changes in AUC for glyburide and its hydroxyl metabolite were the same as that seen under non-induced conditions. The studies reported here demonstrate how measurements of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and characterizing enzymatic versus transporter mechanisms. PMID:18843263

  18. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite.

    PubMed

    Zheng, H X; Huang, Y; Frassetto, L A; Benet, L Z

    2009-01-01

    The effects of single doses of intravenous (IV) ciprofloxacin and rifampin and of multiple doses of rifampin on glyburide exposure and blood glucose levels were investigated in nine healthy volunteers. A single IV dose of rifampin significantly increased the area under the concentration-time curve (AUC) of glyburide and its metabolite. Blood glucose levels were significantly lower than those observed after dosing with glyburide alone. Multiple doses of rifampin induced an increase in liver enzyme levels, leading to a marked decrease in glyburide exposure and blood glucose levels. When IV rifampin was administered after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect; however, the relative changes in AUC for glyburide and its hydroxyl metabolite were similar to those seen under noninduced conditions. The studies reported here demonstrate how measurements of the levels of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and in characterizing enzymatic vs. transporter mechanisms.

  19. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  20. Microdialysis combined blood sampling technique for the determination of rosiglitazone and glucose in brain and blood of gerbils subjected to cerebral ischemia.

    PubMed

    Sheu, Wayne H-H; Chuang, Hsiu-Chun; Cheng, Shiu-Min; Lee, Maw-Rong; Chou, Chi-Chi; Cheng, Fu-Chou

    2011-03-25

    Rosiglitazone is a potent synthetic peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist which improves glucose control in the plasma and reduces ischemic brain injury. However, the pharmacokinetics of rosiglitazone in the brain is still unclear. In this study, a method using liquid chromatography-mass spectrometry coupled with microdialysis and an auto-blood sampling system was developed to determine rosiglitazone and glucose concentration in the brain and blood of gerbils subjected to treatment with rosiglitazone (3.0 mg kg(-1), i.p.). The results showed the limit of detection was 0.04 μg L(-1) and the correlation coefficient was 0.9997 for the determination of rosiglitazone in the brain. The mean parameters, maximum drug concentration (C(max)) and the area under the concentration-time curve from time zero to time infinity (AUC(inf)), following rosiglitazone administration were 1.06±0.28 μg L(-1) and 296.82±44.67 μg min L(-1), respectively. The time to peak concentration (C(max) or T(max)) of rosiglitazone occurred at 105±17.10 min, and the mean elimination half-life (t(1/2)) from brain was 190.81±85.18 min after administration of rosiglitazone. The brain glucose levels decreased to 71% of the basal levels in the rosiglitazone-treated group when compared with those in the control (p<0.01). Treatment with rosiglitazone decreased blood glucose levels to 80% at 1h after pretreatment of rosiglitazone (p<0.05). In addition, pretreatment with rosiglitazone significantly reduced the cerebral infarct volume compared with that of the control group. These findings suggest that this method may be useful for simultaneous and continuous determination of rosiglitazone and glucose concentrations in brain and plasma. Rosiglitazone was effective at penetrating the blood-brain barrier as evidenced by the rapid appearance of rosiglitazone in the brain, and rosiglitazone may contribute to a reduction in the extent of injuries related to cerebral ischemic stroke via its hypoglycemic effect. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Orally Administered Baker's Yeast β-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice.

    PubMed

    Cao, Yan; Sun, Ying; Zou, Siwei; Li, Mengxia; Xu, Xiaojuan

    2017-11-08

    Baker's yeast glucan (BYG) has been reported to be an anti-diabetic agent. In the work described herein, further study on the effect of orally administered BYG on glucose and lipid homeostasis in the livers of ob/ob mice was performed. It was found that BYG decreased the blood glucose and the hepatic glucose and lipid disorders. Western blotting analysis revealed that BYG up-regulated p-AKT and p-AMPK, and down-regulated p-Acc in the liver. Furthermore, RNA-Seq analysis indicated that BYG down-regulated genes responsible for gluconeogenesis (G6pase and Got1), fatty acid biosynthesis (Acly, Acc, Fas, etc.), glycerolipid synthesis (Gpam and Lipin1/2), and cholesterol synthesis (Hmgcr, Fdps, etc.). Additionally, BYG decreased glucose transporters SGLT1 and GLUT2, fat emulsification, and adipogenic genes/proteins in the intestine to decrease glucose and lipid absorption. All these findings demonstrated that BYG is beneficial for regulating glucose and lipid homeostasis in diabetic mice, and thus has potential applications in anti-diabetic foods or drugs.

  2. Effect of Schisandra chinensis on interleukins, glucose metabolism, and pituitary-adrenal and gonadal axis in rats under strenuous swimming exercise.

    PubMed

    Li, Jie; Wang, Jian; Shao, Jia-Qing; Du, Hong; Wang, Yang-Tian; Peng, Li

    2015-01-01

    To investigate the effect of Chinese medicine (CM) Schisandra chinensis on interleukin (IL), glucose metabolism, and pituitary-adrenal and gonadal axis of rats after strenuous navigation and exercise. A total of 45 Sprague-Dawley rats were randomized into the quiet control group, the stress group, and the CM group (15 in each group). The CM group received 2.5 g/kg of Schisandra chinensis twice per day for one week before modeling. Except the quiet controls, rats were trained using the Bedford mode for 10 days. On the 11th day, they performed 3 h of stressful experimental navigation and 3 h of strenuous treadmill exercise. The levels of serum testosterone (T), cortisol (CORT), luteinizing hormone (LH), IL-1, IL-2, and IL-6 were tested by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The adrenal cortex ultrastructure was observed using electron microscopy. Compared with the quiet control group, after navigation and strenuous exercise, blood glucose was increased, and T level was decreased in the stress group (both P<0.01). The blood glucose, CORT, IL-1 and IL-2 levels were significantly reduced in the CM group (P<0.05 or P<0.01) as compared with the stress group. Electron microscopy revealed that the rats in the CM group had a smaller decrease in adrenal intracellular lipid droplets and higher levels of apoptosis than those in the stress group. Schisandra chinensis can reduce serum CORT and blood glucose levels in stressed rats. It appears to protect the cell structure of the adrenal cortex, and offset the negative effects of psychological stress and strenuous exercise related to immune dysfunction. Schisandra chinensis plays a regulatory role in immune function, and can decrease the influence of stress in rats.

  3. Exercise and the Development of the Artificial Pancreas

    PubMed Central

    Riddell, Michael C.; Zaharieva, Dessi P.; Yavelberg, Loren; Cinar, Ali; Jamnik, Veronica K.

    2015-01-01

    Regular physical activity (PA) promotes numerous health benefits for people living with type 1 diabetes (T1D). However, PA also complicates blood glucose control. Factors affecting blood glucose fluctuations during PA include activity type, intensity and duration as well as the amount of insulin and food in the body at the time of the activity. To maintain equilibrium with blood glucose concentrations during PA, the rate of glucose appearance (Ra) to disappearance (Rd) in the bloodstream must be balanced. In nondiabetics, there is a rise in glucagon and a reduction in insulin release at the onset of mild to moderate aerobic PA. During intense aerobic -anaerobic work, insulin release first decreases and then rises rapidly in early recovery to offset a more dramatic increase in counterregulatory hormones and metabolites. An “exercise smart” artificial pancreas (AP) must be capable of sensing glucose and perhaps other physiological responses to various types and intensities of PA. The emergence of this new technology may benefit active persons with T1D who are prone to hypo and hyperglycemia. PMID:26428933

  4. Effect of emulin on blood glucose in type 2 diabetics.

    PubMed

    Ahrens, Milton Joseph; Thompson, Daryl L

    2013-03-01

    Emulin™ is a patented blend of chlorogenic acid, myricetin, and quercetin that has shown efficacy in reducing midday and post-oral glucose tolerance test (OGTT) area under the curve (AUC) glucose in streptozotocin-treated rats. The purpose of this study was to determine if similar effects would be evident in type 2 diabetic humans. Forty human subjects with confirmed type 2 diabetes (10 each in 4 groups: placebo/no medication, Emulin/no medication, placebo/metformin and Emulin/metformin) were evaluated. At the end of 1 week, fasting blood glucose, 2 h postprandial, actual peak glucose, and AUC (post-50 g OGTT) were determined. The placebo-only group had a large (5%-13%) increase in all parameters. The Emulin group and those on metformin performed similarly with reductions between 1% and 5%, with Emulin slightly outperforming the medication-alone group. The most significant reduction occurred in the Emulin/metformin group, with decreases in the parameters by up to 20%. These results suggest that Emulin, if consumed regularly, could not only have the acute effect of lowering the glycemic impact of foods, but chronically lower background blood glucose levels of type 2 diabetics.

  5. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion.

    PubMed

    Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. [Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats].

    PubMed

    Zheng, Lin-Ying; Pan, Jing-Qiang; Lv, Jun-Hua

    2008-10-01

    To study the pathological changes of blood glucose, serum lipid, insulin resistance, liver function, liver cell denaturalization of total glucosides of paeony on nonalcoholic fatty liver rats caused by insulin resistance and discuss the acting mechanism. Adult SD rats were maintained on high-fat-sugar-salt diet for 56 days. In the 57th day, their fasting blood glucose (FBG) and 2-hours blood glucose after oral glucose tolerance test (OGTT-2 hBG) were mensurated, according to which and the weight the rats were divided randomly into nonalcoholic fatty liver model group, metformin group (0.2 g x kg(-1)) and total glucosides of paeony group (high dosage 0.15 g x kg(-1), low dosage 0.05 g x kg(-1)). All the rats were still administered the same diet and given different drugs by intragastric administration for 28 days. In the 29th day, all of them were killed and the blood was sampled to measure the levels of blood glucose [FBG, OGTT-2 hBG, fasting insulin (Fins)] and serum lipid [free fatty acids (FFA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)], then the HOMA insulin resistance index (HOMA-IRI, fasting glucosexinsulin) and insulin sensitivity index (ISI) were counted. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholinesterase (ChE), superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were measured also. Livers were weighed and collected to be observed the pathological changes. Compared with normal group, in nonalcoholic fatty liver model group the levels of Fins and IRI were increased obviously (P < 0.01), ISI were decreased (P < 0.01), FFA, TG, TC, LDL-C were increased (P < 0.01), HDL-C were decreased (P < 0.05); the content of MDA were increased (P < 0.05), the activities of SOD were decreased (P < 0.01); AST, ALT and ChE were increased (P < 0.05, or P < 0.01), the pathological changes of liver fat were severe (P < 0.01). In glucosides of paeony group and metformin group, hyperinsulinaemia and insulin resistence were resisted (P < 0.05, or P < 0.01); the levels of FFA, TG, TC, LDL-C were decreased and HDL-C were increased (P < 0.05, or P < 0.01); the activities of AST, ALT, ChE were decreased (P < 0.05, or P < 0.01) and SOD were increased (P < 0.01). The contents of MDA were decreased (P < 0.05). The levels of FBG and 2 hBG in metformin group were decreased but in total glucosides of paeony group were not decreased obviously. Total glucosides of paeony may protect liver function and modulate serum lipid for the fatty liver rats caused by insulin resistance, and its action mechanism may be concerned with enhancing insulin sensitivity and antioxidative ability, decreasing serum lipid.

  7. Effect of Cinnamon Tea on Postprandial Glucose Concentration.

    PubMed

    Bernardo, Maria Alexandra; Silva, Maria Leonor; Santos, Elisabeth; Moncada, Margarida Maria; Brito, José; Proença, Luis; Singh, Jaipaul; de Mesquita, Maria Fernanda

    2015-01-01

    Glycaemic control, in particular at postprandial period, has a key role in prevention of different diseases, including diabetes and cardiovascular events. Previous studies suggest that postprandial high blood glucose levels (BGL) can lead to an oxidative stress status, which is associated with metabolic alterations. Cinnamon powder has demonstrated a beneficial effect on postprandial glucose homeostasis in animals and human models. The purpose of this study is to investigate the effect of cinnamon tea (C. burmannii) on postprandial capillary blood glucose level on nondiabetic adults. Participants were given oral glucose tolerance test either with or without cinnamon tea in a randomized clinical trial. The data revealed that cinnamon tea administration slightly decreased postprandial BGL. Cinnamon tea ingestion also results in a significantly lower postprandial maximum glucose concentration and variation of maximum glucose concentration (p < 0.05). Chemical analysis showed that cinnamon tea has a high antioxidant capacity, which may be due to its polyphenol content. The present study provides evidence that cinnamon tea, obtained from C. burmannii, could be beneficial for controlling glucose metabolism in nondiabetic adults during postprandial period.

  8. [Positron emission tomographic evaluations on hemodynamics and glucose metabolism of brain tumors and perifocal edematous tissues].

    PubMed

    Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H

    1989-03-01

    Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Beta-glucans in the treatment of diabetes and associated cardiovascular risks

    PubMed Central

    Chen, Jiezhong; Raymond, Kenneth

    2008-01-01

    Diabetes mellitus is characterized by high blood glucose level with typical manifestations of thirst, polyuria, polydipsia, and weight loss. It is caused by defects in insulin-mediated signal pathways, resulting in decreased glucose transportation from blood into muscle and fat cells. The major risk is vascular injury leading to heart disease, which is accelerated by increased lipid levels and hypertension. Management of diabetes includes: control of blood glucose level and lipids; and reduction of hypertension. Dietary intake of beta-glucans has been shown to reduce all these risk factors to benefit the treatment of diabetes and associated complications. In addition, beta-glucans also promote wound healing and alleviate ischemic heart injury. However, the mechanisms behind the effect of beta-glucans on diabetes and associated complications need to be further studied using pure beta-glucan. PMID:19337540

  10. Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats.

    PubMed

    Preuss, Harry G; Echard, Bobby; Polansky, Marilyn M; Anderson, Richard

    2006-04-01

    Many agents (nutrients, nutraceuticals, and drugs) that enhance insulin sensitivity and/or reduce circulating insulin concentrations lower blood pressure (BP). Recently, it was reported that cinnamon has the potential to favorably influence the glucose/insulin system. Accordingly, the purpose of the present study was to examine the effects of dietary cinnamon on systolic BP (SBP), and various glucose- and insulin-related parameters in spontaneously hypertensive rats (SHR). In a series of three experiments, treated SHR eating sucrose and non sucrose containing diets were given various amounts of cinnamon, cinnamon extracts, or chromium. Then various parameters such as: body weight, systolic blood pressure, hematology and blood chemistries were followed for three to four weeks. Diets high in sucrose content are associated with insulin resistance and the elevation of SBP. Addition to diets of cinnamon (8% w/w) reduced the SBP of rats eating sucrose containing diets to virtually the same levels as SHR consuming non sucrose containing (only starch) diets. The presence of cinnamon in the diet also decreased the SBP of SHR consuming a non sucrose-containing diet, suggesting that cinnamon reduces more than just sucrose-induced SBP elevations--perhaps a genetic component(s) of the elevated BP as well. The effects of cinnamon on SBP tended to be dose-dependent. Cinnamon did not decrease the levels of blood glucose, but did lower circulating insulin concentrations. Aqueous extracts of cinnamon also decreased SBP and lowered the circulating levels of fructosamine. Cinnamon is used for flavor and taste in food preparation, but cinnamon may have additional roles in glucose metabolism and BP regulation. Therefore, BP regulation may not only be influenced favorably by limiting the amounts of dietary substances that have negative effects on BP and insulin function but also by the addition of beneficial ones, such as cinnamon, that have positive effects.

  11. Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A

    2016-12-01

    To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    PubMed

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  14. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women.

    PubMed

    Kong, Zhaowei; Sun, Shengyan; Liu, Min; Shi, Qingde

    2016-01-01

    This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods . Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption ([Formula: see text]) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of [Formula: see text]. [Formula: see text], body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results . Both exercise groups achieved significant improvements in [Formula: see text] (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention ( p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT ( p = 0.042). Conclusion . Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.

  15. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women

    PubMed Central

    Kong, Zhaowei; Sun, Shengyan; Liu, Min

    2016-01-01

    This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of V˙O2peak. V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results. Both exercise groups achieved significant improvements in V˙O2peak (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p = 0.042). Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women. PMID:27774458

  16. Suppression of Oral Sweet Taste Sensation with Gymnema sylvestre Affects Postprandial Gastrointestinal Blood Flow and Gastric Emptying in Humans.

    PubMed

    Kashima, Hideaki; Eguchi, Kohei; Miyamoto, Kanae; Fujimoto, Masaki; Endo, Masako Yamaoka; Aso-Someya, Nami; Kobayashi, Toshio; Hayashi, Naoyuki; Fukuba, Yoshiyuki

    2017-05-01

    An oral sweet taste sensation (OSTS) exaggerates digestive activation transiently, but whether it has a role after swallowing a meal is not known. Gymnema sylvestre (GS) can inhibit the OSTS in humans. We explored the effect of the OSTS of glucose intake on gastrointestinal blood flow, gastric emptying, blood-glucose, and plasma-insulin responses during the postprandial phase. Eight participants ingested 200 g (50 g × 4 times) of 15% glucose solution containing 100 mg of 13C-sodium acetate after rinsing with 25 mL of 2.5% roasted green tea (control) or 2.5% GS solution. During each protocol, gastrointestinal blood flow and gastric emptying were measured by ultrasonography and 13C-sodium acetate breath test, respectively. Decreased subjective sweet taste intensity was observed in all participants in the GS group. The time to attain a peak value of blood flow in the celiac artery and gastric emptying were delayed in the GS group compared with the control group. At the initial phase after glucose intake, blood-glucose and plasma-insulin responses were lower in the GS group than those for the control group. These results suggest that the OSTS itself has a substantial role in controlling postprandial gastrointestinal activities, which may affect subsequent glycemic metabolism. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  18. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  19. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice.

    PubMed

    Pham, Hoa Thi Thai; Huang, Wansu; Han, Chuangye; Li, Juman; Xie, Qiuqiao; Wei, Jinbin; Xu, Xiaohui; Lai, Zefeng; Huang, Xiang; Huang, Renbin; Wen, Qingwei

    2017-01-01

    Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.

  20. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    PubMed Central

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  1. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers.

    PubMed

    Yamazaki, Masahiro; Hasegawa, Goji; Majima, Saori; Mitsuhashi, Kazuteru; Fukuda, Takuya; Iwase, Hiroya; Kadono, Mayuko; Asano, Mai; Senmaru, Takafumi; Tanaka, Muhei; Fukui, Michiaki; Nakamura, Naoto

    2014-01-01

    Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress.

  2. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers

    PubMed Central

    2014-01-01

    Background Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Methods Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Results Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. Conclusion These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress. PMID:24843385

  3. α-Lipoic acid treatment of aged type 2 diabetes mellitus complicated with acute cerebral infarction.

    PubMed

    Zhao, L; Hu, F-X

    2014-01-01

    This study aims to evaluate the efficacy and safety of α-lipoic acid in the treatment of aged type 2 diabetes mellitus (T2DM) complicated with acute cerebral infarction. 90 patients were randomly divided into two groups, on the basis of conventional treatment. The experiment group was administrated with α-lipoic acid, while only Vitamin C for the control group, for 3 consecutive weeks. Before and after the experiment, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels were measured and scored with the NIHSS (National Institutes of Health Stroke Scale), and the changes of blood glucose, insulin function and other indicators were observed. After the treatment, the plasma SOD and GSH-Px levels increased, while MDA decreased (p < 0.05), with statistical significance when compared with the control group (p < 0.01). NIHSS score, blood glucose, blood lipids and HOMA-IA of the experiment group decreased significantly (p < 0.01); and no significant adverse reactions were found in both groups. α-lipoic acid was safe and effective in the treatment of aged T2DM complicated with acute cerebral infarction, significantly reducing the patient's oxidative stress, blood glucose and lipid levels and being able to improve islet function.

  4. Study of light transmission through gauze pad effected by blood or liquids to detect needle dislodgement.

    PubMed

    Takeuchi, Akihiro; Ishida, Kai; Morohoshi, Yasuo; Shinbo, Toshihiro; Hirose, Minoru; Ikeda, Noriaki

    2010-02-01

    Serious accidents during hemodialysis such as a large amount of blood loss are often caused by venous needle dislodgement. To develop a bleeding sensor based on a photo sensor for monitoring the needle sites, we studied effects of liquids and porcine blood on light transmission through a thin gauze pad with a basic photo sensor. The photo sensor consisted of an ordinary electrical circuit, a light emitting diode (LED, lambda max = 645 nm), a photo diode (PD), and a thin gauze pad placed between the LED and PD that were tightly attached to the edges of a plastic clip. The light transmitted through the gauze pad, soaked with liquids or porcine blood dropped on it, was measured with a digital voltmeter. The liquids were reverse osmosis water, physiological saline, glucose in water at 5, 10, 20, 40 and 50%, porcine plasma, and porcine blood (Hct 40, 30 and 20%). The liquids on a tight-weave gauze pad, significantly increased the voltage (light transmission) from 0.412 +/- 0.003 V (SD) to 0.794 +/- 0.025 V (minimum, by reverse osmosis water) and to 0.945 +/- 0.011 V (maximum, by 50% glucose). The porcine blood significantly decreased the voltage from 0.412 to 0.195 +/- 0.030 V in Hct 40%, to 0.334 +/- 0.035 in Hct 30%, to 0.397 +/- 0.007 V in Hct 20%. The higher the concentration of glucose, the more the light transmission increased. The higher concentration of Hct, the more the light transmission decreased. Similar results were also shown for the loose-weave pad. Using two types of gauze pads, we confirmed that liquids significantly increased light transmission through gauze pad, but porcine blood decreased light transmission. This opposite response can be used to distinguish liquids from blood on a gauze pad.

  5. Retinal blood flow in type 1 diabetic patients with no or mild diabetic retinopathy during euglycemic clamp.

    PubMed

    Pemp, Berthold; Polska, Elzbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold

    2010-09-01

    To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. Total retinal blood flow was higher in diabetic patients (53 +/- 16 microl/min) than in healthy subjects (43 +/- 16 microl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 +/- 1.7 to 5.3 +/- 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 +/- 15 microl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy.

  6. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients.

    PubMed

    Thakur, Goutam; Mitra, Analava; Pal, Kunal; Rousseau, Dérick

    2009-01-01

    The effects of ingestion of flaxseed gum on blood glucose and cholesterol, particularly low-density lipoprotein cholesterol, in type 2 diabetes were evaluated. Flaxseed gum was incorporated in wheat flour chapattis. Sixty patients of type 2 diabetes were fed a daily diet for 3 months, along with six wheat flour chapattis containing flaxseed gum (5 g), as per the recommendations of the American Diabetic Association. The control group (60 individuals) consumed an identical diet but the chapattis were without gum. The blood biochemistry profiles monitored before starting the study and at monthly intervals showed fasting blood sugar in the experimental group decreased from 154 ± 8 mg/dl to 136 ± 7 mg/dl (P=0.03) while the total cholesterol reduced from 182 ± 11 mg/dl to 163 ± 9 mg/dl (P=0.03). Results showed a decrease in low-density lipoprotein cholesterol from 110 ± 8 mg/dl to 92 ± 9 mg/dl (P=0.02). The study demonstrated the efficacy of flax gum in the blood biochemistry profiles of type 2 diabetes.

  7. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  8. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose

    PubMed Central

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H.

    2016-01-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24 hours and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24 hour time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. PMID:27473896

  9. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    PubMed

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and targets. Some are effective in slowing formation of glucose in intestines by inhibiting α-glucosidases (e.g., salacia/saptarangi). Knowledge gained from French lilac on active guanidine group helped developing Metformin (1,1-dimethylbiguanide) one of the popular drugs in use. One strategy of keeping sugar content in diets in check is to use artificial sweeteners with no calories, no glucose or fructose and no effect on blood glucose (e.g., steviol, erythrytol). However, the three commonly used non-caloric artificial sweeteners, saccharin, sucralose and aspartame later developed glucose intolerance, the very condition they are expected to evade. Ideal way of keeping blood glucose under 6 mM and HbA1c, the glycation marker of hemoglobin, under 7% in blood is to correct the defects in signals that allow glucose flow into glycogen, still a difficult task with drugs and diets.

  11. [Homeostatic reactions of the blood of experimental rats after "Kosmos-1667" flight].

    PubMed

    Popova, I A; Afonin, B V; Vetrova, E G; Drozdova, T E; Zagorskaia, E A

    1988-01-01

    Biochemical analysis of blood of rats sacrificed 4 to 8 hours after Cosmos-1667 flight revealed a significant increase of corticosterone, decrease of 11-dehydroxycortisol, testosterone, total and bound thyroxine, and increase of glucose, phosphate, creatinine, alanine aminotransferase and total antioxidative activity. Changes in hormonal concentrations, glucose content and stimulation of antioxidant defense system were associated with a moderate gravitational stress. Increases in the creatinine and inorganic phosphate concentrations can be viewed as specific effects of microgravity related to musculo-skeletal or fluid-electrolyte changes.

  12. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease.

    PubMed

    Mobbs, Charles V; Mastaitis, Jason W; Zhang, Minhua; Isoda, Fumiko; Cheng, Hui; Yen, Kelvin

    2007-01-01

    Elevated blood glucose associated with diabetes produces progressive and apparently irreversible damage to many cell types. Conversely, reduction of glucose extends life span in yeast, and dietary restriction reduces blood glucose. Therefore it has been hypothesized that cumulative toxic effects of glucose drive at least some aspects of the aging process and, conversely, that protective effects of dietary restriction are mediated by a reduction in exposure to glucose. The mechanisms mediating cumulative toxic effects of glucose are suggested by two general principles of metabolic processes, illustrated by the lac operon but also observed with glucose-induced gene expression. First, metabolites induce the machinery of their own metabolism. Second, induction of gene expression by metabolites can entail a form of molecular memory called hysteresis. When applied to glucose-regulated gene expression, these two principles suggest a mechanism whereby repetitive exposure to postprandial excursions of glucose leads to an age-related increase in glycolytic capacity (and reduction in beta-oxidation of free fatty acids), which in turn leads to an increased generation of oxidative damage and a decreased capacity to respond to oxidative damage, independent of metabolic rate. According to this mechanism, dietary restriction increases life span and reduces pathology by reducing exposure to glucose and therefore delaying the development of glucose-induced glycolytic capacity.

  13. Welltang - A smart phone-based diabetes management application - Improves blood glucose control in Chinese people with diabetes.

    PubMed

    Zhou, Weibin; Chen, Min; Yuan, Jingyun; Sun, Yan

    2016-06-01

    The primary objective was to evaluate the impact of the smart phone-based diabetes management application, Welltang, on glycated hemoglobin (HbA1c). The second objective was to measure whether Welltang improves blood glucose, low-density lipoprotein cholesterol, weight, blood pressure, hypoglycemic events, satisfaction of patients to use Welltang, diabetes knowledge of patients, and self-care behaviors. One hundred evenly randomized subjects with diabetes, aged 18-74years, were recruited from the outpatient Department of Endocrinology for a 3-month study. The Welltang intervention group received training for the use of Welltang, while the control group received their usual standard of care. HbA1c, blood glucose, low-density lipoprotein cholesterol, weight, blood pressure, hypoglycemic events, satisfaction of patients to use Welltang, diabetes knowledge of patients, and self-care behaviors were measured. Patient data were analyzed using independent t test and paired sample test using SPSS version 12. The average decrease in HbA1c was 1.95% (21mmol/mol) in the intervention group and 0.79% (8mmol/mol) in the control group (P<0.001). Measures of self-monitored blood glucose, diabetes knowledge, and self-care behaviors improved in patients in the intervention group. Eighty four percent of patients in the intervention group were satisfied with the use of Welltang. Differences in hypoglycemic events, low-density lipoprotein cholesterol, weight, and blood pressure were not statistically significant. Diabetes patients using the Welltang application achieved statistically significant improvements in HbA1c, blood glucose, satisfaction of patients to use of Welltang, diabetes knowledge, and self-care behaviors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats.

    PubMed

    Baechli, Heidi; Behzad, Melika; Schreckenberger, Matthias; Buchholz, Hans-Georg; Heimann, Axel; Kempski, Oliver; Alessandri, Beat

    2010-03-01

    Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.

  15. Better Glycemic Control and Weight Loss With the Novel Long-Acting Basal Insulin LY2605541 Compared With Insulin Glargine in Type 1 Diabetes

    PubMed Central

    Rosenstock, Julio; Bergenstal, Richard M.; Blevins, Thomas C.; Morrow, Linda A.; Prince, Melvin J.; Qu, Yongming; Sinha, Vikram P.; Howey, Daniel C.; Jacober, Scott J.

    2013-01-01

    OBJECTIVE To compare effects of LY2605541 versus insulin glargine on daily mean blood glucose as part of a basal-bolus regimen for type 1 diabetes. RESEARCH DESIGN AND METHODS In this randomized, Phase 2, open-label, 2 × 2 crossover study, 137 patients received once-daily basal insulin (LY2605541 or glargine) plus mealtime insulin for 8 weeks, followed by crossover treatment for 8 weeks. Daily mean blood glucose was obtained from 8-point self-monitored blood glucose profiles. The noninferiority margin was 10.8 mg/dL. RESULTS LY2605541 met noninferiority and superiority criteria compared with insulin glargine in daily mean blood glucose (144.2 vs. 151.7 mg/dL, least squares mean difference = −9.9 mg/dL [90% CI −14.6 to −5.2], P < 0.001). Fasting blood glucose variability and A1C were reduced with LY2605541 compared with insulin glargine (both P < 0.001). Mealtime insulin dose decreased with LY2605541 and increased with insulin glargine. Mean weight decreased 1.2 kg with LY2605541 and increased 0.7 kg with insulin glargine (P < 0.001). The total hypoglycemia rate was higher for LY2605541 (P = 0.04) and the nocturnal hypoglycemia rate was lower (P = 0.01), compared with insulin glargine. Adverse events (including severe hypoglycemia) were similar, although more gastrointestinal-related events occurred with LY2605541 (15% vs. 4%, P < 0.001). Mean changes (all within normal range) were higher for alanine aminotransferase, aspartate aminotransferase, triglycerides, and LDL-cholesterol and lower for HDL-cholesterol with LY2605541 compared with insulin glargine (all P < 0.02). CONCLUSIONS In type 1 diabetes, compared with insulin glargine, LY2605541, a novel, long-acting basal insulin, demonstrated greater improvements in glycemic control, increased total hypoglycemia, and reduced nocturnal hypoglycemia, as well as reduced weight and lowered mealtime insulin doses. PMID:23193209

  16. Blood Glucose-lowering Effect of T. procumbens L.: A Pilot Clinical Study in Individuals with Type 2 Diabetes.

    PubMed

    Desai, Gauri S; Desai, Shirish V; Gavaskar, Rajendra S; Mulabagal, Vanisree; Wu, Yonnie; Mathews, Suresh T

    2015-06-22

    Traditional knowledge, in vitro studies, and studies using animal models suggest that Tridax procumbens L. exhibits blood glucose-lowering properties and antiinflammatory effects. In this study, we evaluated the blood glucose-lowering effect of T. procumbens supplementation in individuals with type 2 diabetes. An extract (asava) of T. procumbens L. was prepared following Ayurveda guidelines. Chemical and microbial analyses indicated presence of phenolics, flavonoids, and carotenoids, and absence of microbial contamination, aflatoxins, heavy metals, and pesticide residues. A chemical fingerprint of T. procumbens L. asava, developed using Ultra high pressure liquid chromatography/electron spray ionization-mass spectrometry (UPLC/ESI-MS) in negative mode, suggest the presence of several compounds including polyphenols. T. procumbens asava demonstrated strong total antioxidant capacity, Fe 3+ reducing potential, Fe 2+ chelation, H 2 O 2 scavenging activity, and inhibition of lipid peroxidation. We recruited 20 type 2 diabetic individuals from Kolhapur, India. Participants received 15 mL of T. procumbens asava, twice daily, for 4 weeks, while continuing their prescribed antidiabetic medications. Fasting blood glucose decreased by 11% in men (p < 0.01) and 20% in women (p < 0.05), and post-prandial blood glucose concentrations were lowered by 26% in men (p < 0.001) and 29% in women (p < 0.001) following 4 weeks of asava supplementation. No adverse events or side effects were reported. This is the first clinical study demonstrating a significant blood glucose-lowering effect of T. procumbens asava in type 2 diabetes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Digital Photography as an Educational Food Logging Tool in Obese Patients with Type 2 Diabetes: Lessons Learned from A Randomized, Crossover Pilot Trial

    PubMed Central

    Ehrmann, Brett J.; Anderson, Robert M.; Piatt, Gretchen A.; Funnell, Martha M.; Rashid, Hira; Shedden, Kerby; Douyon, Liselle

    2014-01-01

    Purpose The purpose of this pilot study is to investigate the utility of, and areas of refinement for, digital photography as an educational tool for food logging in obese patients with type 2 diabetes (T2DM). Methods Thirty-three patients aged 18-70 with T2DM, BMI at least 30 kg/m2, and A1C 7.5-9% were recruited from an endocrinology clinic and randomized to a week of food logging using a digital camera (DC) or paper diary (PD), crossing over for week two. Patients then viewed a presentation about dietary effects on blood glucose, using patient DC and blood glucose entries. Outcomes of adherence (based on number of weekly entries), changes in mean blood glucose and frequency of blood glucose checks, and patient satisfaction were compared between methods. Patient feedback on the DC intervention and presentation was also analyzed. Results Thirty patients completed the study. Adherence was identical across methods. The mean difference in number of entries was not significant between methods. This difference increased and neared statistical significance (favoring DC) among patients who were adherent for at least one week (21 entries, with 2 entries per day for 5 of 7 days, n=25). Mean blood glucose did not significantly decrease in either method. Patient satisfaction was similar between interventions. Feedback indicated concerns over photograph accuracy, forgetting to use the cameras, and embarrassment using them in public. Conclusion Though comparable to PD in adherence, blood glucose changes, and patient satisfaction in this pilot trial, patient feedback suggested specific areas of refinement to maximize utility of DC-based food logging as an educational tool in T2DM. PMID:24168836

  18. Comparative effectiveness of carvedilol and propranolol on glycemic control and insulin resistance associated with L-thyroxin-induced hyperthyroidism--an experimental study.

    PubMed

    Bhatt, Parloop; Makwana, Dharmesh; Santani, Devdas; Goyal, Ramesh

    2007-05-01

    The present study was undertaken to investigate the effectiveness of adrenergic antagonists carvedilol and propranolol on L-thyroxin-induced cardiovascular and metabolic disturbances in rats. Treatment with L-thyroxin sodium (75 mg/kg body mass, s.c., every alternate day for 3 weeks), produced a significant increase in food and water intake, body temperature, heart rate, systolic blood pressure, along with an increase in serum T3, T4, and triglyceride levels. Besides a significant reduction in body mass, serum levels of TSH and cholesterol were also reduced following L-thyroxin treatment. Carvedilol (10 mg/kg body mass, orally) and propranolol (10 mg/kg body mass, i.p.) administered daily in the third week to 2 separate groups of L-thyroxin-treated animals reversed thyroxin-induced loss in body mass and rise in body temperature, blood pressure, and heart rate. Propranolol treatment increased TSH levels and decreased T3 and T4 levels in hyperthyroid animals, whereas carvedilol did not produce any effect on thyroid hormones. Carvedilol treatment reversed thyroxin induced hypertriglyceridemia, whereas propranolol treatment had no effect. Both carvedilol and propranolol prevented decrease in cholesterol levels induced by thyroxine. Compared with normal animals, L-thyroxin-treated animals showed a state of hyperglycemia, hyperinsulinaemia, impaired glucose tolerance, and insulin resistance, as inferred from elevated fasting serum glucose and insulin levels, higher area under the curve over 120 min for glucose, and decreased insulin sensitivity index (KITT). Propranolol and carvedilol treatment significantly decreased fasting serum glucose levels. Treatment with propranolol did not alter serum insulin levels, area-under-the-curve glucose, or KITT values. However, treatment with carvedilol significantly reduced area-under-the-curve glucose, decreased fasting serum insulin levels and significantly increased KITT values. In conclusion, carvedilol appears to produce favorable effects on insulin sensitivity and glycemic control and can therefore be considered as more efficacious adjunctive treatment than propranolol in hyperthyroidism.

  19. Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women

    PubMed Central

    Conceição, Miguel Soares; Bonganha, Valéria; Vechin, Felipe Cassaro; de Barros Berton, Ricardo Paes; Lixandrão, Manoel Emílio; Nogueira, Felipe Romano Damas; de Souza, Giovana Vergínia; Chacon-Mikahil, Mara Patricia Traina; Libardi, Cleiton Augusto

    2013-01-01

    Background The postmenopausal phase has been considered an aggravating factor for developing metabolic syndrome. Notwithstanding, no studies have as yet investigated the effects of resistance training on metabolic syndrome in postmenopausal women. Thus, the purpose of this study was to verify whether resistance training could reduce the risk of metabolic syndrome in postmenopausal women. Methods Twenty postmenopausal women were randomly assigned to a resistance training protocol (n = 10, 53.40 ± 3.95 years, 64.58 ± 9.22 kg) or a control group (n = 10, 53.0 ± 5.7 years, 64.03 ± 5.03 kg). In the resistance training protocol, ten exercises were performed, with 3 × 8−10 maximal repetitions three times per week, and the load was increased every week. Two-way analysis of variance was used to evaluate specific metabolic syndrome Z-score, high density lipoprotein cholesterol, fasting blood glucose, triglycerides, waist circumference, blood pressure, strength, and body composition. The level of statistical significance was set at P < 0.05. Results The main results demonstrated a significant decrease of metabolic syndrome Z-score when the postmenopausal women performed resistance training (P = 0.0162). Moreover, we observed decreases in fasting blood glucose for the resistance training group (P = 0.001), and also significant improvements in lean body mass (P = 0.042, 2.46%), reduction of body fat percentage (P = 0.001, −6.75%) and noticeable increases in muscle strength after resistance training to leg press (P = 0.004, 41.29%) and bench press (P = 0.0001, 27.23%). Conclusion It was concluded that resistance training performed three times a week may reduce the metabolic syndrome Z-score with concomitant decreases in fasting blood glucose, improvements in body composition, and muscle strength in postmenopausal women. PMID:24072967

  20. Metabolic changes during development of Walker-256 carcinosarcoma resistance to doxorubicin.

    PubMed

    Todor, I N; Lukyanova, N Yu; Shvets, Yu V; Lozovska, Yu V; Chekhun, V F

    2015-03-01

    To study indices of energy metabolism, content of K(+) and Mg(++) both in peripheral blood and in Walker-256 carcinosarcoma during development of resistance to doxorubicin. Resistance of Walker-256 carcinosarcoma to doxorubicin has been developed through 12 subsequent transplantations of tumor after the chemotherapy. Parental strain was inhibited by drug by 65%, while transitional resistant substrains - by 30% and 2%, respectively. Determination of biochemical indices in blood serum and homogenates of tumor tissue, level of potassium, magnesium, lactate, glucose, activities of lactate dehydrogenase and glucose-6-phosphate dehydrogenase was performed with the help of biochemical and immune-enzyme analyzer GBG ChemWell 2990 (USA) using standard kits. Polarography was used to determine indices of mitochondrial oxidative phosphorylation. Study of mitochondrial membrane potential was carried out on flow cytometer Beckman Coulter Epics XL using dye JC-1. It has been determined that development of drug resistance causes the decrease of K(+), Mg(++), glucose content in blood serum and increase of these indices in tumor tissue. At the same time, gradual tumor's loss of sensitivity is characterized by decrease of glycolysis activity in it and activation of mitochondrial oxidative phosphorylation and pentose phosphate pathway of glucose degradation, which causes more intensive formation of NADPH. Development of drug resistance of tumor causes certain metabolic changes in organism and tumor. Further study of such changes will make possible to determine tumor and extratumor markers of resistance.

  1. Predictive Control of the Blood Glucose Level in Type I Diabetic Patient Using Delay Differential Equation Wang Model.

    PubMed

    Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin

    2017-01-01

    Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies.

  2. Predictive Control of the Blood Glucose Level in Type I Diabetic Patient Using Delay Differential Equation Wang Model

    PubMed Central

    Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin

    2017-01-01

    Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies. PMID:28487828

  3. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview

    PubMed Central

    Pallotta, Valeria; Gevi, Federica; D’Alessandro, Angelo; Zolla, Lello

    2014-01-01

    Background Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. Materials and methods In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. Results We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Discussion Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP. PMID:25074788

  4. Salivary factors in children and adolescents with insulin-dependent diabetes mellitus.

    PubMed

    Karjalainen, K M; Knuuttila, M L; Käär, M L

    1996-01-01

    To determine whether hyperglycemia in IDDM (insulin-dependent diabetes mellitus) could interfere with salivary secretion rates, salivary glucose levels, and salivary microbial counts, we studied salivary factors in two groups of children and adolescents with IDDM. One study group included 14 children with newly diagnosed IDDM )mean age 11 years, SD +/- 2.4 years). Samples of saliva were collected on admission to hospital and after 2 weeks on insulin treatment. The other study group were 50 IDDM children (mean age 14.4 years, SD +/- 1.7 years, mean duration of diabetes 6.2 years, SD +/- 1.4 years) visiting the outpatient diabetic clinic. Samples of saliva were collected during two visits, approximately 3 months apart. In the newly diagnosed IDDM cases, mean salivary glucose level decreased from 54.1 +/- 31.7 mg/l to 35.2 +/- 29.5 mg/l (P = 0.096) after beginning insulin treatment. During hyperglycemia, salivary glucose levels correlated with mean blood glucose levels for the day concerned (r = 0.65, P < 0.05). The results suggest that high blood glucose levels can increase salivary glucose levels. Stimulated saliva secretion increased significantly from 5.4 +/- 3.3 ml/5 min to 7.3 +/- 2.6 ml/5 min (P < 0.01) while glucose balance improved. In the long-term IDDM cases, salivary flow rates and salivary glucose levels were not significantly related to the glycosylated hemoglobin (HbA1) values. Salivary glucose levels and salivary secretion rates were inversely correlated (P < 0.05). In conclusion, hyperglycemia was observed to be associated with decreased salivary secretion and high salivary glucose levels. As a consequence, salivary lactobacilli and yeast counts tended to increase.

  5. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans.

    PubMed

    Merl, Volker; Peters, Achim; Oltmanns, Kerstin M; Kern, Werner; Hubold, Christian; Hallschmid, Manfred; Born, Jan; Fehm, Horst L; Schultes, Bernd

    2004-11-01

    Circadian rhythms in glucose metabolism are well documented. Most studies, however, evaluated such variations under conditions of continuous glucose supply, either via food intake or glucose infusion. Here we assessed in 30 subjects circadian variations in concentrations of plasma glucose, serum insulin, and C-peptide during a 72-hour fasting period to evaluate rhythms independent from glucose supply. Furthermore we assessed differences in these parameters between normal-weight (n = 20) and overweight (n = 10) subjects. Blood was sampled every 4 hours. During fasting, plasma glucose, serum insulin, and C-peptide levels gradually decreased (all P < .001). While there was no circadian variation in plasma glucose levels after the first day of fasting, serum levels of insulin were constantly higher in the morning (8.00 h) than at night (0.00 h) (P < .001), although the extent of this morning-associated rise in insulin levels decreased with the time spent fasting (P = .001). Also, morning C-peptide concentrations were higher compared to the preceding night (P < .001). The C-peptide/insulin ratio (CIR) decreased during prolonged fasting (P = .030), suggesting a decrease in hepatic insulin clearance. Moreover, CIR was significantly lower in the morning than at the night of day 1 and day 2 of fasting (P = .010 and P = .004, respectively). Compared to normal-weight subjects, overweight subjects had higher plasma glucose, as well as serum insulin and C-peptide levels (all P < .03). Data indicate preserved circadian rhythms in insulin concentrations in the presence of substantially decreased glucose levels in normal-weight and overweight subjects. This finding suggests a central nervous system contribution to the regulation of insulin secretion independent of plasma glucose levels.

  6. [Study on the experimental application of floating-reference method to noninvasive blood glucose sensing].

    PubMed

    Yu, Hui; Qi, Dan; Li, Heng-da; Xu, Ke-xin; Yuan, Wei-jie

    2012-03-01

    Weak signal, low instrument signal-to-noise ratio, continuous variation of human physiological environment and the interferences from other components in blood make it difficult to extract the blood glucose information from near infrared spectrum in noninvasive blood glucose measurement. The floating-reference method, which analyses the effect of glucose concentration variation on absorption coefficient and scattering coefficient, gets spectrum at the reference point and the measurement point where the light intensity variations from absorption and scattering are counteractive and biggest respectively. By using the spectrum from reference point as reference, floating-reference method can reduce the interferences from variation of physiological environment and experiment circumstance. In the present paper, the effectiveness of floating-reference method working on improving prediction precision and stability was assessed through application experiments. The comparison was made between models whose data were processed with and without floating-reference method. The results showed that the root mean square error of prediction (RMSEP) decreased by 34.7% maximally. The floating-reference method could reduce the influences of changes of samples' state, instrument noises and drift, and improve the models' prediction precision and stability effectively.

  7. Effect of hand-arm exercise on venous blood constituents during leg exercise

    NASA Technical Reports Server (NTRS)

    Wong, N.; Silver, J. E.; Greenawalt, S.; Kravik, S. E.; Geelen, G.

    1985-01-01

    Contributions by ancillary hand and arm actions to the changes in blood constituents effected by leg exercises on cycle ergometer were assessed. Static or dynamic hand-arm exercises were added to the leg exercise (50 percent VO2 peak)-only control regimens for the subjects (19-27 yr old men) in the two experimental groups. Antecubital venous blood was analyzed at times 0, 15, and 30 min (T0, T15, and T30) for serum Na(+), K(+), osmolality, albumin, total CA(2+), and glucose; blood hemoglobin, hematocrit, and lactic acid; and change in plasma volume. Only glucose and lactate values were affected by additional arm exercise. Glucose decreased 4 percent at T15 and T30 after static exercise, and by 2 percent at T15 (with no change at T30) after dynamic arm exercise. Conversely, lactic acid increased by 20 percent at T30 after static exercise, and by 14 percent by T15 and 6 percent at T30 after dynamic arm exercise. It is concluded that additional arm movements, performed usually when gripping the handle-bar on the cycle ergometer, could introduce significant errors in measured venous concentrations of glucose and lactate in the leg-exercised subjects.

  8. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  9. In vitro and in vivo evaluation of novel interpenetrated polymer network microparticles containing repaglinide.

    PubMed

    Kulkarni, Raghavendra V; Patel, Foram S; Nanjappaiah, H M; Naikawadi, Akram A

    2014-08-01

    Interpenetrated polymer network (IPN) microparticles of sterculia gum and sodium alginate loaded with repaglinide were developed by ionic gelation and emulsion crosslinking method. The drug entrapment efficiency was as high as 91%. FTIR and TG analyses confirmed the crosslinking and IPN formation. Microparticles have demonstrated the drug release up to 24h depending upon type of crosslinking agents; the glutaraldehyde treatment of ionically crosslinked microparticles has resulted in decreased drug release rate. The in-vivo anti-diabetic activity performed on streptozotocin induced diabetic rats indicated that the pristine repaglinide has shown maximum percentage reduction of elevated blood glucose within 3h and then the percentage reduction in blood glucose was decreased. In the case of rats treated with KA8 IPN microparticles, percentage reduction of elevated glucose was slow as compared to pristine drug within 3h, but it was gradually increased to 81.27% up to 24h. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Performance and metabolic responses of Holstein calves to supplemental chromium in colostrum and milk.

    PubMed

    Ghorbani, A; Sadri, H; Alizadeh, A R; Bruckmaier, R M

    2012-10-01

    Twenty-two newborn Holstein female calves (BW = 39.7 ± 0.40 kg) were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation of colostrum for 3d after birth and mature milk up to wk 8 on feed intake, growth performance, health status, and metabolic and endocrine traits. Calves were randomly assigned to 2 groups, each consisting of 11 animals: 1) control and 2) 0.03 mg of supplemental Cr/kg of BW(0.75). Body weight, height at withers, and hearth girth were measured weekly. Dry matter intake, rectal temperature, fecal score, and respiratory score were recorded daily. Blood samples were collected at 12, 24, and 72 h after birth, and then every week up to 8 wk. Chromium did not affect mean body weight, dry matter intake, and withers height, but it increased hearth girth and average daily gain, tended to increase final BW, and decreased feed conversion ratio. Respiration rate increased and fecal score decreased with Cr, and rectal temperature tended to decrease with Cr. No Cr × time interactions were observed for performance and health status results except for fecal score. Blood glucose, insulin, insulin-to-glucose ratio, insulin-like growth factor-I, total protein, and triiodothyronine were not affected, whereas blood β-hydroxybutyrate, nonesterified fatty acids, cholesterol, cortisol, and thyroxin were affected by Cr supplementation. Supplemental Cr-Met decreased blood β-hydroxybutyrate at 72 h and in wk 1, 3, 4, 5, and 6 and decreased blood nonesterified fatty acids at 12h and in wk 3, 4, and 5 after birth. Blood cholesterol decreased in all sampling times, except for 12h and wk 7. Chromium decreased blood cortisol at 24h and in wk 2, 4, and 8. In conclusion, the present results demonstrate the beneficial effects of colostrum and milk supplementation with Cr to improve the performance and metabolic status of newborn calves. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Heterogeneous responses of personalised high intensity interval training on type 2 diabetes mellitus and cardiovascular disease risk in young healthy adults.

    PubMed

    Higgins, Timothy P; Baker, Matthew D; Evans, Shelley-Ann; Adams, Rachel A; Cobbold, Christian

    2015-01-01

    Hypertension, decreased glucose tolerance, adverse lipid profiles and low physical activity levels are associated with increased type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) risk. High intensity interval training (HIIT), a low volume, reduced time, high intensity programme, may be a useful alternative to current government guidelines which specify a minimum of 150 minutes of physical activity per week. We describe a personalised programme of high intensity exercise which provides significant improvements in CVD risk markers. Healthy volunteers undertook 6 weeks of HIIT. T2DM and CVD risk predictors including glucose tolerance, VO2max, blood pressure (BP), and lipids were measured before and after HIIT. HIIT training was associated with beneficial changes in a range of predictors of blood flow and cardiovascular risk. There was a heterogeneous response to HIIT, with some subjects responding with favourable changes and others being non-responders to HIIT. In responders, HIIT was associated with a statistically significant (p = 0.023) increase in VO2max, from 45.4 (38.4,52.5) to 56.9 (51.2,65.7) (median (interquartile range)(ml/min/kg)). In responders HIIT resulted in a decrease in systolic BP from 127 (126,129) to 116 (106,122) (mmHg) with p = 0.026 and a decrease is diastolic blood pressure from 72 (69,74) to 57 (56,66) with p = 0.026. There was also some evidence of a beneficial change in blood lipid and glucose concentrations with HIIT. In conclusion, personalised HIIT has potential as an intervention to improve blood flow and cardiovascular health.

  12. Regulation of liver glucokinase activity in rats with fructose-induced insulin resistance and impaired glucose and lipid metabolism.

    PubMed

    Francini, Flavio; Castro, María C; Gagliardino, Juan J; Massa, María L

    2009-09-01

    We evaluated the relative role of different regulatory mechanisms, particularly 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK2/FBPase-2), in liver glucokinase (GK) activity in intact animals with fructose-induced insulin resistance and impaired glucose and lipid metabolism. We measured blood glucose, triglyceride and insulin concentration, glucose tolerance, liver triglyceride content, GK activity, and GK and PFK2 protein and gene expression in fructose-rich diet (FRD) and control rats. After 3 weeks, FRD rats had significantly higher blood glucose, insulin and triglyceride levels, and liver triglyceride content, insulin resistance, and impaired glucose tolerance. FRD rats also had significantly higher GK activity in the cytosolic fraction (18.3 +/- 0.35 vs. 11.27 +/- 0.34 mU/mg protein). Differences in GK protein concentration (116% and 100%) were not significant, suggesting a potentially impaired GK translocation in FRD rats. Although GK transcription level was similar, PFK2 gene expression and protein concentration were 4- and 5-fold higher in the cytosolic fraction of FRD animals. PFK2 immunological blockage significantly decreased GK activity in control and FRD rats; in the latter, this blockage decreased GK activity to control levels. Results suggest that increased liver GK activity might participate in the adaptative response to fructose overload to maintain glucose/triglyceride homeostasis in intact animals. Under these conditions, PFK2 increase would be the main enhancer of GK activity.

  13. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies

    PubMed Central

    Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat’s blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm−1), leucine (1106, 1248, 1302, 1395 cm−1) and isolecucine (1108, 1248, 1437 and 1585 cm−1) were observed. The Raman bands centered at 1125 cm−1, 1395 cm−1 and 1437 cm−1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm−1), leucine (1395 cm−1) and isoleucine (1437 cm−1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat’s) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative efficacy studies between known and new anti-diabetic drugs. Reports on use of Raman spectroscopy in type 2 diabetes mellitus screening with Raman bands associated with leucine and isoleucine molecules acting as reference is rare in literature. The use of Raman spectroscopy in pre-diabetes screening of blood for changes in levels of leucine and isoleucine amino acids is particularly interesting as once elevated levels are noticed, necessary interventions to prevent diabetes development can be initiated. PMID:28926628

  14. The effects of electromagnetic pulses (EMP) on the bioactivity of insulin and a preliminary study of mechanism.

    PubMed

    Chen, Yong Bin; Li, Jing; Qi, Yuhong; Miao, Xia; Zhou, Yongchun; Ren, Dongqing; Guo, G Z

    2010-01-01

    To investigate the effects of electromagnetic pulse (EMP) exposure on the bioactivity of insulin and a preliminary mechanism for these effects. A tapered parallel plate Gigahertz Transverse Electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose the insulin solution to EMP. Concurrent sham-exposed insulin solutions were used as a control. The effect of EMP-exposed insulin on fasting blood glucose levels of type I diabetes model mice, the effect of EMP on binding affinity between insulin and its receptor and the effect of EMP on insulin's fluorescence intensity were detected, respectively. (i) After EMP exposure, compared with sham-exposed insulin, the bioactivity of insulin in decreasing fasting blood glucose levels in type I diabetes model mice was reduced significantly (p = 0.023). (ii) Compared with sham-exposed insulin group, the percentage fluorescein isothiocyannate (FITC) labelling of HL-7702 cells was significantly reduced in the EMP-exposed insulin group (22.7-13.8%, respectively). (iii) Compared with sham-exposed insulin, the fluorescence intensity was significantly reduced in EMP-exposed insulin (p < 0.001). EMP exposure significantly decreased the bioactivity of insulin to reduce the blood glucose levels in type I diabetic mice. This could be due to a decreased binding affinity between insulin and its receptor. This mechanism could involve an alteration of insulin's' conformation caused by EMP exposure.

  15. Hypoglycemic effect of Lupinus mutabilis in healthy volunteers and subjects with dysglycemia.

    PubMed

    Fornasini, M; Castro, J; Villacrés, E; Narváez, L; Villamar, M P; Baldeón, M E

    2012-01-01

    Metabolic syndrome and type-2 diabetes are increasing health problems that negatively affect health care systems worldwide. There is a constant urge to develop new therapies with better effects, lower side effects at lower prices to treat these diseases. Lupinus species and their derivates are good candidates to be used as hypoglycaemic agents. A phase II clinical trial was conducted to assess the role of raw Lupinus mutabilis on blood glucose and insulin in normoglycemic and dysglycemic subjects. Results show that consumption of L. mutabilis by normal weight healthy young individuals did not change importantly blood glucose and insulin levels. On the other hand, consumption of similar doses of lupinus by dysglycemic individuals (fasting glucose > 100 mg/dL) decreased significantly blood glucose. Lupinus effects were greater in those subjects with higher basal glucose levels. Glucose lowering effects of lupinus were not observed after soy intake that was used as control. A statistically significant reduction in insulin levels was also observed in the lupinus group compared with the soy group after 60 minutes of treatment. Furthermore, only treatment with lupinus improved insulin resistance in dysglycemic subjects. These data demonstrate that lupinus consumption could be a feasible and low cost alternative to treat chronic hyperglycemic diseases.

  16. Accuracy of blood-glucose measurements using glucose meters and arterial blood gas analyzers in critically ill adult patients: systematic review

    PubMed Central

    2013-01-01

    Introduction Glucose control to prevent both hyperglycemia and hypoglycemia is important in an intensive care unit. Arterial blood gas analyzers and glucose meters are commonly used to measure blood-glucose concentration in an intensive care unit; however, their accuracies are still unclear. Methods We performed a systematic literature search (January 1, 2001, to August 31, 2012) to find clinical studies comparing blood-glucose values measured with glucose meters and/or arterial blood gas analyzers with those simultaneously measured with a central laboratory machine in critically ill adult patients. Results We reviewed 879 articles and found 21 studies in which the accuracy of blood-glucose monitoring by arterial blood gas analyzers and/or glucometers by using central laboratory methods as references was assessed in critically ill adult patients. Of those 21 studies, 11 studies in which International Organization for Standardization criteria, error-grid method, or percentage of values within 20% of the error of a reference were used were selected for evaluation. The accuracy of blood-glucose measurements by arterial blood gas analyzers and glucose meters by using arterial blood was significantly higher than that of measurements with glucose meters by using capillary blood (odds ratios for error: 0.04, P < 0.001; and 0.36, P < 0.001). The accuracy of blood-glucose measurements with arterial blood gas analyzers tended to be higher than that of measurements with glucose meters by using arterial blood (P = 0.20). In the hypoglycemic range (defined as < 81 mg/dl), the incidence of errors using these devices was higher than that in the nonhypoglycemic range (odds ratios for error: arterial blood gas analyzers, 1.86, P = 0.15; glucose meters with capillary blood, 1.84, P = 0.03; glucose meters with arterial blood, 2.33, P = 0.02). Unstable hemodynamics (edema and use of a vasopressor) and use of insulin were associated with increased error of blood glucose monitoring with glucose meters. Conclusions Our literature review showed that the accuracy of blood-glucose measurements with arterial blood gas analyzers was significantly higher than that of measurements with glucose meters by using capillary blood and tended to be higher than that of measurements with glucose meters by using arterial blood. These results should be interpreted with caution because of the large variation of accuracy among devices. Because blood-glucose monitoring was less accurate within or near the hypoglycemic range, especially in patients with unstable hemodynamics or receiving insulin infusion, we should be aware that current blood glucose-monitoring technology has not reached a high enough degree of accuracy and reliability to lead to appropriate glucose control in critically ill patients. PMID:23506841

  17. Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes.

    PubMed

    Riccardi, G; Rivellese, A; Pacioni, D; Genovese, S; Mastranzo, P; Mancini, M

    1984-02-01

    To clarify the separate influences of digestible carbohydrate and of dietary fibre on blood glucose control and serum lipoproteins, 14 diabetic patients (six Type 1 and eight Type 2) were submitted to three weight-maintaining diets for 10 days each: (1) low carbohydrate/low fibre diet with 42% carbohydrate and 20 g fibre; (2) high carbohydrate/low fibre diet (carbohydrate 53%, fibre 16 g); (3) high carbohydrate/ high fibre diet (carbohydrate 53%, fibre 54 g). In comparison with the low carbohydrate/low fibre diet, the 2-h post-prandial blood glucose and the daily blood glucose profile decreased significantly on the high carbohydrate/high fibre diet, without significant changes during the high carbohydrate/low fibre diet. The diet-induced modifications of blood glucose control were similar in both types of diabetic patients (two-way analysis of variance: F = 5.86, p less than 0.02 for dietary treatment and F = 2.09, NS for type of diabetes). Total and low-density lipoprotein cholesterol were also decreased after the high carbohydrate/high fibre diet in comparison with the low carbohydrate/low fibre diet (p less than 0.001 for both), while they were not significantly modified after the high carbohydrate/low fibre diet. Again the modifications of low density lipoprotein cholesterol induced by diet were similar in both types of diabetic patients (F = 10.02, p less than 0.005 for dietary treatment and F = 0.14 for type of diabetes, NS). High-density lipoprotein cholesterol was lower after the two test diets than after the low carbohydrate/low fibre diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    PubMed

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-12-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  19. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats.

    PubMed

    Jain, Sushil K; Croad, Jennifer L; Velusamy, Thirunavukkarasu; Rains, Justin L; Bull, Rebeca

    2010-09-01

    Chromium and cysteine supplementation can improve glucose metabolism in animal studies. This study examined the hypothesis that a cysteinate complex of chromium is significantly beneficial than either of them in lowering blood glucose and vascular inflammation markers in Zucker diabetic fatty (ZDF) rats. Starting at the age of 6 wk, ZDF rats were supplemented orally (daily gavages for 8 more weeks) with saline-placebo (D) or chromium (400 microg Cr/Kg body weight) as chromium dinicocysteinate (CDNC), chromium dinicotinate (CDN) or chromium picolinate (CP) or equimolar L-cysteine (LC, img/Kg body weight), and fed Purina 5008 diet for 8 wk. ZDF rats of 6 wk age before any supplementations and onset of diabetes were considered as baseline. D rats showed elevated levels of fasting blood glucose, HbA(1), CRP, MCP-1, ICAM-1 and oxidative stress (lipid peroxidation) and lower adiponectin and vitamin C, when compared with baseline rats. In comparison to D group, CDNC group had significantly lower blood glucose, HbA(1), CRP, MCP-1, ICAM-1 and lipid peroxidation and increased vitamin C and adiponectin levels. CDN, CP or LC showed significantly less or no effect on these biomarkers. Only CDNC lowered blood creatinine levels in comparison to D. While CDN and CP had no effect, activation of NFkappaB, Akt and glucose transporter-2 levels were decreased, insulin receptor substrate 1 (IRS-1) activation increased in livers of CDNC-rats. CDNC effect on glycemia, NFkappaB, Akt and IRS-1 in liver was significantly greater compared with LC. Blood chromium levels did not differ between Cr-groups. Exogenous vitamin C supplementation significantly inhibited MCP-1 secretion in U937 monocytes cultured in high-glucose-medium. CDNC is a potent hypoglycemic compound with anti-inflammatory activity apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 and increased IRS-1 activation in livers of type 2 diabetic rats.

  20. Type I neuregulin1α is a novel local mediator to suppress hepatic gluconeogenesis in mice

    PubMed Central

    Arai, Takatomo; Ono, Yumika; Arimura, Yujiro; Sayama, Keimon; Suzuki, Tomohiro; Shinjo, Satoko; Kanai, Mai; Abe, Shin-ichi; Semba, Kentaro; Goda, Nobuhito

    2017-01-01

    Neuregulin1 is an epidermal growth factor (EGF)-like domain-containing protein that has multiple isoforms and functions as a local mediator in the control of various cellular functions. Here we show that type I isoform of neuregulin1 with an α-type EGF-like domain (Nrg1α) is the major isoform in mouse liver and regulates hepatic glucose production. Forced expression of Nrg1α in mouse liver enhanced systemic glucose disposal and decreased hepatic glucose production with reduced fasting blood glucose levels. Nuclear forkhead box protein O1 (FoxO1) and its downstream targets, PEPCK and G6Pase, were suppressed in liver and isolated hepatocytes by Nrg1α overexpression. In contrast, silencing of Nrg1α enhanced glucose production with increased PEPCK and G6Pase expressions in cAMP/dexamethasone-stimulated hepatocytes. Mechanistically, the recombinant α-type EGF-like domain of NRG1α (rNRG1α) stimulated the ERBB3 signalling pathway in hepatocytes, resulting in decreased nuclear FoxO1 accumulation via activation of both the AKT and ERK pathways. In addition, acute treatment with rNRG1α also suppressed elevation of blood glucose levels after both glucose and pyruvate challenge. Although a liver-specific deletion of Nrg1 gene in mice showed little effect on systemic glucose metabolism, these results suggest that NRG1α have a novel regulatory function in hepatic gluconeogenesis by regulating the ERBB3-AKT/ERK-FoxO1 cascade. PMID:28218289

  1. Antidiabetic Effect of Hydroalcholic Urtica dioica Leaf Extract in Male Rats with Fructose-Induced Insulin Resistance

    PubMed Central

    Ahangarpour, Akram; Mohammadian, Maryam; Dianat, Mahin

    2012-01-01

    Background: Urtica dioica has been used as antihypertensive, antihyperlipidemic and antidiabetic herbal medicine. The purpose of this study was to study the effect of hydroalcoholic extract of Urtica dioica on fructose-induced insulin resistance rats. Methods: Forty male Wistar rats were randomly divided into five groups including control, fructose, extract 50, extract 100 and extract 200. The control rat received vehicle, the fructose and extract groups received fructose 10% for eight weeks. The extract groups received single daily injection of vehicle, 50, 100 or 200 mg/kg/day for the two weeks. Blood glucose, insulin, last fasting insulin resistance index (FIRI), serum triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), alanin trasaminase (AST) and alkaline phosphatase (ALP), leptin and LDL/HDL ratio were determined. Results: Compared to control group, daily administration of fructose was associated with significant increase in FIRI, blood glucose and insulin, significant decrease in lepin, and no significant change in TG, HDL, LDL, LDL/HDL ratio, VLDL, ALT, and ALP. The extract significantly decreased serum glucose, insulin, LDL and leptin, and LDL/HDL ratio and FIRI. It also significantly increased serum TG, VLDL, and AST, but did not change serum ALP. Conclusion: We suggest that Urtica dioica extract, by decreasing serum glucose, and FIRI, may be useful to improve type 2 diabetes mellitus. Also, by positive effect on lipid profile and by decreasing effect on leptin, it may improve metabolic syndrome. PMID:23115450

  2. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo

    2018-02-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.

  3. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo

    2018-01-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593

  4. Retinal Blood Flow in Type 1 Diabetic Patients With No or Mild Diabetic Retinopathy During Euglycemic Clamp

    PubMed Central

    Pemp, Berthold; Polska, Elżbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold

    2010-01-01

    OBJECTIVE To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. RESULTS Total retinal blood flow was higher in diabetic patients (53 ± 16 μl/min) than in healthy subjects (43 ± 16 μl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 ± 1.7 to 5.3 ± 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 ± 15 μl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). CONCLUSIONS Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy. PMID:20585003

  5. NOX2 Deficiency Protects Against Streptozotocin-Induced β-Cell Destruction and Development of Diabetes in Mice

    PubMed Central

    Xiang, Fu-Li; Lu, Xiangru; Strutt, Brenda; Hill, David J.; Feng, Qingping

    2010-01-01

    OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice—wild-type (WT), NOX2−/−, WT treated with apocynin, and WT adoptively transferred with NOX2−/− or WT splenocytes—were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2−/− pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2−/− mice and in WT mice adoptively transferred with NOX2−/− splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2−/− mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2−/− compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2−/− compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis. PMID:20627937

  6. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells.

    PubMed

    Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M

    2016-10-01

    Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial cardiolipin and decreased mitochondrial spare respiratory capacity. The reduced cardiolipin results in an increased activity of adenosine monophosphate kinase (pAMPK) and protein kinase B (pAKT) and decreased activity of glycogen synthase kinase 3 beta (pGSK3β) which results in elevated glucose transporter-1 (GLUT-1) expression and association with membranes. This in turn increases 2-dexoyglucose uptake from the apical medium into the cells with a resultant 2-deoxyglucose movement into the basolateral medium. © 2016 International Society for Neurochemistry.

  7. [Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the State of Querétaro, Mexico].

    PubMed

    Olalde-Mendoza, Liliana; Moreno-González, Yazmín Esmeralda

    2013-06-01

    The objective of the study was to compare the modification of fasting blood glucose in adults with diabetes mellitus type 2 after intake of regular soda and diet soda. We conducted a randomized clinical trial in clinics of Instituto Mexicano del Seguro Social in Querétaro, México. We included 80 patients with diabetes (mean weight 74.2 +/- 13.66, BMI 30.5 +/- 4.305, waist 98.2 +/- 12.9 and time evolution of diabetes 3.8 +/- 3.009) who were asked to come with fasting for 8 hours and without taking any medicine before testing. They were divided into two groups of 40 subjects, to whom was measured fasting blood glucose after the ingestion of 200 ml of diet soda (with aspartame and acesulfame potassium) or regular soda (without sweetener) we measure glucose at 10, 15 and 30 minutes. For statistical analysis performed we used Student's t-test for dependent and independent samples, and paired t-test, and chi square test (chi2). Capillary glucose levels at 10 minutes were -34.52 and -25.41%, at 15 minutes -48.8 and -36.2% and at 30 minutes 57.75 and 43.6% of absolute and relative differences, with p = 0.000. In conclusion, according to the observations, diet soda doesn't increased blood glucose levels, with a significant difference in fasting decreased at 30 minutes.

  8. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  9. A study of the effect of oral glucose loading on plasma oxidant:antioxidant balance in normal subjects.

    PubMed

    Ma, Shuk-Woon; Tomlinson, Brian; Benzie, Iris F F

    2005-06-01

    Antioxidant defence has been reported to decrease, and oxidative stress to increase, after oral glucose loading in both normal and diabetic subjects. If confirmed in normal subjects, glucose-induced antioxidant depletion has important implications for health in relation to the modern, sugar-rich diet. To investigate changes in plasma biomarkers of oxidant:antioxidant balance in non-diabetic subjects following oral glucose loading. Baseline inter-relationships between biomarkers of glycaemic control, oxidant:antioxidant balance and inflammation were also explored. A single-blinded, placebo-controlled, crossover intervention trial involving 10 healthy, consenting subjects. Venous blood was collected after ingestion of 75 g glucose in 300 mL water, or of water alone. Blood was collected at 0 time (fasting) and 30, 60, 90, 120 min post-ingestion. Within 2 weeks the procedure was repeated with volunteers crossed-over onto the other treatment. Plasma total antioxidant capacity (as the FRAP value), ascorbic acid, alpha-tocopherol, uric acid, malondialdehyde (MDA), allantoin and high sensitivity C-reactive protein (hsCRP), glucose and insulin, were measured in all samples. Paired results post-glucose and post-water at each time interval were compared using the Wilcoxon matched-pairs signed-ranks test. Normal glucose tolerance was observed in all subjects, although, as expected, plasma glucose and insulin increased significantly (p < 0.05, n = 10) after glucose loading. Post-glucose responses in plasma FRAP and the individual antioxidants tested were not significantly different to the responses seen post-water, although both FRAP and alpha-tocopherol decreased slightly. Neither were post-glucose changes in plasma MDA and allantoin, putative biomarkers of oxidative stress, significantly different to those after intake of water alone. Plasma FRAP and alpha-tocopherol also decreased slightly, but not significantly, after intake of water. A significant direct correlation (r = 0.867, p < 0.001, n = 10) was found between fasting allantoin and (log transformed) hsCRP concentrations. These new data from a controlled intervention trial indicate that acute, transient increases in plasma glucose following oral intake of a large glucose load do not, as previously reported, cause a significant decrease in plasma antioxidants or increase oxidative stress in non-diabetic subjects. This is reassuring given the large quantities of sugar ingested by children and adolescents. However, a small decrease in plasma antioxidant capacity was seen after ingestion of water and of glucose, and it is possible that intake of glucose without concomitant intake of antioxidants in susceptible individuals may cause oxidative stress. Further work is needed in relation to diabetic subjects and a possible glucose threshold for this. The finding of a direct relationship between allantoin, a biomarker of oxidative stress, and hsCRP, a marker of inflammation and CHD predictor, in healthy subjects is interesting and indicates a link between sub-clinical inflammation and oxidative stress.

  10. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    PubMed

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice

    PubMed Central

    Pham, Hoa Thi Thai; Huang, Wansu; Han, Chuangye; Li, Juman; Xie, Qiuqiao; Wei, Jinbin; Xu, Xiaohui; Lai, Zefeng; Huang, Xiang; Huang, Renbin; Wen, Qingwei

    2017-01-01

    Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN. PMID:28123632

  12. Blood glucose level reconstruction as a function of transcapillary glucose transport.

    PubMed

    Koutny, Tomas

    2014-10-01

    A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of Concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension123

    PubMed Central

    Dohadwala, Mustali M; Hamburg, Naomi M; Holbrook, Monika; Kim, Brian H; Duess, Mai-Ann; Levit, Aaron; Titas, Megan; Chung, William B; Vincent, Felix B; Caiano, Tara L; Frame, Alissa A; Keaney, John F

    2010-01-01

    Background: Consumption of flavonoid-containing foods may be useful for the management of hypertension. Objective: We investigated whether 100% Concord grape juice lowers blood pressure in patients with prehypertension and stage 1 hypertension. Design: We conducted a double-blind crossover study to compare the effects of grape juice (7 mL · kg−1 · d−1) and matched placebo beverage on 24-h ambulatory blood pressure, stress-induced changes in blood pressure, and biochemical profile. Participants consumed each beverage for 8 wk with a 4-wk rest period between beverages. They ceased consumption of grapes and other flavonoid-containing beverages throughout the study. Results: We enrolled 64 otherwise healthy patients taking no antihypertensive medications (31% women, 42% black, age 43 ± 12 y). Baseline mean (±SD) cuff blood pressure was 138 ± 7 (systolic)/82 ± 7 (diastolic) mm Hg. No effects on the primary endpoint of 24-h mean systolic blood pressure, diastolic blood pressure, or stress-induced changes in blood pressure were observed. A secondary endpoint was nocturnal dip in systolic pressure. At baseline, nocturnal pressure was 8.3 ± 7.1% lower at night than during daytime. The mean nocturnal dip increased 1.4 percentage points after grape juice and decreased 2.3 percentage points after placebo (P = 0.005). Fasting blood glucose was 91 ± 10 mg/dL at baseline for the entire cohort. Glucose decreased 2 mg/dL after consumption of grape juice and increased 1 mg/dL after consuming the placebo (P = 0.03). Conclusions: We observed no effect of grape juice on ambulatory blood pressure in this cohort of relatively healthy individuals with modestly elevated blood pressure. Secondary analyses suggested favorable effects on nocturnal dip and glucose homeostasis that may merit further investigation. This trial was registered at clinicaltrials.gov as NCT00302809. PMID:20844075

  14. Effects of Concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension.

    PubMed

    Dohadwala, Mustali M; Hamburg, Naomi M; Holbrook, Monika; Kim, Brian H; Duess, Mai-Ann; Levit, Aaron; Titas, Megan; Chung, William B; Vincent, Felix B; Caiano, Tara L; Frame, Alissa A; Keaney, John F; Vita, Joseph A

    2010-11-01

    Consumption of flavonoid-containing foods may be useful for the management of hypertension. We investigated whether 100% Concord grape juice lowers blood pressure in patients with prehypertension and stage 1 hypertension. We conducted a double-blind crossover study to compare the effects of grape juice (7 mL · kg⁻¹ · d⁻¹) and matched placebo beverage on 24-h ambulatory blood pressure, stress-induced changes in blood pressure, and biochemical profile. Participants consumed each beverage for 8 wk with a 4-wk rest period between beverages. They ceased consumption of grapes and other flavonoid-containing beverages throughout the study. We enrolled 64 otherwise healthy patients taking no antihypertensive medications (31% women, 42% black, age 43 ± 12 y). Baseline mean (± SD) cuff blood pressure was 138 ± 7 (systolic)/82 ± 7 (diastolic) mm Hg. No effects on the primary endpoint of 24-h mean systolic blood pressure, diastolic blood pressure, or stress-induced changes in blood pressure were observed. A secondary endpoint was nocturnal dip in systolic pressure. At baseline, nocturnal pressure was 8.3 ± 7.1% lower at night than during daytime. The mean nocturnal dip increased 1.4 percentage points after grape juice and decreased 2.3 percentage points after placebo (P = 0.005). Fasting blood glucose was 91 ± 10 mg/dL at baseline for the entire cohort. Glucose decreased 2 mg/dL after consumption of grape juice and increased 1 mg/dL after consuming the placebo (P = 0.03). We observed no effect of grape juice on ambulatory blood pressure in this cohort of relatively healthy individuals with modestly elevated blood pressure. Secondary analyses suggested favorable effects on nocturnal dip and glucose homeostasis that may merit further investigation. This trial was registered at clinicaltrials.gov as NCT00302809.

  15. Net Flux of Amino Acids Across the Portal-drained Viscera and Liver of the Ewe During Abomasal Infusion of Protein and Glucose

    USDA-ARS?s Scientific Manuscript database

    Decreasing the fraction of amino acids metabolized by the mucosal cells may increase the fraction of AA being released into the blood. A potential mechanism to reduce AA catabolism by mucosal cells is to provide an alternative source of energy. We hypothesized that increasing glucose flow to the s...

  16. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Wong, Weng-Yew; Poudyal, Hemant; Ward, Leigh C.; Brown, Lindsay

    2012-01-01

    Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome. PMID:23201770

  17. Canagliflozin-current status in the treatment of type 2 diabetes mellitus with focus on clinical trial data

    PubMed Central

    Bhatia, Jagriti; Gamad, Nanda; Bharti, Saurabh; Arya, Dharamvir Singh

    2014-01-01

    Canagliflozin (CFZ) is a member of new class of glucose lowering agents, sodium-glucose co-transporter (SGLT) inhibitors, which got approval by food and drug administration. It has insulin independent action by blocking the transporter protein SGLT2 in the kidneys, resulting in urinary glucose excretion and reduction in blood glucose levels. In clinical trials, CFZ significantly decreased HbA1c level when administered either as monotherapy or as combined therapy with other anti-diabetic drugs. Intriguingly, it showed additional benefits like weight reduction and lowering of blood pressure. The commonly observed side effects were urinary and genital infections. It has exhibited favorable pharmacokinetic and pharmacodynamic profiles even in patients with renal and hepatic damage. Hence, this review purports to outline CFZ as a newer beneficial drug for type 2 diabetes mellitus. PMID:24936262

  18. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients.

    PubMed

    Jazet, I M; Schaart, G; Gastaldelli, A; Ferrannini, E; Hesselink, M K; Schrauwen, P; Romijn, J A; Maassen, J A; Pijl, H; Ouwens, D M; Meinders, A E

    2008-02-01

    Both energy restriction (ER) per se and weight loss improve glucose metabolism in obese insulin-treated type 2 diabetic patients. Short-term ER decreases basal endogenous glucose production (EGP) but not glucose disposal. In contrast the blood glucose-lowering mechanism of long-term ER with substantial weight loss has not been fully elucidated. The aim of this study was to investigate the effect of loss of 50% of excess weight [50% excess weight reduction (EWR)] on EGP, whole-body insulin sensitivity and the disturbed myocellular insulin-signalling pathway in ten obese insulin-treated type 2 diabetic patients. A euglycaemic-hyperinsulinaemic clamp with stable isotopes ([6,6-(2)H2]glucose and [2H5]glycerol) combined with skeletal muscle biopsies was performed during a very low energy diet (VLED; 1,883 kJ/day) on day 2 and again after 50% EWR. Oral blood glucose-lowering agents and insulin were discontinued 3 weeks prior to the VLED and at the start of the VLED, respectively. Loss of 50% EWR (20.3+/-2.2 kg from day 2 to day of 50% EWR) normalised basal EGP and improved insulin sensitivity, especially insulin-stimulated glucose disposal (18.8+/-2.0 to 39.1+/-2.8 micromol kg fat-free mass(-1) min(-1), p=0.001). The latter was accompanied by improved insulin signalling at the level of the recently discovered protein kinase B/Akt substrates AS160 and PRAS40 along with a decrease in intramyocellular lipid (IMCL) content. Considerable weight loss in obese, insulin-treated type 2 diabetic patients normalises basal EGP and improves insulin sensitivity resulting from an improvement in insulin signal transduction in skeletal muscle. The decrease in IMCL might contribute to this effect.

  19. Glucose-responsive neurons in the subfornical organ of the rat--a novel site for direct CNS monitoring of circulating glucose.

    PubMed

    Medeiros, N; Dai, L; Ferguson, A V

    2012-01-10

    Glucose-sensitive neurons have been identified in a number of CNS regions including metabolic control centers of the hypothalamus. The location of these regions behind the blood-brain barrier restricts them to sensing central, but not circulating glucose concentrations. In this study, we have used patch-clamp electrophysiology to examine whether neurons in a specialized region lacking the blood-brain barrier, the subfornical organ (SFO), are also glucose sensitive. In dissociated SFO neurons, altering the bath concentration of glucose (1 mM, 5 mM, 10 mM) influenced the excitability of 49% of neurons tested (n=67). Glucose-inhibited (GI) neurons depolarized in response to decreased glucose (n=10; mean, 4.6±1.0 mV) or hyperpolarized in response to increased glucose (n=8; mean,-4.4±0.8 mV). In contrast, glucose-excited (GE) neurons depolarized in response to increased glucose (n=9; mean, 6.4±0.4 mV) or hyperpolarized in response to decreased glucose (n=6; mean,-4.8±0.6 mV). Using voltage-clamp recordings, we also identified GI (outward current to increased glucose) and GE (inward current to increased glucose) SFO neurons. The mean glucose-induced inward current had a reversal potential of -24±12 mV (n=5), while GE responses were maintained during sodium-dependent glucose transporter inhibition, supporting the conclusion that GE properties result from the activation of a nonselective cation conductance (NSCC). The glucose-induced outward current had a mean reversal potential of -78±1.2 mV (n=5), while GI responses were not observed in the presence of glibenclamide, suggesting that these properties result from the modulation of K(ATP) channels. These data demonstrate that SFO neurons are glucose responsive, further emphasizing the potential roles of this circumventricular organ as an important sensor and integrator of circulating signals of energy status. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Insulin and glucose sensitivity, insulin secretion and beta-cell distribution in endocrine pancreas of the fruit bat Artibeus lituratus.

    PubMed

    Protzek, A O P; Rafacho, A; Viscelli, B A; Bosqueiro, J R; Cappelli, A P; Paula, F M M; Boschero, A C; Pinheiro, E C

    2010-10-01

    The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88+/-0.5 mmol/L) than fasted bats (4.0+/-0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the ipITT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. 2010 Elsevier Inc. All rights reserved.

  1. Use of a Connected Glucose Meter and Certified Diabetes Educator Coaching to Decrease the Likelihood of Abnormal Blood Glucose Excursions: The Livongo for Diabetes Program.

    PubMed

    Downing, Janelle; Bollyky, Jenna; Schneider, Jennifer

    2017-07-11

    The Livongo for Diabetes Program offers members (1) a cellular technology-enabled, two-way messaging device that measures blood glucose (BG), centrally stores the glucose data, and delivers messages back to the individual in real time; (2) unlimited BG test strips; and (3) access to a diabetes coaching team for questions, goal setting, and automated support for abnormal glucose excursions. The program is sponsored by at-risk self-insured employers, health plans and provider organizations where it is free to members with diabetes or it is available directly to the person with diabetes where they cover the cost. The objective of our study was to evaluate BG data from 4544 individuals with diabetes who were enrolled in the Livongo program from October 2014 through December 2015. Members used the Livongo glucose meter to measure their BG levels an average of 1.8 times per day. We estimated the probability of having a day with a BG reading outside of the normal range (70-180 mg/dL, or 3.9-10.0 mmol/L) in months 2 to 12 compared with month 1 of the program, using individual fixed effects to control for individual characteristics. Livongo members experienced an average 18.4% decrease in the likelihood of having a day with hypoglycemia (BG <70 mg/dL) and an average 16.4% decrease in hyperglycemia (BG >180 mg/dL) in months 2-12 compared with month 1 as the baseline. The biggest impact was seen on hyperglycemia for nonusers of insulin. We do not know all of the contributing factors such as medication or other treatment changes during the study period. These findings suggest that access to a connected glucose meter and certified diabetes educator coaching is associated with a decrease in the likelihood of abnormal glucose excursions, which can lead to diabetes-related health care savings. ©Janelle Downing, Jenna Bollyky, Jennifer Schneider. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.07.2017.

  2. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witek-Janusek, L.

    1986-08-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24more » h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.« less

  3. Current concepts in blood glucose monitoring

    PubMed Central

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus. PMID:24910827

  4. The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia Wistar rats induced by streptozotocin.

    PubMed

    Hadisaputro, Suharyo; Djokomoeljanto, R R J; Judiono; Soesatyo, Marsetyawan H N E

    2012-04-01

    to validate the effect of plain kefir on immune responses of hyperglycemia wistar rats induced by Streptozotocin. the randomized pretest - posttest control group study design was conducted in male hyperglycemia Wistar rats induced by streptozotocin (STZ). Rats were randomized into four groups: (1) STZ-induced group were given insulin treatment 0.76 UI/200 g bw, (2) STZ-induced group and treated with plain kefir 3.6 cc/200 g bw/day for 30 days, (3) STZ-induced group as control, (4) normal animal group as a negative control. Blood glucose was measured from whole blood that was taken 0.1 ml from retroorbitalis vein by microhematocrit on day 1 (pretest) and day 30 (post test) by enzymatic methods. Immune responses (cytokines IL1, IL6, IL10, TNF) were measured by ELISA. Data were analyzed by one way Anova, Mann Whitney test and Duncan with significant level of p<0.05. plain kefir supplementation 3.6 cc/day affect blood glucose, proinflamatory cytokines (IL1, IL6, TNF) and antiinflamatory cytokine (IL10). Statistical analysis showed decrease of glucose -111.00±44.23 ml (p<0.001) and proinflamatory cytokines IL1 about -18.62±23.59 and IL6 -3.21±7.57 mU/mL (p<0.001), respectively compared to the control groups. TNF decreased 1.65±4.62 mU/mL, but not significant (p>0.05), except for controls group. In addition, antiinflammatory (IL10) showed also increase about 15.11±2.16 (p<0.05), except for the control. plain kefir supplementation significantly decreased blood glucose, level of cytokines (IL1, IL6) and lowered TNF level. On the contrary, the level of IL10 is increased compare to control groups.

  5. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer.

    PubMed

    Park, E J; Werner, Jacob; Smith, Nadine Barrie

    2007-07-01

    In previous studies, ultrasound mediated transdermal drug delivery has shown a promising potential as a method for noninvasive drug administration. For prospective future human application, this study was designed to determine the feasibility of lightweight cymbal transducer array as a practical device for noninvasive transdermal insulin delivery in large pigs. Six Yorkshire pigs (100-140 lbs) were divided into two groups. As the control (n = 3), the first group did not receive any ultrasound exposure with the insulin. The second group (n = 3) was treated with ultrasound and insulin at 20 kHz with an I(sptp) = 100 mW/cm(2) at a 20% duty cycle for 60 min. With the pigs in lateral recumbency after anesthesia, the ultrasound transducer with insulin was placed on the axillary area of the pig. At the beginning and every 15 min up to 90 min, the blood glucose level was determined using a glucose monitoring system. To compare the results of individual animals, the change of blood glucose level was normalized to each animal's initial glucose value at the start of the experiment. Although each animal had a different initial glucose level, the mean and standard error for the six animals was 146 +/- 13 mg/dl. For the control group, the blood glucose level increased to 31 +/- 21 mg/dl compared to the initial baseline over the 90 min experiment. However for the ultrasound with insulin treated group, the glucose level decreased to -72 +/- 5 mg/dl at 60 min (p < 0.05) and continued to decrease to -91 +/- 23 mg/dl in 90 min (p < 0.05). The results indicate the feasibility of ultrasound mediated transdermal insulin delivery using the cymbal transducer array in animal with a similar size and weight to a human. Based on these result, the cymbal array has potential as a practical ultrasound system for noninvasive transdermal insulin delivery for diabetes management.

  6. Impaired glucose utilization in man during acute exposure to environmental heat.

    PubMed

    Tatár, P; Vigas, M; Jurcovicová, J; Jezová, D; Strec, V; Palát, M

    1985-12-01

    In 6 healthy males the oral glucose tolerance test (OGTT) was performed after the administration of 100 g glucose during the hyperthermic Finnish sauna bath (85 degrees C) of 30 min duration. The lowered insulin response (P less than 0.001) to glucose challenge during heating and the subsequent prolonged hyperglycemia (P less than 0.001) after heating were observed, when compared to OGTT under thermoneutral conditions (23 degrees C). It is suggested that the heat-induced decrease in visceral blood flow and stimulation of sympathoadrenomedullary and pituitary activity may be responsible for this effect.

  7. Effect of cholera toxin administered supraspinally or spinally on the blood glucose level in pain and d-glucose fed animal models.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-04-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

  8. Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle.

    PubMed

    Murata, Koichiro; Morino, Katsutaro; Ida, Shogo; Ohashi, Natsuko; Lemecha, Mengistu; Park, Shi-Young; Ishikado, Atsushi; Kume, Shinji; Choi, Cheol Soo; Sekine, Osamu; Ugi, Satoshi; Maegawa, Hiroshi

    2018-01-08

    O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes.

    PubMed

    Greyling, Arno; Schreuder, Tim H A; Landman, Thijs; Draijer, Richard; Verheggen, Rebecca J H M; Hopman, Maria T E; Thijssen, Dick H J

    2015-03-01

    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia. Copyright © 2015 the American Physiological Society.

  10. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes?

    PubMed

    Torres-Santiago, Lournaris; Mauras, Nelly; Hossain, Jobayer; Weltman, Arthur L; Darmaun, Dominique

    2017-02-01

    The decline in insulin sensitivity (S I ) associated with puberty increases the difficulty of achieving glycemic control in adolescents with type 1 diabetes (T1D). The aim of this study was to determine whether glutamine supplementation affects blood glucose by enhancing S I in adolescents with T1D. Thirteen adolescents with T1D (HbA1C 8.2 ± 0.1%) were admitted to perform afternoon exercise (four 15-min treadmill/5-min rest cycles of exercise) on two occasions within a 4-wk period. They were randomized to receive a drink containing either glutamine (0.25 g/kg) or placebo before exercise, at bedtime, and early morning in a double-blind, crossover design. Blood glucose was monitored overnight, and a hyperinsulinemic-euglycemic clamp was performed the following morning. Blood glucose concentration dropped comparably during exercise on both days. However, the total number of nocturnal hypoglycemic events (17 versus 7, P = 0.045) and the cumulative probability of overnight hypoglycemia (50% versus 33%, P = 0.02) were higher on the glutamine day than on the placebo day. During clamp, glucose infusion rate was not affected by glutamine supplementation (7.7 ± 1 mg • kg -1 • min -1 versus 7.0 ± 1; glutamine versus placebo; P = 0.4). Oral glutamine supplementation decreases blood glucose in adolescents with T1D after exercise. Insulin sensitivity, however, was unaltered during the euglycemic clamp. Although the mechanisms involved remain to be elucidated, studies to explore the potential use of glutamine to improve blood glucose control are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Controlling type 2 diabetes mellitus with herbal medicines: A triple-blind randomized clinical trial of efficacy and safety.

    PubMed

    Mirfeizi, Mani; Mehdizadeh Tourzani, Zahra; Mirfeizi, Seyedeh Zahra; Asghari Jafarabadi, Mohammad; Rezvani, Hamid Reza; Afzali, Monireh

    2016-09-01

    The use of alternative medicines is common in patients with diabetes mellitus. The primary aim of the present study was to determine the effects of cinnamon and Caucasian whortleberry (Vaccinium arctostaphylos L.) on blood glucose control, lipid profile and body mass index (BMI) in patients with type 2 diabetes (T2DM). In all, 105 T2DM patients were recruited to the present randomized triple-blinded clinical trial. Patients were randomly divided into three groups and administered either placebo, cinnamon or whortleberry supplements (1 g/day) for 90 days. Fasting blood glucose (FBG), serum insulin, lipid profiles, and HbA1c were measured before and after the study. There were no significant differences in baseline characteristics among the three groups. After treatment, FBG, 2-h blood postprandial glucose and homeostasis model assessment of insulin resistance (HOMA-IR) scores were significantly reduced in patients in the whortleberry group, but not in the placebo group. After treatment, there was a significant difference in BMI between the cinnamon and control groups (P = 0.02). There were no significant differences in any variables between the cinnamon and whortleberry groups (P>0.05 for all). In addition, there was a significant decrease in all indices of glucose control in all the cinnamon and whortleberry groups (P < 0.05). There were no significant differences in blood glucose levels, insulin sensitivity or lipid profile among the three groups. However, the use of cinnamon and whortleberry in addition to conventional medical treatment is recommended to adjust weight and blood glucose levels in patients with T2DM, respectively. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Blood Glucose Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... https://medlineplus.gov/labtests/bloodglucosetest.html Blood Glucose Test To use the sharing features on this page, please enable JavaScript. What is a Blood Glucose Test? A blood glucose test measures the glucose levels ...

  13. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non–insulin-dependent diabetes mellitus albino rats

    PubMed Central

    Das, Swarnamoni; Barman, Sarajita

    2012-01-01

    Objectives: Punica granatum L., (Family: Punicaceae) is used in Indian Unani medicine for treatment of diabetes mellitus. Therefore, the present study was done to evaluate the antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of P. granatum in alloxan-induced diabetic rats. Materials and Methods: Healthy Wistar albino rats (100-150 g) were divided into four groups of six animals each. Groups A and B received normal saline [(10 ml/kg/day/per oral (p.o.)]; group C received ethanolic extract of leaves of P. granatum (500 mg/kg/p.o.); and group D received glibenclamide (0.5 mg/kg/day/p.o.). The extracts were given for 1 week in all groups. To induce diabetes, alloxan 150 mg/kg, intraperitoneal (i.p.) single dose was administered to groups B, C, and D. Blood glucose and serum lipids [Total Cholesterol (TC), Triglycerides (TG), Low Density Lipoproteins (LDL), and High Density Lipoproteins (HDL)] and the atherogenic index were estimated after one week. For mechanism of antidiabetic action glycogen estimation on the liver, cardiac and skeletal muscle, and intestinal glucose absorption was done. Results: Group B showed a significant (P<0.01) increase in blood glucose as compared to group A. Groups C and D showed significant decrease (P<0.01) in blood glucose level in comparison to group B. The test drug showed a significant (P<0.01) increase in glycogen content in the liver, cardiac, and skeletal muscle; it significantly (P<0.01) reduced intestinal glucose absorption. Groups C and D showed significant (P<0.01) decrease in serum TC, TG, LDL, and AI as compared to Group B, which showed a significant (P<0.01) increase. Groups C and D showed significant (P<0.01) increase in serum HDL as compared to Group B, which showed a significant (P<0.01) decrease in all values. Conclusion: P. granatum leaves possess significant antidiabetic and antihyperlipidemic activity. PMID:22529479

  14. Perspectives of patients with non-insulin-treated type 2 diabetes on self-monitoring of blood glucose: A qualitative study.

    PubMed

    Chen, Chen-Mei; Hung, Li-Chen; Chen, Yang-Lin; Yeh, Mei Chang

    2018-04-01

    To explore experiences of self-monitoring of blood glucose among patients with non-insulin-treated type 2 diabetes. Self-monitoring of blood glucose is essential to diabetes care and facilitates glycaemic control. Patients' perspectives of self-monitoring of blood glucose have seldom been discussed in the literature, and engagement in self-monitoring of blood glucose is consistently low. The descriptive phenomenological method was used. Purposive sampling was conducted to recruit participants from the endocrinology departments of medical institutions in Taiwan based on the following criteria: (i) having a medical diagnosis of type 2 diabetes, (ii) not being treated with insulin, (iii) having engaged in self-monitoring of blood glucose at least once within the preceding 6 months, (iv) being at least 20 years old and (v) not having any major mental or cognitive disorders. Data were collected in outpatient consultation rooms, the participants' homes and other settings where the participants felt secure and comfortable. In-depth interviews were conducted to collect data from 16 patients with diabetes. The participants perceived that lifestyle affected blood glucose levels and did not know how to handle high or low blood glucose levels. Their willingness to continue self-monitoring of blood glucose depended on whether healthcare professionals checked or discussed their blood glucose levels with them. The patients' knowledge regarding blood glucose variation and healthcare professionals' attitudes affected the patients' self-monitoring of blood glucose behaviours. The empirical findings illustrated self-monitoring of blood glucose experiences and recommended that healthcare professionals' closely attend to patients' requirements and responses to diabetes and incorporate the self-monitoring of blood glucose into therapy plans. Healthcare professionals should reinforce patients' knowledge on appropriate responses to high and low blood glucose levels, intervene appropriately, discuss self-monitoring of blood glucose results with patients and track these results. © 2017 John Wiley & Sons Ltd.

  15. Myocardial potency of Bio-tea against Isoproterenol induced myocardial damage in rats.

    PubMed

    Lobo, Reema Orison; Shenoy, Chandrakala K

    2015-07-01

    Kombucha (Bio-tea) is a beverage produced by the fermentation of sugared black tea using a symbiotic association of bacteria and yeasts. Traditional claims about Kombucha report beneficial effects such as antibiotic properties, gastric regulation, relief from joint rheumatism and positive influence on the cholesterol level, arteriosclerosis, diabetes, and aging problems. The present investigation was carried out to understand the preventive effect of Kombucha on heart weight, blood glucose, total protein, lipid profile and cardiac markers in rats with myocardial damage induced using Isoproterenol. As Bio-tea is produced by fermenting tea, the parameters were compared in rats pre-treated with normal black tea and Bio-tea for 30 days followed by subcutaneous injection of Isoproterenol (85 mg/kg body weight). Normal rats as well as Isoproterenol induced myocardial infarcted rats were also used, which served as controls. Isoproterenol induced myocardial infarcted control rats showed a significant increase in heart weight, blood glucose and cardiac markers and a decrease in plasma protein. Increased levels of cholesterol, triglycerides, low density lipids (LDL) and very low density lipids (VLDL) were also observed, while the high density lipid (HDL) content decreased. Bio-tea showed a higher preventive effect against myocardial infarction when compared to tea, as was observed by the significant reduction in heart weight, and blood glucose and increase in plasma albumin levels. Bio-tea significantly decreased cholesterol, triglycerides, LDL and VLDL while simultaneously increasing the levels of HDL. Similarly a decrease in leakage of cardiac markers from the myocardium was also observed.

  16. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markersmore » and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling pathways in diabetic conditions. ► Taurine exerts antioxidant, antihyperlipidemic and antiinflammatory activities. ► It protects cardiac apoptosis by regulating Bcl2 family and caspase 9/3 proteins.« less

  18. [The effect of a single inhalation of mineral water on the blood hormonal status in healthy volunteers].

    PubMed

    Khinchagov, B P; Polushina, N D; Frolkov, V K

    1998-01-01

    Concentrations of ACTH, TTH, STH, LH, PSH, hydrocortisone, insulin, glucagone, triiodthyronine, thyroxine, aldosterone, glucose and unesterified fatty acids (NEFA) were measured in the blood of 23 healthy male volunteers aged 18 to 35 years 15, 30 and 60 min after a single nose inhalation and oral intake of mineral water Essentuki No. 17. Inhalation of Essentuki No. 17 stimulated secretion of the hormones and some parameters of metabolic reactions: the levels of glucose, NEFA, hydrocortisone, aldosterone, TTH, PSH and LH rose while those of insulin and growth hormone decreased. Oral intake of this water brought about the same changes in the hormone status except blood insulin the levels of which went up.

  19. Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO(2)-Au composite.

    PubMed

    Li, Fenghua; Song, Jixia; Li, Fei; Wang, Xiaodan; Zhang, Qixian; Han, Dongxue; Ivaska, Ari; Niu, Li

    2009-12-15

    Multiwalled carbon nanotubes@SnO(2)-Au (MWCNTs@SnO(2)-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO(2)-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO(2)-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO(2)-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species. Moreover, the biosensor exhibits satisfying reproducibility, good operational stability and storage stability. Therefore, the MWCNTs@SnO(2)-Au/GOD biocomposite could be promisingly applied to determine blood sugar concentration in the practical clinical analysis.

  20. Gemfibrozil not fenofibrate decreases systemic glucose level via PPARα.

    PubMed

    Song, Danjun; Chu, Zanbo; Min, Luo; Zhen, Tan; Li, Pengxu; Han, Liyuan; Bu, Shizhong; yang, Julin; Gonzale, F J; Liu, Aiming

    2016-04-01

    Concurrence of high glucose or diabetes in patients with dyslipidemia is presenting major challenges for clinicians. Although sporadically reported, a rational basis for the use of fibrates for the treatment of dyslipidemia with concurrent metabolic syndrome has not been established. In this study, wild-type (WT) and Ppara-null (KO) mice were fed a serial gemfibrozil- and fenofibrate-containing diet under the same experimental conditions for 14 days. Glucose level in the blood, glycogen storage in the liver tissues, and the potential toxic responses were assayed. Genes involved in glucose metabolism were determined by quantitative polymerase chain reaction analysis. Both the blood glucose level and the glycogen content in the liver were down-regulated by gemfibrozil but not by fenofibrate in WT mice, in a dose-dependent manner. This decrement did not occur in KO mice for either fibrate agent. Secondary regulation on the transcription of pyruvate kinase, and gluconolactonase were observed following gemfibrozil treatment, which was differential between WT mice and KO mice. Gemfibrozil, not fenofibrate, down-regulates systemic glucose level and glycogen storage in the liver dependent on PPARα, suggesting its potential value for treatment of dyslipidemia with concurrent diabetes or high glucose levels.

  1. Sodium-Glucose Cotransporter 2 Inhibitors Reduce Prandial Insulin Doses in Type 2 Diabetic Patients Treated With the Intensive Insulin Therapy.

    PubMed

    Hakoshima, Mariko; Yanai, Hidekatsu; Kakuta, Kouki; Adachi, Hiroki

    2018-06-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are anti-diabetic drugs which improve blood glucose control by blocking reabsorption of glucose from the proximal tubule of kidney. Anti-atherosclerotic properties and cardiovascular protective effects of SGLT2i have been demonstrated by recent studies; however, the efficacy and safety of addition of SGLT2i to the intensive insulin therapy remain largely unknown. We retrospectively picked up patients hospitalized for treatment of type 2 diabetes, who had been treated by the intensive insulin therapy and whose treatment using by SGLT2i started during their hospitalization. Such patients were picked up between June 2014 and May 2017 based on medical charts. We found 12 eligible patients. Observation period was 10.2 ± 4.7 days, and SGLT2i was started at 12.2 ± 12.9 days after the admission. During observation period, nobody developed hypoglycemia. In spite of showing decrease of blood glucose (non-significant) before each meal, the addition of SGLT2i significantly reduced daily prandial insulin doses by approximately 4.6 units/day (-66%). The SGLT2i addition also decreased body weight by approximately 1.3 kg. Present study demonstrated that the addition of SGLT2i to intensive insulin therapy reduced prandial insulin doses and body weight, without the development of hypoglycemia. This result may be due to SGLT2i-mediated improvement of postprandial hyperglycemia by increasing urinary glucose excretion not via insulin secretion.

  2. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2016-08-01

    The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.

  3. A comparative study of effects of omega-3 Fatty acids, alpha lipoic Acid and vitamin e in type 2 diabetes mellitus.

    PubMed

    Udupa, A; Nahar, P; Shah, S; Kshirsagar, M; Ghongane, B

    2013-07-01

    Diabetes Mellitus is a metabolic disorder characterized by abnormal lipid and glucose metabolism. Various modes of adjuvant therapy have been advocated to ameliorate insulin resistance. This study was intended to assess the effects of antioxidants; alpha lipoic acid (ALA), omega 3 fatty acid and vitamin E on parameters of insulin sensitivity (blood glucose and HbA1c) in patients of type 2 diabetes mellitus with documented insulin resistance. It was a prospective, randomized, double blind, placebo controlled, single centered study. 104 patients with type 2 diabetes mellitus with insulin resistance were recruited. They were given ALA, omega 3 fatty acid, vitamin E or placebo. Fasting blood glucose and HbA1c were measured at first visit (V1) and after 90 days (V2). Statistical analysis was carried out by paired t-test by using SPSS software version 11 (SPSS, Chicago, USA). Analysis of baseline (V1) vs. end of treatment period (V2) parameters, showed significant decrease in HbA1c in the three treatment group. We also observed decrease in fasting blood glucose in the three treatment group but it was not statistically significant (Gr. I = 0.51, Gr. II = 0.05, Gr. III = 0.22, Gr. IV = 0.88). ALA, Omega 3 fatty acid and vitamin E can be used as add on therapy in patients with type 2 diabetes mellitus to improve insulin sensitivity and lipid metabolism.

  4. Hormonal and metabolic effects of neuroglucopenia.

    PubMed

    Molina, P E; Eltayeb, K; Hourani, H; Okamura, K; Nanney, L B; Williams, P; Abumrad, N N

    1993-06-18

    We examined the role of central neuroglucopenia, induced by intracerebroventricular (i.c.v.) administration of 2-deoxyglucose (2-DG), on glucose and amino acid kinetics in conscious dogs. Group 1 received i.c.v. 2-DG at 2.5 mg.kg-1 x min-1 for 15 min. Group 2 received an equal intravenous (i.v.) amount of 2-DG. In the i.c.v. group, plasma glucose levels rose from 106 +/- 4 mg/dl to a peak of 204 +/- 12 mg/dl by 90 min. Blood lactate increased from 689 +/- 1 to 2,812 +/- 5 mumol/l and blood alanine not change from basal (256 +/- 41 mumol/l). The rate of hepatic glucose production, determined isotopically, was increased 2-fold over basal (P < 0.01). Significant increases (P < 0.001) over basal were also noted in plasma epinephrine, norepinephrine, insulin, glucagon and cortisol. Leucine rate of appearance (Ra) showed a 30% decrease from basal to 2.4 +/- 0.05 mumol.kg-1 x min-1 (P < 0.01). In group 2 plasma glucose levels were not altered but plasma cortisol and glucagon showed a modest transient increase above basal (P < 0.05). No significant changes were noted in amino acid kinetics. These findings suggest that periventricular neuroglucopenia, in the absence of peripheral glucose deprivation, is accompanied by hyperglycemia secondary to enhanced hepatic glucose production with decreased glucose utilization and by increased hepatic uptake of gluconeogenic precursors. These, however, were not accompanied by increased whole body proteolysis as was previously seen with generalized glucopenia resulting from insulin-induced hypoglycemia.

  5. Food cues do not modulate the neuroendocrine response to a prolonged fast in healthy men.

    PubMed

    Snel, Marieke; Wijngaarden, Marjolein A; Bizino, Maurice B; van der Grond, Jeroen; Teeuwisse, Wouter M; van Buchem, Mark A; Jazet, Ingrid M; Pijl, Hanno

    2012-01-01

    Dietary restriction benefits health and increases lifespan in several species. Food odorants restrain the beneficial effects of dietary restriction in Drosophila melanogaster. We hypothesized that the presence of visual and odorous food stimuli during a prolonged fast modifies the neuroendocrine and metabolic response to fasting in humans. In this randomized, crossover intervention study, healthy young men (n = 12) fasted twice for 60 h; once in the presence and once in the absence of food-related visual and odorous stimuli. At baseline and on the last morning of each intervention, an oral glucose tolerance test (OGTT) was performed. During the OGTT, blood was sampled and a functional MRI scan was made. The main effects of prolonged fasting were: (1) decreased plasma thyroid stimulating hormone and triiodothyronine levels; (2) downregulation of the pituitary-gonadal axis; (3) reduced plasma glucose and insulin concentrations, but increased glucose and insulin responses to glucose ingestion; (4) altered hypothalamic blood oxygenation level-dependent (BOLD) signal in response to the glucose load (particularly during the first 20 min after ingestion); (5) increased resting energy expenditure. Exposure to food cues did not affect these parameters. This study shows that 60 h of fasting in young men (1) decreases the hypothalamic BOLD signal in response to glucose ingestion; (2) induces glucose intolerance; (3) increases resting energy expenditure, and (4) downregulates the pituitary-thyroid and pituitary-gonadal axes. Exposure to visual and odorous food cues did not alter these metabolic and neuroendocrine adaptations to nutrient deprivation. Copyright © 2012 S. Karger AG, Basel.

  6. Blood glucose concentrations in prehospital trauma patients with traumatic shock: A retrospective analysis.

    PubMed

    Kreutziger, Janett; Lederer, Wolfgang; Schmid, Stefan; Ulmer, Hanno; Wenzel, Volker; Nijsten, Maarten W; Werner, Daniel; Schlechtriemen, Thomas

    2018-01-01

    Deranged glucose metabolism after moderate to severe trauma with either high or low concentrations of blood glucose is associated with poorer outcome. Data on prehospital blood glucose concentrations and trauma are scarce. The primary aim was to describe the relationship between traumatic shock and prehospital blood glucose concentrations. The secondary aim was to determine the additional predictive value of prehospital blood glucose concentration for traumatic shock when compared with vital parameters alone. Retrospective analysis of the predefined, observational database of a nationwide Helicopter Emergency Medical Service (34 bases). Emergency trauma patients treated by Helicopter Emergency Medical Service between 2005 and 2013 were investigated. All adult trauma patients (≥18 years) with recorded blood glucose concentrations were enrolled. Primary outcome: upper and lower thresholds of blood glucose concentration more commonly associated with traumatic shock. Secondary outcome: additional predictive value of prehospital blood glucose concentrations when compared with vital parameters alone. Of 51 936 trauma patients, 20 177 were included. In total, 220 (1.1%) patients died on scene. Hypoglycaemia (blood glucose concentration 2.8 mmol l or less) was observed in 132 (0.7%) patients, hyperglycaemia (blood glucose concentration exceeding 15 mmol l) was observed in 265 patients (1.3%). Blood glucose concentrations more than 10 mmol l (n = 1308 (6.5%)) and 2.8 mmol l or less were more common in patients with traumatic shock (P < 0.0001). The Youden index for traumatic shock ((sensitivity + specificity) - 1) was highest when blood glucose concentration was 3.35 mmol l (P < 0.001) for patients with low blood glucose concentrations and 7.75 mmol l (P < 0.001) for those with high blood glucose concentrations. In logistic regression analysis of patients with spontaneous circulation on scene, prehospital blood glucose concentrations (together with common vital parameters: Glasgow Coma Scale, heart rate, blood pressure, breathing frequency) significantly improved the prediction of traumatic shock in comparison with prediction by common vital parameters alone (P < 0.0001). In adult trauma patients, low and high blood glucose concentrations were more common in patients with traumatic shock. Prehospital blood glucose concentration measurements in addition to common vital parameters may help identify patients at risk of traumatic shock.

  7. Blood Test: Glucose

    MedlinePlus

    ... Videos for Educators Search English Español Blood Test: Glucose KidsHealth / For Parents / Blood Test: Glucose What's in ... liver or kidneys) is working. What Is a Glucose Test? A glucose test measures how much glucose ...

  8. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio).

    PubMed

    Zhao, Fei; Jiang, Guobin; Wei, Penghao; Wang, Hongfang; Ru, Shaoguo

    2018-01-01

    Bisphenol S (BPS) is a substitute of the plastic additive bisphenol A (BPA). Its concentrations detected in surface waters and urine samples are on the same order of magnitude as BPA. Human exposure to BPA has been implicated in the development of diabetes mellitus; however, whether BPS can disrupt glucose homeostasis and increase blood glucose concentration remains unclear. We extensively investigated the effects of environmentally relevant concentrations of BPS on glucose metabolism in male zebrafish (Danio rerio) and the underlying mechanisms of these effects. Male zebrafish were exposed to 1, 10, or 100μg/L of BPS for 28 d. Fasting blood glucose (FBG) levels, glycogen levels in the liver and muscle, and mRNA levels of key glucose metabolic enzymes and the activities of the encoded proteins in tissues were evaluated to assess the effect of BPS on glucose metabolism. Plasma insulin levels and expression of preproinsulin and glucagon genes in the visceral tissue were also evaluated. Compared with the control group, exposure to 1 and 10μg/L of BPS significantly increased FBG levels but decreased insulin levels. Gluconeogenesis and glycogenolysis in the liver were promoted, and glycogen synthesis in the liver and muscle and glycolysis in the muscle were inhibited. Exposure to 100μg/L of BPS did not significantly alter plasma insulin and blood glucose levels, but nonetheless pronouncedly interfered with gluconeogenesis, glycogenolysis, glycolysis, and glycogen synthesis. Our data indicates that BPS at environmentally relevant concentrations impairs glucose homeostasis of male zebrafish possibly by hampering the physiological effect of insulin; higher BPS doses also pronouncedly interfered with glucose metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Improved glucose tolerance four hours after taking guar with glucose.

    PubMed

    Jenkins, D J; Wolever, T M; Nineham, R; Sarson, D L; Bloom, S R; Ahern, J; Alberti, K G; Hockaday, T D

    1980-07-01

    To gain some insights about the possible cumulative metabolic effect after a high-fibre meal, 6 subjects took two 80 g oral glucose loads, 4 h apart. Addition of 22.3 g guar to the first load decreased the rise in blood glucose and insulin after the second (guar-free) load by 50% (p less than 0.002) and 31% (p less than 0.02) respectively. This corresponded with decreased 3-hydroxybutyrate levels at the start of the glucose tolerance test after guar (by 20%, p less than 0.02). When no guar was added to the first glucose load, both 3-hydroxybutyrate and non-esterified fatty acids tended to rise before the second test. No significant effect was seen in the responses of the gut hormones, gastric inhibitory peptide and enteroglucagon. Spreading the intake of the first 80 g of glucose over the initial 4 h (2 subjects) similarly flattened the glycaemic but increased the insulin response. The effect of guar on carbohydrate and fat metabolism, therefore, lasts at least 4 h and may result in improved carbohydrate tolerance to subsequent guar-free meals.

  10. Differential Effects of Nebivolol and Metoprolol on Insulin Sensitivity and Plasminogen Activator Inhibitor in the Metabolic Syndrome

    PubMed Central

    Ayers, Katie; Byrne, Loretta M.; DeMatteo, Anthony; Brown, Nancy J.

    2012-01-01

    Early generation β-blockers lower blood pressure and reduce cardiovascular morality in coronary artery disease and congestive heart failure, but worsen glucose homeostasis and fibrinolytic balance. Nebivolol is a third-generation β-blocker which increases the bioavailability of nitric oxide. We compared the effect of nebivolol (5mg/d) and the β1-selective antagonist metoprolol (100mg/d) on glucose homeostasis and markers of fibrinolysis in 46 subjects with metabolic syndrome. Subjects underwent a frequently sampled intravenous glucose tolerance test after 3-week washout and placebo treatment, and following randomized treatment with study drug. After 12-week treatment, nebivolol and metoprolol equivalently decreased systolic blood pressure, diastolic blood pressure, and heart rate. Neither drug affected beta cell function, disposition index, or acute insulin response to glucose. Metoprolol significantly decreased the insulin sensitivity index. In contrast, nebivolol did not affect insulin sensitivity, and the decrease in sensitivity was significantly greater following metoprolol than nebivolol (-1.5±2.5 × 10-4 × min-1 per mU/L versus 0.04±2.19 × 10-4 × min-1 per mU/L after nebivolol, P=0.03). Circulating plasminogen activator inhibitor also increased following treatment with metoprolol (from 9.8±6.8 to 12.3±7.8 ng/mL), but not nebivolol (from 10.8±7.8 to 10.5±6.2 ng/mL, P=0.05 versus metoprolol). Metoprolol, but not nebivolol, increased F2-isoprostane concentrations. In summary, treatment with metoprolol decreased insulin sensitivity and increased oxidative stress and the antifibrinolytic plasminogen activator inhibitor-1in patients with metabolic syndrome, whereas nebivolol lacked detrimental metabolic effects. Large clinical trials are needed to compare effects of nebivolol and the β1 receptor antagonist metoprolol on clinical outcomes in patients with hypertension and the metabolic syndrome. PMID:22353614

  11. General Lack of Correlations between Age and Signs of the Metabolic Syndrome in Subjects with Non-diabetic Fasting Glucose Values.

    PubMed

    Preuss, Harry G; Mrvichin, Nate; Clouatre, Dallas; Bagchi, Debasis; Preuss, Jeffrey M; Perricone, Nicholas V; Swaroop, Anand; Kaats, Gilbert R

    2017-01-01

    Insulin resistance and advancing age are well-recognized risk factors for metabolic syndrome. Recent reports indicate that fasting glucose levels in non-diabetic patients correlate appropriately with the development of certain elements in metabolic syndrome, which suggest a cause-effect relationship with insulin resistance. The present investigation assessed whether a significant association exists between chronological age and various elements of metabolic syndrome in this same group of subjects possessing non-diabetic fasting glucose levels. Baseline data were taken from 288 subjects (age 17-87 years) with fasting glucose levels ≤ 125 mg/dl. Correlations between chronological age and different metabolic parameters were assessed to determine any statistically significant relationships and compare these with previously demonstrated metabolic parameters. With the exception of systolic blood pressure, the following correlations between age and components of metabolic syndrome were not significant or even significant in the opposite direction compared to those found in the same population using fasting glucose as the independent variable: body weight, body fat, diastolic blood pressure, white blood cell count (WBC)/neutrophil count, and circulating levels of insulin, high-density lipoprotein (HDL) cholesterol, triglycerides, high-sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Although systolic blood pressure still increased, it was to a lesser extent than might be expected. In the present investigation, a cross-sectional analysis was carried out over a wide age range of subjects. It is noteworthy that fasting glucose levels and the other major elements of metabolic syndrome did not change significantly with advancing age. These results demonstrate that decreasing insulin resistance and fasting glucose levels may be an important way to overcome the adverse effects and perturbations of advancing age-induced consequences of metabolic syndrome.

  12. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects.

    PubMed

    Hlebowicz, Joanna; Hlebowicz, Anna; Lindstedt, Sandra; Björgell, Ola; Höglund, Peter; Holst, Jens J; Darwiche, Gassan; Almér, Lars-Olof

    2009-03-01

    A previous study of healthy subjects showed that intake of 6 g cinnamon with rice pudding reduced postprandial blood glucose and the gastric emptying rate (GER) without affecting satiety. The objective was to study the effect of 1 and 3 g cinnamon on GER, postprandial blood glucose, plasma concentrations of insulin and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)], the ghrelin response, and satiety in healthy subjects. GER was measured by using real-time ultrasonography after ingestion of rice pudding with and without 1 or 3 g cinnamon. Fifteen healthy subjects were assessed in a crossover trial. The addition of 1 or 3 g cinnamon had no significant effect on GER, satiety, glucose, GIP, or the ghrelin response. The insulin response at 60 min and the area under the curve (AUC) at 120 min were significantly lower after ingestion of rice pudding with 3 g cinnamon (P = 0.05 and P = 0.036, respectively, after Bonferroni correction). The change in GLP-1 response (DeltaAUC) and the change in the maximum concentration (DeltaC(max)) were both significantly higher after ingestion of rice pudding with 3 g cinnamon (P = 0.0082 and P = 0.0138, respectively, after Bonferroni correction). Ingestion of 3 g cinnamon reduced postprandial serum insulin and increased GLP-1 concentrations without significantly affecting blood glucose, GIP, the ghrelin concentration, satiety, or GER in healthy subjects. The results indicate a relation between the amount of cinnamon consumed and the decrease in insulin concentration.

  13. Type 2 diabetes management in nurse-led primary healthcare settings in urban and rural Cameroon.

    PubMed

    Kengne, Andre Pascal; Fezeu, Leopold; Sobngwi, Eugene; Awah, Paschal Kum; Aspray, Terence J; Unwin, Nigel C; Mbanya, Jean-Claude

    2009-08-01

    To implement a protocol-driven primary nurse-led care for type 2 diabetes in rural and urban Cameroon. We set-up three primary healthcare clinics in Yaounde (Capital city) and two in the Bafut rural health district. Participants were 225 (17% rural) patients with known or newly diagnosed type 2 diabetes, not requiring insulin, referred either from a baseline survey (38 patients, 17%), or secondarily attracted to the clinics. Protocol-driven glucose and blood pressure control were delivered by trained nurses. The main outcomes were trajectories of fasting capillary glucose and blood pressure indices, and differences in the mean levels between baseline and final visits. The total duration of follow-up was 1110 patient-months. During follow-up, there was a significant downward trend in fasting capillary glucose overall (p<0.001) and in most subgroups of participants. Between baseline and final visits, mean fasting capillary glucose dropped by 1.6 mmol/L (95% CI: 0.8-2.3; p< or =0.001). Among those with hypertension, blood pressure also decreased significantly for systolic and marginally for diastolic blood pressure. No major significant change was noticed for body weight. Nurses may be potential alternatives to improve access to diabetes care in settings where physicians are not available.

  14. Glycemic load, exercise, and monitoring blood glucose (GEM): A paradigm shift in the treatment of type 2 diabetes mellitus.

    PubMed

    Cox, Daniel J; Taylor, Ann G; Singh, Harsimran; Moncrief, Matthew; Diamond, Anne; Yancy, William S; Hegde, Shefali; McCall, Anthony L

    2016-01-01

    This preliminary RCT investigated whether an integrated lifestyle modification program that focuses on reducing postprandial blood glucose through replacing high with low glycemic load foods and increasing routine physical activities guided by systematic self-monitoring of blood glucose (GEM) could improve metabolic control of adults with type 2 diabetes mellitus, without compromising other physiological parameters. Forty-seven adults (mean age 55.3 years) who were diagnosed with type 2 diabetes mellitus for less than 5 years (mean 2.1 years), had HbA1c ≥ 7% (mean 8.4%) and were not taking blood glucose lowering medications, were randomized to routine care or five 1-h instructional sessions of GEM. Assessments at baseline and 6 months included a physical exam, metabolic and lipid panels, and psychological questionnaires. The GEM intervention led to significant improvements in HbA1c (decreasing from 8.4 to 7.4% [69-57 mmol/mol] compared with 8.3 to 8.3% [68-68 mmol/mol] for routine care; Interaction p<.01) and psychological functioning without compromising other physiological parameters. Consistent with a patient-centered approach, GEM appears to be an effective lifestyle modification option for adults recently diagnosed with type 2 diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. A randomized study comparing blood glucose control and risk of severe hypoglycemia achieved by non-programmable versus programmable external insulin pumps.

    PubMed

    Catargi, B; Breilh, D; Gin, H; Rigalleau, V; Saux, M C; Roger, P; Tabarin, A

    2001-06-01

    To compare a non-programmable and a programmable insulin external pump using regular insulin on glycemic stability, the risk of severe hypoglycemia and metabolic control in type 1 diabetic patients. Ten type 1 diabetic patients were involved in a randomized, crossover study comparing two periods of 3 months with continuous subcutaneous insulin infusion (CSII) either with a non-programmable insulin pump or a programmable insulin pump. Comparisons were made among mean blood glucose values before and after meals, at bedtime and at 2: 00 a.m.; the risk of severe hypoglycemia assessed by the low blood glucose index (LBGI); and HbA1c. Mean average blood glucose (BG) measurements were significantly lower with the programmable in comparison with the non-programmable insulin pump (respectively 157+/-78 vs. 165+/-79, p=0.034). While postprandial values for BG were not different between the two pumps, the use of the programmable pump resulted in a significant decrease in mean preprandial BG levels (140+/-68 vs. 150+/-73 mg/dl p=0.039). Conversely mean BG level was lower at 2 a.m. with the non-prgrammable pump (125+/-81 vs. 134 +/-93 mg/dl, p=0.02) but with a higher incidence of hypoglycemia. Mean LBGI was comparable with the two pumps (3.1+/-8.6 vs. 2.8+/-6.9, p=0.1). There was a 0.2% decrease in HbA1c during the programmable pump period that did not reach statistical significance (p=0.37). The present study suggests that programmable external insulin pumps, although more complex and more expensive than non-programmable insulin pumps, significantly reduce fasting glycemia during the day without increasing the risk of severe hypoglycemia and are safer during the night.

  16. Early care of acute hyperglycemia benefits the outcome of traumatic brain injury in rats.

    PubMed

    Kang, Xin; Liu, Yuepeng; Yuan, Tao; Jiang, Na-Na; Dong, Yan-Bin; Wang, Jian-Wei; Fu, Guang-Hui; Liu, Yu-Liang; Wang, Wen-Xue

    2016-11-01

    Previous animal studies showed contradictory clinical observations on whether acute hyperglycemia contributes to poor outcome in traumatic brain injury (TBI). Herein, we tried to clarify this issue. Striking with depths of 3.0-4.25mm at right occipitoparietal brain region and with depth of 3.75mm at right/left occipitoparietal or right/left frontoparietal brain region were performed, respectively. Blood glucose and insulin levels were traced every four hours from 1 to 72h after striking. HOMA2-%S and HOMA2-%β were calculated. Modified neurological severity scores (mNSS) were used to evaluate neurological deficit within 72h. Striking with depths of 3.5-4.25mm induced increase in blood glucose lasting up to 24h after striking. The levels of blood glucose after striking with depths of 3.75-4.25mm were significantly different from that of striking with the depth of 3.0mm. Striking with depth of 3.75mm at right/left occipitoparietal region induced higher blood glucose in 24h than that at right/left frontoparietal region. Insulin concentration increased slowly during 72h after striking. Striking also induced decrease in insulin sensitivity and secretion lasting 72h. Evaluation of mNSS revealed that severe striking (beyond 3.75mm) worsened nerve function than slight striking (<3.0mm). Intervention of acute hyperglycemia could decrease the mNSS from 2 to 7 days after TBI. Our results suggested that only severe TBI could induce acute hyperglycemia by itself, and early care of acute hyperglycemia could benefit the outcome of TBI patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lychee seed extract protects against neuronal injury and improves cognitive function in rats with type II diabetes mellitus with cognitive impairment

    PubMed Central

    Wu, Jianming; Chen, Haixia; Zeng, Yuan; Wang, Xiuling; Yang, Le; Mei, Qibing; Cao, Shousong; Qin, Dalian

    2018-01-01

    Lychee seed is a traditional Chinese medicine and has many beneficial effects such as modulation of blood sugar and lipids, antioxidation, antivirus and antitumor. Studies have indicated that type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) share common biological mechanisms including insulin resistance, impaired glucose metabolism, β-amyloid (Aβ) formation, oxidative stress and presence of advanced glycation end products (AGEs). The present study investigated the effects of lychee seed extract (LSE) on neuroprotection, cognitive function improvement and possible underlying mechanisms in a rat model of T2DM with cognitive impairment. We analyzed the chemical profile of LSE using a UHPLC-SPD chromatogram and evaluated its effect on the improvement of spatial learning and memory of rats by a Morris water maze. The levels of glucose, insulin, Aβ, AGEs, Tau protein and acetylcholinesterase in the blood and/or hippocampus of rats were determined by blood-glucose meter, radioimmunoassay, chemical chromatometry, enzyme-linked immunosorbent assay (ELISA) and immunohistochemical analysis, respectively. Results demonstrated that LSE consists of eight major and around 20 minor ingredients, and it remarkably prevents neuronal injury and improves cognitive functions in T2DM rats. The levels of glucose, insulin, Aβ, AGEs and Tau protein were significantly increased in the blood and/or hippocampus of T2DM rats, while LSE remarkably decreased their levels compared to vehicle treatment (P<0.01). The possible mechanisms may be associated with IR improvement and decreased formations of Aβ, AGEs and Tau protein in the hippocampus of T2DM rats. LSE may be developed as the agent for the treatment of T2DM and/or AD clinically. PMID:29138799

  18. Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees.

    PubMed

    Nugroho, Agung Endro; Rais, Ichwan Ridwan; Setiawan, Iwan; Pratiwi, Pramita Yuli; Hadibarata, Tony; Tegar, Maulana; Pramono, Suwidjiyo

    2014-01-01

    Andrographis paniculata (Burm. f.) Nees is a plant that originates from India and grows widely to Southeast which used for several purposes mainly as treatment of diabetes mellitus so the aim of this study was evaluate andrographolide for its pancreatic effect in neonatal streptozotocin (STZ)-induced diabetic rats, a model of type 2 diabetic rats. Diabetic condition was induced with an intraperitoneal injection of 90 mg kg(-1) streptozotocin in two-day-old rats. After three months, the neonatal STZ-induced diabetic rats were treated with andrographolide or andrographolide-enriched extract of A. paniculata (AEEAP) for 8 consecutive days. Pancreatic effect was evaluated by estimating mainly the preprandial and postprandial blood glucose levels and other parameters such as morphology of pancreatic islet, beta cells density and morphology and immunohistochemically pancreatic insulin. Andrographolide significantly (p < 0.05) decreased the levels of blood glucose and improved diabetic rat islet and beta cells. However, AEEAP exhibited moderate hypoglycaemic effects on the blood glucose levels. Moderate changes in beta cells were observed after AEEAP treatment. They could restore decreasing of pancreatic insulin contents. Based on these results andrographolide and AEEAP exhibited pancreatic actions in neonatal STZ-induced diabetic rats. The activity of andrographolide was more effective than this of AEEAP.

  19. [Protective effects of polysacchride of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan induced diabetic rats].

    PubMed

    Huang, Zhi-xuan; Mei, Xue-ting; Xu, Dong-hui; Xu, Shi-bo; Lv, Jun-yi

    2005-02-01

    To study the protective effects of polysaccharide of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan (ALX) induced diabetic rats. With the doses of polysaccharide of Spirulina platensis (PSP) and Sargassum thunbeergii (PST) compound (1:1) 12.261, 36.783, 110.349 mg x kg(-1) by i.g. administration to alloxan induced diabetic rats respectively for 6 weeks. Then the blood glucose and the TC, HDL-C, TG, NO, ET in serum were detected. The contraction and relaxation response to NE and ACh in aortic rings of the alloxan induced diabetic rats has been studied. The results showed the compound of PSP and PST could decrease the blood glucose and the TC, TG, NO, ET in serum and increase HDL-C than in the alloxan induced diabetic rats. The contraction responses to NE in aortic rings of the alloxan induced diabetic rats were significantly elevated in the normal rats, and the responses to ACh were significantly lower. PSP and PST compound could significantly lower the responses to NE and significantly elevate the responses to ACh in aortic rings of the alloxan induced diabetic rats. PSP and PST compound could decrease blood glucose and could protect the vascular of alloxan induced diabetic rats.

  20. Sodium Meta-Arsenite Ameliorates Hyperglycemia in Obese Diabetic db/db Mice by Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Lee, Eun-Kyu; Oh, Hyun-Hee; Choi, Cheol Soo; Kim, Sujong; Jun, Hee-Sook

    2014-01-01

    Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg−1 body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1. PMID:25610880

  1. Effects of Low-Molecular-Weight Fucoidan and High Stability Fucoxanthin on Glucose Homeostasis, Lipid Metabolism, and Liver Function in a Mouse Model of Type II Diabetes.

    PubMed

    Lin, Hong-Ting Victor; Tsou, Yu-Chi; Chen, Yu-Ting; Lu, Wen-Jung; Hwang, Pai-An

    2017-04-07

    The combined effects of low-molecular-weight fucoidan (LMF) and fucoxanthin (Fx) in terms of antihyperglycemic, antihyperlipidemic, and hepatoprotective activities were investigated in a mouse model of type II diabetes. The intake of LMF, Fx, and LMF + Fx lowered the blood sugar and fasting blood sugar levels, and increased serum adiponectin levels. The significant decrease in urinary sugar was only observed in LMF + Fx supplementation. LMF and Fx had ameliorating effects on the hepatic tissue of db/db mice by increasing hepatic glycogen and antioxidative enzymes, and LMF was more effective than Fx at improving hepatic glucose metabolism. As for glucose and lipid metabolism in the adipose tissue, the expression of insulin receptor substrate (IRS)-1, glucose transporter (GLUT), peroxisome proliferator-activated receptor gamma (PPARγ), and uncoupling protein (UCP)-1 mRNAs in the adipose tissue of diabetic mice was significantly upregulated by Fx and LMF + Fx, and levels of inflammatory adipocytokines, such as adiponectin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were significantly modulated only by LMF + Fx supplementation. The efficacy of LMF + Fx supplementation on the decrease in urinary sugar and on glucose and lipid metabolism in the white adipose tissue of db/db mice was better than that of Fx or LMF alone, indicating the occurrence of a synergistic effect of LMF and Fx.

  2. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    PubMed

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes-related treatment decisions.

  3. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  4. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production.

    PubMed

    Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2013-05-01

    Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.

  5. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice.

    PubMed

    Tsuneki, Hiroshi; Tokai, Emi; Nakamura, Yuya; Takahashi, Keisuke; Fujita, Mikio; Asaoka, Takehiro; Kon, Kanta; Anzawa, Yuuki; Wada, Tsutomu; Takasaki, Ichiro; Kimura, Kumi; Inoue, Hiroshi; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2015-02-01

    Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults.

    PubMed

    Johansson, Elin V; Nilsson, Anne C; Östman, Elin M; Björck, Inger M E

    2013-04-11

    Recent knowledge in animals suggests that gut microbial metabolism may affect host metabolism, including appetite regulating hormones. The aim of the present study was to evaluate the potential effects of a whole grain barley kernel product, rich in intrinsic indigestible carbohydrates (dietary fibre and resistant starch), on markers of metabolism and appetite regulation in healthy subjects. Boiled barley kernels (BK) or white wheat bread (WWB; reference) were provided as late evening meals to 19 young adults in random order using a cross-over design. During subsequent ad libitum standardized breakfast and lunch meals (10.5-16 h), blood was collected for analysis of glucose, plasma insulin, adiponectin, ghrelin, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), serum free fatty acids (FFA) and interleukin (IL)-6. In addition, appetite sensations, voluntary energy intake and breath H2 were determined. BK as evening meal increased plasma GLP-1 at fasting (P < 0.05) and during the experimental day (P < 0.01) compared with WWB. In addition the BK evening meal decreased fasting serum FFA (P < 0.05) and tended to decrease fasting serum IL-6 (P = 0.06). At lunch, preceded by BK evening meal, voluntary energy intake was decreased (P < 0.05) when compared to WWB evening meal. The BK evening meal decreased incremental blood glucose area (P < 0.01), promoted higher breath H2 (P < 0.001), maintained adiponectin concentrations (P < 0.05) and reduced perceived hunger (P < 0.05) during 10.5-16 h after the meal. The results indicate that the BK evening meal, facilitate glucose regulation, increase the release of GLP-1, reduce subsequent energy intake while at the same time decreasing hunger over 2 subsequent meals, and reduce fasting FFA the subsequent morning, possibly mediated through gut microbial fermentation of the indigestible carbohydrates.

  7. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma nonesterified fatty acids, glucose, insulin, and glucagon in dairy cattle.

    PubMed

    Mann, S; Yepes, F A Leal; Behling-Kelly, E; McArt, J A A

    2017-08-01

    Despite increased efforts in preventing the occurrence of metabolic disorders in transition cows, hyperketonemia remains a frequent early-lactation metabolic disease affecting an average of 40% of cows in herds in the United States. Despite the demonstrated economic effect of this disorder, controlled clinical trials comparing different treatment strategies in affected cows are lacking. The objective of our study was to investigate the effect of treatment with intravenous glucose, oral propylene glycol, or a combination of both on the reduction in blood β-hydroxybutyrate (BHB) concentrations of early-lactation hyperketonemic dairy cows. Multiparous Holstein cows between 3 to 9 d in milk were screened for hyperketonemia using a handheld meter 3 times per week, and enrolled at whole blood BHB concentration ≥1.2 mmol/L to 1 of 4 treatment groups: (1) 500 mL of a 50% dextrose solution i.v. once daily for 3 d (GLU, n = 9), (2) 300 mL of propylene glycol as a drench once daily for 3 d (PG, n = 9), (3) a combination treatment of a 500 mL of 50% dextrose solution i.v. and 300 mL of propylene glycol orally once daily for 3 d (GLU+PG, n = 8), or (4) an untreated control group (CTRL, n = 8). Blood samples were collected immediately before as well as at 1, 2, 4, 8, 12, 24, 36, 48, 60, and 72 h after administration of the first treatment through a jugular catheter and 3 times per week thereafter from coccygeal vessels. Concentrations of BHB were measured in whole blood, and plasma samples were analyzed for glucose, fatty acid (NEFA), insulin, glucagon, and electrolyte concentrations. The EDTA-anticoagulated blood samples were assessed for red blood cell indices, and smears were made for evaluation of red blood cell morphology. Outcomes were analyzed using repeated measures analysis. Overall least squares means (95% CI) of whole blood BHB concentrations between 1 h and d 11 relative to first treatment were 1.11 (0.95 to 1.30), 1.26 (1.07 to 1.47), 0.96 (0.81 to 1.13), and 1.53 (1.30 to 1.80) mmol/L for the GLU, PG, GLU+PG, and CTRL groups, respectively. Treatment with both glucose and propylene glycol led to a greater magnitude and more prolonged decrease in BHB concentrations compared with individual treatments. The NEFA and glucagon concentrations were lower immediately after treatment in GLU and GLU+PG groups compared with CTRL, and treatment with both glucose and propylene glycol was associated with a greater increase in glucose and insulin concentrations immediately after treatment compared with CTRL and GLU treatment alone. Treatments did not lead to differences in plasma mineral concentrations. We conclude that treatments varied in the magnitude of decreasing blood BHB concentrations in hyperketonemic postpartum cows, with the greatest decline after treatment with a combination of intravenous glucose and oral propylene glycol. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Protective effect of Alpinia galanga in STZ induced diabetic nephropathy.

    PubMed

    Kaushik, P; Kaushik, D; Yadav, J; Pahwa, P

    2013-08-15

    The activity of the alcoholic extract of the rhizomes of Alpinia galanga was studied for the treatment of diabetes-induced nephropathy in rats. Wistar rats received a single intraperitoneal streptozotocin injection (60 mg kg(-1) b.wt.) to induce diabetes. Rats were considered diabetic if blood glucose concentration increased up to 200 or more mg dL(-1). The rats were orally administered alcoholic extract of Alpinia galanga (50, 100 and 200 mg kg(-1)), once daily for 40 days. Body weight, blood glucose, urinary albumin, glycosylated haemoglobin, Blood Urea Nitrogen (BUN), creatinine, lipids profile, Malondialdehyde (MDA), Superoxide Dismutase (SOD), Glutathione (GSH) and Catalase (CAT) were then evaluated. After 40 days of treatment, Alpinia galanga significantly (p<0.05) decreased glycaemia, Blood Urea Nitrogen (BUN), urinar albumin and increased body weight in diabetes-nephropathic rats. The extract (200 mg kg(-1)) decreased MDA significantly (p<0.01); GSH (p<0.05), increased SOD (p<0.05) and CAT (p<0.05) in the rats, compared with nephropathic control. The extract (100 and 200 mg kg(-1), respectively) lowered (p<0.05) total cholesterolemia, blood triglycerides (p<0.05), blood LDL cholesterol (p<0.05), but increased blood HDL cholesterol (p<0.01). Overall, atherogenic index was decreased significantly (p<0.05). In the present study, the rhizomes of Alpinia galanga demonstrated significant nephro-protective activities in the tested models. The alcoholic extract of the rhizomes of Alpinia galanga holds promise for the development of a standardized phytomedicine for diabetes mellitus and kidney disease treatment.

  9. Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G

    1992-01-01

    The feasibility of calibrating a glucose sensor by using a wearable glucose meter for blood glucose determination and moderate variations of blood glucose concentration was assessed. Six miniaturized glucose sensors were implanted in the subcutaneous tissue of conscious dogs, and the parameters used for the in vivo calibration of the sensor (sensitivity coefficient and extrapolated current in the absence of glucose) were determined from values of blood glucose and sensor response obtained during glucose infusion. (1) Venous plasma glucose level and venous total blood glucose level were measured simultaneously on the same sample, using a Beckman analyser and a Glucometer II, respectively. The regression between plasma glucose (x) and whole blood glucose (y) was y = 1.12x-0.08 mM (n = 114 values, r = 0.96, p = 0.0001). The error grid analysis indicated that the use of a Glucometer II for blood glucose determination was appropriate in dogs. (2) The in vivo sensitivity coefficients were 0.57 +/- 0.11 nA mM-1 when determined from plasma glucose, and 0.51 +/- 0.07 nA mM-1 when determined from whole blood glucose (t = 1.53, p = 0.18, n.s.). The background currents were 0.88 +/- 0.57 nA when determined from plasma glucose, and 0.63 +/- 0.77 nA when determined from whole blood glucose (t = 0.82, p = 0.45, n.s.). (3) The regression equation of the estimation of the subcutaneous glucose level obtained from the two methods was y = 1.04x + 0.56 mM (n = 171 values, r = 0.98, p = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Left ventricular diastolic function in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor- a pilot study.

    PubMed

    Nogueira, Katia Camarano; Furtado, Meive; Fukui, Rosa Tsuneshiro; Correia, Marcia Regina Silva; Dos Santos, Rosa Ferreira; Andrade, José Lázaro; Rossi da Silva, Maria Elizabeth

    2014-01-01

    Blood glucose control is fundamental albeit not enough to prevent diabetic macrovascular complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in improving metabolic parameters in patients with type 2 diabetes mellitus (T2DM) but little is known about its cardiovascular effects. We compared the DPP-4 inhibitor sitagliptin with bedtime NPH insulin (NPH) as add-on therapy in patients with T2DM, aiming to ascertain which drug would have additional cardioprotective effects. Thirty-five T2DM patients inadequately controlled with metformin plus glyburide were randomized to receive sitagliptin (n = 18) or NPH (n = 17) for 24 weeks. Fasting plasma glucose, HbA1c, lipid profile, C-reactive protein, active glucagon-like peptide (aGLP-1) levels, 24-hour ambulatory blood pressure measurement and comprehensive 2-dimensional echocardiogram were determined before and after treatments. Both sitagliptin and NPH therapies decreased HbA1c levels after 24 weeks. Fasting plasma glucose and triglyceride levels decreased in the NPH group whereas only sitagliptin increased aGLP-1 levels. Left ventricular diastolic dysfunction (LVDD) was detected in 58.6% of twenty-nine patients evaluated. Beneficial effects in LVDD were observed in 75% and 11% of patients treated with sitagliptin and NPH, respectively (p = 0.015). Neither therapy changed C-reactive protein or blood pressure. Sitagliptin and bedtime NPH were similarly effective on glucose control. Improvement in LVDD in T2DM patients treated with sitagliptin was suggested, probably related to the increase of aGLP-1 levels. Therefore, DPP-4 inhibitor seems to have cardioprotective effects independent of glucose control and may have a role in the prevention of diabetic cardiomyopathy.

  11. Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia.

    PubMed

    Chan, Tom S; Cassim, Shamir; Raymond, Valérie-Ann; Gottschalk, Sven; Merlen, Grégory; Zwingmann, Claudia; Lapierre, Pascal; Darby, Peter; Mazer, Cyril David; Bilodeau, Marc

    2018-01-01

    The liver is a highly vascularized organ receiving a dual input of oxygenated blood from the hepatic artery and portal vein. The impact of decreased blood flow on glucose metabolism and how hepatocytes could adapt to this restrictive environment are still unclear. Using the left portal vein ligation (LPVL) rat model, we found that cellular injury was delayed after the onset of liver ischemia. We hypothesized that a metabolic adaptation by hepatocytes to maintain energy homeostasis could account for this lag phase. Liver glucose metabolism was characterized by 13C- and 1H-NMR spectroscopy and analysis of high-energy metabolites. ALT levels and caspase 3 activity in LPVL animals remained normal during the first 12 h following surgery (P<0.05). Ischemia rapidly led to decreased intrahepatic tissue oxygen tension and blood flow (P<0.05) and increased expression of Hypoxia-inducible factor 1-alpha. Intrahepatic glucose uptake, ATP/ADP ratio and energy charge level remained stable for up to 12 h after ligation. Entry of glucose in the Krebs cycle was impaired with lowered incorporation of 13C from [U-13C]glucose into glutamate and succinate from 0.25 to 12 h after LPVL. However, total hepatic succinate and glutamate increased 6 and 12 h after ischemia (P<0.05). Glycolysis was initially reduced (P<0.05) but reached maximum 13C-lactate (P<0.001) and 13C-alanine (P<0.01) enrichments 12 h after LPVL. In conclusion, early liver homeostasis stems from an inherent ability of ischemic hepatocytes to metabolically adapt through increased Krebs cycle and glycolysis activity to preserve bioenergetics and cell viability. This metabolic plasticity of hepatocytes could be harnessed to develop novel metabolic strategies to prevent ischemic liver damage.

  12. Testing versus guessing blood glucose values: impact on self-care behaviors in type 2 diabetes.

    PubMed

    Pettus, Jeremy; Stenger, Patricia; Schachner, Holly C; Dunne, Nancy; Parkes, Joan Lee; Pardo, Scott; Edelman, Steven V

    2014-09-01

    To assess differences between estimated blood glucose values and those measured on a blood glucose meter and the impact on self-care behavior in type 2 diabetes. Subjects ≥18 years with type 2 diabetes (N = 297) attending a Taking Control of Your Diabetes conference were asked questions about diabetes management and to estimate their current blood glucose. Study staff tested subjects' blood glucose on a meter. After seeing the result, subjects were again asked questions on diabetes management. NCT01453413. The percentage of subject blood glucose estimations that were outside ISO 15197:2003 accuracy criteria (>±15 mg/dL or >±20% of meter glucose values). Nearly half (46%) of subjects estimated blood glucose values outside ISO 15197:2003 accuracy criteria. Time since last blood glucose test, time since last meal, testing frequency, and A1C did not have an effect on differences between estimated blood glucose values and meter results. In the questionnaire before blood glucose testing, most subjects strongly agreed, agreed, or neither agreed nor disagreed that 'I make decisions about my diabetes, such as my food intake or my insulin dose even when I do not test my blood sugar' (71%) and 'My body tells me without testing if my blood sugar is low or high' (77%). After blood glucose testing, 99% of subjects strongly agreed, agreed, or neither agreed nor disagreed that 'Knowing my blood sugar by checking could help me make different diabetes decisions'. Self-monitoring of blood glucose is an important component of diabetes self-management. Testing rather than guessing blood glucose values is important to obtain accurate results and inform people with type 2 diabetes to make effective, appropriate diabetes management decisions. A potential limitation of this study is that the subject population may not be representative of the general population of people with diabetes; however, the conference setting may attract a more motivated population, which could underestimate the magnitude of the results.

  13. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of Zucker diabetic fatty rats

    PubMed Central

    Jain, Sushil K.; Croad, Jennifer L.; Velusamy, Thirunavukkarasu; Rains, Justin L.; Bull, Rebeca

    2011-01-01

    Aim Chromium and cysteine supplementation can improve glucose metabolism in animal studies. This study examined the hypothesis that a cysteinate complex of chromium is significantly beneficial than either of them in lowering blood glucose and vascular inflammation markers in ZDF rats. Methods Starting at the age of 6 wks, ZDF rats were supplemented orally (daily gavages for 8 more wks) with saline-placebo (D) or chromium (400µg Cr/KgBW) as chromium-dinicocysteinate (CDNC), chromium-dinicotinate (CDN), or chromium-picolinate (CP) or equimolar L-cysteine (LC, img/Kg BW), and fed Purina 5008 diet for 8 wks. ZDF rats of 6 wks age before any supplementations and onset of diabetes were considered as baseline (BL). Results D rats showed elevated levels of fasting blood glucose, HbA1, CRP, MCP-1, ICAM-1 and oxidative stress (LP) and lower adiponectin and vitamin C, when compared to BL rats. In comparison to D group, CDNC group had significantly lower blood glucose, HbA1, CRP, MCP-1, ICAM-1 and LP and increased vitamin C and adiponectin levels. CDN, CP or LC showed significantly less or no effect on these biomarkers. Only CDNC lowered blood creatinine levels in comparison to D. While CDN and CP had no effect, activation of NFkB, Akt and GLUT-2 levels were decreased, IRS-1 activation increased in livers of CDNC-rats. CDNC effect on glycemia, NFkB, Akt and IRS-1 in liver was significantly greater compared with LC. Blood chromium levels did not differ between Cr-groups. Exogenous vitamin C supplementation significantly inhibited MCP-1 secretion in U937 monocytes cultured in high-glucose-medium. Conclusions CDNC is a potent hypoglycemic compound with anti-inflammatory activity apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 and increased IRS-1 activation in livers of type 2 diabetic rats. PMID:20306473

  14. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  15. Effect of Cucurbita ficifolia and Probiotic Yogurt Consumption on Blood Glucose, Lipid Profile, and Inflammatory Marker in Type 2 Diabetes

    PubMed Central

    Bayat, Azade; Azizi-Soleiman, Fatemeh; Heidari-Beni, Motahar; Feizi, Awat; Iraj, Bijan; Ghiasvand, Reza; Askari, Gholamreza

    2016-01-01

    Background: Control of blood sugar, hypertension, and dyslipidemia are key factors in diabetes management. Cucurbita ficifolia (pumpkin) is a vegetable which has been used traditionally as a remedy for diabetes in Iran. In addition, consumption of probiotics may have beneficial effects on people with Type 2 diabetes. The aim of this study was an investigation of the effects of C. ficifolia and probiotic yogurt consumption alone or at the same time on blood glucose and serum lipids in diabetic patients. Methods: Eighty eligible participants randomly were assigned to four groups: 1 - green C. ficifolia (100 g); 2 - probiotic yogurt (150 g); 3 - C. ficifolia plus probiotic yogurt (100 g C. ficifolia plus 150 g yogurt); and 4 -control (dietary advice) for 8 weeks. Blood pressure, glycemic response, lipid profile, and high-sensitive C-reactive protein (hsCRP) were measured before and after the intervention. Results: Total cholesterol (TC) decreased significantly in yogurt and yogurt plus C. ficifolia groups (within groups P = 0.010, and P < 0.001, respectively). C. ficifolia plus yogurt consumption resulted in a decrease in triglyceride (TG) and an increase in high-density lipoprotein cholesterol (HDL-C) (within groups P < 0.001 and P = 0.001, respectively). All interventions led to a significant decrease in blood sugar, hemoglobin A1c (HbA1c), hsCRP, and low-density lipoprotein cholesterol (LDL-C) level within groups. Blood pressure decreased significantly in Cucurbita group and yogurt group (within groups P < 0.001, and P = 0.001 for systolic blood pressure [SBP] and P < 0.001, and P = 0.004 for diastolic blood pressure [DBP], respectively). All variables changed between groups significantly except LDL-C level. Conclusions: Variables including TG, HDL-C, TC, fasting blood sugar, HbA1c, SBP, DBP, and hsCRP changed beneficially between groups. It seems that consumption of C. ficifolia and probiotic yogurt may help treatment of diabetic patients. PMID:26955460

  16. Dietary anthocyanin-rich Haskap phytochemicals inhibit postprandial hyperlipidemia and hyperglycemia in rats.

    PubMed

    Takahashi, Azusa; Okazaki, Yukako; Nakamoto, Aika; Watanabe, Sanae; Sakaguchi, Hirohide; Tagashira, Yukari; Kagii, Atsuko; Nakagawara, Shunji; Higuchi, Ohki; Suzuki, Takashi; Chiji, Hideyuki

    2014-01-01

    Haskap (Lonicera caerulea L.) fruit contains some bioactive phenolic phytochemicals, mainly cyanidin-3-glucoside (cy3-glc) and chlorogenic acid. The purpose of this study was to investigate the effects of anthocyanin-rich phenolic phytochemical (containing 13.2% anthocyanin) purified from a Haskap fruit (named Haskap phytochemical) on postprandial serum triglyceride and blood glucose levels. The Haskap phytochemical (containing cy 3-glc at 300 mg/kg of body weight) was administered orally to rats fasted for 24 h and 30 min later, a corn oil emulsion was administered to these rats. After the administration, serum triglyceride concentration was measured. An increase in serum triglyceride concentration and the AUC significantly lowered in the Haskap phytochemical-administered group than in the saline-administered group. To evaluate the effect of serum glucose levels, the Haskap phytochemical was orally administered to rats fasted for 24 h and sucrose solution (2 g/kg of body weight) was administered to these rats after 30 min. After the administration, blood glucose level was measured. The Haskap phytochemical significantly reduced the increase in blood glucose levels and AUC in the Haskap phytochemical-administered group than in the saline-administered group. Furthermore, to investigate the long-term effects of Haskap phytochemical intake, high-fat diet (HF diet) with 1.5% or 3.0% Haskap phytochemical was administered to rats for four weeks. The investigation of chronological changes in the serum components of the rats fed HF diets in addition to the administration of Haskap phytochemical showed that the increase in serum triglyceride concentrations, total cholesterol concentrations and blood glucose were significantly suppressed compared to the HF diet-fed control (HF-control). These results suggest that the decrease in postprandial blood lipids and blood glucose by short or long-term Haskap phytochemical ingestion is due to anthocyanin and other polyphenols contained in the Haskap phytochemical.

  17. Effects of renal sympathetic denervation on blood pressure and glycaemic control in patients with true resistant hypertension: results of Polish Renal Denervation Registry (RDN-POL Registry).

    PubMed

    Kądziela, Jacek; Prejbisz, Aleksander; Kostka-Jeziorny, Katarzyna; Dudek, Dariusz; Narkiewicz, Krzysztof; Sadowski, Jerzy; Lekston, Andrzej; Gziut, Aneta; Więcek, Andrzej; Buszman, Paweł; Kleinrok, Andrzej; Kochman, Janusz; Czarnecka, Danuta; Januszewicz, Andrzej; Witkowski, Adam

    2016-01-01

    The assessment of percutaneous renal sympathetic denervation (RDN) efficacy in patients with true-resistant hypertension (true-RH) in a newly established net of Polish centres (RDN-POL Registry). Forty-four patients with true-RH (23 men, mean age 52.3 years) with daytime systolic blood pressure (SBP) in ambulatory blood pressure monitoring (ABPM) ≥ 135 mm Hg, on ≥ three antihypertensive agents, including diuretic, underwent RDN and completed 12-month follow-up. Mean reductions of office SBP/diastolic blood pressure were -23.8/-10.0, -12.5/-4.6, and -12.6/-6.1 mm Hg at 3, 6, and 12 months, respectively (all significant except diastolic at 6 months). Diabetes was the only predictor of office SBP reduction at 6 months (OR 9.6, 95% CI 1.4-66.5, p < 0.05). Mean 24-h SBP change was -8.3 mm Hg at 6 months and -4.6 mm Hg at 12 months. Increased 2 h-glucose in oral glucose tolerance test was the only predictor of 24-h SBP reduction at 6 months (OR 1.24 for 10 mg/dL glucose increase, 95% CI 1.04-1.48, p < 0.05). At 12 months, 24-h SBP change predictors were: baseline office SBP (OR 4.93 for 10 mm Hg SBP increment, 95% CI 1.01-24.1, p < 0.05) and 2 h-glucose (OR 1.47, 95% CI 1.08-2.00, p < 0.05). In ABPM responders, significant reduction of 2 h glucose was found as compared to the non-responders (-45.8 vs. -7.7 mg/dL, p < 0.005). The RDN-POL Registry demonstrated moderate blood pressure decrease after RDN. The predictors of blood pressure reduction were diabetes, 2 h-glucose, and baseline office SBP. Analysis of ABPM responders indicates a probable positive impact of RDN on glycaemic control.

  18. The effect of a low-glycemic diet vs a standard diet on blood glucose levels and macronutrient intake in children with type 1 diabetes.

    PubMed

    Rovner, Alisha J; Nansel, Tonja R; Gellar, Lauren

    2009-02-01

    A low-glycemic index (GI) diet may lower postprandial hyperglycemia and decrease the risk for postabsorptive hypoglycemia in people with type 1 diabetes. However, insufficient evidence exists on the efficacy of a low-GI diet to support practice recommendations. The goal of this study was to examine the blood glucose response to and the macronutrient composition of low-GI meals vs usual meals consumed ad libitum at home in children with type 1 diabetes. A within-subject, crossover design was employed. Twenty-three participants were recruited between June and August 2006. Participants wore a continuous blood glucose monitoring system and completed diet diaries on 2 days. On 1 day, participants consumed their usual meal; on another day, participants consumed low-GI meals ad libidum. Order of the 2 days was counterbalanced. The mean GI was 34+/-6 for the low-GI day and 57+/-6 for the usual meal day (P<0.0001). During the low-GI day, mean daytime blood glucose values (125+/-28 mg/dL [6.9+/-1.5 nmol/L] vs 185+/-58 mg/dL [10.3+/-3.2 nmol/L], P<0.001), blood glucose area above 180 mg/dL (4,486+/-6,138 vs 26,707+/-25,038, P<0.006), and high blood glucose index (5.1+/-5.1 vs 13.6+/-7.6, P<0.001) were lower compared to the usual mean day. During the low-GI day, subjects consumed more fiber (24.5+/-12.3 g vs 14.5+/-6.1 g, P<0.007) and less fat (45.7+/-12.2 g vs 76.8+/-32.4 g, P<0.005); however, there were no differences in energy, carbohydrate, or protein intake. In this pilot study, a low-GI diet was associated with improved diet quality and a reduction in hyperglycemia.

  19. Does a reduced glucose intake prevent hyperglycemia in children early after cardiac surgery? a randomized controlled crossover study

    PubMed Central

    2012-01-01

    Introduction Hyperglycemia in children after cardiac surgery can be treated with intensive insulin therapy, but hypoglycemia is a potential serious side effect. The aim of this study was to investigate the effects of reducing glucose intake below standard intakes to prevent hyperglycemia, on blood glucose concentrations, glucose kinetics and protein catabolism in children after cardiac surgery with cardiopulmonary bypass (CPB). Methods Subjects received a 4-hour low glucose (LG; 2.5 mg/kg per minute) and a 4-hour standard glucose (SG; 5.0 mg/kg per minute) infusion in a randomized blinded crossover setting. Simultaneously, an 8-hour stable isotope tracer protocol was conducted to determine glucose and leucine kinetics. Data are presented as mean ± SD or median (IQR); comparison was made by paired samples t test. Results Eleven subjects (age 5.1 (20.2) months) were studied 9.5 ± 1.9 hours post-cardiac surgery. Blood glucose concentrations were lower during LG than SG (LG 7.3 ± 0.7 vs. SG 9.3 ± 1.8 mmol/L; P < 0.01), although the glycemic target (4.0-6.0 mmol/L) was not achieved. No hypoglycemic events occurred. Endogenous glucose production was higher during LG than SG (LG 2.9 ± 0.8 vs. SG 1.5 ± 1.1 mg/kg per minute; P = 0.02), due to increased glycogenolysis (LG 1.0 ± 0.6 vs. SG 0.0 ± 1.0 mg/kg per minute; P < 0.05). Leucine balance, indicating protein balance, was negative but not affected by glucose intake (LG -54.8 ± 14.6 vs. SG -58.8 ± 16.7 μmol/kg per hour; P = 0.57). Conclusions Currently recommended glucose intakes aggravated hyperglycemia in children early after cardiac surgery with CPB. Reduced glucose intake decreased blood glucose concentrations without causing hypoglycemia or affecting protein catabolism, but increased glycogenolysis. Trial registration Dutch trial register NTR2079. PMID:23031354

  20. Antioxidant Activity and Glucose Diffusion Relationship of Traditional Medicinal Antihyperglycemic Plant Extracts

    PubMed Central

    Asgharpour, Fariba; Pouramir, Mahdi; Khalilpour, Asieh; Asgharpour Alamdar, Sobgol; Rezaei, Mehrasa

    2013-01-01

    Plants with hypoglycemic properties are important in the treatment of diabetes. One of the mechanisms in reducing blood glucose is preventing the digestive absorption of glucose. The aim of this study was to evaluate the antioxidant properties of some traditional medicinal plants collected from different regions of Iran and their effects on glucose diffusion decrease. The amounts of phenolic compounds, total flavonoids, total polysaccharides, antioxidant activity and lipid peroxidation were determined respectively by folin ciocalteu, querceting, sulfuric acid, FRAP and thiobarbituric acid - reactive substanses (TBARS) in eleven confirmed traditional antihyperglycemic medicinal plants prepared at 50g/l concentrations using the boiling method. Phenolic compounds of Eucalyptus globules (100.8± 0.01 mg /g), total flavonoids content of Juglans regia (16.9± 0.01 mg /g) and total polysaccharide amount of Allium satirum (0.28± 0.05) were the highest. Significant relationship was observed between the polyphenols and flavonoids (p <0.05). The grape seed extract showed the highest antioxidant activity (133± 0.02 mg/g) together with decreased glucose diffusion as well as increased polyphenols (p <0.05), but the increase in antioxidant activity was not related to glucose diffusion. Antihyperglycemic plant extracts containing higher polyphenols showed more efficiently in vitro glucose diffusion decrease, but no significant relationship was observed between antioxidant activity increase and glucose diffusion. PMID:24551809

  1. Combined n-benzoyl-d-phenylalanine and metformin treatment reverses changes in the fatty acid composition of streptozotocin diabetic rats.

    PubMed

    Kumar, Natarajan Ashok; Pari, Leelavinothan

    2006-01-01

    The present investigation was carried out to evaluate the effect of N-benzoyl-D-phenylalanine (NBDP) and metformin on blood glucose, plasma insulin, and on the fatty acid composition of total lipids in the livers and kidneys of control and experimental diabetic rats. When compared with nondiabetic control rats, neonatal streptozotocin (nSTZ) diabetic rats showed a significant increase in blood glucose and decreased plasma insulin. Analysis of fatty acids revealed a significant increase in the concentration of palmitic, stearic, and oleic acids in liver and kidney, whereas linolenic and arachidonic acids were significantly decreased. In diabetic rats, the oral administration of combined NBDP/metformin for 6 wk decreased the high concentrations of palmitic, stearic, and oleic acids and elevated the low levels of linolenic and arachidonic acids. The results suggest that the NBDP/metformin combination exhibits both antidiabetic and antihyperlipidemic effects in nSTZ diabetic rats and prevents the fatty acid changes produced during diabetes.

  2. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    PubMed

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  3. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    PubMed

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  4. The Effect of Low-Carbohydrate Diet on Glycemic Control in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Wang, Li-Li; Wang, Qi; Hong, Yong; Ojo, Omorogieva; Jiang, Qing; Hou, Yun-Ying; Huang, Yu-Hua; Wang, Xiao-Hua

    2018-05-23

    In China, a low-fat diet (LFD) is mainly recommended to help improve blood glucose levels in patients with type 2 diabetes mellitus (T2DM). However, a low-carbohydrate diet (LCD) has been shown to be effective in improving blood glucose levels in America and England. A few studies, primarily randomized controlled trials, have been reported in China as well. Firstly, we designed two 'six-point formula' methods, which met the requirements of LCD and LFD, respectively. Fifty-six T2DM patients were recruited and randomly allocated to the LCD group ( n = 28) and the LFD group ( n = 28). The LCD group received education about LCD's six-point formula, while the LFD group received education about LFD's six-point formula. The follow-up time was three months. The indicators for glycemic control and other metabolic parameters were collected and compared between the two groups. Forty-nine patients completed the study. The proportions of calories from three macronutrients the patients consumed met the requirements of LCD and LFD. Compared to the LFD group, there was a greater decrease in HbA1c level in the LCD group (-0.63% vs. -0.31%, p < 0.05). The dosages of insulin and fasting blood glucoses (FBG) in the third month were lower than those at baseline in both groups. Compared with baseline values, body mass index (BMI) and total cholesterol (TC) in the LCD group were significantly reduced in the third month ( p < 0.05); however, there were no statistically significant differences in the LFD group. LCD can improve blood glucose more than LFD in Chinese patients with T2DM. It can also regulate blood lipid, reduce BMI, and decrease insulin dose in patients with T2DM. In addition, the six-point formula is feasible, easily operable, and a practical educational diet for Chinese patients with T2DM.

  5. [The blood glucose value not necessarily indicates correctly the cellular metabolic state].

    PubMed

    Simon, Kornél; Wittmann, István

    2017-03-01

    In clinical recommendations the normalized blood glucose level is declared as the main target in therapy of diabetes mellitus, i.e. the achievement of euglycemia is the main therapeutic goal. This approach suggests, that the normal blood glucose value is the marker of the normal carbohydrate metabolism (eumetabolism), and vice versa: hyperglycemia is associated with abnormal metabolism (dysmetabolism). However the question arises, whether identical blood glucose values do reflect the same intracellular biochemical mechanisms? On the basis of data published in the literature authors try to answer these questions by studying the relations between the short/longterm blood glucose level and the cellular metabolism in different clinical settings characterized by divergent pathophysiological parameters. The correlations between blood glucose level and cellular metabolism in development of micro-, and macroangiopathy, in the breakthrough phenomenon, as well as during administration of metabolic promoters, the discrepancies of relation between blood glucose values and cellular metabolism in type 1, and type 2 diabetes mellitus, furthermore association between blood glucose value and myocardial metabolism in acute and chronic stress were analyzed. Authors conclude, that the actual blood glucose values reveal the actual cellular metabolism in a very variable manner: neither euglycemia does mandatorily indicate eumetabolism (balance of cellular energy production), nor hyperglycemia is necessarily a marker of abnormal metabolic state (dept of cellular energy production). Moreover, at the same actual blood glucose level both the metabolic efficacy of the same organ may sharply vary, and the intracellular biochemical machinery could also be very different. In case of the very same longterm blood glucose level the metabolic state of the different organs could be very variable: some organs show an energetically balanced metabolism, while others produce a significant deficit. These inconsistencies between blood glucose level and cellular metabolism can be explained by the fact, that blood glucose value is a transport parameter, reflecting the actual steady state of glucose transport from the carbohydrate pools into the blood, and that from the blood into the tissues. Without knowing the speed of these transports of opposite direction, the blood glucose value per se can not reveal the quantitative and qualitative characteristics of cellular metabolism. Orv. Hetil., 2017, 158(11), 409-417.

  6. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus.

    PubMed

    Kashiwagi, Atsunori; Maegawa, Hiroshi

    2017-07-01

    The specific sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) inhibit glucose reabsorption in proximal renal tubular cells, and both fasting and postprandial glucose significantly decrease because of urinary glucose loss. As a result, pancreatic β-cell function and peripheral insulin action significantly improve with relief from glucose toxicity. Furthermore, whole-body energy metabolism changes to relative glucose deficiency and triggers increased lipolysis in fat cells, and fatty acid oxidation and then ketone body production in the liver during treatment with SGLT2 inhibitors. In addition, SGLT2 inhibitors have profound hemodynamic effects including diuresis, dehydration, weight loss and lowering blood pressure. The most recent findings on SGLT2 inhibitors come from results of the Empagliflozin, Cardiovascular Outcomes and Mortality in Type 2 Diabetes trial. SGLT2 inhibitors exert extremely unique and cardio-renal protection through metabolic and hemodynamic effects, with long-term durability on the reduction of blood glucose, bodyweight and blood pressure. Although a site of action of SGLT2 inhibitors is highly specific to inhibit renal glucose reabsorption, whole-body energy metabolism, and hemodynamic and renal functions are profoundly modulated during the treatment of SGLT2 inhibitors. Previous studies suggest multifactorial clinical benefits and safety concerns of SGLT2 inhibitors. Although ambivalent clinical results of this drug are still under active discussion, the present review summarizes promising recent evidence on the cardio-renal and metabolic benefits of SGLT2 inhibitors in the treatment of type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  7. Hypertonic Lactate to Improve Cerebral Perfusion and Glucose Availability After Acute Brain Injury.

    PubMed

    Carteron, Laurent; Solari, Daria; Patet, Camille; Quintard, Hervé; Miroz, John-Paul; Bloch, Jocelyne; Daniel, Roy T; Hirt, Lorenz; Eckert, Philippe; Magistretti, Pierre J; Oddo, Mauro

    2018-06-19

    Lactate promotes cerebral blood flow and is an efficient substrate for the brain, particularly at times of glucose shortage. Hypertonic lactate is neuroprotective after experimental brain injury; however, human data are limited. Prospective study (clinicaltrials.gov NCT01573507). Academic ICU. Twenty-three brain-injured subjects (13 traumatic brain injury/10 subarachnoid hemorrhage; median age, 59 yr [41-65 yr]; median Glasgow Coma Scale, 6 [3-7]). Three-hour IV infusion of hypertonic lactate (sodium lactate, 1,000 mmol/L; concentration, 30 µmol/kg/min) administered 39 hours (26-49 hr) from injury. We examined the effect of hypertonic lactate on cerebral perfusion (using transcranial Doppler) and brain energy metabolism (using cerebral microdialysis). The majority of subjects (13/23 = 57%) had reduced brain glucose availability (baseline pretreatment cerebral microdialysis glucose, < 1 mmol/L) despite normal baseline intracranial pressure (10 [7-15] mm Hg). Hypertonic lactate was associated with increased cerebral microdialysis lactate (+55% [31-80%]) that was paralleled by an increase in middle cerebral artery mean cerebral blood flow velocities (+36% [21-66%]) and a decrease in pulsatility index (-21% [13-26%]; all p < 0.001). Cerebral microdialysis glucose increased above normal range during hypertonic lactate (+42% [30-78%]; p < 0.05); reduced brain glucose availability correlated with a greater improvement of cerebral microdialysis glucose (Spearman r = -0.53; p = 0.009). No significant changes in cerebral perfusion pressure, mean arterial pressure, systemic carbon dioxide, and blood glucose were observed during hypertonic lactate (all p > 0.1). This is the first clinical demonstration that hypertonic lactate resuscitation improves both cerebral perfusion and brain glucose availability after brain injury. These cerebral vascular and metabolic effects appeared related to brain lactate supplementation rather than to systemic effects.

  8. Changes in glucose-elicited blood metabolite responses following weight loss and long term weight maintenance in obese individuals with impaired glucose tolerance.

    PubMed

    Geidenstam, Nina; Danielsson, Anders P H; Spégel, Peter; Ridderstråle, Martin

    2016-03-01

    Weight loss improves insulin sensitivity and glucose tolerance in obese subjects with impaired glucose tolerance (IGT), but the long term dynamic effects on blood metabolites other than glucose during an oral glucose tolerance test (OGTT), are largely unknown. Here, we studied changes in OGTT-elicited metabolite patterns in obese subjects during a diet-induced weight loss study. Blood samples from 14 obese individuals with IGT were collected at 0, 30 and 120 min during a standard 75 g OGTT at baseline (BMI 44 ± 2 kg/m(2)), after weight loss (BMI 36 ± 2 kg/m(2)) and after weight maintenance (BMI 35 ± 2 kg/m(2)). Serum metabolite levels were analyzed by gas chromatography/mass spectrometry and compared to a lean glucose tolerant group. Changes in the OGTT-elicited metabolite patterns occurred differentially during weight loss and weight maintenance. Enhanced suppression of aromatic amino acids were associated with decreased insulinogenic index observed after weight loss (tyrosine: r=0.72, p=0.013; phenylalanine: r=0.63, p=0.039). The OGTT-elicited suppression and/or lack of increase in levels of glutamate, glutamine, isoleucine, leucine, and the fatty acids laurate, oleate and palmitate, improved towards the lean profile after weight maintenance, paralleling an improvement in glucose tolerance. The greater heterogeneity in the response before and after weight loss in the obese, compared to lean subjects, was markedly reduced after weight maintenance. Diet-induced weight loss followed by weight maintenance results in changes in metabolite profiles associated with either hepatic insulin sensitivity or peripheral glucose tolerance. Our results highlight the importance of evaluating the effects of weight loss and weight maintenance separately. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of guar on second-meal glucose tolerance in normal man.

    PubMed

    Trinick, T R; Laker, M F; Johnston, D G; Keir, M; Buchanan, K D; Alberti, K G

    1986-07-01

    Whole body glucose turnover and absorption of a 50 g glucose drink was studied in six healthy volunteers on two occasions, 4 h after a 'breakfast' of 50 g of glucose, mixed on one occasion with 20 g of guar gum. Plasma glucose concentrations were significantly reduced with guar gum compared with those obtained without guar gum (P less than 0.0001). Whole body glucose turnover studied by an intravenous primed dose constant infusion technique using D-[3-3H]glucose showed no significant difference between the two groups: 353 +/- 15 mmol with guar and 350 +/- 9 mmol without guar. Total oral glucose absorption, followed with a D-[1-14C]glucose tracer, was significantly decreased by guar treatment, being 219 +/- 3 mmol with guar and 239 +/- 5 mmol without guar (P less than 0.05). Serum insulin levels were lowered by guar treatment (P less than 0.05) while those of C-peptide, gastric inhibitory polypeptide, glucagon, cortisol and pancreatic polypeptide did not differ significantly. Blood lactate concentrations were raised in the guar treated group (P less than 0.05) whereas pyruvate, alanine, glycerol and 3-hydroxybutyrate concentrations did not differ significantly. These results support the suggestion that guar improves second-meal tolerance to glucose by decreasing absorption.

  10. A Study on the Correlation between Cord Blood Glucose Level and the Apgar Score.

    PubMed

    Khan, Kalyan; Saha, Ashis Ranjan

    2013-02-01

    The study of the biochemical parameters of cord blood acts as a mirror, which usually reflects the neonatal status. The widely used system for the evaluation of a neonate is the Apgar score. There is no comprehensive published data which has established the association between the cord blood glucose level and the Apgar score. Similarly, there is also no well accepted reference range of the cord blood glucose level. The main objectives of the present study was to ascertain any adverse effects of an abnormal cord blood glucose level on the neonatal status and to find out a standard reference level of glucose in cord blood. The cord blood glucose estimation was done by using the glucose oxidase peroxidase method and the statistical analysis was performed by using the SPSS, version 16 software. In the present study, the cord blood glucose level was found to have no correlation with the Apgar scores which were calculated at both one minute and five minutes after birth. It was also found that for the foetus to be free from any obvious complication, the cord blood glucose level had to be around 87 mg/dl. The fluctuations in the maternal glucose levels are weakly associated with the glucose level in the cord blood.

  11. Prognostic value of low blood glucose at the presentation of E. coli bacteremia.

    PubMed

    Alamgir, Shamsuddin; Volkova, Natalia B; Peterson, Michael W

    2006-11-01

    Septicemia is the tenth leading cause of death in the United States, and Escherichia coli is the most common isolate in blood cultures. Low blood glucose is a known complication of sepsis. The prognostic role of low blood glucose in E. coli bacteremia is unknown. The study's objective was to identify the incidence of low blood glucose at the presentation of E. coli bacteremia and determine its influence on prognosis and outcome. A retrospective cohort study was conducted in university-affiliated community hospitals. Subjects were consecutive patients diagnosed with E. coli bacteremia between 1997 and 2003. We identified 1060 patients with documented E. coli bacteremia. We excluded 105 patients who were younger than 18 years old or pregnant. We recorded demographic characteristics, discharge diagnosis, and outcome. Among the 955 patients with E. coli bacteremia, the average age was 64+/-19.4 years. Overall, 4.6% had documented low blood glucose (blood glucose <70 mg/dL) at presentation. The incidence of low blood glucose was the same in diabetic and nondiabetic patients. Patients with low blood glucose had a 4.7 times higher risk of death compared to patients with non-low blood glucose. Race, age, sex, and diabetes had no influence on survival. Gastrointestinal and genitourinary sources for E. coli bacteremia were more commonly associated with low blood glucose (P <.001). The study was limited to E. coli-positive blood cultures and to the one hospital system. Low blood glucose is present at the onset of E. coli bacteremia in 4.6% of patients. This represents a potentially large number of patients because E. coli is the most common blood culture isolate. Low blood glucose predicts poor outcome, especially in patients with abnormal hepatic and renal function. Low blood glucose should be considered an early clinical sign of E. coli bacteremia and aggressive therapy should be instituted to potentially save lives.

  12. Reversal of the toxic effects of cachectin by concurrent insulin administration.

    PubMed

    Fraker, D L; Merino, M J; Norton, J A

    1989-06-01

    Rats treated with recombinant human tumor necrosis factor-cachectin, 100 micrograms/kg ip twice daily for 5 consecutive days, had a 56% decrease in food intake, a 54% decrease in nitrogen balance, and a 23-g decrease in body weight gain vs. saline-treated controls. Concurrent neutral protamine hagedorn insulin administration of 2 U/100 g sc twice daily reversed all of these changes to control levels without causing any treatment deaths. The improvement seen with insulin was dose independent. Five days of cachectin treatment caused a severe interstitial pneumonitis, periportal inflammation in the liver, and an increase in wet organ weight in the heart, lungs, kidney, and spleen. Concurrent insulin treatment led to near total reversal of these histopathologic changes. Cachectin treatment did not significantly change blood glucose levels from control values of 130-140 mg/dl, but insulin plus cachectin caused a significant decrease in blood glucose from 1 through 12 h after injection. Administration of high-dose insulin can near totally reverse the nutritional and histopathologic toxicity of sublethal doses of cachectin in rats.

  13. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1.

    PubMed

    Luo, Ailing; Yan, Haibo; Liang, Jichao; Du, Chunyuan; Zhao, Xuemei; Sun, Lijuan; Chen, Yong

    2017-09-05

    Abnormal activation of hepatic gluconeogenesis is a major contributor to fasting hyperglycemia in type 2 diabetes; however, the potential role of microRNAs in gluconeogenesis remains unclear. Here, we showed that hepatic expression levels of microRNA-21 (miR-21) were decreased in db/db and high-fat diet (HFD)-induced diabetic mice. Adenovirus-mediated overexpression of miR-21 decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and inhibited glucose production in primary mouse hepatocytes. Silencing of miR-21 reversed this effect. Overexpression of miR-21 in the livers of db/db and HFD-induced mice was able to suppress hepatic gluconeogenesis, subsequently decreasing blood glucose levels and improving glucose and insulin intolerance. Furthermore, overexpression of miR-21 in primary mouse hepatocytes and mouse livers decreased the protein levels of FOXO1 and increased hepatic insulin sensitivity. By contrast, silencing of miR-21 increased the protein levels of FOXO1, subsequently leading to a decrease in insulin sensitivity and impaired glucose intolerance in C57BL/6 mice fed with high-fat diet for 4weeks. Finally, we confirmed that FOXO1 was a potential target of miR-21. These results suggest that miR-21 is a critical regulator in hepatic gluconeogenesis and may provide a novel therapeutic target for treating insulin resistance and type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Maternal Circadian Eating Time and Frequency Are Associated with Blood Glucose Concentrations during Pregnancy.

    PubMed

    Loy, See Ling; Chan, Jerry Kok Yen; Wee, Poh Hui; Colega, Marjorelee T; Cheung, Yin Bun; Godfrey, Keith M; Kwek, Kenneth; Saw, Seang Mei; Chong, Yap-Seng; Natarajan, Padmapriya; Müller-Riemenschneider, Falk; Lek, Ngee; Chong, Mary Foong-Fong; Yap, Fabian

    2017-01-01

    Synchronizing eating schedules to daily circadian rhythms may improve metabolic health, but its association with gestational glycemia is unknown. This study examined the association of maternal night-fasting intervals and eating episodes with blood glucose concentrations during pregnancy. This was a cross-sectional study within a prospective cohort in Singapore. Maternal 24-h dietary recalls, fasting glucose, and 2-h glucose concentrations were ascertained at 26-28 wk gestation for 1061 women (aged 30.7 ± 5.1 y). Night-fasting intervals were based on the longest fasting duration during the night (1900-0659). Eating episodes were defined as events that provided >50 kcal, with a time interval between eating episodes of ≥15 min. Multiple linear regressions with adjustment for confounders were conducted. Mean ± SD night-fasting intervals and eating episodes per day were 9.9 ± 1.6 h and 4.2 ± 1.3 times/d, respectively; fasting and 2-h glucose concentrations were 4.4 ± 0.5 and 6.6 ± 1.5 mmol/L, respectively. In adjusted models, each hourly increase in night-fasting intervals was associated with a 0.03 mmol/L decrease in fasting glucose (95% CI: -0.06, -0.01 mmol/L), whereas each additional daily eating episode was associated with a 0.15 mmol/L increase in 2-h glucose (95% CI: 0.03, 0.28 mmol/L). Conversely, night-fasting intervals and daily eating episodes were not associated with 2-h and fasting glucose, respectively. Increased maternal night-fasting intervals and reduced eating episodes per day were associated with decreased fasting glucose and 2-h glucose, respectively, in the late-second trimester of pregnancy. This points to potential alternative strategies to improve glycemic control in pregnant women. This study was registered at www.clinicaltrials.gov as NCT01174875. © 2017 American Society for Nutrition.

  15. Maternal circadian eating time and frequency are associated with blood glucose levels during pregnancy

    PubMed Central

    Loy, See Ling; Chan, Jerry Kok Yen; Wee, Poh Hui; Colega, Marjorelee T.; Cheung, Yin Bun; Godfrey, Keith M.; Kwek, Kenneth; Saw, Seang Mei; Chong, Yap-Seng; Natarajan, Padmapriya; Müller-Riemenschneider, Falk; Lek, Ngee; Chong, Mary Foong-Fong; Yap, Fabian

    2017-01-01

    Background Synchronizing eating schedules with daily circadian rhythms may improve metabolic health, but its association with gestational glycemia is unknown. Objective This study examined the association of maternal night-fasting intervals and eating episodes with blood glucose levels during pregnancy. Methods This was a cross-sectional study within a prospective cohort in Singapore. Maternal 24-hour dietary recalls, fasting glucose and 2-hour glucose concentrations were ascertained at 26-28 weeks’ gestation for 1061 women (age 30.7 ± 5.1 years). Night-fasting intervals were based on the longest fasting duration during the night (1900-0659h). Eating episodes were defined as events which provided >50 kcal, with a time interval between eating episodes of at least 15 minutes. Multiple linear regressions with adjustment for confounders were conducted. Results Mean ± standard deviation night-fasting intervals and eating episodes per day were 9.9 ± 1.6 hours and 4.2 ± 1.3 times per day, respectively; fasting and 2-hour glucose concentrations were 4.4 ± 0.5 and 6.6 ± 1.5 mmol/L, respectively. In adjusted models, each hourly increase in night-fasting interval was associated with a 0.03 mmol/L decrease in fasting glucose (95% CI: -0.06, -0.01 mmol/L), while each additional daily eating episode was associated with a 0.15 mmol/L increase in 2-hour glucose (95% CI: 0.03, 0.28 mmol/L). Conversely, night-fasting intervals and daily eating episodes were not associated with 2-hour and fasting glucose, respectively. Conclusions Increased maternal night-fasting intervals and reduced eating episodes per day were associated with decreased fasting glucose and 2-hour glucose, respectively, in the late-second trimester of pregnancy. This points to potential alternative strategies to improve glycemic control in pregnant women. This study was registered at www.clinicaltrials.gov as NCT01174875. PMID:27798346

  16. Effects of vanadium supplementation on performance, some plasma metabolites and glucose metabolism in Mahabadi goat kids.

    PubMed

    Zarqami, A; Ganjkhanlou, M; Zali, A; Rezayazdi, K; Jolazadeh, A R

    2018-04-01

    This experiment was conducted to investigate the effects of vanadium (V) supplementation on performance, some plasma metabolites (cholesterol and triglycerides) and glucose metabolism in Mahabadi goat kids. Twenty-eight male kids (15 ± 2 kg body weight) were fed for 14 weeks in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 1, 2, and 3 mg V as vanadyl sulfate/animal/daily. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. Dry matter intake did not change by V supplementation, but adding V quadraticaly improved feed efficiency (p = .03) and tended to increase average daily gain (Quadratic, p = .09). Blood metabolites were unaffected by V supplementation, except for concentration of glucose in plasma, which decreased linearly as supplemental V level increased (p = .02). Plasma glucose concentrations at 15, 30, 45 and 60 min after glucose infusion were decreased in a quadratic fashion in response to increasing supplemental V level (p < .01). The IVGTT indicated that the kids supplemented with 2 mg V had higher glucose clearance rate (K) and lower glucose half-life (T ½ ; p < .05). Glucose area under the response curve from 0 to 60 min and 0 to 180 min after glucose infusion were decreased linearly (p = .04) by supplemental V. The results suggested that moderate supplementation of V may improve glucose utilization and feed efficiency in fattening kids. © 2017 Blackwell Verlag GmbH.

  17. Evaluation of the agreement among three handheld blood glucose meters and a laboratory blood analyzer for measurement of blood glucose concentration in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Mitchell, Mark A; Schuster, Patricia J; Freeman, Diana; Sanchez-Migallon Guzman, David; Tully, Thomas N

    2009-02-01

    To determine the degree of agreement between 3 commercially available point-of-care blood glucose meters and a laboratory analyzer for measurement of blood glucose concentrations in Hispaniolan Amazon parrots (Amazona ventralis). 20 healthy adult Hispaniolan Amazon parrots. A 26-gauge needle and 3-mL syringe were used to obtain a blood sample (approx 0.5 mL) from a jugular vein of each parrot. Small volumes of blood (0.6 to 1.5 microL) were used to operate each of the blood glucose meters, and the remainder was placed into lithium heparin microtubes and centrifuged. Plasma was harvested and frozen at -30 degrees C. Within 5 days after collection, plasma samples were thawed and plasma glucose concentrations were measured by means of the laboratory analyzer. Agreement between pairs of blood glucose meters and between each blood glucose meter and the laboratory analyzer was evaluated by means of the Bland-Altman method, and limits of agreement (LOA) were calculated. None of the results of the 3 blood glucose meters agreed with results of the laboratory analyzer. Each point-of-care blood glucose meter underestimated the blood glucose concentration, and the degree of negative bias was not consistent (meter A bias, -94.9 mg/dL [LOA, -148.0 to -41.7 mg/dL]; meter B bias, -52 mg/dL [LOA, -107.5 to 3.5 mg/dL]; and meter C bias, -78.9 mg/dL [LOA, -137.2 to -20.6 mg/dL]). On the basis of these results, use of handheld blood glucose meters in the diagnosis or treatment of Hispaniolan Amazon parrots and other psittacines cannot be recommended.

  18. Acute intraperitoneal administration of taurine decreases the glycemia and reduces food intake in type 1 diabetic rats.

    PubMed

    Gomez, Rosane; Caletti, Greice; Arbo, Bruno Dutra; Hoefel, Ana Lúcia; Schneider, Ricardo; Hansen, Alana Witt; Pulcinelli, Rianne Remus; Freese, Luana; Bandiera, Solange; Kucharski, Luiz Carlos; Barros, Helena Maria Tanhauser

    2018-07-01

    Taurine, an amino acid with antioxidant and osmoregulatory properties, has been studied for its possible antidiabetic properties in type 1 and type 2 diabetic animals. In type 2 diabetic mice, taurine decreases blood glucose through increased insulin secretion and insulin receptor sensitization. However, insulin is absent in type 1 diabetic individuals. The aim of this study was to evaluate the effects of taurine on parameters related to the energy balance that could explain the metabolic action of this amino acid in type 1 diabetic rats. Control and streptozotocin-induced diabetic rats received saline or taurine (100 mg/kg/day), intraperitoneally, for 30 days. Parameters such as palatable food intake, gastrointestinal transit rate, serum glucose, insulin, leptin, and glucagon levels were measured 60 min after the last taurine administration. Liver, kidneys, heart, and retroperitoneal fat were dissected and weighted. Glycogen levels were measured in the liver and soleus muscle. Our results showed that acute taurine administration decreased glycemia. It also decreased food intake in diabetic rats, without affecting other metabolic parameters. Altogether, our results suggest that in type 1 diabetic rats, taurine decreases blood glucose by a non-insulin-dependent mechanism. Due to the safety profile of taurine, and its effect on glycemia, this amino acid may help to design new drugs to add benefit to insulin therapy in type 1 diabetic individuals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Non-invasive biosensor and wilreless interrogating system for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Saukesi, K.

    2002-11-01

    Hypoglycemia - abnormal decrease in blood sugar - is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chiralit of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin.It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or laptop computer.

  20. Educational intervention together with an on-line quality control program achieve recommended analytical goals for bedside blood glucose monitoring in a 1200-bed university hospital.

    PubMed

    Sánchez-Margalet, Víctor; Rodriguez-Oliva, Manuel; Sánchez-Pozo, Cristina; Fernández-Gallardo, María Francisca; Goberna, Raimundo

    2005-01-01

    Portable meters for blood glucose concentrations are used at the patients bedside, as well as by patients for self-monitoring of blood glucose. Even though most devices have important technological advances that decrease operator error, the analytical goals proposed for the performance of glucose meters have been recently changed by the American Diabetes Association (ADA) to reach <5% analytical error and <7.9% total error. We studied 80 meters throughout the Virgen Macarena Hospital and we found most devices with performance error higher than 10%. The aim of the present study was to establish a new system to control portable glucose meters together with an educational program for nurses in a 1200-bed University Hospital to achieve recommended analytical goals, so that we could improve the quality of diabetes care. We used portable glucose meters connected on-line to the laboratory after an educational program for nurses with responsibilities in point-of-care testing. We evaluated the system by assessing total error of the glucometers using high- and low-level glucose control solutions. In a period of 6 months, we collected data from 5642 control samples obtained by 14 devices (Precision PCx) directly from the control program (QC manager). The average total error for the low-level glucose control (2.77 mmol/l) was 6.3% (range 5.5-7.6%), and even lower for the high-level glucose control (16.66 mmol/l), at 4.8% (range 4.1-6.5%). In conclusion, the performance of glucose meters used in our University Hospital with more than 1000 beds not only improved after the intervention, but the meters achieved the analytical goals of the suggested ADA/National Academy of Clinical Biochemistry criteria for total error (<7.9% in the range 2.77-16.66 mmol/l glucose) and optimal total error for high glucose concentrations of <5%, which will improve the quality of care of our patients.

  1. Effects of Onion (Allium cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    PubMed Central

    Kim, Sun-Ho; Jo, Sung-Hoon; Kwon, Young-In; Hwang, Jae-Kwan

    2011-01-01

    Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to the upper and middle parts of intestine, the activities of sucrase in the lower parts of intestine remained significantly higher after two weeks of EOS treatment. These results indicate that EOS may improve exaggerated postprandial spikes in blood glucose and glucose homeostasis since it inhibits intestinal sucrase and thus delays carbohydrate absorption, although clinical trials are needed. PMID:21747704

  2. [Effect of CPAP therapy on dynamic glucose level in OSAHS patients with newly diagnosed T2DM].

    PubMed

    Zhao, Lijun; Hui, Peilin; Xie, Yuping; Hou, Yiping; Wei, Xiaoquan; Ma, Wei; Wang, Jinfeng; Zhou, Liya; Zhang, Wenjuan

    2015-11-24

    To investigate the characteristic of dynamic glucose level in obstructive sleep apnea-hypopnea syndrome (OSAHS) patients with newly diagnosed type 2 diabetes mellitus (T2DM) and to evaluate the effect of continuous positive airway pressure (CPAP) treatment on the glucose level. A total of 65 cases of patients with T2DM who were newly diagnosed by oral glucose tolerance test (OGTT) were enrolled from April 2014 to April 2015 in Gansu Provincial Hospital, and divided into simple T2DM group (n=30) and OSAHS with T2DM group (n=35) according to aponea-hypopnea index (AHI) which was monitored by polysomnography (PSG). Their general clinical data were collected, and glucose level of different periods was monitored by continuous glucose moitoring system (CGMS). Changes of glucose level were compared between two groups before and after CPAP treatment. Age, gender proportion, BMI, smoking and drinking history, glycosylated hemoglobin (HbA1c) and blood lipid profile had no significantly difference between two groups. Longer neck circumstance and higher waist-hip ration (WHR), higher systolic blood pressure and diastolic blood pressure, higher fasting plasma glucose (FPG) [(9.4 ± 3.2) vs (7.3 ± 2.1) mmol/L, P=0.028] and fasting insulin (FINS) [(19.2 ± 8.7) vs (11.1 ± 4.7) mU/L, P=0.044] level, more serious homeostasis model assessment insulin resistance (HOMA-IR) were found in OSAHS patients with T2DM when compared to patients in simple T2DM group. The average dynamic glucose level of 24 hours, daytime, nocturnal and sleep time in OSAHS with T2DM group were higher than that in the simple T2DM group (all P<0.05). The alarming times when the average dynamic glucose level of nocturnal time was more than 0.1 mmol·L⁻¹·min⁻¹ in T2DM with OSAHS was more than that in control group (P=0.001). After treatment of CPAP, the level of AHI [(5.9 ± 3.6) vs (56.7 ± 11.4) times/h, P<0.001], average dynamic glucose level of 24 hours, day, nocturnal and sleep time were obviously decreased (all P<0.05); lowest saturation oxygen (LSpO₂) was significantly increased [(92.3 ± 3.7)% vs (81.5 ± 20.2)%, P<0.001]; the alarming times and HOMA-IR were obviously decreased (P=0.019, 0.043). According to multiple linear regression analysis, the AHI (β=0.736, P<0.001) in OSAHS with T2DM group was positively related to the average dynamic glucose level during sleep time, but the LSpO₂(β=-0.889, P<0.001) was negatively correlated. OSAHS patients with newly diagnosed T2DM have higher glucose level than that in simple T2DM patients, and CPAP therapy can obviously decrease the glucose level in newly diagnosed T2DM patients with OSAHS. AHI and LSpO₂may influence the average dynamic glucose level during sleep time.

  3. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, L.J.; Goeden, H.; Roth, S.H.

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and inmore » the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.« less

  4. Blood pressure in Warmblood horses before and during a euglycemic-hyperinsulinemic clamp.

    PubMed

    Nostell, Katarina E A; Lindåse, Sanna S; Bröjer, Johan T

    2016-10-20

    Insulin resistance (IR) in humans is related to hypertension and impaired vasodilation. Insulin administration has been shown to lower blood pressure both in insulin resistant as well as in insulin sensitive individuals. The aim of the study was to investigate the association between insulin sensitivity and alterations in blood pressure in healthy horses before and after a euglycemic-hyperinsulinemic clamp (EHC). A 3-h EHC was performed in 13 healthy horses (11 mares, 2 geldings). Blood samples for measurement of plasma glucose and insulin were collected before the start of the EHC, every 10 min during the EHC and immediately after the EHC. Mean, systolic- and diastolic blood pressure was measured before and during the final 10 min of the EHC using an indirect high-definition oscillometric monitor (HDO, horse model) applied to the middle of the coccygeal artery. Five consecutive measurements were made in each horse and on each occasion. Insulin and glucose data from the EHC were used to calculate the mean rate of glucose disposal per unit of insulin during steady state (M/I ratio). Insulin resistance was defined as a M/I ratio <5 mg/kg/min/mUL (Lindåse et al. in Am J Vet Res 77:300-309, 2016). Insulin administration decreased systolic, diastolic and mean arterial pressure in all horses. The M/I ratio for all horses was negatively correlated with the decrease in systolic blood pressure (r 2  = 0.55, P = 0.004) and mean arterial pressure (r 2  = 0.31, P = 0.048) but not diastolic blood pressure (r 2  = 0.12, P = 0.26). Eight horses were defined as insulin resistant (IR) and five horses had normal insulin sensitivity. The five horses with normal insulin sensitivity showed a greater decrease in systolic blood pressure (-17.0 ± 7.4 vs. -3.4 ± 4.6 mmHg, P = 0.001) and MAP (19.2 ± 14.7 vs. 6.9 ± 8.7 mmHg, P = 0.04) than IR horses. There was no difference in the decrease in diastolic blood pressure between groups (16 ± 12.8 vs. 8.9 ± 12.1 mmHg, P = 0.17). This study indicates that there is a relationship between insulin sensitivity and systolic and MAP in horses. However, studies on a larger number of horses are needed to confirm this association.

  5. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    PubMed

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to <7.0%, ≥7.0 to <8.0%, ≥8.0 to <9.0%, ≥9.0 to <10.0% and ≥10%). The correlation between HbA1c level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  < 0.01). The standard deviation increased with increases in HbA1c (P trend  < 0.01). The mean amplitude of glycemic excursions did not vary significantly with HbA1c. The levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  6. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk?

    PubMed

    Summers, L K; Samra, J S; Frayn, K N

    1999-11-01

    The insulin resistant state is a major risk factor for coronary artery disease. This increased risk is likely to be due to associated lipid and coagulation abnormalities rather than just abnormalities in glucose metabolism or hyperinsulinaemia alone. Exaggerated postprandial lipaemia is a well-recognised associate of insulin resistance and postprandial hypertriglyceridaemia is particularly important in the development of coronary atheroma. It seems likely that insulin is one of the hormonal regulators of adipose tissue and skeletal muscle blood flow. The reduced blood flow and blunting of the postprandial rise of peripheral blood flow in insulin resistance may decrease chylomicron-triglyceride delivery to muscle in subjects with insulin resistance. This, in turn, will lead to increased production of atherogenic particles. We propose that impaired postprandial vasodilation, already recognised as a key feature of glucose intolerance, is also the cause of impaired lipid metabolism in insulin resistant subjects and predisposes them to cardiovascular disease.

  7. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury of hippocampus in IUGR offspring rats.« less

  8. [Assessment of chronic glucose metabolism disorders coexisting with respiratory failure in non-critical ill patients hospitalized with lower respiratory tract infections].

    PubMed

    Sobocińska, Magdalena Barbara; Loba, Jerzy

    2015-01-01

    Lungs are the target organ in chronic hyperglycemia, but its large reserves causes a subclinical course of these changes. Given the results of other researchers indicating reduced active surface of gas exchange and pulmonary capillary damage, it can be assumed that diabetes and other hyperglycemic states diminish these reserves and impair effectiveness of respiratory gas exchange during pneumonia. So it is plausible to observe coexistence of glucose metabolism disorders and respiratory failure in patients hospitalized with lower respiratory tract infection. An observational study was conducted on 130 patients hospitalized with bacteriologically confirmed pneumonia. 63 patients suffering from chronic glucose metabolism disorders (A) and 67 randomly selected patients in control group (B) were observed on laboratory and clinical findings. There was no significant difference in prevalence of acute respiratory failure, although in the study group a slightly greater number of patients diagnosed with acute respiratory failure was observed. There was a significantly greater number of patients with previously confirmed chronic respiratory failure using long-term oxygen theraphy in A group (p = 0.029). The B patients with average blood glucose level > 108 mg/dl had significantly lower partial pressure of oxygen (PaO2)(gIc ≤ 108: 58.6 +/- 9.8; glc > 108: 51.7 +/- 11.1; p = 0.042). There was a statistically significant negative correlation of the average blood glucose level and PaO2 in the control group (p = 0.0152) and a significant inverse association between the average blood glucose level and the partial pressure of oxygen in patients without COPD belonging to the control group (p = 0.049). Respiratory failure is frequent in patients hospitalized with pneumonia. In patients without chronic glucose metabolism disorders with blood glucose level rising the oxygen tension decreases The association is stronger in patients without COPD.

  9. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults.

    PubMed

    Toxqui, Laura; Vaquero, M Pilar

    2016-06-28

    Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

  10. Prevalence, awareness, treatment and control of diabetes among elderly persons in an urban slum of delhi.

    PubMed

    Singh, Arvind Kumar; Mani, Kalaivani; Krishnan, Anand; Aggarwal, Praveen; Gupta, Sanjeev Kumar

    2012-10-01

    The increasing proportion of elderly persons is contributing to an increase in the prevalence of diabetes. The residents of urban slums are more vulnerable due to poverty and lack of access to health care. To estimate the prevalence of diabetes in elderly persons in an urban slum and to assess their awareness, treatment and control of this condition. All persons aged 60 years and above, residing in an urban slum of Delhi, were included in this cross-sectional community- based study. Data were collected on sociodemographic variables. The participants' awareness and treatment of diabetes was recorded. Their fasting blood sugar was estimated using an automated glucometer. Diabetes was diagnosed if fasting blood glucose was ≥126 mg/dL, or if the participant was taking treatment for diabetes. Impaired fasting blood glucose was diagnosed if fasting blood glucose was 110-125 mg/dL. Among the 474 participants studied, the prevalence of diabetes was estimated to be 18.8% (95% CI 15.3-21.5). It decreased with increasing age, and was higher among women. The prevalence of impaired fasting blood glucose was 19.8% (95% CI 16.3-23.7). It was higher among women. One-third of the diabetic participants were aware of their condition; two-thirds of these were on treatment and three-fourths of those on treatment had controlled fasting blood sugar level. The awareness, treatment and control were better among women. Diabetes is common among elderly persons in urban slums. Its magnitude and low awareness warrant effective public health interventions for their treatment and control.

  11. Repaglinide as monotherapy in Type 2 diabetes.

    PubMed

    Gomis, R

    1999-01-01

    The action of repaglinide, a carbamoylmethyl benzoic acid derivative, mimics the physiological insulin secretion that is deficient in Type 2 diabetes mellitus. Repaglinide stimulates insulin release from beta-cells only in the presence of glucose. Two placebo-controlled studies were performed to establish the effective dose range of repaglinide. In one study, repaglinide (0.25-4.0 mg preprandially) caused a dose-dependent decrease in blood glucose and a non-dose-dependent increase in insulin over 4 weeks (all doses p < 0.001 vs. placebo). In the second study, repaglinide (0.25-8.0 mg preprandially) was titrated over 6 weeks to obtain the optimum response (fasting plasma glucose < 8.9 mmol/L). The titration period was followed by a 12-week dose-maintenance period. At the end of the study, repaglinide had decreased fasting plasma glucose by 3.4 mmol/L (p < 0.05) and 2-h postprandial blood glucose by 5.8 mmol/L (p < 0.001) versus placebo. Glycated haemoglobin (HbA1c) decreased significantly from 8.5% to 7.9% in the repaglinide group and increased significantly from 8.1% to 9.2% in the placebo group (p < 0.001 between groups). In five 1-year, multicentre, randomized, double-blind, phase III trials, repaglinide (0.5-4.0 mg preprandially) was compared with the sulphonylureas glibenclamide, glipizide and gliclazide. Repaglinide was more effective than glipizide at maintaining glycaemic control and was equivalent to glibenclamide and gliclazide on the basis of change in HbA1c. Hypoglycaemic events were reported in 16% of repaglinide-treated patients and 15-20% of sulphonylurea-treated patients. These data indicate that repaglinide monotherapy, with diet and exercise, is effective in patients with Type 2 diabetes.

  12. Comparison of 5 reflectance meters for capillary blood glucose determination.

    PubMed

    Kolopp, M; Louis, J; Pointel, J P; Kohler, F; Drouin, P; Debry, G

    1983-03-01

    Manufacturing quality, accuracy and users opinion (i.e. medical and nurses staff and patients) were compared among five Destrostix reading reflectance-meters for home-blood-glucose-monitoring. Two machines (dextrometer and glucometer) equipped with microprocessors, integrated circuits and good quality wiring are best made. Reflectance-meter capillary blood glucose measurements were found to be accurate enough for home-blood-glucose-monitoring, compared to a reference method. However, two machines from the same brand were different in blood glucose accuracy. Glucocheck had poorest results. Users prefer small sized, battery powered machines. Glucometer appears to be best suited to home-blood-glucose-monitoring.

  13. Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-Fos induction in limited brain areas.

    PubMed

    Maejima, Yuko; Rita, Rauza Sukma; Santoso, Putra; Aoyama, Masato; Hiraoka, Yuichi; Nishimori, Katsuhiko; Gantulga, Darambazar; Shimomura, Kenju; Yada, Toshihiko

    2015-01-01

    Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs. © 2015 S. Karger AG, Basel.

  14. Metformin improves glucose effectiveness, not insulin sensitivity: predicting treatment response in women with polycystic ovary syndrome in an open-label, interventional study.

    PubMed

    Pau, Cindy T; Keefe, Candace; Duran, Jessica; Welt, Corrine K

    2014-05-01

    Although metformin is widely used to improve insulin resistance in women with polycystic ovary syndrome (PCOS), its mechanism of action is complex, with inconsistent effects on insulin sensitivity and variability in treatment response. The aim of the study was to delineate the effect of metformin on glucose and insulin parameters, determine additional treatment outcomes, and predict patients with PCOS who will respond to treatment. We conducted an open-label, interventional study at an academic medical center. Women with PCOS (n = 36) diagnosed by the National Institutes of Health criteria participated in the study. Subjects underwent fasting blood sampling, an IV glucose tolerance test, dual-energy x-ray absorptiometry scan, transvaginal ultrasound, and measurement of human chorionic gonadotropin-stimulated androgen levels before and after 12 weeks of treatment with metformin extended release 1500 mg/d. Interval visits were performed to monitor anthropometric measurements and menstrual cycle parameters. Changes in glucose and insulin parameters, androgen levels, anthropometric measurements, and ovulatory menstrual cycles were evaluated. Insulin sensitivity did not change despite weight loss. Glucose effectiveness (P = .002) and the acute insulin response to glucose (P = .002) increased, and basal glucose levels (P = .001) decreased after metformin treatment. T levels also decreased. Women with improved ovulatory function (61%) had lower baseline T levels and lower baseline and stimulated T and androstenedione levels after metformin treatment (all P < .05). Using an IV glucose tolerance test, which distinguishes improvements in glucose effectiveness and insulin sensitivity, metformin does not improve insulin sensitivity in women with PCOS but does improve glucose effectiveness. The improvement in glucose effectiveness may be partially mediated by decreased glucose levels. T levels also decreased with metformin treatment. Ovulation during metformin treatment was associated with lower baseline T levels and greater T and androstenedione decreases during treatment, but not with insulin or LH levels. Thus, the action of metformin in PCOS primarily affects glucose levels and steroidogenesis, which may be mediated by mechanisms that affect both pathways, such as inhibition of mitochondrial complex I.

  15. Metformin Improves Glucose Effectiveness, Not Insulin Sensitivity: Predicting Treatment Response in Women With Polycystic Ovary Syndrome in an Open-Label, Interventional Study

    PubMed Central

    Pau, Cindy T.; Keefe, Candace; Duran, Jessica

    2014-01-01

    Context: Although metformin is widely used to improve insulin resistance in women with polycystic ovary syndrome (PCOS), its mechanism of action is complex, with inconsistent effects on insulin sensitivity and variability in treatment response. Objective: The aim of the study was to delineate the effect of metformin on glucose and insulin parameters, determine additional treatment outcomes, and predict patients with PCOS who will respond to treatment. Design and Setting: We conducted an open-label, interventional study at an academic medical center. Subjects: Women with PCOS (n = 36) diagnosed by the National Institutes of Health criteria participated in the study. Interventions: Subjects underwent fasting blood sampling, an IV glucose tolerance test, dual-energy x-ray absorptiometry scan, transvaginal ultrasound, and measurement of human chorionic gonadotropin-stimulated androgen levels before and after 12 weeks of treatment with metformin extended release 1500 mg/d. Interval visits were performed to monitor anthropometric measurements and menstrual cycle parameters. Main Outcome Measures: Changes in glucose and insulin parameters, androgen levels, anthropometric measurements, and ovulatory menstrual cycles were evaluated. Results: Insulin sensitivity did not change despite weight loss. Glucose effectiveness (P = .002) and the acute insulin response to glucose (P = .002) increased, and basal glucose levels (P = .001) decreased after metformin treatment. T levels also decreased. Women with improved ovulatory function (61%) had lower baseline T levels and lower baseline and stimulated T and androstenedione levels after metformin treatment (all P < .05). Conclusions: Using an IV glucose tolerance test, which distinguishes improvements in glucose effectiveness and insulin sensitivity, metformin does not improve insulin sensitivity in women with PCOS but does improve glucose effectiveness. The improvement in glucose effectiveness may be partially mediated by decreased glucose levels. T levels also decreased with metformin treatment. Ovulation during metformin treatment was associated with lower baseline T levels and greater T and androstenedione decreases during treatment, but not with insulin or LH levels. Thus, the action of metformin in PCOS primarily affects glucose levels and steroidogenesis, which may be mediated by mechanisms that affect both pathways, such as inhibition of mitochondrial complex I. PMID:24606093

  16. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  17. Transcutaneous blood glucose monitoring system based on an ISFET glucose sensor and studies on diabetic patients.

    PubMed

    Ito, N; Saito, A; Kayashima, S; Kimura, J; Kuriyama, T; Nagata, N; Arai, T; Kikuchi, M

    1995-01-01

    A transcutaneous blood glucose monitoring system consists of an ion-sensitive field-effect transistor (ISFET) glucose sensor unit and a suction effusion fluid (SEF) collecting unit. The SEF is directly collected by a weak suction (400 mmHg absolute pressure) through the skin from which the corneum layer of the epidermis has been previously removed. An ISFET glucose sensor unit is able to measure glucose concentrations in a microliter order sampling volume. The system was applied to three diabetic patients during a 75 g oral glucose tolerance test for monitoring blood glucose levels. During the experiments, glucose changes in the SEF followed actual blood glucose levels with 10 min delays. Results suggest the feasibility of utilizing quasi-continuous, transcutaneous blood glucose monitoring for individual patients with various diabetic histories or diabetic complications.

  18. Effect of homeopathic preparations of Syzygium jambolanum and Cephalandra indica on gastrocnemius muscle of high fat and high fructose-induced type-2 diabetic rats.

    PubMed

    Sampath, Sathish; Narasimhan, Akilavalli; Chinta, Raveendar; Nair, K R Janardanan; Khurana, Anil; Nayak, Debadatta; Kumar, Alok; Karundevi, Balasubramanian

    2013-07-01

    Homeopathy is a holistic method of treatment that uses microdoses of natural substances originating from plants, minerals, or animal parts. Syzygium jambolanum and Cephalandra indica are used in homeopathy for treatment of type-2 diabetes. However, the molecular mechanisms responsible for such effects are not known. Homeopathic preparations of S. jambolanum and C. indica in mother tincture, 6c and 30c were used to examine the molecular mechanism of antidiabetic effects in the skeletal muscle of rats with high fat and fructose-induced type-2 diabetes mellitus. After 30 days treatment, fasting blood glucose, serum insulin and insulin signaling molecules in the skeletal muscle (gastrocnemius) were measured. Diabetic rats showed a significant decrease in serum insulin and lipid profile as well as low levels of insulin receptor (IR), v-akt murine thymoma viral oncogene homolog (Akt), p-Akt(ser473) and glucose transporter-4 (GLUT4) protein expression (p < 0.05) with a significant increase in fasting blood glucose level (p < 0.05) compared to the control group. Treatment with homeopathic remedies significantly increased the serum insulin and expression of these proteins (p < 0.05) with a significant decrease in fasting blood glucose (p < 0.05) compared to diabetic rats. In the present study homeopathic preparations of S. jambolanum and C. indica, including ultramolecular dilutions exhibit antidiabetic effects, improving insulin action through activation of insulin signaling molecules in skeletal muscle of type-2 diabetic rats. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  19. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea

    PubMed Central

    Gonzalez-Martinez, Monica; Sanchez-Armengol, Angeles; Jurado-Gamez, Bernabe; Cordero-Guevara, Jose; Reyes-Nuñez, Nuria; Troncoso, Maria F.; Abad-Fernandez, Araceli; Teran-Santos, Joaquin; Caballero-Rodriguez, Julian; Martin-Romero, Mercedes; Encabo-Motiño, Ana; Sacristan-Bou, Lirios; Navarro-Esteva, Javier; Somoza-Gonzalez, Maria; Masa, Juan F.; Sanchez-Quiroga, Maria A.; Jara-Chinarro, Beatriz; Orosa-Bertol, Belen; Martinez-Garcia, Miguel A.

    2017-01-01

    Continuous positive airway pressure (CPAP) reduces blood pressure levels in hypertensive patients with obstructive sleep apnoea (OSA). However, the role of CPAP in blood pressure and the metabolic profile in women has not yet been assessed. In this study we investigated the effect of CPAP on blood pressure levels and the glucose and lipid profile in women with moderate-to-severe OSA. A multicentre, open-label, randomised controlled trial was conducted in 307 women diagnosed with moderate-to-severe OSA (apnoea–hypopnoea index ≥15 events·h–1) in 19 Spanish Sleep Units. Women were randomised to CPAP (n=151) or conservative treatment (n=156) for 12 weeks. Changes in office blood pressure measures as well as in the glucose and lipid profile were assessed in both groups. Compared with the control group, the CPAP group achieved a significantly greater decrease in diastolic blood pressure (−2.04 mmHg, 95% CI −4.02– −0.05; p=0.045), and a nonsignificantly greater decrease in systolic blood pressure (−1.54 mmHg, 95% CI −4.58–1.51; p=0.32) and mean blood pressure (−1.90 mmHg, 95% CI −4.0–0.31; p=0.084). CPAP therapy did not change any of the metabolic variables assessed. In women with moderate-to-severe OSA, 12 weeks of CPAP therapy improved blood pressure, especially diastolic blood pressure, but did not change the metabolic profile, compared with conservative treatment. PMID:28798089

  20. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea.

    PubMed

    Campos-Rodriguez, Francisco; Gonzalez-Martinez, Monica; Sanchez-Armengol, Angeles; Jurado-Gamez, Bernabe; Cordero-Guevara, Jose; Reyes-Nuñez, Nuria; Troncoso, Maria F; Abad-Fernandez, Araceli; Teran-Santos, Joaquin; Caballero-Rodriguez, Julian; Martin-Romero, Mercedes; Encabo-Motiño, Ana; Sacristan-Bou, Lirios; Navarro-Esteva, Javier; Somoza-Gonzalez, Maria; Masa, Juan F; Sanchez-Quiroga, Maria A; Jara-Chinarro, Beatriz; Orosa-Bertol, Belen; Martinez-Garcia, Miguel A

    2017-08-01

    Continuous positive airway pressure (CPAP) reduces blood pressure levels in hypertensive patients with obstructive sleep apnoea (OSA). However, the role of CPAP in blood pressure and the metabolic profile in women has not yet been assessed. In this study we investigated the effect of CPAP on blood pressure levels and the glucose and lipid profile in women with moderate-to-severe OSA.A multicentre, open-label, randomised controlled trial was conducted in 307 women diagnosed with moderate-to-severe OSA (apnoea-hypopnoea index ≥15 events·h -1 ) in 19 Spanish Sleep Units. Women were randomised to CPAP (n=151) or conservative treatment (n=156) for 12 weeks. Changes in office blood pressure measures as well as in the glucose and lipid profile were assessed in both groups.Compared with the control group, the CPAP group achieved a significantly greater decrease in diastolic blood pressure (-2.04 mmHg, 95% CI -4.02- -0.05; p=0.045), and a nonsignificantly greater decrease in systolic blood pressure (-1.54 mmHg, 95% CI -4.58-1.51; p=0.32) and mean blood pressure (-1.90 mmHg, 95% CI -4.0-0.31; p=0.084). CPAP therapy did not change any of the metabolic variables assessed.In women with moderate-to-severe OSA, 12 weeks of CPAP therapy improved blood pressure, especially diastolic blood pressure, but did not change the metabolic profile, compared with conservative treatment. Copyright ©ERS 2017.

  1. Targeting glucagon receptor signalling in treating metabolic syndrome and renal injury in Type 2 diabetes: theory versus promise.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2007-08-01

    Pancreatic bi-hormones insulin and glucagon are the Yin and Yang in the regulation of glucose metabolism and homoeostasis. Insulin is synthesized primarily by pancreatic beta-cells and is released in response to an increase in blood glucose levels (hyperglycaemia). By contrast, glucagon is synthesized by pancreatic alpha-cells and is released in response to a decrease in blood glucose (hypoglycaemia). The principal role of glucagon is to counter the actions of insulin on blood glucose homoeostasis, but it also has diverse non-hyperglycaemic actions. Although Type 1 diabetes is caused by insulin deficiency (insulin-dependent) and can be corrected by insulin replacement, Type 2 diabetes is a multifactorial disease and its treatment is not dependent on insulin therapy alone. Type 2 diabetes in humans is characterized by increased insulin resistance, increased fasting blood glucose, impaired glucose tolerance and the development of glomerular hyperfiltration and microalbuminuria, ultimately leading to diabetic nephropathy and end-stage renal disease. Clinical studies have suggested that an inappropriate increase in hyperglycaemic glucagon (hyperglucagonaemia) over hypoglycaemic insulin (not insulin deficiency until advanced stages) plays an important role in the pathogenesis of Type 2 diabetes. However, for decades, research efforts and resources have been devoted overwhelmingly to studying the role of insulin and insulin-replacement therapy. By contrast, the implication of glucagon and its receptor signalling in the development of Type 2 diabetic metabolic syndromes and end-organ injury has received little attention. The aim of this review is to examine the evidence as to whether glucagon and its receptor signalling play any role(s) in the pathogenesis of Type 2 diabetic renal injury, and to explore whether targeting glucagon receptor signalling remains only a theoretical antidiabetic strategy in Type 2 diabetes or may realize its promise in the future.

  2. Immediate effect of three different electroacupuncture protocols on fasting blood glucose in obese patients: a pilot study.

    PubMed

    Belivani, Maria; Lundeberg, Thomas; Cummings, Mike; Dimitroula, Charikleia; Belivani, Nicole; Vasilakos, Dimitris; Hatzitolios, Apostolos

    2015-04-01

    Obesity is an increasing global health problem, and current methods of management are limited. Preliminary research data suggest that acupuncture may have an influence on metabolic parameters related to obesity. To determine the electroacupuncture (EA) protocol to be used in a future clinical trial examining the effect of acupuncture on metabolic parameters related to obesity and to examine whether a single EA treatment can change fasting blood glucose in obese subjects. 16 obese women aged 30-52 years with body mass index >30 kg/m(2) were assigned consecutively into three groups and their fasting blood glucose was measured before and after administering a single session, lasting 30 min, of one of three EA treatment protocols. The Dorsal group received EA to dorsal segmental acupuncture points BL18-23 bilaterally (corresponding to the segmental levels innervating the pancreas); the Ear group received EA to ear points in the cavum conchae; and the Limb group received EA to points in the arms and legs (LI10-LI11, ST36-Zongping). After a single session of EA there was a statistically significant decrease in fasting blood glucose in the Dorsal and Limb groups, but there was no change and even a trend towards an increase in the glucose level in the Ear group. The findings of this small pilot study suggest that EA to either dorsal segmental points corresponding to the pancreas or to muscle points in all four limbs may exert a beneficial effect on glucose metabolism in obese women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Effectiveness of Medium-Chain Triglyceride Oil Therapy in Two Japanese Citrin-Deficient Siblings: Evaluation Using Oral Glucose Tolerance Tests.

    PubMed

    Otsuka, Hiroki; Sasai, Hideo; Abdelkreem, Elsayed; Kawamoto, Norio; Kawamoto, Minako; Kamiya, Toshiya; Tanimoto, Yasuo; Kikuchi, Atsuo; Kure, Shigeo; Numakura, Chikahiko; Hayasaka, Kiyoshi; Fukao, Toshiyuki

    2016-12-01

    Citrin deficiency, an inherited defect of the liver-type mitochondrial aspartate/glutamate carrier isoform (citrin), may cause impairment of glycolysis because of an increase in the cytosolic NADH/NAD + ratio. We report a Japanese boy whose main complaint was recurrent hypoglycemic episodes. He was suspected as having citrin deficiency because of his peculiar preference for protein- and fat-rich food. His young sister also had a similar food preference. Both siblings were diagnosed with citrin deficiency by genetic analysis. The brother and sister underwent an oral glucose tolerance test (OGTT) at 10 and 7 yr of age, respectively. Blood glucose, ammonia, lactic acid, pyruvic acid, and insulin levels were monitored before starting the test, and then every 30 min. During this test, they maintained blood glucose levels until 180 min. At 210 min, they experienced vomiting, feeling ill, and decreased blood glucose levels (2.9 and 2.8 mmol/l in the brother and sister, respectively). The sister and brother recovered uneventfully by intravenous glucose injection. In a second OGTT, 4 months after medium-chain triglyceride (MCT) oil supplementation, they had no major symptoms and normal glucose levels were maintained, even after 240 min. Additionally, after MCT oil therapy, their food preference slightly changed as they started eating more carbohydrates. Our OGTT data suggest excess carbohydrate intake has adverse consequences in patients with citrin deficiency, including hypoglycemia after a few hours. MCT oil therapy may be effective in preventing such hypoglycemia and improving metabolic derangement, even during the so-called apparently healthy period.

  4. Effects of dietary supplementation with L-carnitine and fat on blood acid-base responses to handling in slaughter weight pigs.

    PubMed

    Bertol, T M; Ellis, M; Hamilton, D N; Johnson, E W; Ritter, M J

    2005-01-01

    Blood acid-base responses to handling were evaluated in slaughter weight pigs fed diets supplemented with l-carnitine and fat. The study was carried out as a randomized block design with a 2 x 2 factorial arrangement of treatments: 1) dietary L-carnitine supplementation (0 vs. 150 ppm, as-fed basis); and 2) dietary fat supplementation (0 vs. 5%, as-fed basis). Sixty pigs (91.1 +/- 5.14 kg BW) were housed in mixed-gender groups of five and had ad libitum access to test diets (0.68% true ileal digestible lysine, 3,340 kcal of ME/kg, as-fed basis) for 3 wk. At the end of the feeding period (110.3 +/- 7.52 kg BW), pigs were subjected to a standard handling procedure, which consisted of moving individual animals through a facility (12.2 m long x 0.91 m wide) for eight laps (up and down the facility), using electric prods (two times per lap). There was no interaction between dietary L-carnitine and fat supplementation for any measurement. Pigs fed 150 ppm of supplemental L-carnitine had lower baseline blood glucose (P < 0.05) and higher baseline blood lactate (P < 0.05) concentrations than the nonsupplemented pigs. After handling, pigs fed L-carnitine-supplemented diets had a higher (P < 0.05) blood pH and showed a smaller (P < 0.05) decrease in blood pH and base excess than those fed the nonsupplemental diets. Baseline plasma FFA concentrations were higher (P < 0.01) in pigs fed the 5% fat diet. After the handling procedure, blood glucose, lactate, and plasma FFA were higher (P < 0.05) in pigs fed the 5 vs. 0% fat diets, but blood pH, bicarbonate, and base excess were not affected by dietary fat. The handling procedure decreased (P < 0.01) blood pH, bicarbonate, base excess, and total carbon dioxide and increased (P < 0.01) blood lactate, partial pressure of oxygen, and glucose, and also increased (P < 0.01) rectal temperature. Free fatty acid concentrations were increased by handling in pigs fed both 0 and 5% fat and 150 ppm L-carnitine. In conclusion, dietary L-carnitine supplementation at the level and for the feeding period evaluated in the current study had a relatively small but positive effect on decreasing blood pH changes in finishing pigs submitted to handling stress; however, dietary fat supplementation had little effect on blood acid-base balance.

  5. [Development of a prediabetic state under chronic alcohol intoxication].

    PubMed

    Voĭtenko, V V; Konopel'niuk, V V; Savchuk, O M; Ostapchenko, L I

    2013-01-01

    We investigated the changes in key parameters of carbohydrate and lipid metabolism, which correspond to the clinical picture that accompanies the development of prediabetic condition on the background of chronic alcohol intoxication. From the analysis of glycemic curves obtained during the insulin-glucose test, a speed of glucose uptake by peripheral tissues increased at the 1st day (1.5 fold) and the third day (1.3 fold) of administration of alcohol solution. At the later periods, at 7 and 11 days of ethanol administration, a decreased rate of glucose uptake in animals with chronic alcohol intoxication was detected. We also detected an increased content of serotonin in the blood serum and a decreased (1.2 fold) serotonin content in rat brain during the whole period of development of chronic alcohol intoxication.

  6. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    PubMed

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (P<0.0001). The multiple stepwise regression analysis showed that the blood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. Effect of the yellow passion fruit peel flour (Passiflora edulis f. flavicarpa deg.) in insulin sensitivity in type 2 diabetes mellitus patients

    PubMed Central

    2012-01-01

    Background A study with the yellow passion fruit peel flour showed positive action in blood glucose control as therapies’ adjuvant in patients with type 2 diabetes mellitus. Therefore, we evaluated its effect on insulin sensitivity since there is a quest for studies that focus at better understanding of insulin resistance aspects in diabetic patients. Furthermore its relationship with chronic complications can also give good prospects for alternative treatments. Methods A total of 43 type 2 diabetes volunteers (28 females and 15 males) ingested 30 g/day of the yellow passion fruit peel flour for two months. The levels of blood glucose and fasting insulin, HOMA index and glycated hemoglobin were measured for each patient before and after dietary supplementation. Results There was a significant difference in the fasting blood glucose values (P = 0.000) and glycated hemoglobin (P = 0.032) after supplementation. It was also seen a reduction in HOMA IR (P = 0.005) in the supplemented group, however it was not observed changes in insulin values for females. HOMA beta (P = 0.000) showed significant increase in its values for the studied group. Conclusions The supplementation used decreased insulin resistance in type 2 diabetic patients, suggesting a positive action in blood glucose control as adjuvant therapy in conventional treatments. PMID:23088514

  8. [Development of human blood glucose noninvasive measurement system based on near infrared spectral technology].

    PubMed

    Li, Qing-bo; Liu, Jie-qiang; Li, Xiang

    2012-03-01

    A small non-invasive measurement system for human blood glucose has been developed, which can achieve fast, real-time and non invasive measurement of human blood glucose. The device is mainly composed of four parts, i. e. fixture, light system, data acquisition and processing systems, and spectrometer. A new scheme of light source driving was proposed, which can meet the requirements of light source under a variety of conditions of spectral acquisition. An integrated fixture design was proposed, which not only simplifies the optical structure of the system, but also improves the reproducibility of measurement conditions. The micro control system mainly achieves control function, dealing with data, data storage and so on. As the most important component, microprocessor DSP TMS320F2812 has many advantages, such as low power, high processing speed, high computing ability and so on. Wavelet denoising is used to pretreat the spectral data, which can decrease the loss of incident light and improve the signal-to-noise ratio. Kernel partial least squares method was adopted to build the mathematical model, which can improve the precision of the system. In the calibration experiment of the system, the standard values were measured by One-Touch. The correlation coefficient between standard blood glucose values and truth values is 0.95. The root mean square error of measurement is 0.6 mmol x L(-1). The system has good reproducibility.

  9. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    PubMed

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  10. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less

  11. [Protective effect of arctigenin in GK rats combined with hypertension macroangiopathy].

    PubMed

    Feng, Qin; Sun, Bao-cun; Xia, Wen-kai

    2015-03-01

    To study the protective effect of Arctigenin in goto-kakizaki (GK) rats combined with hypertension macroangiopathy. Six-week-old GK rats were divided randomly according to blood glucose level into four groups: the model group and low, middle and high dose arctigenin groups (12.5, 25, 50 mg x kg(-1)), with Wistar rats as the normal group. All of GK rats were given high-glucose and high-fat diet. After 16 weeks, GK rats were orally administrated with 10 mg x kg(-1) x d(-1) N-Ω-nitro-L-arginine methyl ester for eight weeks. During the modeling, all of arctigenin groups were orally administrated with different dose of arctigenin twice a day; The model group and the normal group were given solvents. At the beginning, mid-term and end of the experiment, blood glucose was measured. At the end of the experiment, efforts were made to detect blood pressure, collect abdominal aortic blood after anesthesia, fix thoracic aorta after bloodletting to make paraffin sections, observe morphological characteristics and detect the expression of VEGF by immunohistochemistry. According to the results, the blood glucose rose in all GK rats, with no significant difference between the drug group and the model group. At the end of the experiment, the blood pressure significantly increased in GK rats, indicating that Arctigenin could notably reduce the blood pressure in GK rats in a dose-dependent manner. The blood routine test showed increases in both the total white blood cell count and differential blood count, MPV and PDW, abnormal blood platelet parameters and decrease in PLT in GK rats, suggesting that Arctigenin could remarkably reduce the total white blood cell count and differential blood count, MPV and PDW. The thoracic aortic morphological observation revealed obvious endangium lesions in GK rats, demonstrating that Arctigenin could ameliorate the lesion extent. VEGF immumohistochemical staining showed a higher VEGF expression in the model group but lower expression in Arctigenin groups. In conclusion, Arctigenin had a protective effect on aorta in GK rats. Its mechanism may be related to blood pressure lowering, anti-inflammation, improvement in blood platelet function and reduction of VEGF expression.

  12. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    PubMed

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  14. Is exenatide improving the treatment of type 2 diabetes? Analysis of the individual clinical trials with exenatide.

    PubMed

    Doggrell, Sheila A

    2007-01-01

    The obesity epidemic in the developed and developing world is being followed by an epidemic of type 2 diabetes. In type 2 diabetes, subjects cannot manage glucose properly because they do not produce enough insulin, and the peripheral tissues have become resistant to insulin. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide hormone that is secreted in response to food to regulate the postprandial blood glucose concentration. One of the actions of GLP-1 is to stimulate insulin secretion. In subjects with type 2 diabetes, intravenous or subcutaneous GLP-1 stimulated insulin production and decreased blood glucose levels. However, as GLP-1 is rapidly metabolised, it is not suitable for use in most subjects with type 2 diabetes. Exendin-4 is a 39-amino acid peptide that acts as an agonist at the GLP-1 receptor. After subcutaneous administration, synthetic exendin-4 (exenatide) decreased postprandial concentrations of glucose and insulin, and fasting glucose levels in subjects with type 2 diabetes, and the effects lasted several hours. Subsequently, exenatide was been trialled in subjects taking metformin only, a sulfonylurea only, or metformin and a sulfonylurea, and shown to improve glycemic control with few adverse events, initially over 30 weeks, and then extended to 82 weeks. Exenatide may also be as effective as insulin glargine in subjects with type 2 diabetes not adequately controlled with the oral agents. In conclusion, exenatide represents a new and beneficial addition to the medicines used to treat type 2 diabetes.

  15. After Delivery

    MedlinePlus

    ... snack or mealtime. Low blood glucose is a real danger. It's important for your baby's safety to avoid blood glucose reactions that could confuse you. For all of the above reasons, it is important to check your blood glucose often during this time. And your records of your blood glucose levels ...

  16. Perceived diabetes task competence mediates the relationship of both negative and positive affect with blood glucose in adolescents with type 1 diabetes.

    PubMed

    Fortenberry, Katherine T; Butler, Jorie M; Butner, Jonathan; Berg, Cynthia A; Upchurch, Renn; Wiebe, Deborah J

    2009-02-01

    Adolescents dealing with type 1 diabetes experience disruptions in affect and diabetes management that may influence their blood glucose. A daily diary format examined whether daily fluctuations in both negative and positive affect were associated with adolescents' perceived diabetes task competence (DTC) and blood glucose, and whether perceived DTC mediated the relationship between daily affect and blood glucose. Sixty-two adolescents with type 1 diabetes completed a 2-week daily diary, which included daily measures of affect and perceived DTC, then recorded their blood glucose readings at the end of the day. We utilized hierarchical linear modeling to examine whether daily perceived DTC mediated the relationship between daily emotion and blood glucose. Daily perceived DTC mediated the relationship of both negative and positive affect with daily blood glucose. This study suggests that within the ongoing process of self-regulation, daily affect may be associated with blood glucose by influencing adolescents' perception of competence on daily diabetes tasks.

  17. Combined intervention of swimming plus metformin ameliorates the insulin resistance and impaired lipid metabolism in murine gestational diabetes mellitus

    PubMed Central

    Wu, Xuefei; Yu, Ting; Wang, Yang; Zhou, Ji; Kong, Derun

    2018-01-01

    Gestational diabetes mellitus (GDM) has short- and long- term influence on pregnant women and fetus. Swimming, as an aerobic exercise, can effectively improve the blood glucose level in GDM, but the effect of mild swimming alone was not very substantial. Metformin, as an oral antidiabetic drug, has obvious hypoglycemic effect, and is economic also, but the long-term effect on pregnant women and fetus has not been completely clear. We hypothesize that combined intervention of mild swimming and low dose of metformin, may effectively reduce blood glucose, improve the pregnancy outcomes in GDM dams, but simultaneously avoiding the adverse effects caused by overdose of drug and impotence of mild swimming. The streptozotocin was used to stimulate C57BL/6J mice to develop GDM, by which serum glucose, TC, TG, LDL-C were increased significantly, meanwhile HDL-C was decreased significantly in the GDM control (DC) group compared with the normal control group. Swimming or metformin intervention slightly or moderately improves hyperglycemia, insulin sensitivity and lipid metabolism both in liver and skeletal muscle from GDM mice, while combined therapy of swimming plus metformin markedly ameliorated hyperglycemia (FPG, decreased by 22.2–59.5% from G10 to G18 versus DC group), insulin sensitivity (2.1 and 2.8 fold increase, respectively, in AKT activity versus DC group) and de novo lipogenesis (3.2 and 7.0 fold decrease, respectively, in ACC activity, and 1.94 and 5.1 fold decrease, respectively, in SREBP2 level, versus DC group) both in liver and skeletal muscle from GDM mice. We conclude that the combined intervention by metformin plus swimming may be more effective than single action to ameliorate glucose and lipid metabolism via improving insulin sensitivity in GDM mice. PMID:29677194

  18. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice.

    PubMed

    Cheng, W; Lu, J; Lin, W; Wei, X; Li, H; Zhao, X; Jiang, A; Yuan, J

    2018-03-01

    Galacto-oligosaccharides (GOS) are prebiotics that positively affect the host's gut microbiota, which is important for the health of the host. Most previous studies focused on specific flora components (e.g. Bifidobacterium and Lactobacillus); very few have investigated the relationship between flora and metabolites. Here, we used 16S rRNA analysis and metabolomics to analyze the effect of GOS on microbiota and metabolites. Results show that the abundance of Ruminococcaceae and Oscillibacter decreased significantly in GOS-fed mice. Twenty-one metabolites, including oleic acid, arachidic acid, and behenic acid, decreased significantly in the GOS-fed mice. Fatty acid synthesis and blood triglyceride content significantly decreased in the GOS-fed mice compared with those in the control mice, suggesting that GOS may improve lipid metabolism in mice. Additionally, after three weeks of a GOS-rich diet, the mouse microbiota was significantly enriched in Alloprevotella, Bacteroides, and Parasutterella. The blood glucose level of the GOS-fed group was significantly higher than that of the control group, whereas the abundance of Coprococcus and Odoribacter (butyrate-producing bacteria) was significantly decreased. The metabolism of butyrate, known to reduce plasma glucose levels, was significantly downregulated in the GOS-fed mice, an effect potentially detrimental to the glucose metabolism of the host. This dual-omics analysis provided important information on the changes in host-microbe-metabolite interactions resulting from GOS supplementation. Our results provide evidence that GOS may improve lipid metabolism, and that long-term GOS supplementation had a detrimental effect on the host's glucose metabolism, which could be important for optimizing methods of prebiotic supplementation and developing approaches to prevent diseases using prebiotic interventions.

  19. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    PubMed

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  20. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    PubMed Central

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring. PMID:29279864

  1. Improvement effect of resistant maltodextrin in humans with metabolic syndrome by continuous administration.

    PubMed

    Hashizume, Chieko; Kishimoto, Yuka; Kanahori, Sumiko; Yamamoto, Takushi; Okuma, Kazuhiro; Yamamoto, Kunio

    2012-01-01

    Resistant maltodextrin (RMD) is a soluble dietary fiber ingredient whose physiological functions are well recognized in Foods for Specified Health Use (FOSHU) for maintaining healthy intestinal regularity, blood glucose levels, and serum lipids. However, its efficacy on combined health risks--metabolic syndrome--was not studied yet. In this study the efficacy of RMD on humans with metabolic syndrome was investigated. A randomized double-blind placebo-controlled parallel-group trial was conducted. Thirty subjects with metabolic syndrome were randomly allocated into 2 groups and took either tea containing 9 g of RMD (treatment group) or placebo tea at three mealtimes daily for 12 wk. Blood was collected and body fat was scanned periodically. In the RMD treatment group, waist circumference, visceral fat area, fasting blood glucose, HOMA-R and serum triacylglycerol (TG) were significantly decreased compared to baseline, and significant time-by-treatment interaction was observed for waist circumference, visceral fat area, HOMA-R and serum TG (p=0.044, p=0.012, p=0.032, and p=0.049, respectively). The change ratio of visceral fat area showed negative statistical correlation with the baseline value (p=0.033), suggesting that efficacy of RMD was emphasized in the subjects having a larger visceral fat area. After the 12-wk RMD treatment, the total number of metabolic syndrome risk factors decreased to 20 from 32 with 2 subjects having no risks, while that of the placebo group decreased to 25 from 32. These findings suggest that continuous ingestion of RMD may improve the risk factors of metabolic syndrome by reducing visceral fat and improving glucose and lipid metabolism.

  2. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    PubMed

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  3. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  4. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice

    PubMed Central

    Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E.; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S.; Lassègue, Bernard; Jo, Hanjoong

    2013-01-01

    Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391

  5. Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk.

    PubMed

    Jin, Cheng; Li, Guohong; Rexrode, Kathryn M; Gurol, Mahmut E; Yuan, Xiaodong; Hui, Ying; Ruan, Chunyu; Vaidya, Anand; Wang, Yanxiu; Wu, Shouling; Gao, Xiang

    2018-01-01

    Although diabetes mellitus is an established independent risk factor for ischemic stroke, the association between fasting blood glucose and intracerebral hemorrhage (ICH) is limited and inconsistent. The objective of the current study was to examine the potential impact of long-term fasting blood glucose concentration on subsequent risk of ICH. This prospective study included 96 110 participants of the Kailuan study, living in Kailuan community, Tangshan city, China, who were free of cardiovascular diseases and cancer at baseline (2006). Fasting blood glucose concentration was measured in 2006, 2008, 2010, and 2012. Updated cumulative average fasting blood glucose concentration was used as primary exposure of the current study. Incident ICH from 2006 to 2015 was confirmed by review of medical records. During 817 531 person-years of follow-up, we identified 755 incident ICH cases. The nadir risk of ICH was observed at fasting blood glucose concentration of 5.3 mmol/L. The adjusted hazard ratios and their 95% confidence intervals (CIs) of ICH were 1.59 (95% CI, 1.26-2.02) for diabetes mellitus or fasting blood glucose ≥7.00 mmol/L, 1.31 (95% CI, 1.02-1.69) for impaired fasting blood glucose (fasting blood glucose, 6.10-6.99 mmol/L), 0.98 (95% CI, 0.78-1.22) for fasting blood glucose 5.60 to 6.09 mmol/L, and 2.04 (95% CI, 1.23-3.38) for hypoglycemia (fasting blood glucose, <4.00 mmol/L), comparing with normal fasting blood glucose 4.00 to 5.59 mmol/L. The results persisted after excluding individuals who used hypoglycemic, aspirin, antihypertensive agents, or anticoagulants, and those with intracerebral hemorrhagic cases occurred in the first 2 years of follow-up. In this large community-based cohort, low (<4.0 mmol/L) and high (≥6.1 mmol/L) fasting blood glucose concentrations were associated with higher risk of incident ICH, relative to fasting blood glucose concentrations of 4.00 to 6.09 mmol/L. © 2017 American Heart Association, Inc.

  6. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    PubMed

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis.

    PubMed

    Kul, Seval; Savaş, Esen; Öztürk, Zeynel Abidin; Karadağ, Gülendam

    2014-06-01

    In this study, we conducted a meta-analysis of self-controlled cohort studies comparing body weights, blood levels of lipids and fasting blood glucose levels before and after Ramadan taking into account gender differences. Several databases were searched up to June 2012 for studies showing an effect of Ramadan fasting in healthy subjects, yielding 30 articles. The primary finding of this meta-analysis was that after Ramadan fasting, low-density lipoprotein (SMD = -1.67, 95 % CI = -2.48 to -0.86) and fasting blood glucose levels (SMD = -1.10, 95 % CI = -1.62 to -0.58) were decreased in both sex groups and also in the entire group compared to levels prior to Ramadan. In addition, in the female subgroup, body weight (SMD = -0.04, 95 % CI = -0.20, 0.12), total cholesterol (SMD = 0.05, 95 % CI = -0.51 to 0.60), and triglyceride levels (SMD = 0.03, 95 % CI = -0.31, 0.36) remained unchanged, while HDL levels (SMD = 0.86, 95 % CI = 0.11 to 1.61, p = 0.03) were increased. In males, Ramadan fasting resulted in weight loss (SMD = -0.24, 95 % CI = -0.36, -0.12, p = 0.001). Also, a substantial reduction in total cholesterol (SMD = -0.44, 95 % CI = -0.77 to -0.11) and LDL levels (SMD = -2.22, 95 % CI = -3.47 to -0.96) and a small decrease in triglyceride levels (SMD = -0.35, 95 % CI = -0.67 to -0.02) were observed in males. In conclusion, by looking at this data, it is evident that Ramadan fasting can effectively change body weight and some biochemical parameters in healthy subjects especially in males compared to pre-Ramadan period.

  8. Locomotor Training and Factors Associated with Blood Glucose Regulation After Spinal Cord Injury.

    PubMed

    Chilibeck, Philip D; Guertin, Pierre A

    2017-01-01

    Individuals with spinal cord injury (SCI) have increased rates of glucose intolerance, insulin insensitivity, and type II diabetes caused mainly by the deconditioning of paralyzed muscle. The purpose of this systematic review was to determine the effectiveness of locomotor training in individuals with SCI on blood glucose control. We searched studies on locomotor training for individuals with SCI with outcomes of glucose, insulin, or outcomes that could change glucose handling (i.e. increases in muscle mass, shifts in muscle fiber type composition, changes in transport proteins, or enzymes involved in glucose metabolism) in PubMed and EMBASE. Eleven studies (10 with incomplete SCI; 1 with complete SCI) were included in our review. Locomotor training included body weight supported treadmill training (BWSTT) with manual or robotic assistance, with and without functional electrical stimulation (FES), or involved FES-assisted over ground training. Six months of locomotor training in individuals with SCI resulted in significant decreases in glucose (15%) and insulin (33%) areas under the curve during oral glucose tolerance tests. Two to twelve months of locomotor training reversed some of the muscle atrophy - with muscle being the site of most glucose consumption, this is important for glucose control. Training also increased capacity for glucose storage, enzymes involved in glucose phosphorylation (hexokinase) and oxidation (citrate synthase), and glucose transport proteins (GLUT-4). Fiber type composition shifted to a slower fiber type, which favors glucose handling. There were no effects on fat mass. Locomotor training in individuals with SCI (generally an incomplete injury) increases capacity to handle glucose and results in muscular changes that should reduce the risk of type II diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Frequency of impaired glucose tolerance and diabetes mellitus in subjects with fasting blood glucose below 6.1 mmol/L (110 mg/dL).

    PubMed

    Khan, S H; Ijaz, A; Bokhari, S A Raza; Hanif, M S; Azam, N

    2013-02-01

    The diagnosis of diabetes mellitus by the available criteria is controversial and relies heavily on fasting glucose results. This cross-sectional study in 2010-2011 aimed to measure the frequency of impaired glucose tolerance and diabetes mellitus in 127 subjects having fasting blood glucose < 7.0 mmol/L and to measure the agreement between different standard diagnostic criteria. Subjects presenting to a laboratory for analysis of fasting blood glucose for excluding diabetes mellitus underwent a 2-hour 75 g oral glucose challenge. A total of 40.6% of subjects with fasting blood glucose from 5.6-6.0 mmol/L had abnormal glucose regulation on the basis ofthe gold standard glucose challenge. Agreement between American Diabetes Association and World Health Organization diagnostic criteria was only fair (kappa = 0.32). Abnormalities of glucose metabolism including impaired glucose tolerance and diabetes mellitus can exist at fasting blood glucose results < 6.1 mmol/L (110 mg/dL).

  10. [Effect of Endomorphin-1 on Maturation and Expression of TLR4 in Peripheral Blood Dendritic Cells Induced by High Glucose].

    PubMed

    Liu, Chuan-Miao; Yang, Tian-Hua; Huang, Min; Zhou, Cheng; Li, Yong-Hai; Li, Zheng-Hong

    2018-06-01

    To investigate the effects of endomorphin-1 (EM-1) on the maturation phenotype, cytokine secretion, T cell proliferation and TLR4 expression in human peripheral blood dendritic cells (PBDCs) stimulated and induced by high glucose, and to explore the regulatory mechanism of EM-1 on DC immune function. Peripheral blood mononuclear cells (PBMNCs) were induced into immature dendritic cells (imDCs). The high glucose was used as the stimulating factor, and the EM-1 was used as the interventional factor. Then, the experiments were divided into normal glucose group (NG group), high glucose group (HG group), high glucose plus EM-1 group (EM group) and high glucose plus EM-1 and naloxone group (Nal group), respectively. The PBDC's phenotype changes were detected by flow cytometry; ELISA was used to detect the changes of cytokines secreted by PBDCs co-cultured with autologous lymphocytes; CFSE was used to detect the proliferation of T lymphocytes. TLR4 expression on PBDC surface was detected by RT-PCR. Compared with HG group, the expression of PBDC surface molecules CD86, CCR7 and CD36 was up-regulated in EM group (P<0.01), while the change of CD83 expression was not statistically significant. However, IL-12 and IL-10 secreted by PBDCs and the proliferation index of T-lymphocytes stimulated by PBDCs were both decreased in EM group. Compared with EM group, the expression of CD86, CCR7 and CD36 was decreased in Nal group (P<0.01), while the expression of CD83 was almost unchanged (P>0.05). T-lymphocyte proliferation index was increased very significantly in Nal group (P<0.01). The gray ratio of TLR4 in HG group was higher than that in NG group, while the gray ratio in EM group's was very significantly lower than that in HG group's (P<0.01). These results indicate that the high glucose can promote the expression of PBDC TLR4, while the EM-1 inhibits the expression of TLR4. EM-1 up-regulates the expression of PBDC surface molecules CD86, CCR7 and CD36 stimulated and induced by high glucose, but inhibites the induction of PBDC to maturity by high glucose. And the secreted inflammatory cytokines IL-12 and IL-10 inhibites the proliferation of T lymphocytes derived from PBDCs, while naloxone inhibites the effect of EM-1. EM-1 inhibites the expression of TLR4 on PBDC surface induced by high glucose.

  11. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  12. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats.

    PubMed

    Islam, Md Shahidul; Indrajit, Mitesh

    2012-01-01

    The present study was conducted to examine the antidiabetic effects of xylitol in a type 2 diabetes rat model. Six-week-old male Sprague-Dawley rats were randomly divided into 3 groups: normal control (NC), diabetic control (DBC) and xylitol (XYL). Diabetes was induced only in the DBC and XYL animal groups by feeding them a 10% fructose solution for 2 weeks followed by an injection (i.p.) of streptozotocin (40 mg/kg body weight). One week after the streptozotocin injection, the animals with a nonfasting blood glucose level of >300 mg/dl were considered to be diabetic. The XYL group was fed further with a 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 5 weeks of intervention, food and fluid intake, body weight, blood glucose, serum fructosamine and most of the serum lipids were significantly decreased, and serum insulin concentration and glucose tolerance ability was significantly increased in the XYL group compared to the DBC group. Liver weight, liver glycogen and serum triglycerides were not influenced by feeding with xylitol. The data of this study suggest that xylitol can be used not only as a sugar substitute but also as a supplement to antidiabetic food and other food products. Copyright © 2012 S. Karger AG, Basel.

  13. Efficacy and safety of teneligliptin in addition to insulin therapy in type 2 diabetes mellitus patients on hemodialysis evaluated by continuous glucose monitoring.

    PubMed

    Yajima, Takahiro; Yajima, Kumiko; Hayashi, Makoto; Takahashi, Hiroshi; Yasuda, Keigo

    2016-12-01

    Appropriate glycemic control without hypoglycemia is important in patients with type 2 diabetes on hemodialysis. Teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, can be used without dose adjustment for these patients. Using continuous glucose monitoring (CGM), we evaluated the efficacy and safety of adding teneligliptin to insulin therapy. Twenty-one type 2 diabetes mellitus patients on hemodialysis treated with insulin were enrolled. After the adjustment of insulin dose, their blood glucose level was monitored by CGM. Insulin dose was reduced after teneligliptin administration. The median total daily insulin dose significantly reduced from 18 (9-24)U to 6 (0-14)U (p<0.0001). Maximum, mean, and standard deviation of blood glucose level on the hemodialysis and non-hemodialysis days did not change after teneligliptin administration. However, minimum blood glucose level was significantly elevated on the hemodialysis day after teneligliptin administration (from 3.9±1.0mmol/L to 4.4±0.9mmol/L, p=0.040). The incidence of asymptomatic hypoglycemia on the hemodialysis day detected by CGM significantly decreased from 38.1% to 19.0% (p=0.049). Teneligliptin may contribute toward reducing the total daily insulin dose and preventing hypoglycemic events on the hemodialysis day in type 2 diabetes mellitus patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Hydrogen Cyanide Related Deaths and Detection in the Blood

    DTIC Science & Technology

    2012-01-01

    elevations in creatinine , glucose, and bilirubin have been reported, as have decrease alanine aminotransferase, and unpredictable results for... creatine phosphokinase, phosphate, and lactate dehydrogenase [4]. Urinalyses are often uninterruptable [3]. Thus, we are concerned that deceased patients

  15. The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature

    NASA Technical Reports Server (NTRS)

    Feldman, Jolene; Barshi, Immanuel

    2007-01-01

    The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made.

  16. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure.

    PubMed

    Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing

    2013-11-15

    This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling.

    PubMed

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2010-12-01

    In this article, we examined theoretically the role of human cerebral glycogen in buffering the metabolic requirement of a 360-second brain stimulation, expanding our previous modeling study of neurometabolic coupling. We found that glycogen synthesis and degradation affects the relative amount of glucose taken up by neurons versus astrocytes. Under conditions of 175:115 mmol/L (∼1.5:1) neuronal versus astrocytic activation-induced Na(+) influx ratio, ∼12% of astrocytic glycogen is mobilized. This results in the rapid increase of intracellular glucose-6-phosphate level on stimulation and nearly 40% mean decrease of glucose flow through hexokinase (HK) in astrocytes via product inhibition. The suppression of astrocytic glucose phosphorylation, in turn, favors the channeling of glucose from interstitium to nearby activated neurons, without a critical effect on the concurrent intercellular lactate trafficking. Under conditions of increased neuronal versus astrocytic activation-induced Na(+) influx ratio to 190:65 mmol/L (∼3:1), glycogen is not significantly degraded and blood glucose is primarily taken up by neurons. These results support a role for astrocytic glycogen in preserving extracellular glucose for neuronal utilization, rather than providing lactate to neurons as is commonly accepted by the current 'thinking paradigm'. This might be critical in subcellular domains during functional conditions associated with fast energetic demands.

  18. Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling

    PubMed Central

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2010-01-01

    In this article, we examined theoretically the role of human cerebral glycogen in buffering the metabolic requirement of a 360-second brain stimulation, expanding our previous modeling study of neurometabolic coupling. We found that glycogen synthesis and degradation affects the relative amount of glucose taken up by neurons versus astrocytes. Under conditions of 175:115 mmol/L (∼1.5:1) neuronal versus astrocytic activation-induced Na+ influx ratio, ∼12% of astrocytic glycogen is mobilized. This results in the rapid increase of intracellular glucose-6-phosphate level on stimulation and nearly 40% mean decrease of glucose flow through hexokinase (HK) in astrocytes via product inhibition. The suppression of astrocytic glucose phosphorylation, in turn, favors the channeling of glucose from interstitium to nearby activated neurons, without a critical effect on the concurrent intercellular lactate trafficking. Under conditions of increased neuronal versus astrocytic activation-induced Na+ influx ratio to 190:65 mmol/L (∼3:1), glycogen is not significantly degraded and blood glucose is primarily taken up by neurons. These results support a role for astrocytic glycogen in preserving extracellular glucose for neuronal utilization, rather than providing lactate to neurons as is commonly accepted by the current ‘thinking paradigm'. This might be critical in subcellular domains during functional conditions associated with fast energetic demands. PMID:20827264

  19. Metabolic Syndrome: Insulin Resistance and Prediabetes.

    PubMed

    Mayans, Laura

    2015-08-01

    Metabolic syndrome is a cluster of conditions that synergistically increase the risk of cardiovascular disease, type 2 diabetes, and premature mortality. The components are abdominal obesity, impaired glucose metabolism, dyslipidemia, and hypertension. Prediabetes, which is a combination of excess body fat and insulin resistance, is considered an underlying etiology of metabolic syndrome. Prediabetes manifests as impaired fasting glucose and/or impaired glucose tolerance. Impaired fasting glucose is defined as a fasting blood glucose level of 100 to 125 mg/dL; impaired glucose tolerance requires a blood glucose level of 140 to 199 mg/dL 2 hours after a 75-g oral intake of glucose. In patients with prediabetes, the rate of progression to diabetes within 3 years can be decreased by approximately 58% with lifestyle modifications. These include weight loss through exercise (30 minutes or more of moderate physical activity on most, preferably all, days of the week) and dietary modifications. Recommended diets are high in fruits, vegetables, whole grains, and fish. Consumption of sweetened beverages, including diet soda, should be avoided. For patients who do not achieve goals with lifestyle modifications, metformin can be considered. Weight loss drugs and bariatric surgery are appropriate for select patients. Hypertension and dyslipidemia should be managed according to current guidelines. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  20. A case of perioperative glucose control by using an artificial pancreas in a patient with glycogen storage disease.

    PubMed

    Yatabe, Tomoaki; Nakamura, Ryu; Kitagawa, Hiroyuki; Munekage, Masaya; Hanazaki, Kazuhiro

    2016-03-01

    A 57-year-old woman was diagnosed with type I glycogen storage disease in her twenties. She had undergone hepatectomy under general anesthesia with epidural anesthesia. Fifty minutes after the induction of anesthesia, a 20-gauge venous catheter was inserted in the patient's right hand, and an artificial pancreas (STG-55, Nikkiso Co., Tokyo, Japan) was connected for continuous glucose monitoring and automatic glucose control. Insulin was infused when the blood glucose level reached 120 mg/dL or higher, and glucose was infused when the level fell to 100 mg/dL or lower. After the Pringle maneuver, the blood glucose level increased, and insulin was administered automatically via an artificial pancreas. Hypoglycemia did not occur during the operation. After total parenteral nutrition was started in the intensive care unit (ICU), the blood glucose level increased, and the artificial pancreas controlled the blood glucose level through automatic insulin administration. Thirty-four hours after admission to the ICU, the artificial pancreas was removed because the blood sampling failed. After the removal of the artificial pancreas, blood glucose level was measured every 2 h until extubation. During the ICU stay, hypoglycemia never occurred, with the average blood glucose level being 144 mg/dL. In conclusion, the use of an artificial pancreas for perioperative blood glucose management in a patient with glycogen storage disease had the beneficial effect of enabling the management of blood glucose levels without hypoglycemia.

  1. Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults.

    PubMed

    Vijayakumar, Venugopal; Shankar, Nagashree R; Mavathur, Ramesh; Mooventhan, A; Anju, Sood; Manjunath, N K

    2018-02-20

    Background There exist controversies about the health effects of coconut. Fresh coconut consumption on human health has not been studied substantially. Fresh coconut consumption is a regular part of the diet for many people in tropical countries like India, and thus there is an increasing need to understand the effects of fresh coconut on various aspects of health. Aim To compare the effects of increased saturated fatty acid (SFA) and fiber intake, provided by fresh coconut, versus monounsaturated fatty acid (MUFA) and fiber intake, provided by a combination of groundnut oil and groundnuts, on anthropometry, serum insulin, glucose levels and blood pressure in healthy adults. Materials Eighty healthy volunteers, randomized into two groups, were provided with a standardized diet along with either 100 g fresh coconut or an equivalent amount of groundnuts and groundnut oil for a period of 90 days. Assessments such as anthropometric measurements, blood pressure, blood sugar and insulin levels were performed before and after the supplementation period. Results Results of this study showed a significant reduction in fasting blood sugar (FBS) in both the groups. However, a significant reduction in body weight was observed in the coconut group, while a significant increase in diastolic pressure was observed in the groundnut group. Conclusions Results of this study suggest that fresh coconut-added diet helps reduce blood glucose levels and body weight in normal healthy individuals.

  2. Insulin action in adipose tissue and muscle in hypothyroidism.

    PubMed

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P < 0.05). In HO vs. EU after meal ingestion (area under curve 0-360 min): 1) BF (1290 +/- 79 vs. 1579 +/- 106 ml per 100 ml tissue in forearm and 706 +/- 105 vs. 1340 +/- 144 ml per 100 ml tissue in adipose tissue) and glucose uptake (464 +/- 74 vs. 850 +/- 155 micromol per 100 ml tissue in forearm and 208 +/- 42 vs. 406 +/- 47 micromol per 100 ml tissue in adipose tissue) were decreased (P < 0.05), but fractional glucose uptake was similar (28 +/- 6 vs. 33 +/- 6% per minute in forearm and 17 +/- 4 vs. 14 +/- 3% per minute in adipose tissue); 2) suppression of lipolysis by insulin was similar; and 3) plasma triglycerides were elevated (489 +/- 91 vs. 264 +/- 36 nmol/liter.min, P < 0.05), whereas adipose tissue lipoprotein lipase (42 +/- 11 vs. 80 +/- 21 micromol per 100 ml tissue) and triglyceride clearance (45 +/- 10 vs. 109 +/- 21 ml per 100 ml tissue) were decreased in HO (P < 0.05). In hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  3. Evaluation of three glucometers for whole blood glucose measurements at the point of care in preterm or low-birth-weight infants.

    PubMed

    Hwang, Joon Ho; Sohn, Yong-Hak; Chang, Seong-Sil; Kim, Seung Yeon

    2015-08-01

    We evaluated three blood glucose self-monitoring for measuring whole blood glucose levels in preterm and low-birth-weight infants. Between December 1, 2012 and March 31, 2013, 230 blood samples were collected from 50 newborns, who weighed, ≤2,300 g or were ≤36 weeks old, in the the neonatal intensive care unit of Eulji University Hospital. Three blood glucose self-monitoring (A: Precision Pcx, Abbott; B: One-Touch Verio, Johnson & Johnson; C: LifeScan SureStep Flexx, Johnson & Johnson) were used for the blood glucose measurements. The results were compared to those obtained using laboratory equipment (D: Advia chemical analyzer, Siemens Healthcare Diagnostics Inc.). The correlation coefficients between laboratory equipment and the three blood glucose self-monitoring (A, B, and C) were found to be 0.888, 0.884, and 0.900, respectively. For glucose levels≤60 mg/dL, the correlation coefficients were 0.674, 0.687, and 0.679, respectively. For glucose levels>60 mg/dL, the correlation coefficients were 0.822, 0.819, and 0.839, respectively. All correlation coefficients were statistically significant. And the values from the blood glucose self-monitoring were not significantly different from the value of the laboratory equipment , after correcting for each device's average value (P>0.05). When using laboratory equipment (blood glucose ≤60 mg/dL), each device had a sensitivity of 0.458, 0.604, and 0.688 and a specificity of 0.995, 0.989, and 0.989, respectively. Significant difference is not found between three blood glucose self-monitoring and laboratory equipment. But correlation between the measured values from blood glucose self-monitoring and laboratory equipment is lower in preterm or low-birth-weight infants than adults.

  4. The Effect of Buffering High Acid Load Meal with Sodium Bicarbonate on Postprandial Glucose Metabolism in Humans-A Randomized Placebo-Controlled Study.

    PubMed

    Kozan, Pinar; Blythe, Jackson C; Greenfield, Jerry R; Samocha-Bonet, Dorit

    2017-08-11

    Background: High dietary acid load relates to increased risk of type 2 diabetes in epidemiological studies. We aimed to investigate whether buffering a high acid load meal with an alkalizing treatment changes glucose metabolism post meal. Methods: Non-diabetic participants ( n = 32) were randomized to receive either 1680 mg NaHCO₃ or placebo, followed by a high acid load meal in a double-blind placebo-controlled crossover (1-4 weeks apart) study. Thirty (20 men) participants completed the study. Venous blood pH, serum bicarbonate, blood glucose, serum insulin, C -peptide, non-esterified fatty acid (NEFA), and plasma glucagon-like peptide-1 (GLP-1) concentrations were measured at baseline (fasting) and at 15-30 min intervals for 3 h post meal. Results: The treatment was well tolerated. Venous blood pH declined in the first 15 min post meal with the placebo ( p = 0.001), but not with NaHCO₃ ( p = 0.86) and remained decreased with the placebo for 3 h ( p interaction = 0.04). On average over the 3 h blood pH iAUC was greater with NaHCO₃ compared with placebo ( p = 0.02). However, postprandial glucose, insulin, C -peptide, NEFA and GLP-1 were not different between treatments ( p interaction ≥ 0.07). Conclusions: An alkalizing medication administered pre-meal has no acute effect on glycaemia and insulin response in healthy individuals. Long-term interventions in at-risk populations are necessary to investigate the effect of sustained alkalization on glucose metabolism.

  5. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  6. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice

    PubMed Central

    Sullivan, Timothy; Miao, Zhenhua; Dairaghi, Daniel J.; Krasinski, Antoni; Wang, Yu; Zhao, Bin N.; Baumgart, Trageen; Ertl, Linda S.; Pennell, Andrew; Seitz, Lisa; Powers, Jay; Zhao, Ruiping; Ungashe, Solomon; Wei, Zheng; Boring, Landin; Tsou, Chia-Lin; Charo, Israel; Schall, Thomas J.; Jaen, Juan C.

    2013-01-01

    Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function. PMID:23986513

  7. Yearly evolution of organ damage markers in diabetes or metabolic syndrome: data from the LOD-DIABETES study.

    PubMed

    Gomez-Marcos, Manuel A; Recio-Rodríguez, Jose I; Patino-Alonso, Maria C; Agudo-Conde, Cristina; Gomez-Sanchez, Leticia; Rodriguez-Sanchez, Emiliano; Gomez-Sanchez, Marta; Garcia-Ortiz, Luis

    2011-10-14

    Cardiovascular disease morbidity-mortality is greater in people with type 2 diabetes mellitus or metabolic syndrome. The purpose of this study was to evaluate the yearly evolution of organ damage markers in diabetes or metabolic syndrome, and to analyze the associated factors. An observational prospective study was carried out in the primary care setting, involving 112 patients: 68 diabetics and 44 subjects with metabolic syndrome, subjected to 12 months of follow-up. traditional cardiovascular risk factors (blood pressure, blood glucose, lipids, smoking, body mass index (BMI) and) and non-traditional risk factors (waist circumference, hsC Reactive Protein and fibrinogen); subclinical vascular (carotid intima-media thickness, pulse wave velocity and ankle/brachial index), cardiac (Cornell voltage-duration product), renal organ damage (creatinine, glomerular filtration and albumin/creatinine index), and antihypertensive and lipid-lowering drugs. At baseline, the diabetics presented a mean age of 59.9 years, versus 55.2 years in the subjects with metabolic syndrome (p = 0.03). Diastolic blood pressure, total cholesterol and HDL-cholesterol were lower among the patients with diabetes, while blood glucose and HbA1c, as well as antihypertensive and lipid-lowering drug use, were greater. At evaluation after one year, the diabetics showed a decrease in BMI (-0.39), diastolic blood pressure (-3.59), and an increase in fibrinogen (30.23 mg/dL), ankle/brachial index (0.07) and the number of patients with ankle/brachial index pathologic decreased in 6. In turn, the patients with metabolic syndrome showed an increase in HDL-cholesterol (1-91 mg/dL), fibrinogen (25.54 mg/dL), Cornell voltage-duration product (184.22 mm/ms), ankle/brachial index (0.05) and the use of antihypertensive and lipid-lowering drugs, and a reduction in serum glucose (3.74 mg/dL), HOMA, systolic (-6.76 mmHg), diastolic blood pressure (-3.29 mmHg), and pulse wave velocity (-0.72 m/s). The variable that best predicted a decrease in pulse wave velocity in subjects with metabolic syndrome was seen to be an increase in antihypertensive drug use. The annual assessment of cardiovascular risk factors and the decrease in pulse wave velocity was more favorable in the patients with metabolic syndrome, probably influenced by the increased percentage of subjects treated with antihypertensive and lipid lowering drugs in this group.

  8. Suspected hypoglycaemia in out patient practice: accuracy of dried blood spot analysis.

    PubMed

    Parker, D R; Bargiota, A; Cowan, F J; Corrall, R J

    1997-12-01

    The assay of dried blood spots on filter paper to determine blood glucose concentration has been used to detect hypoglycaemia in out patients. We assessed the accuracy of this approach in assaying blood glucose concentrations in the hypoglycaemic range. Volunteers were rendered hypoglycaemic by intravenous infusion of insulin. The glucose concentration in simultaneously taken blood samples was measured either fresh or after drying on filter paper. Twenty-four healthy young volunteers and 9 patients with insulin-dependent diabetes were studied. Plasma glucose concentrations were measured using a standard auto analyser glucose oxidase method. Whole blood taken simultaneously was placed on prepared filter paper and allowed to dry; glucose concentration was then measured using a well-established technique. A correction factor was applied to convert the glucose concentration of plasma to that of whole blood. The relationship between glucose concentrations measured by the two methods was determined by regression coefficient. In the unequivocally hypoglycaemic range (plasma < or = 2.5 mmol/l), corrected dried blood spot glucose concentrations significantly correlated with standard plasma glucose concentrations (r = 0.81; P < 0.001). The dried blood spot method had a sensitivity of 91%. In the range designated probable hypoglycaemia (plasma < or = 3.3 mmol/l), there was also significant correlation (r = 0.90; P < 0.001) and the sensitivity was 96%. The specificity of the dried blood spot method was 100% in both ranges. Measurement of glucose concentrations in dried blood spots is specific and sensitive in the hypoglycaemic range. The present study indicates that hypoglycaemia may be excluded or confirmed respectively when levels in excess of 3.7 or below 2.8 mmol/l are found in uncorrected dried blood spot analysis.

  9. Predicted blood glucose from insulin administration based on values from miscoded glucose meters.

    PubMed

    Raine, Charles H; Pardo, Scott; Parkes, Joan Lee

    2008-07-01

    The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205-210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost((R)); Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150-400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding.

  10. Gaussian Process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes.

    PubMed

    Valletta, John Joseph; Chipperfield, Andrew J; Byrne, Christopher D

    2009-01-01

    Good blood glucose control is important to people with type 1 diabetes to prevent diabetes-related complications. Too much blood glucose (hyperglycaemia) causes long-term micro-vascular complications, while a severe drop in blood glucose (hypoglycaemia) can cause life-threatening coma. Finding the right balance between quantity and type of food intake, physical activity levels and insulin dosage, is a daily challenge. Increased physical activity levels often cause changes in blood glucose due to increased glucose uptake into tissues such as muscle. To date we have limited knowledge about the minute by minute effects of exercise on blood glucose levels, in part due to the difficulty in measuring glucose and physical activity levels continuously, in a free-living environment. By using a light and user-friendly armband we can record physical activity energy expenditure on a minute-by-minute basis. Simultaneously, by using a continuous glucose monitoring system we can record glucose concentrations. In this paper, Gaussian Processes are used to model the glucose excursions in response to physical activity data, to study its effect on glycaemic control.

  11. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    PubMed Central

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes mellitus showed a significant improvement in their glucose tolerance, which paralleled the severity of their diabetes. This response seems to reflect decreased degradation of insulin rather than increased pancreatic output. These observations suggest that treatment with chloroquine or suitable analogues may be a new approach to the management of diabetes. PMID:3103729

  12. Metabolism of glucose, fructose and lactate in vivo in chronically cannulated foetuses and in suckling lambs.

    PubMed Central

    Warnes, D M; Seamark, R F; Ballard, F J

    1977-01-01

    1. Chronically cannulated sheep foetuses and suckling lambs were injected with 14C-labelled glucose, fructose or lactate, and sequential blood samples taken under conditions of minimal stress and without anaesthesia. 2. Gluconeogenesis from lactate was not detectable in foetal sheep, but the pathway was active in suckling lambs. 3. Fructose utilization rates were low in foetal sheep, with no measurable conversion into glucose or lactate. 4. The high rates of irreversible loss of both glucose and lactate in the foetus were decreased in suckling lambs. Radioactivity from labelled glucose entered both the lactate and fructose pools in foetal sheep, and entered the lactate pool in suckling lambs. 5. A model is proposed in which carbon flow between glucose, fructose and lactate has been quantified in foetal sheep. PMID:869907

  13. Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices

    PubMed Central

    Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.

    2010-01-01

    Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505

  14. Alarms based on real-time sensor glucose values alert patients to hypo- and hyperglycemia: the guardian continuous monitoring system.

    PubMed

    Bode, Bruce; Gross, Kenneth; Rikalo, Nancy; Schwartz, Sherwyn; Wahl, Timothy; Page, Casey; Gross, Todd; Mastrototaro, John

    2004-04-01

    The purposes of this study were to demonstrate the accuracy and effectiveness of the Guardian Continuous Monitoring System (Medtronic MiniMed, Northridge, California) and to demonstrate that the application of real-time alarms to continuous monitoring alerts users to hypo and hyperglycemia and reduces excursions in people with diabetes. A total of 71 subjects with type 1 diabetes, mean hemoglobin A1c of 7.6 +/- 1.1%, age 44.0 +/- 11.4 years, and duration of diabetes 23.6 +/- 10.6 years were enrolled in this two-period, randomized, multicenter study. Subjects were randomized into either an Alert group or a Control group. The accuracy of the Guardian was evaluated by treating the study data as a single-sample correlational design. Effectiveness of the Guardian alerts was evaluated by comparing the Alert group with the Control group. The mean (median) absolute relative error between home blood glucose meter readings and sensor values was 21.3% (17.3%), and the Guardian, on average, read 12.8 mg/dL below the concurrent home blood glucose meter readings. The hypoglycemia alert was able to distinguished glucose values < or =70 mg/dL with 67% sensitivity, 90% specificity, and 47% false alerts. The hyperglycemia alert showed a similar ability to detect sensor values > or =250 mg/dL with 63% sensitivity, 97% specificity, and 19% false alerts. The Alert group demonstrated a median decrease in the duration of hypoglycemic excursions (-27.8 min) that was significantly greater than the median decrease in the duration of hypoglycemic excursions in the Control group (-4.5 min) (P = 0.03). A marginally significant increase in the frequency of hyperglycemic excursions (P = 0.07) between Period 1 and Period 2 was accompanied by a decrease of 9.6 min in the duration of hyperglycemic excursions in the Alert group. Glucose measurements differ between blood samples taken from the finger and interstitial fluid, especially when levels are changing rapidly; however, these results demonstrate that the Guardian is reasonably accurate while performing continuous glucose monitoring. The subjects' responses to hypoglycemia alerts resulted in a significant reduction in the duration of hypoglycemic excursions; however, overtreating hypoglycemia may have resulted in a marginally significant increase in the frequency of hyperglycemic excursions.

  15. Clinical Impact of Accurate Point-of-Care Glucose Monitoring for Tight Glycemic Control in Severely Burned Children.

    PubMed

    Tran, Nam K; Godwin, Zachary R; Steele, Amanda N; Wolf, Steven E; Palmieri, Tina L

    2016-09-01

    The goal of this study was to retrospectively evaluate the clinical impact of an accurate autocorrecting blood glucose monitoring system in children with severe burns. Blood glucose monitoring system accuracy is essential for providing appropriate intensive insulin therapy and achieving tight glycemic control in critically ill patients. Unfortunately, few comparison studies have been performed to evaluate the clinical impact of accurate blood glucose monitoring system monitoring in the high-risk pediatric burn population. Retrospective analysis of an electronic health record system. Pediatric burn ICU at an academic medical center. Children (aged < 18 yr) with severe burns (≥ 20% total body surface area) receiving intensive insulin therapy guided by either a noncorrecting (blood glucose monitoring system-1) or an autocorrecting blood glucose monitoring system (blood glucose monitoring system-2). Patient demographics, insulin rates, and blood glucose monitoring system measurements were collected. The frequency of hypoglycemia and glycemic variability was compared between the two blood glucose monitoring system groups. A total of 122 patient charts from 2001 to 2014 were reviewed. Sixty-three patients received intensive insulin therapy using blood glucose monitoring system-1 and 59 via blood glucose monitoring system-2. Patient demographics were similar between the two groups. Mean insulin infusion rates (5.1 ± 3.8 U/hr; n = 535 paired measurements vs 2.4 ± 1.3 U/hr; n = 511 paired measurements; p < 0.001), glycemic variability, and frequency of hypoglycemic events (90 vs 12; p < 0.001) were significantly higher in blood glucose monitoring system-1-treated patients. Compared with laboratory measurements, blood glucose monitoring system-2 yielded the most accurate results (mean ± SD bias: -1.7 ± 6.9 mg/dL [-0.09 ± 0.4 mmol/L] vs 7.4 ± 13.5 mg/dL [0.4 ± 0.7 mmol/L]). Blood glucose monitoring system-2 patients achieve glycemic control more quickly (5.7 ± 4.3 vs 13.1 ± 6.9 hr; p< 0.001) and stayed within the target glycemic control range longer compared with blood glucose monitoring system-1 patients (85.2% ± 13.9% vs 57.9% ± 29.1%; p < 0.001). Accurate autocorrecting blood glucose monitoring system optimizes intensive insulin therapy, improves tight glycemic control, and reduces the risk of hypoglycemia and glycemic variability. The use of an autocorrecting blood glucose monitoring system for intensive insulin therapy may improve glycemic control in severely burned children.

  16. Effects of endurance, circuit, and relaxing training on cardiovascular risk factors in hypertensive elderly patients.

    PubMed

    Venturelli, Massimo; Cè, Emiliano; Limonta, Eloisa; Schena, Federico; Caimi, Barbara; Carugo, Stefano; Veicsteinas, Arsenio; Esposito, Fabio

    2015-10-01

    Recommendations for prevention of cardiovascular diseases (CVDs) risk factors among older adults highlighted the importance of exercise-based interventions, including endurance training (ET). However, the evidence of efficacy of other interventions based on short-bouts of exercise (circuit training, CT), and the practice of breath-control and meditation (relaxing training, RT) is growing. The aim of this study was to elucidate if CT or RT are equally effective in CVD risk factors reduction compared to ET. To this purpose, in 40 elderly participants, with clinically diagnosed grade 1 hypertension, resting blood pressure, blood glucose, and cholesterol levels, peak oxygen uptake ([Formula: see text]), mechanical efficiency and quality of life were evaluated before and after 12 weeks of ET, CT, and RT treatments. Resting blood pressure reduced significantly in all groups by ∼11 %. In ET, blood cholesterol levels (-18 %), [Formula: see text] (+8 %), mechanical efficiency (+9 %), and quality of life scores (+36 %) ameliorated. In CT blood glucose levels (-11 %), [Formula: see text] (+7 %) and quality of life scores (+35 %) were bettered. Conversely, in RT, the lower blood pressure went along only with an improvement in the mental component of quality of life (+42 %). ET and CT were both appropriate interventions to reduce CVDs risk factors, because blood pressure reduction was accompanied by decreases in blood glucose and cholesterol levels, increases in [Formula: see text], mechanical efficiency, and quality of life. Although RT influenced only blood pressure and quality of life, this approach would be an attractive alternative for old individuals unable or reluctant to carry out ET or CT.

  17. Probiotic yogurt improves antioxidant status in type 2 diabetic patients.

    PubMed

    Ejtahed, Hanie S; Mohtadi-Nia, Javad; Homayouni-Rad, Aziz; Niafar, Mitra; Asghari-Jafarabadi, Mohammad; Mofid, Vahid

    2012-05-01

    Oxidative stress plays a major role in the pathogenesis and progression of diabetes. Among various functional foods with an antioxidant effect, probiotic foods have been reported to repress oxidative stress. The objective of this clinical trial was to assess the effects of probiotic and conventional yogurt on blood glucose and antioxidant status in type 2 diabetic patients. Sixty-four patients with type 2 diabetes mellitus, 30 to 60 y old, were assigned to two groups in this randomized, double-blind, controlled clinical trial. The patients in the intervention group consumed 300 g/d of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 and those in the control group consumed 300 g/d of conventional yogurt for 6 wk. Fasting blood samples, 24-h dietary recalls, and anthropometric measurements were collected at the baseline and at the end of the trial. Probiotic yogurt significantly decreased fasting blood glucose (P < 0.01) and hemoglobin A1c (P < 0.05) and increased erythrocyte superoxide dismutase and glutathione peroxidase activities and total antioxidant status (P < 0.05) compared with the control group. In addition, the serum malondialdehyde concentration significantly decreased compared with the baseline value in both groups (P < 0.05). No significant changes from baseline were shown in insulin concentration and erythrocyte catalase activity within either group (P > 0.05). The consumption of probiotic yogurt improved fasting blood glucose and antioxidant status in type 2 diabetic patients. These results suggest that probiotic yogurt is a promising agent for diabetes management. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. [Sex hormones and the metabolism of carbohydrates].

    PubMed

    Boukhris, R

    1987-12-01

    Sex hormones play an important role in the control of glucose metabolism and insulin. Decreased glucose tolerance observed at the end of pregnancy in most cases remains within normal limits. Pregnancy has an important effect on the islets of Langerhans and on the growth of beta cellules. At the end of pregnancy, assimilation of glucose and triglycerides by maternal tissues is slowed and transfer to the fetus is favored. Hyperinsulinism persists but insulin resistance at the level of maternal tissue becomes very strong and the number of receptors declines. This late pregnancy insulin resistance has not been satisfactorily explained. The declining number of receptors may be a mechanism, or the "antiinsulin" pregnancy hormones which includes estrogens and progesterone may play a major role. Although other mechanisms have been proposed to explain the antiinsulin effect, the role of sex hormones and especially of progesterone (and synthetic progestins used in contraception) appears crucial. The presence of estrogen and progesterone receptors in the beta cellules of the islets of Langerhans suggests a direct effect of these hormones on the cellules. Estrogens however work by other mechanisms than insulin secretion. Experimental evidence indicates that during pregnancy, progesterone increases insulin release while human placental lactogen stimulates hyperplasia of the islets. The progestins derived from progesterone used in contraception have a parallel action. A slight elevation of blood sugar and insulinemia have been observed in oral contraceptive (OC) users. Only 3-5% of OC users develop true hyperglycemia. The changes are usually transitory and disappear on termination of OC use except in the small number of women predisposed to diabetes. The decreased glucose tolerance of OC users differs from true diabetes. Combined OCs favor vascular accidents and myocardial infarct in insulin-dependent diabetics. The mechanisms involved include deteriorating control of diabetes; effects on the serum lipids, coagulation factors, and blood pressure; and direct effects of estrogen on the vascular wall. Venous but not arterial vascular accidents decline with lower estrogen doses. Progestins probably play a more significant role from estrogens in decreasing glucose tolerance. Pregnanes, progestins derived from progesterone, do not appear to affect glucose tolerance. Among testosterone derivatives, the entrances decrease glucose tolerance slightly and the gonanes more strongly, also causing hyperinsulinism. But the new triphasic OCs with low levonorgestrel doses cause no significant changes in glucose tolerance even in women with histories of gestational diabetes. Long-acting progestin implants, vaginal rings, and injectables appear thus far to have minimal or no effects on glucose tolerance.

  19. Glucose Levels in Newborns with Special Reference to Hypoglycemia: A Study from Rural India

    PubMed Central

    Dias, Edwin; Gada, Sandeep

    2014-01-01

    Hypoglycemia is one of the common metabolic problems in neonatal medicine. There is association between blood glucose levels and neurological development. The study involved 100 mothers and neonates blood glucose levels were measured using a standard glucometer in mother delivering babies within half an hour of delivery and in newborns at 0, 3, 6, 12, 24 h of life. Blood glucose levels were low at 0th and 6th h and maximum at 24th h. Neonates born to mothers with high maternal blood glucose levels were hypoglycemic showing a negative correlation. The mean blood glucose levels were low in pre-term and post-term compared with term babies and range of blood glucose levels were wide in preterm and post term babies. PMID:24741538

  20. Discrepancies Between Blood Glucose and Interstitial Glucose—Technological Artifacts or Physiology: Implications for Selection of the Appropriate Therapeutic Target

    PubMed Central

    Siegmund, Thorsten; Heinemann, Lutz; Kolassa, Ralf; Thomas, Andreas

    2017-01-01

    Background: For decades, the major source of information used to make therapeutic decisions by patients with diabetes has been glucose measurements using capillary blood samples. Knowledge gained from clinical studies, for example, on the impact of metabolic control on diabetes-related complications, is based on such measurements. Different to traditional blood glucose measurement systems, systems for continuous glucose monitoring (CGM) measure glucose in interstitial fluid (ISF). The assumption is that glucose levels in blood and ISF are practically the same and that the information provided can be used interchangeably. Thus, therapeutic decisions, that is, the selection of insulin doses, are based on CGM system results interpreted as though they were blood glucose values. Methods: We performed a more detailed analysis and interpretation of glucose profiles obtained with CGM in situations with high glucose dynamics to evaluate this potentially misleading assumption. Results: Considering physical activity, hypoglycemic episodes, and meal-related differences between glucose levels in blood and ISF uncover clinically relevant differences that can make it risky from a therapeutic point of view to use blood glucose for therapeutic decisions. Conclusions: Further systematic and structured evaluation as to whether the use of ISF glucose is more safe and efficient when it comes to acute therapeutic decisions is necessary. These data might also have a higher prognostic relevance when it comes to long-term metabolic consequences of diabetes. In the long run, it may be reasonable to abandon blood glucose measurements as the basis for diabetes management and switch to using ISF glucose as the appropriate therapeutic target. PMID:28322063

  1. A yoga intervention for type 2 diabetes risk reduction: a pilot randomized controlled trial.

    PubMed

    McDermott, Kelly A; Rao, Mohan Raghavendra; Nagarathna, Raghuram; Murphy, Elizabeth J; Burke, Adam; Nagendra, Ramarao Hongasandra; Hecht, Frederick M

    2014-07-01

    Type 2 diabetes is a major health problem in many countries including India. Yoga may be an effective type 2 diabetes prevention strategy in India, particularly given its cultural familiarity. This was a parallel, randomized controlled pilot study to collect feasibility and preliminary efficacy data on yoga for diabetes risk factors among people at high risk of diabetes. Primary outcomes included: changes in BMI, waist circumference, fasting blood glucose, postprandial blood glucose, insulin, insulin resistance, blood pressure, and cholesterol. We also looked at measures of psychological well-being including changes in depression, anxiety, positive and negative affect and perceived stress. Forty-one participants with elevated fasting blood glucose in Bangalore, India were randomized to either yoga (n = 21) or a walking control (n = 20). Participants were asked to either attend yoga classes or complete monitored walking 3-6 days per week for eight weeks. Randomization and allocation was performed using computer-generated random numbers and group assignments delivered in sealed, opaque envelopes generated by off-site study staff. Data were analyzed based on intention to treat. This study was feasible in terms of recruitment, retention and adherence. In addition, yoga participants had significantly greater reductions in weight, waist circumference and BMI versus control (weight -0.8 ± 2.1 vs. 1.4 ± 3.6, p = 0.02; waist circumference -4.2 ± 4.8 vs. 0.7 ± 4.2, p < 0.01; BMI -0.2 ± 0.8 vs. 0.6 ± 1.6, p = 0.05). There were no between group differences in fasting blood glucose, postprandial blood glucose, insulin resistance or any other factors related to diabetes risk or psychological well-being. There were significant reductions in systolic and diastolic blood pressure, total cholesterol, anxiety, depression, negative affect and perceived stress in both the yoga intervention and walking control over the course of the study. Among Indians with elevated fasting blood glucose, we found that participation in an 8-week yoga intervention was feasible and resulted in greater weight loss and reduction in waist circumference when compared to a walking control. Yoga offers a promising lifestyle intervention for decreasing weight-related type 2 diabetes risk factors and potentially increasing psychological well-being. ClinicalTrials.gov Identified NCT00090506.

  2. Effects of A NBC (Nuclear, Biological, and Chemical) Nutrient Solution on Physiological and Psychological Status during Sustained Activity in the Heat

    DTIC Science & Technology

    1987-07-17

    of sugar (3). Kety (14) reported that a significant decrease in the blood glucose level is consistently associated with manifestations of impaired...Brozek J, Keys A. Relationship of speed of motor reaction to blood sugar level during acute starvation in man, abstracted. Fed Proc 1945;4:28. 9. Blom...profound low blood sugar can cause irreversible brain damage (21,30). Since hypoglycemia did not develop, it was not possible to assess the effects of

  3. Why control blood glucose levels?

    PubMed

    Rossini, A A

    1976-03-01

    The controversy as to the relationship between the degree of control of diabetes and the progression of the complications of the disease has not been solved. However, in this review, various studies suggesting a relationship between the metabolic abnormality and the diabetic complications are examined. The disadvantages of the uncontrolled diabetes mellitus can be divided into two major categories-short-term and long-term. The short-term disadvantages of controlled diabetes mellitus include the following: (1) ketoacidosis and hyperosmolar coma; (2) intracellular dehydration; (3) electrolyte imbalance; (4) decreased phagocytosis; (5) immunologic and lymphocyte activity; (6) impairment of wound healing; and (7) abnormality of lipids. The long-term disadvantages of uncontrolled diabetes melitus include the following: (1) nephropathy; (2) neuropathy; (3) retinopathy; (4) cataract formation; (5) effect on perinatal mortality; (6) complications of vascular disease; and (7) the evaluation of various clinical studies suggesting the relationship of elevated blood glucose levels and complications of diabetes mellitus. It is suggested that until the question of control can absolutely be resolved, the recommendation is that the blood glucose levels should be controlled as close to the normal as possible.

  4. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  5. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    PubMed

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  6. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation.

    PubMed

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S; Holstein-Rathlou, Niels-Henrik; Ploug, Thorkil; Prats, Clara; Pedersen, Henrik D; Kjølbye, Anne Louise

    2010-06-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal/100 kcal fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 wk of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by in vivo pressure volume measurements, and intramyocardial lipid accumulation was analyzed by confocal microscopy. Cardiac AMP-activated kinase (AMPK) and hepatic phosphoenolpyruvate carboxykinase (PEPCK) levels were measured by Western blotting. Finally, an ischemia-reperfusion study was performed after 56 wk of feeding. FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels, and an initial increased fasting glucose, which returned to control levels after 24 wk of feeding. The diet had no effect on blood pressure but decreased hepatic PEPCK levels. FFFRs showed significant intramyocardial lipid accumulation, and cardiac hypertrophy became pronounced between 24 and 36 wk of feeding. FFFRs showed no signs of cardiac dysfunction during unstressed conditions, but their hearts were much more vulnerable to ischemia-reperfusion and had a decreased level of phosphorylated AMPK at 6 wk of feeding. This study characterizes a new animal model of the metabolic syndrome that could be beneficial in future studies of metabolic syndrome and cardiac complications.

  7. [The effect of subchronic inhalations of nitric oxide on metabolic processes in blood of experimental animals].

    PubMed

    Soloveva, A G; Peretyagin, S P

    2016-01-01

    Metabolic processes were investigated in plasma and erythrocytes of Wistar rats exposed to daily 10-min sessions of NO inhalation for 30 days. These included determination of glucose and lactate, catalase activity, and activities of aldehyde dehydrogenase (ALDH), lactate dehydrogenase (LDH), and catalase. NO inhalation in a concentration of 20 ppm, 50 ppm and 100 ppm caused an increase in glucose and lactate. Inhalation of 100 ppm NO also increased catalase activity. Inhalation of all NO concentrations resulted in a decrease of ALDH activity, while the decrease in LDH activity was observed at NO concentrations of 50-100 ppm.

  8. Blood glucose measurement by glucometer in comparison with standard method in diagnosis of neonatal hypoglycemia.

    PubMed

    Nayeri, Fatemeh; Shariat, Mamak; Mousavi Behbahani, Hamid Modarres; Dehghan, Padideh; Ebrahim, Bita

    2014-01-01

    Hypoglycemia is considered as a serious risk factor in neonates. In the majority of cases, it occurs with no clinical symptoms. Accordingly, early diagnosis is extremely imperative, which can also lead to less morbidity and mortality. The aim of this study was to assess the importance of screening blood glucose using glucometer (known as a quick and cost-effective diagnostic test) in comparison with laboratory method. A total of 219 neonates at risk of hypoglycemia were included in this study. Blood glucose was measured by glucometer and laboratory. In addition glucose level of capillary blood was measured by glucometer at the same time. Sensitivity and specificity of capillary blood glucose measurement by glucometer were 83.5%, 97.5% respectively (ppv=80%), (npv=98%). Capillary blood glucose measured by glucometer has an acceptable sensitivity and specificity in measurement of neonatal blood glucose. Therefore measurement by glucometer is recommended as a proper diagnostic test.

  9. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.

  10. Using LSTMs to learn physiological models of blood glucose behavior.

    PubMed

    Mirshekarian, Sadegh; Bunescu, Razvan; Marling, Cindy; Schwartz, Frank

    2017-07-01

    For people with type 1 diabetes, good blood glucose control is essential to keeping serious disease complications at bay. This entails carefully monitoring blood glucose levels and taking corrective steps whenever they are too high or too low. If blood glucose levels could be accurately predicted, patients could take proactive steps to prevent blood glucose excursions from occurring. However, accurate predictions require complex physiological models of blood glucose behavior. Factors such as insulin boluses, carbohydrate intake, and exercise influence blood glucose in ways that are difficult to capture through manually engineered equations. In this paper, we describe a recursive neural network (RNN) approach that uses long short-term memory (LSTM) units to learn a physiological model of blood glucose. When trained on raw data from real patients, the LSTM networks (LSTMs) obtain results that are competitive with a previous state-of-the-art model based on manually engineered physiological equations. The RNN approach can incorporate arbitrary physiological parameters without the need for sophisticated manual engineering, thus holding the promise of further improvements in prediction accuracy.

  11. [A comparative study of the glucose level in dry blood stains from donors and cadavers].

    PubMed

    Kachina, N N

    1994-01-01

    Glucose concentrations in dry spots of cadaveric and donor blood stored at room temperature for different periods were measured. Studies by glucose oxidase method revealed that glucose levels in dry spots of both cadaveric and donor blood gradually reduced until completely disappeared, but in comparison with glucose level lowering in liquid blood the period during which this carbohydrate completely disappeared from a dry blood spot was by several times longer. Effects of the velocity of blood spot drying and of microorganisms contaminating the sample may make the expert conclusions doubtful.

  12. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    PubMed

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-04

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The metabolism of carbohydrates and lipid peroxidation in lead-exposed workers.

    PubMed

    Kasperczyk, Aleksandra; Dobrakowski, Michal; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2015-12-01

    The present study was undertaken to estimate the effect of occupational exposure to lead on the blood concentration of glucose and several enzymes involved in glycolysis, the citric acid cycle, and the pentose phosphate pathway. To estimate the degree of lipid peroxidation, the concentrations of conjugated dienes were determined. The examined group included 145 healthy male employees of lead-zinc works. Taking into account the mean blood lead levels, the examined group was divided into two subgroups. The control group was composed of 36 healthy male administrative workers. The markers of lead exposure were significantly elevated in both subgroups when compared with the controls. There were no significant changes in fasting glucose concentration and fructose-1,6-bisphosphate aldolase activity in the study population. The concentration of conjugated dienes was significantly higher in both subgroups, whereas the activity of malate dehydrogenase was significantly higher only in the group with higher exposure. The activities of lactate dehydrogenase and sorbitol dehydrogenase were significantly decreased in the examined subgroups. The activity of glucose-6-phosphate dehydrogenase decreased significantly in the group with higher exposure and could be the cause of the elevated concentrations of conjugated dienes. It is possible to conclude that lead interferes with carbohydrate metabolism, but compensatory mechanisms seem to be efficient, as glucose homeostasis in lead-exposed workers was not disturbed. © The Author(s) 2013.

  14. Repaglinide, but not nateglinide administered supraspinally and spinally exerts an anti-diabetic action in d-glucose fed and streptozotocin-treated mouse models.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-12-01

    We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.

  15. Repaglinide, but Not Nateglinide Administered Supraspinally and Spinally Exerts an Anti-Diabetic Action in D-Glucose Fed and Streptozotocin-Treated Mouse Models

    PubMed Central

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi

    2013-01-01

    We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models. PMID:24381497

  16. Analytical and Clinical Performance of Blood Glucose Monitors

    PubMed Central

    Boren, Suzanne Austin; Clarke, William L.

    2010-01-01

    Background The objective of this study was to understand the level of performance of blood glucose monitors as assessed in the published literature. Methods Medline from January 2000 to October 2009 and reference lists of included articles were searched to identify eligible studies. Key information was abstracted from eligible studies: blood glucose meters tested, blood sample, meter operators, setting, sample of people (number, diabetes type, age, sex, and race), duration of diabetes, years using a glucose meter, insulin use, recommendations followed, performance evaluation measures, and specific factors affecting the accuracy evaluation of blood glucose monitors. Results Thirty-one articles were included in this review. Articles were categorized as review articles of blood glucose accuracy (6 articles), original studies that reported the performance of blood glucose meters in laboratory settings (14 articles) or clinical settings (9 articles), and simulation studies (2 articles). A variety of performance evaluation measures were used in the studies. The authors did not identify any studies that demonstrated a difference in clinical outcomes. Examples of analytical tools used in the description of accuracy (e.g., correlation coefficient, linear regression equations, and International Organization for Standardization standards) and how these traditional measures can complicate the achievement of target blood glucose levels for the patient were presented. The benefits of using error grid analysis to quantify the clinical accuracy of patient-determined blood glucose values were discussed. Conclusions When examining blood glucose monitor performance in the real world, it is important to consider if an improvement in analytical accuracy would lead to improved clinical outcomes for patients. There are several examples of how analytical tools used in the description of self-monitoring of blood glucose accuracy could be irrelevant to treatment decisions. PMID:20167171

  17. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain.

    PubMed

    Jensen, Vivi F H; Mølck, Anne-Marie; Chapman, Melissa; Alifrangis, Lene; Andersen, Lene; Lykkesfeldt, Jens; Bøgh, Ingrid B

    2017-01-01

    The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.

  18. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys.

    PubMed

    Wang, B; Sun, G; Qiao, W; Liu, Y; Qiao, J; Ye, W; Wang, H; Wang, X; Lindquist, R; Wang, Y; Xiao, Y-F

    2017-09-01

    Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.

  19. Naphthalenemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4.

    PubMed

    Kim, W; Khil, L Y; Clark, R; Bok, S H; Kim, E E; Lee, S; Jun, H S; Yoon, J W

    2006-10-01

    Cinnamon extracts have anti-diabetic effects. Phenolic acids, including hydrocinnamic acids, were identified as major components of cinnamon extracts. Against this background we sought to develop a new anti-diabetic compound using derivatives of hydroxycinnamic acids purified from cinnamon. We purified hydroxycinnamic acids from cinnamon, synthesised a series of derivatives, and screened them for glucose transport activity in vitro. We then selected the compound with the highest glucose transport activity in epididymal adipocytes isolated from male Sprague-Dawley rats in vitro, tested it for glucose-lowering activity in vivo, and studied the mechanisms involved. A naphthalenemethyl ester of 3,4-dihydroxyhydrocinnamic acid (DHH105) showed the highest glucose transport activity in vitro. Treatment of streptozotocin-induced diabetic C57BL/6 mice and spontaneously diabetic ob/ob mice with DHH105 decreased blood glucose levels to near normoglycaemia. Further studies revealed that DHH105 increased the maximum speed of glucose transport and the translocation of glucose transporter 4 (GLUT4, now known as solute carrier family 2 [facilitated glucose transporter], member 4 [SLC2A4]) in adipocytes, resulting in increased glucose uptake. In addition, DHH105 enhanced phosphorylation of the insulin receptor-beta subunit and insulin receptor substrate-1 in adipocytes, both in vitro and in vivo. This resulted in the activation of phosphatidylinositol 3-kinase and Akt/protein kinase B, contributing to the translocation of GLUT4 to the plasma membrane. We conclude that DHH105 lowers blood glucose levels through the enhancement of glucose transport, mediated by an increase in insulin-receptor signalling. DHH105 may be a valuable candidate for a new anti-diabetic drug.

  20. Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration.

    PubMed

    Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won

    2012-06-01

    Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD(+)), resulting in energy failure. In this study, we investigate whether lactate administration in the absence of cytosolic NAD(+) affords neuroprotection against hypoglycemia-induced neuronal death. Intraperitoneal injection of sodium L-lactate corrected arterial blood pH and blood lactate concentration after hypoglycemia. Lactate administered without glucose was not sufficient to promote electroencephalogram recovery from an isoelectric state during hypoglycemia. However, supplementation of glucose with lactate reduced neuronal death by ∼80% in the hippocampus. Hypoglycemia-induced superoxide production and microglia activation was also substantially reduced by administration of lactate. Taken together, these results suggest an intriguing possibility: that increasing brain lactate following hypoglycemia offsets the decrease in NAD(+) due to overactivation of PARP-1 by acting as an alternative energy substrate that can effectively bypass glycolysis and be fed directly to the citric acid cycle to maintain cellular ATP levels.

  1. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    PubMed

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  2. Salivary glucose concentration and excretion in normal and diabetic subjects.

    PubMed

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  3. Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.

    PubMed

    Betz, A L; Goldstein, G W

    1981-03-01

    1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.

  4. Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects.

    PubMed

    Sato, Fumihiko; Tamura, Yoshifumi; Watada, Hirotaka; Kumashiro, Naoki; Igarashi, Yasuhiro; Uchino, Hiroshi; Maehara, Tadayuki; Kyogoku, Shinsuke; Sunayama, Satoshi; Sato, Hiroyuki; Hirose, Takahisa; Tanaka, Yasushi; Kawamori, Ryuzo

    2007-08-01

    Although moderate weight reduction is recommended as primary therapy of metabolic syndrome, little information is known regarding metabolic changes associated with moderate weight reduction in nondiabetic obese subjects. The aim of this study was to determine the effects of a moderate weight reduction program on intracellular lipid and glucose metabolism in muscle and liver. Data for 13 nondiabetic obese subjects were evaluated. Subjects were put on a 3-month mildly hypocaloric diet therapy (approximately 35 kcal/kg of ideal body weight). Intrahepatic lipid (IHL) and intramyocellular lipid were measured by using (1)H magnetic resonance spectroscopy. Peripheral insulin sensitivity and splanchnic glucose uptake were evaluated by euglycemic-hyperinsulinemic clamp with oral glucose load. Diet therapy for 3 months resulted in 6% reduction in body weight (from 99.9 +/- 7.3 to 93.8 +/- 6.6 kg, P < 0.0001). This change was accompanied by reduction of plasma glucose and insulin excursions during 75-g oral glucose tolerance tests, decrease in diastolic blood pressure, glycated hemoglobin, serum low-density lipoprotein cholesterol, and triglyceride. These changes were also accompanied by a decrease in IHL (from 12.9 to 8.2%, P < 0.01) and increase in splanchnic glucose uptake (from 13.5 to 35.0%, P < 0.03). On the other hand, the diet program did not affect intramyocellular lipid or glucose infusion rate during euglycemic hyperinsulinemic clamp. Our results suggest that moderate weight reduction in obese subjects decreased IHL and augmented splanchnic glucose uptake. This mechanism is at least in part involved in improvement of glucose metabolism by moderate weight reduction in obese subjects.

  5. Effect of Glycemic Control on Chylomicron Metabolism and Correlation between Postprandial Metabolism of Plasma Glucose and Chylomicron in Patients with Type 2 Diabetes Treated with Basal-bolus Insulin Therapy with or without Vildagliptin

    PubMed Central

    Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi

    2017-01-01

    Aim: Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Methods: Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n = 16) or insulin plus vildagliptin 100 mg (InsV; n = 16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. Results: The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R2 = 0.5242, P <0.001). Conclusions: Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect. PMID:27397060

  6. Effect of Glycemic Control on Chylomicron Metabolism and Correlation between Postprandial Metabolism of Plasma Glucose and Chylomicron in Patients with Type 2 Diabetes Treated with Basal-bolus Insulin Therapy with or without Vildagliptin.

    PubMed

    Okajima, Fumitaka; Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi

    2017-02-01

    Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n=16) or insulin plus vildagliptin 100 mg (InsV; n=16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R 2 = 0.5242,P<0.001). Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect.

  7. Moderate glycemic control safe in critically ill adult burn patients: A 15 year cohort study.

    PubMed

    Stoecklin, Patricia; Delodder, Frederik; Pantet, Olivier; Berger, Mette M

    2016-02-01

    Hyperglycemia is a metabolic alteration in major burn patients associated with complications. The study aimed at evaluating the safety of general ICU glucose control protocols applied in major burns receiving prolonged ICU treatment. 15 year retrospective analysis of consecutive, adult burn patients admitted to a single specialized centre. death or length of stay <10 days, age <16 years. demographic variables, burned surface (TBSA), severity scores, infections, ICU stay, outcome. Metabolic variables: total energy, carbohydrate and insulin delivery/24h, arterial blood glucose and CRP values. Analysis of 4 periods: 1, before protocol; 2, tight doctor driven; 3, tight nurse driven; 4, moderate nurse driven. 229 patients, aged 45 ± 20 years (mean ± SD), burned 32 ± 20% TBSA were analyzed. SAPSII was 35 ± 13. TBSA, Ryan and ABSI remained stable. Inhalation injury increased. A total of 28,690 blood glucose samples were analyzed: the median value remained unchanged with a narrower distribution over time. After the protocol initiation, the normoglycemic values increased from 34.7% to 65.9%, with a reduction of hypoglycaemic events (no extreme hypoglycemia in period 4). Severe hyperglycemia persisted throughout with a decrease in period 4 (9.25% in period 4). Energy and glucose deliveries decreased in periods 3 and 4 (p<0.0001). Infectious complications increased during the last 2 periods (p=0.01). A standardized ICU glucose control protocol improved the glycemic control in adult burn patients, reducing glucose variability. Moderate glycemic control in burns was safe specifically related to hypoglycemia, reducing the incidence of hypoglycaemic events compared to the period before. Hyperglycemia persisted at a lower level. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  8. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  9. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yoshioka, Kiriko; Kino, Saiko; Matsuura, Yuji

    2017-04-01

    For non-invasive measurement of blood glucose level, attenuated total reflection (ATR) absorption spectroscopy system using a QCL as a light source was developed. The results of measurement of glucose solutions showed that the system had a sensitivity that was enough for blood glucose measurement. In-vivo measurement using the proposed system based on QCL showed that there was a correlation between absorptions measured with human lips and blood glucose level.

  10. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats.

    PubMed

    Sureka, Chandrabose; Ramesh, Thiyagarajan; Begum, Vavamohaideen Hazeena

    2015-08-01

    The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.

  11. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  12. 75 FR 2549 - Clinical Accuracy Requirements for Point of Care Blood Glucose Meters; Public Meeting; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ...] Clinical Accuracy Requirements for Point of Care Blood Glucose Meters; Public Meeting; Request for Comments... Requirements for Point of Care Blood Glucose Meters. The purpose of the public meeting is to discuss the clinical accuracy requirements of blood glucose meters and other topics related to their use in point of...

  13. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Chinnapaiyan; Khan, Adam Ismail; Balaji, Venkataraman

    Diethyl hexyl phthalate (DEHP) is an endocrine disruptor, it influences various organ systems in human beings and experimental animals. DEHP reduced the serum testosterone and increased the blood glucose, estradiol, T{sub 3} and T{sub 4} in rats. However, the effect of DEHP on insulin signaling and glucose oxidation in skeletal muscle is not known. Adult male albino rats were divided into four groups: Group I: Control; Groups II and III: DEHP treated (dissolved in olive oil at a dose of 10 and 100 mg/kg body weight, respectively, once daily through gastric intubation for 30 days); and Group IV: DEHP (100more » mg/kg body weight) plus vitamins E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubation for 30 days. On completion of treatment, animals were euthanized and perfused (whole body); gastrocnemius muscle was dissected out and subjected to assessment of various parameters. DEHP treatment increased the H{sub 2}O{sub 2}, hydroxyl radical levels and lipid peroxidation which disrupt the membrane integrity and insulin receptor. DEHP impaired the insulin signal transduction, glucose uptake and oxidation through decreased expression of plasma membrane GLUT4, which may partly be responsible for the elevation of fasting blood glucose level. The present study suggests that DEHP exposure affects glucose oxidation in skeletal muscle and is mediated through enhanced lipid peroxidation, impaired insulin signaling and GLUT4 expression in plasma membrane. Antioxidant vitamins (C and E) have a protective role against the adverse effect of DEHP. -- Highlights: Black-Right-Pointing-Pointer DEHP treatment significantly decreased serum insulin and testosterone levels. Black-Right-Pointing-Pointer Increased ROS and decreased glucose uptake were observed in DEHP treated animals. Black-Right-Pointing-Pointer Impaired insulin signaling in gastrocnemius muscle was observed in DEHP treatment. Black-Right-Pointing-Pointer Vitamins C and E alter ROS, glucose uptake, oxidation and insulin signaling molecules.« less

  14. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.

    PubMed

    Njomen, Guy Bertrand Sabas Nya; Kamgang, René; Oyono, Jean Louis Essame; Njikam, Njifutie

    2008-11-01

    The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

  15. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats.

    PubMed

    Rath, Diptirani; Kar, Durga Madhab; Panigrahi, Sandeep Kumar; Maharana, Laxmidhar

    2016-11-04

    Cuscuta reflexa Roxb. (Convolvulaceae) is traditionally used to treat diabetes mellitus by tribal people of north-east India and Bangladesh. To evaluate the anti-diabetic effects of methanol and aqueous extracts of the aerial parts of Cuscuta reflexa Roxb. in normal, glucose loaded and Streptozotocin (STZ) induced diabetic rats. The methanol (MECR) and aqueous (AECR) extracts (200 and 400mg/kg body weight) were administered orally to normal and diabetic rats with Metformin and solvent control as comparison groups. Long term effects like FBG, OGTT, lipid profile, HbA1c, body weight, histopathology of major organs, etc. were investigated. MECR and AECR did not have hypoglycemic effects in normal rats. Both AECR and MECR (400mg/kg) treatments showed significant reduction in blood glucose during OGTT in diabetic rats at 3h. Single oral administration of methanol and aqueous extracts (400mg/kg) to diabetic rats significantly reduced (p<0.05) blood glucose level to 61.90% and 55.39% respectively as compared to the Metformin group i.e. 68.32% at the end of 8h. MECR (400mg/kg body weight for 30 days to diabetic rats) showed a significant decrease (p<0.01) of blood glucose level to 60.00% as compared to other groups. The treatment also resulted an improvement in body weights, decreased HbA1c and restored lipid profile. Histopathological injury was not observed, rather repair of beta cells was seen in extract treated diabetic rats. Methanolic extract of C. reflexa has significant antidiabetic effects and improves metabolic alterations thereby justifying its traditional folkloric claims. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Gender difference of metabolic syndrome and its association with dietary diversity at different ages.

    PubMed

    Tian, Xu; Xu, Xiaohui; Zhang, Kai; Wang, Hui

    2017-09-26

    Previous research indicated that dietary diversity had favorable association with metabolic syndrome (MetS), and it has not been investigated in China. Adults (aged 18+) with complete dietary and biochemical data were collected from 2009 China Health and Nutrition Survey ( n =4308). Dietary diversity was measured by modified Dietary Diversity Score (DDS). MetS was defined by the harmonized criteria. The association between DDS and MetS was investigated by multivariable adjusted logistic regression. An inverse-U shape relationship between MetS risk and age was detected for both genders, and female were more vulnerable than male at old times. More diversified diet decreased the risk of MetS for young female (≥18 & ≤45), similar trends were detected in serum TGs, abdominal adiposity, blood pressure, and fasting blood glucose (all P <0.05). However, this association reversed for old female (>60) and male adults (>45&≤60). Greater DDS was associated with higher serum TGs, and lower HDL-C level for male adults, higher blood pressure for old men, but lower blood pressure and fasting blood glucose in young men (all P <0.05). Male adults and old female had the highest risk of getting MetS. More diversified diet decreased MetS risk for young female, but increased the risk for male adults and old female.

  17. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. In Silico Assessment of Literature Insulin Bolus Calculation Methods Accounting for Glucose Rate of Change.

    PubMed

    Cappon, Giacomo; Marturano, Francesca; Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni

    2018-05-01

    The standard formula (SF) used in bolus calculators (BCs) determines meal insulin bolus using "static" measurement of blood glucose concentration (BG) obtained by self-monitoring of blood glucose (SMBG) fingerprick device. Some methods have been proposed to improve efficacy of SF using "dynamic" information provided by continuous glucose monitoring (CGM), and, in particular, glucose rate of change (ROC). This article compares, in silico and in an ideal framework limiting the exposition to possibly confounding factors (such as CGM noise), the performance of three popular techniques devised for such a scope, that is, the methods of Buckingham et al (BU), Scheiner (SC), and Pettus and Edelman (PE). Using the UVa/Padova Type 1 diabetes simulator we generated data of 100 virtual subjects in noise-free, single-meal scenarios having different preprandial BG and ROC values. Meal insulin bolus was computed using SF, BU, SC, and PE. Performance was assessed with the blood glucose risk index (BGRI) on the 9 hours after meal. On average, BU, SC, and PE improve BGRI compared to SF. When BG is rapidly decreasing, PE obtains the best performance. In the other ROC scenarios, none of the considered methods prevails in all the preprandial BG conditions tested. Our study showed that, at least in the considered ideal framework, none of the methods to correct SF according to ROC is globally better than the others. Critical analysis of the results also suggests that further investigations are needed to develop more effective formulas to account for ROC information in BCs.

  19. Predicted Blood Glucose from Insulin Administration Based on Values from Miscoded Glucose Meters

    PubMed Central

    Raine, Charles H.; Pardo, Scott; Parkes, Joan Lee

    2008-01-01

    Objectives The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205–210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Methods Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost®; Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Results Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150–400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg/dl out of 279 instances, and correctly coded manual meters produced 1 of 416. Conclusions Improperly coded blood glucose meters present the potential for insulin dose errors and resultant clinically significant hypoglycemia or hyperglycemia. Patients should be instructed and periodically reinstructed in the proper use of blood glucose meters, particularly for meters that require coding. PMID:19885229

  20. Ameliorating effect of Semecarpus anacardium Linn. nut milk extract on altered glucose metabolism in high fat diet STZ induced type 2 diabetic rats.

    PubMed

    Khan, Haseena Banu Hedayathullah; Vinayagam, Kaladevi Siddhi; Palanivelu, Shanthi; Panchanadham, Sachdanandam

    2012-12-01

    To explore the protective effect of the drug Semecarpus anacardium (S. anacardium)on altered glucose metabolism in diabetic rats. Type 2 diabetes mellitus was induced by feeding rats with high fat diet followed by single intraperitoneal injection of streptozotocin (STZ) (35 mg/kg b.w.). Seven days after STZ induction, diabetic rats received nut milk extract of S. anacardium Linn. nut milk extract orally at a dosage of 200 mg/kg daily for 4 weeks. The effect of nut milk extract of S. anacardium on blood glucose, plasma insulin, glucose metabolising enzymes and GSK were studied. Treatment with SA extract showed a significant reduction in blood glucose levels and increase in plasma insulin levels and also increase in HOMA - β and decrease in HOMA -IR. The drug significantly increased the activity of glycolytic enzymes and glucose-6-phosphate dehydrogenase activity and increased the glycogen content in liver of diabetic rats while reducing the activities of gluconeogenic enzymes. The drug also effectively ameliorated the alterations in GSK-3 mRNA expression. Overall, the present study demonstrates the possible mechanism of glucose regulation of S. anacardium suggestive of its therapeutic potential for the management of diabetes mellitus. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

Top