Mathematical Model of Naive T Cell Division and Survival IL-7 Thresholds.
Reynolds, Joseph; Coles, Mark; Lythe, Grant; Molina-París, Carmen
2013-01-01
We develop a mathematical model of the peripheral naive T cell population to study the change in human naive T cell numbers from birth to adulthood, incorporating thymic output and the availability of interleukin-7 (IL-7). The model is formulated as three ordinary differential equations: two describe T cell numbers, in a resting state and progressing through the cell cycle. The third is introduced to describe changes in IL-7 availability. Thymic output is a decreasing function of time, representative of the thymic atrophy observed in aging humans. Each T cell is assumed to possess two interleukin-7 receptor (IL-7R) signaling thresholds: a survival threshold and a second, higher, proliferation threshold. If the IL-7R signaling strength is below its survival threshold, a cell may undergo apoptosis. When the signaling strength is above the survival threshold, but below the proliferation threshold, the cell survives but does not divide. Signaling strength above the proliferation threshold enables entry into cell cycle. Assuming that individual cell thresholds are log-normally distributed, we derive population-average rates for apoptosis and entry into cell cycle. We have analyzed the adiabatic change in homeostasis as thymic output decreases. With a parameter set representative of a healthy individual, the model predicts a unique equilibrium number of T cells. In a parameter range representative of persistent viral or bacterial infection, where naive T cell cycle progression is impaired, a decrease in thymic output may result in the collapse of the naive T cell repertoire.
The effects of chronic, low doses of Ra-226 on cultured fish and human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaopei; Seymour, Colin; Mothersill, Carmel, E-mail: mothers@mcmaster.ca
Purpose: To determine the chronic low-dose radiation effects caused by α-particle radiation from {sup 226}Ra over multiple cell generations in CHSE/F fish cells and HaCaT human cells. Methods: CHSE/F cells and HaCaT cells were cultured in medium containing {sup 226}Ra to deliver the chronic low-dose α-particle radiation. Clonogenic assay was used to test the clonogenic survival fractions of cells with or without being exposed to radiation from {sup 226}Ra. Results: The chronic low-dose radiation from {sup 226}Ra does have effects on the clonogenic survival of CHSE/F cells and HaCaT cells. When CHSE/F cells were cultured in {sup 226}Ra-medium over 9more » passages for about 134 days, the clonogenic surviving fractions for cells irradiated at dose rates ranging from 0.00066 to 0.66 mGy/d were significantly lower than that of cells sham irradiated. For HaCaT cells grown in medium containing the same range of {sup 226}Ra activity, the clonogenic surviving fraction decreased at first and reached the lowest value at about 42 days (8 passages). After that, the clonogenic survival began to increase, and was significantly higher than that of control cells by the end of the experimental period. Conclusion: The chronic, low-dose high LET radiation from {sup 226}Ra can influence the clonogenic survival of irradiated cells. CHSE/F cells were sensitized by the radiation, and HaCaT cells were initially sensitized but later appeared to be adapted. The results could have implications for determining risk from chronic versus acute exposures to radium. - Highlights: • Cells were exposed to chronic low-dose α-radiation from {sup 226}Ra in medium with {sup 226}Ra. • The clonogenic survival of CHSE/F cells decreased when exposed to {sup 226}Ra for 134 days. • The clonogenic survival of HaCaT cells decreased at first and then increased. • The doubling time of both cells were not affected by this kind of radiation.« less
Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade
Lue, Hui-wen; Podolak, Jennifer; Kolahi, Kevin; Cheng, Larry; Rao, Soumya; Garg, Devin; Xue, Chang-Hui; Rantala, Juha K.; Tyner, Jeffrey W.; Thornburg, Kent L.; Martinez-Acevedo, Ann; Liu, Jen-Jane; Amling, Christopher L.; Truillet, Charles; Louie, Sharon M.; Anderson, Kimberly E.; Evans, Michael J.; O'Donnell, Valerie B.; Nomura, Daniel K.; Drake, Justin M.; Ritz, Anna
2017-01-01
There is limited knowledge about the metabolic reprogramming induced by cancer therapies and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K–AKT–mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene ATG5. Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation, and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel cotreatment strategies to override this survival advantage. PMID:29138276
Low intensity red laser action on Escherichia coli cultures submitted to stress conditions
NASA Astrophysics Data System (ADS)
Santos, J. N.; Roos, C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.
2014-12-01
Clinical applications of low intensity lasers are based on the biostimulation effect and considered to occur mainly at cells under stressful conditions. Also, although the cytochrome is a chromophore to red and near infrared radiations, there are doubts whether indirect effects of these radiations could occur on the DNA molecule by oxidative mechanisms. Thus, this work evaluated the survival, filamentation and morphology of Escherichia coli cultures proficient and deficient in oxidative DNA damage repair exposed to low intensity red laser under stress conditions. Wild type and endonuclease III deficient E. coli cells were exposed to laser (658 nm, 1 and 8 J cm-2) under hyposmotic stress and bacterial survival, filamentation and cell morphology were evaluated. Laser exposure: (i) does not alter the bacterial survival in 0.9% NaCl, but increases the survival of wild type and decreases the survival of endonuclease III deficient cells under hyposmotic stress; (ii) increases filamentation in 0.9% NaCl but decreases in wild type and increases in endonuclease III deficient cells under hyposmotic stress; (iii) decreases the area and perimeter of wild type, does not alter these parameters in endonuclease III deficient cells under hyposmotic stress but increases the area of these in 0.9% NaCl. Low intensity red laser exposure has different effects on survival, filamentation phenotype and morphology of wild type and endonuclease III deficient cells under hyposmotic stress. Thus, our results suggest that therapies based on low intensity red lasers could take into account physiologic conditions and genetic characteristics of cells.
Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B
2016-06-02
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.
ATF5 regulates β-cell survival during stress.
Juliana, Christine A; Yang, Juxiang; Rozo, Andrea V; Good, Austin; Groff, David N; Wang, Shu-Zong; Green, Michael R; Stoffers, Doris A
2017-02-07
The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.
Prognostic Indications of Elevated MCT4 and CD147 across Cancer Types: A Meta-Analysis
Bovenzi, Cory D.; Hamilton, James; Tassone, Patrick; Johnson, Jennifer; Cognetti, David M.; Luginbuhl, Adam; Keane, William M.; Zhan, Tingting; Tuluc, Madalina; Bar-Ad, Voichita; Martinez-Outschoorn, Ubaldo; Curry, Joseph M.
2015-01-01
Background. Metabolism in the tumor microenvironment can play a critical role in tumorigenesis and tumor aggression. Metabolic coupling may occur between tumor compartments; this phenomenon can be prognostically significant and may be conserved across tumor types. Monocarboxylate transporters (MCTs) play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. The transporters MCT1 and MCT4 are regulated via expression of their chaperone, CD147. Methods. We conducted a meta-analysis of existing publications on the relationship between MCT1, MCT4, and CD147 expression and overall survival and disease-free survival in cancer, using hazard ratios derived via multivariate Cox regression analyses. Results. Increased MCT4 expressions in the tumor microenvironment, cancer cells, or stromal cells were all associated with decreased overall survival and decreased disease-free survival (p < 0.001 for all analyses). Increased CD147 expression in cancer cells was associated with decreased overall survival and disease-free survival (p < 0.0001 for both analyses). Few studies were available on MCT1 expression; MCT1 expression was not clearly associated with overall or disease-free survival. Conclusion. MCT4 and CD147 expression correlate with worse prognosis across many cancer types. These results warrant further investigation of these associations. PMID:26779534
Cell Survival Signaling in Neuroblastoma
Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.
2013-01-01
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706
Influence of caffeine on X-ray-induced killing and mutation in V79 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, S.B.; Bhattacharyya, N.; Chatterjee, S.
1987-02-01
Effects produced by caffeine on X-irradiated Chinese hamster V79 cells depended on the growth conditions of the cells. For exponentially growing cells, nontoxic concentrations of caffeine decreased the shoulder width from the survival curve, but the slope remained unchanged. The yield of mutants under the same conditions also remained unaffected. In case of density-inhibited cells, delaying trypsinization for 24 h after X irradiation increased the survival and decreased the yield of mutants. The presence of caffeine during this incubation period inhibited such recovery and significantly increased the yield of X-ray-induced mutants.
ATF5 regulates β-cell survival during stress
Juliana, Christine A.; Yang, Juxiang; Rozo, Andrea V.; Good, Austin; Groff, David N.; Wang, Shu-Zong; Stoffers, Doris A.
2017-01-01
The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress. PMID:28115692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Aya; Mouri, Akihiro; Nagai, Tomoko
Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM)more » and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation. - Highlights: • HL-60 cells under granulocytic differentiation were vulnerable for clozapine. • HL-60 cells would be in vitro assay systems for hematopoietic toxicity by clozapine. • Histamine H{sub 4} receptor was involved in hematopoietic toxicity with apoptosis. • Histamine H{sub 4} receptor may be therapeutic target to prevent hematopoietic toxicity.« less
Rimmon, A.; Vexler, A.; Berkovich, L.; Earon, G.; Ron, I.; Lev-Ari, S.
2013-01-01
Background. There is an urgent need to develop new treatment strategies and drugs for pancreatic cancer that is highly resistant to radio-chemotherapy. Aesculus hippocastanum (the horse chestnut) known in Chinese medicine as a plant with anti-inflammatory, antiedema, antianalgesic, and antipyretic activities. The main active compound of this plant is Escin (C54H84O23). Objective. To evaluate the effect of Escin alone and combined with chemotherapy on pancreatic cancer cell survival and to unravel mechanism(s) of Escin anticancer activity. Methods. Cell survival was measured by XTT colorimetric assay. Synergistic effect of combined therapy was determined by CalcuSyn software. Cell cycle and induction of apoptosis were evaluated by FACS analysis. Expression of NF-κB-related proteins (p65, IκBα, and p-IκBα) and cyclin D was evaluated by western blot analysis. Results. Escin decreased the survival of pancreatic cancer cells with IC50 = 10–20 M. Escin combined with gemcitabine showed only additive effect, while its combination with cisplatin resulted in a significant synergistic cytotoxic effect in Panc-1 cells. High concentrations of Escin induced apoptosis and decreased NF-κB-related proteins and cyclin D expression. Conclusions. Escin decreased pancreatic cancer cell survival, induced apoptosis, and downregulated NF-κB signaling pathway. Moreover, Escin sensitized pancreatic cancer cells to chemotherapy. Further translational research is required. PMID:24282639
Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C
2013-07-01
We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Chai, Yu-Shuang; Hu, Jun; Lei, Fan; Wang, Yu-Gang; Yuan, Zhi-Yi; Lu, Xi; Wang, Xin-Pei; Du, Feng; Zhang, Dong; Xing, Dong-Ming; Du, Li-Jun
2013-05-15
Berberine acted as a natural medicine with multiple pharmacological activities. In the present study, we examined the effect of berberine against cerebral ischemia damage from cell cycle arrest and cell survival. Oxygen-glucose deprivation of PC12 cells and primary neurons, and carotid artery ligation in mice were used as in vitro and in vivo cerebral ischemia models. We found that the effect of berberine on cell cycle arrest during ischemia was mediated by decreased p53 and cyclin D1, increased phosphorylation of Bad (higher expression of p-Bad and higher ratio of p-Bad to Bad) and decreased cleavage of caspase 3. Meanwhile, berberine activated the PI3K/Akt pathway during the reperfusion, especially the phosphor-activation of Akt, to promote the cell survival. The neural protective effect of berberine was remained in the presence of inhibitor of mitogen-activated protein/extracellular signal-regulated kinase (MEK), but was suppressed by the inhibitors of PI3K and Akt. We demonstrated that berberine induced cell cycle arrest and cell survival to resist cerebral ischemia injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Lipid degradation promotes prostate cancer cell survival.
Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Ho Lau, Chung; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J; Takhar, Mandeep; Heemers, Hannelore V; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L; Clarke, Noel; Swinnen, Johan V; Keun, Hector C; Rekvig, Ole P; Mills, Ian G
2017-06-13
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
2012-01-01
Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively. PMID:22480225
Effects of pressure and temperature on the survival rate of adherent A-172 cells
NASA Astrophysics Data System (ADS)
Yasuhara, Ryo; Kushida, Ryo; Ishii, Shiwori; Yamanoha, Banri; Shimizu, Akio
2013-06-01
Preservation of cells under high pressure is an important alternative to cryopreservation. We studied the effect of temperature (4, 25, 37°C) and pressure (0.1-350 MPa) on the survival rate of A-172 glioblastoma cells. The survival rate was not changed by brief (10 min) pressurization of up to 150 MPa, but the survival rate began to decrease from 150 MPa, and most of the A-172 cells died when treated with over 200 MPa. Lengthy pressurization (4 days) at lower pressure (upto 20.1 MPa) without medium exchange showed complex results. The survival rate of cells preserved at 25°C showed two maxima at 1.6 and 20.1 MPa. After preservation, cells adhered and proliferated in the same way as normal cells when cultured at 37°C in a CO2 incubator. The other two temperatures, 4° and 37°C, showed no maximum survival rate. Therefore, a high survival rate can be maintained with high pressure treatment.
CXCR7 functions in colon cancer cell survival and migration
WANG, HONGXIAN; TAO, LINYU; QI, KE; ZHANG, HAOYUN; FENG, DUO; WEI, WENJUN; KONG, HENG; CHEN, TIANWEN; LIN, QIUSHENG; CHEN, DAOJIN
2015-01-01
C-X-C chemokine receptor 7 (CXCR7) is a known promoter of tumor progression and metastasis; however, little is known about its role in colon cancer. The aim of the present study was to investigate the function of CXCR7 in human colon cancer cells. CXCR7 mRNA levels were examined in HT-29 and SW-480 human colon cancer cell lines using a quantitative polymerase chain reaction. CXCR7-knockdown was performed with small interfering RNA and lentiviral-mediated gene delivery. Immunofluorescence (IF) was conducted to examine CXCR7 expression and localization in colon cancer cells. Cell survival and migration were evaluated using MTT and migration assays, respectively. HT-29 cells expressed higher levels of CXCR7 mRNA and were therefore used in subsequent experiments. IF staining revealed that the CXCR7 protein was expressed on the cell membrane, and its expression decreased following CXCR7-short hairpin RNA lentiviral transfection. Lentiviral CXCR7-knockdown resulted in decreased cell survival and migration; however, MTT assays revealed that the lentiviral vector itself was cytotoxic. This cytotoxicity was indicated as the cell survival of the negative control group cells was significantly decreased compared with that of the blank control group cells (P<0.05). In conclusion, it is becoming increasingly evident that CXCR7 plays a role in colon cancer promotion, suggesting that CXCR7 is a promising biomarker for chemokine receptor-based drug development. Furthermore, the fact that CXCR7 is expressed on the membrane and not intracellularly makes it a prime target for drug-based intervention. PMID:26640542
Moriyama-Gonda, Nobuko; Igawa, Mikio; Shiina, Hiroaki; Urakami, Shinji; Terashima, Masaharu
2003-11-01
The aim of this study was to examine a modulation of thermotolerance by treatment with combination of heat and the antioxidant inhibitor diethyldithiocarbamate (DDC) of the PC-3 prostate cancer cells. To determine thermotolerance, cells were heated once or twice. Two 1 h exposures at 43 degrees C, with a recovery period in between, revealed better survival/recovery of cells after the second exposure than after the first (fig. 1A + 1B). Additional experiments were performed, heating cells twice (fig. 1B + 1C). First, cells were heated at 43 degrees C for 1 h and, after various recovery times (intervals) at 37 degree C, subsequently reheated at 44 degrees C for 1 h. To ensure effective cell killing, efficiency of the combined treatments of 1 mM DDC and heating at 43 or 44 degrees C for 1 h was estimated by measuring cell survival, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and heat shock protein 70 (hsp 70) expression. To obtain a more effective method for subsequent heat exposure, cells were heated twice after a 24 h interval in the presence or absence of 1 mM DDC. ROS generation and SOD activity immediately increased correlating with duration of heating, but their levels gently decreased with time after discontinuation of heating. On the other hand, hsp 70 levels slowly increased, also correlating with duration of heating but continued to increase with time after discontinuation of heating for a certain period. DDC administration coupled with heating at 43 or 44 degrees C significantly decreased cell survival compared to heating alone (p < 0.05). Furthermore, significant decreases in numbers of viable cells were observed for cells after the first heat exposure when combined with DDC as compared to heat alone at 43 and 44 degrees C (p < 0.05). These findings suggest that heat combined with DDC could have potential benefits in the treatment of prostate cancer.
Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.
Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J
2014-03-01
Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.
Study of HeLa cells clone survival after X-ray irradiation in the presence of cisplatin
NASA Astrophysics Data System (ADS)
Baulin, A. A.; Sukhikh, E. S.; Vasilyev, S. A.; Sukhikh, L. G.; Sheino, I. N.
2017-09-01
Radiation therapy in the presence of heavy elements nuclei (Z > 53) is widely developed these days. The presence of such nuclei in cancer cells results in the local increase of energy release from primary photon beam thus increasing relative biological efficiency. In this paper we present the preliminary results of the cell survival study while irradiating cells by X-Ray photon beam in the presence of cisplatin (Pt, Z = 78). The preliminary results show the decrease of the cell survival in the presence of both radiation and cisplatin.
Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G.
2010-01-01
Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. PMID:21035480
Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki
2017-01-01
We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.
Herzog, Rebecca; Bender, Thorsten O; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph; Kratochwill, Klaus
2014-12-01
The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. Copyright © 2014 by the American Society of Nephrology.
Ota, Y; Morito, A; Fujisawa, K; Nishida, M; Hata, H; Ueno, T; Yurikusa, T; Murata, T
2012-11-01
A moisturising micro-gel spray for prevention of dryness was compared with commercial products and artificial saliva in vitro and in a clinical setting in patients with cancer. Survival of cultured human gingival epithelial cells was evaluated after treatment with each product for 15 min. A dry test was performed for products giving a 50% survival rate, in which cell survival was measured after drying of cells treated with each product. The survival rates of cells treated with the micro-gel spray and artificial saliva were significantly higher than those of control cells. The micro-gel spray was then evaluated for 1 week in patients with symptoms of dry mouth caused by cancer treatment. There was significant improvement of these symptoms at night and on awakening and of subjective symptoms of decreased salivary volume (P < 0.05). Mean visual analogue scale scores also significantly decreased (P < 0.01). These data suggest that evaluation of moisturising products for dryness prevention can be performed in cultured cells, since products that performed well in vitro also showed good efficacy for symptoms of dry mouth. The micro-gel spray was particularly effective for relieving symptoms of dry mouth in patients with cancer. © 2012 Blackwell Publishing Ltd.
Wang, Chenlong; Li, Ying; Chen, Honglei; Zhang, Jie; Zhang, Jing; Qin, Tian; Duan, Chenfan; Chen, Xuewei; Liu, Yanzhuo; Zhou, Xiaoyang; Yang, Jing
2017-08-28
Glioblastomas rapidly become refractory to anti-VEGF therapies. We previously showed that cytochrome P450 (CYP) 4A-derived 20-hydroxyeicosatetraenoic acid (20-HETE) promotes angiogenesis. Here, we tested whether a novel flavonoid (FLA-16) prolongs survival and normalizes tumor vasculature in glioma through CYP4A inhibition. FLA-16 improved survival, reduced tumor burden, and normalized vasculature, accompanied with the decreased secretion of 20-HETE, VEGF and TGF-β in tumor-associated macrophages (TAMs) and endothelial progenitor cells (EPCs) in C6 and U87 gliomas. FLA-16 attenuated vascular abnormalization induced by co-implantation of GL261 glioma cells with CYP4A10 high macrophages or EPCs. Mechanistically, the conditional medium from TAMs and EPCs treated with FLA-16 enhanced the migration of pericyte cells, and decreased the proliferation and migration of endothelial cells, which were reversed by CYP4A overexpression or exogenous addition of 20-HETE, VEGF and TGF-β. Furthermore, FLA-16 prevented crosstalk between TAMs and EPCs during angiogenesis. These results suggest that CYP4A inhibition by FLA-16 prolongs survival and normalizes vasculature in glioma through decreasing production of TAMs and EPCs-derived VEGF and TGF-β. This may represent a potential therapeutic strategy to overcome resistance to anti-VEGF treatment by effects on vessels and immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Nualkaekul, Sawaminee; Salmeron, Ivan; Charalampopoulos, Dimitris
2011-12-01
The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2-4), citric acid (2-15g/l), protein (0-10g/l), and dietary fibre (0-8g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P<0.05) negative effect on the log decrease [log10N0 week-log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4log decrease) after 6weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5log, whereas of the latter was ∼0.7log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices. Copyright © 2011 Elsevier Ltd. All rights reserved.
Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko
2016-08-01
Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.
An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival.
Liang, Kang; Richardson, Joseph J; Doonan, Christian J; Mulet, Xavier; Ju, Yi; Cui, Jiwei; Caruso, Frank; Falcaro, Paolo
2017-07-10
A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klingensmith, Nathan J; Chen, Ching-Wen; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Arbiser, Jack L; Ford, Mandy L; Coopersmith, Craig M
2017-10-11
Honokiol is a biphenolic isolate extracted from the bark of the magnolia tree that has been used in traditional Chinese and Japanese medicine, and has more recently been investigated for its anti-inflammatory and anti-bacterial properties. Honokiol has previously been demonstrated to improve survival in sepsis models that have rapid 100% lethality. The purpose of this study was to determine the impact of Honokiol on the host response in a model of sepsis that more closely approximates human disease. Male and female C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce polymicrobial intraabdominal sepsis. Mice were then randomized to receive an injection of either Honokiol (120 mg/kg/day) or vehicle and were sacrificed after 24 hours for functional studies or followed 7 days for survival. Honokiol treatment after sepsis increased the frequency of CD4 T cells and increased activation of CD4 T cells as measured by the activation marker CD69. Honokiol also increased splenic dendritic cells. Honokiol simultaneously decreased frequency and number of CD8 T cells. Honokiol decreased systemic TNF without impacting other systemic cytokines. Honokiol did not have a detectable effect on kidney function, lung physiology, liver function or intestinal integrity. In contrast to prior studies of Honokiol in a lethal model of sepsis, Honokiol did not alter survival at seven days (70% mortality for Honokiol vs. 60% mortality for vehicle). Honokiol is thus effective in modulating the host immune response and inflammation following a clinically relevant model of sepsis but is not sufficient to alter survival.
Brusnahan, S K; McGuire, T R; Jackson, J D; Lane, J T; Garvin, K L; O'Kane, B J; Berger, A M; Tuljapurkar, S R; Kessinger, M A; Sharp, J G
2010-01-01
Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N=100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean=30.7, SEM=2) decreased and IL-6 levels (mean=4.4, SEM=1) increased with age as did marrow fat (mean=1.2mmfat/g, SEM=0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Guerra, Matías; González, Karina; González, Carlos; Parra, Boris; Martínez, Miguel
2015-09-01
Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Tai, Patricia; Tonita, Jon; Yu, Edward; Skarsgard, David
2003-07-01
To predict the long-term survival results of clinical trials earlier than using actuarial methods and to assess the factors predictive of long-term cure in patients with limited-stage small-cell lung cancer. Between 1981 and 1998, 1417 new cases of small-cell lung cancer were diagnosed in Saskatchewan, Canada, of which 244 were limited stage and treated with curative intent. They were followed to the end of February 2002. A parametric lognormal statistical model was retrospectively validated to determine whether long-term survival rates could be estimated several years earlier than is possible using the standard life-table actuarial method. The survival time of the uncured group followed a lognormal distribution. Four 2-year periods of diagnosis were combined, and patients were followed as a cohort for an additional 2 years. The estimated 10-year cause-specific survival rate was 13% by the lognormal model. The Kaplan-Meier calculation for 10-year cause-specific survival rate was 15% +/- 3%. The data also showed that the absence of mediastinal lymphadenopathy and higher chest radiotherapy dose were significant prognostic factors on multivariate analysis (p < 0.05). Among the 163 patients given prophylactic cranial irradiation, a higher biologically effective dose to the brain did not improve survival or decrease the incidence of brain metastases. The lognormal model has been validated for the estimation of survival in patients with limited-stage small-cell lung cancer. A higher biologically effective dose to the brain did not improve survival or decrease the incidence of brain metastases.
Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B
2012-01-01
Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.
Eleftheriadis, Theodoros; Pissas, Georgios; Liakopoulos, Vassilios; Stefanidis, Ioannis
2018-07-01
It is generally hypothesized in the literature that indoleamine 2,3‑dioxygenase (IDO), by degrading L‑tryptophan along the kynurenine pathway, suppresses CD4+ T‑cell function by inducing apoptosis, inhibiting proliferation and promoting differentiation towards a regulatory phenotype. These effects are either accompanied or directly lead to alterations in cell metabolism. The present study evaluated the pathways that govern the effect of IDO on the utilization of the three main energy sources in CD4+ T‑cells. Two‑way mixed lymphocyte reactions were performed with or without oleate and/or the IDO inhibitor 1‑methyl‑DL‑tryptophan. In addition, isolated CD4+ T‑cells cultured in an oleate‑containing medium were activated in the presence or not of the general control nonderepressible 2 kinase (GCN2K) activator tryptophanol. L‑tryptophan, glucose and free fatty acid consumption, cell proliferation, apoptosis and the levels of key proteins involved in IDO‑mediated signal transduction, and glucose, glutamine and free fatty acid utilization were assessed. The results indicate that IDO decreased glycolysis and glutaminolysis by activating GCN2K, resulting in activation of AMP‑activated protein kinase (AMPK). In parallel with AMPK activation, IDO‑induced activation of aryl hydrocarbon receptor increased the expression of all carnitine palmitoyltransferase I isoenzymes, leading ultimately to increased free fatty acid oxidation and preservation of CD4+ T‑cell survival and proliferation. Thus, contrary to what is generally hypothesized, in a normal environment containing fatty acids, the immunosuppressive effect of IDO may not be due to a decrease in CD4+ T‑cell survival and proliferation, since IDO supplies the required energy for cell survival and proliferation by increasing free fatty acid oxidation.
Xiang, Junyan; Leung, Albert Wingnang; Xu, Chuanshan
2014-10-01
This study aimed to investigate the effect of ultrasound sonication in the presence of methylene blue on clonogenic survival and mitochondria of ovarian cancer cells. Human ovarian cancer HO-8910 cells, which were incubated with different concentrations of methylene blue for 1 hour, were exposed to an ultrasonic wave for 5 seconds with intensity of 0.46 W/cm(2). Clonogenic survival of HO-8910 cells after ultrasound sonication was measured by a colony-forming unit assay. Mitochondrial structural changes were observed on transmission electron microscopy, and the mitochondrial membrane potential was evaluated by confocal laser-scanning microscopy with rhodamine 123 staining. The colony-forming units of HO-8910 cells decreased considerably after ultrasound sonication in the presence of methylene blue. Transmission electron microscopy showed slightly enlarged mitochondria in the ultrasound-treated cells in the absence of methylene blue; however, seriously damaged mitochondria, even with almost complete disappearance of cristae, were found in the cells treated by ultrasound sonication in the presence of methylene blue. The mitochondrial membrane potential collapsed significantly when HO-8910 cells were treated by ultrasound sonication in the presence of methylene blue (P < .05). Ultrasound sonication in the presence of methylene blue markedly damaged mitochondrial structure and function and decreased clonogenic survival of HO-8910 cells. © 2014 by the American Institute of Ultrasound in Medicine.
Rödel, Franz; Steinhäuser, Kerstin; Kreis, Nina-Naomi; Friemel, Alexandra; Martin, Daniel; Wieland, Ulrike; Rave-Fränk, Margret; Balermpas, Panagiotis; Fokas, Emmanouil; Louwen, Frank; Rödel, Claus; Yuan, Juping
2018-02-01
RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signalling pathway and its deregulation is involved in the pathogenesis of several tumour entities. RITA's impact on the response of anal squamous cell carcinoma (SCC) to anticancer treatment, however, remains elusive. In our retrospective study immunohistochemical evaluation of RITA was performed on 140 pre-treatment specimens and was correlated with clinical and histopathologic characteristics and clinical endpoints cumulative incidence of local control (LC), distant recurrence (DC), disease-free survival (DFS) and overall survival (OS). We observed significant inverse correlations between RITA expression and tumour grading, the levels of HPV-16 virus DNA load, CD8 (+) tumour infiltrating lymphocytes and programmed death protein (PD-1) immunostaining. In univariate analyses, elevated levels of RITA expression were predictive for decreased local control (p = 0.001), decreased distant control (p = 0.040), decreased disease free survival (p = 0.001) and overall survival (p < 0.0001), whereas in multivariate analyses RITA expression remained significant for decreased local control (p = 0.009), disease free survival (p = 0.032) and overall survival (p = 0.012). These data indicate that elevated levels of pretreatment RITA expression are correlated with unfavourable clinical outcome in anal carcinoma treated with concomitant chemoradiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying
2015-01-01
Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.
Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat
2013-01-01
This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.
MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Adam R.; Bambhroliya, Arvind; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of anmore » miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom quartile (P=.0228, log-rank test). For breast cancer patients treated with radiation, high miR-33a expression predicted worse overall survival (P=.06). Conclusions: Our results reveal miR-33a negatively regulates HDL-induced radiation sensitivity in breast cancer.« less
Pecorari, Luisa; Marin, Oriano; Silvestri, Chiara; Candini, Olivia; Rossi, Elena; Guerzoni, Clara; Cattelani, Sara; Mariani, Samanta A; Corradini, Francesca; Ferrari-Amorotti, Giovanna; Cortesi, Laura; Bussolari, Rita; Raschellà, Giuseppe; Federico, Massimo R; Calabretta, Bruno
2009-08-03
Akt/PKB is a serine/threonine kinase that has attracted much attention because of its central role in regulating cell proliferation, survival, motility and angiogenesis. Activation of Akt in breast cancer portends aggressive tumour behaviour, resistance to hormone-, chemo-, and radiotherapy-induced apoptosis and it is correlated with decreased overall survival. Recent studies have identified novel tumor-specific substrates of Akt that may provide new diagnostic and prognostic markers and serve as therapeutic targets. This study was undertaken to identify pAkt-interacting proteins and to assess their biological roles in breast cancer cells. We confirmed that one of the pAkt interacting proteins is the Elongation Factor EF1alpha. EF1alpha contains a putative Akt phosphorylation site, but is not phosphorylated by pAkt1 or pAkt2, suggesting that it may function as a modulator of pAkt activity. Indeed, downregulation of EF1alpha expression by siRNAs led to markedly decreased expression of pAkt1 and to less extent of pAkt2 and was associated with reduced proliferation, survival and invasion of HCC1937 cells. Proliferation and survival was further reduced by combining EF1alpha siRNAs with specific pAkt inhibitors whereas EF1alpha downregulation slightly attenuated the decreased invasion induced by Akt inhibitors. We show here that EF1alpha is a pAkt-interacting protein which regulates pAkt levels. Since EF1alpha is often overexpressed in breast cancer, the consequences of EF1alpha increased levels for proliferation, survival and invasion will likely depend on the relative concentration of Akt1 and Akt2.
Alachkar, Houda; Mutonga, Martin; Malnassy, Gregory; Park, Jae-Hyun; Fulton, Noreen; Woods, Alex; Meng, Liping; Kline, Justin; Raca, Gordana; Odenike, Olatoyosi; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2015-10-20
Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML.
Braga, Luis Eduardo Gomes; Miranda, Renan Lyra; Granja, Marcelo Gomes; Giestal-de-Araujo, Elizabeth; Dos Santos, Aline Araujo
2018-06-12
Protein kinase C (PKC) is a family of serine/threonine kinases related to several phenomena as cell proliferation, differentiation and survival. Our previous data demonstrated that treatment of axotomized neonatal rat retinal cell cultures for 48 h with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increases retinal ganglion cells (RGCs) survival. Moreover, this treatment decreases M1 receptors (M1R) and modulates BDNF levels. The aim of this work was to assess the possible involvement of neurotrophins BDNF and NGF in the modulation of M1R levels induced by PKC activation, and its involvement on RGCs survival. Our results show that PMA (50 ng/mL) treatment, via PKC delta activation, modulates NGF, BDNF and M1R levels. BDNF and NGF mediate the decrease of M1R levels induced by PMA treatment. M1R activation is essential to PMA neuroprotective effect on RGCs as telenzepine (M1R selective antagonist) abolished it. Based on our results we suggest that PKC delta activation modulates neurotrophins levels by a signaling pathway that involves M1R activation and ultimately leading to an increase in RGCs survival in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.
Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R
2013-09-01
Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.
Gaber, Timo; Tran, Cam Loan; Schellmann, Saskia; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Buttgereit, Frank
2013-06-01
Inflamed areas are characterized by infiltration of immune cells, local hypoxia and alterations of cellular redox states. We investigated the impact of hypoxia on survival, proliferation, cytokine secretion, intracellular energy and redox state of human CD4(+) T cells. We found that pathophysiological hypoxia (<2% O2 ) significantly decreased CD4(+) T-cell survival after mitogenic stimulation. This effect was not due to an increased caspase-3/7-mediated apoptosis or adenosine-5'-triphosphate (ATP) consumption/depletion. However, the ability of stimulated T cells to proliferate was reduced under hypoxic conditions, despite increased expression of CD25. Pathophysiological hypoxia was also found to modify intracellular ROS (iROS) levels in stimulated T cells over time as compared with levels found in normoxia. Physiological hypoxia (5% O2 ) did not decrease CD4(+) T-cell survival and proliferation or modify iROS levels as compared with normoxia. We conclude that pathophysiological hypoxia affects T-cell proliferation and viability via disturbed IL-2R signalling downstream of STAT5a phosphorylation, but not as a result of impaired cellular energy homeostasis. We suggest iROS links early events in T-cell stimulation to the inhibition of the lymphoproliferative response under pathophysiological hypoxic conditions. The level of iROS may therefore act as a mediator of immune functions leading to down-regulation of long-term T-cell activity in inflamed tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rådinger, Madeleine; Smrž, Daniel; Metcalfe, Dean D.; Gilfillan, Alasdair M.
2011-01-01
Homeostasis of mature tissue-resident mast cells is dependent on the relative activation of pro- and anti-apoptotic regulators. In this study we investigated the role of Glycogen Synthase Kinase-3β (GSK3β) in the survival of neoplastic and non-neoplastic human mast cells. GSK3β was observed to be phosphorylated at the Y216 activating residue under resting conditions in both the neoplastic HMC1.2 cell line and in peripheral blood-derived primary human mast cells (HuMCs), suggesting constitutive activation of GSK3β in these cells. Lentiviral-transduced short hairpin RNA (shRNA) knockdown of GSK3β in both the HMC1.2 cells and HuMCs resulted in a significant reduction in cell survival as determined with the MTT assay. The decrease in SCF-mediated survival in the GSK3β knockdown HuMCs was reflected by enhancement of SCF-withdrawal-induced apoptosis, as determined by Annexin V staining and caspase cleavage; and this was associated with a pronounced reduction in SCF-mediated phosphorylation of Src homology 2 domain-containing phosphatase 2 (SHP2) and ERK1/2 and reduced expression of the anti-apoptotic proteins Bcl-xl and Bcl-2. These data show that GSK3β is an essential anti-apoptotic factor in both neopastic and non-transformed primary human mast cells through the regulation of SCF-mediated SHP2 and ERK activation. Our data suggest that targeting of GSK3β with small molecular weight inhibitors such as CHIR 99021 may thus provide a mechanism for limiting mast cell survival and thus subsequently decreasing the intensity of the allergic inflammatory response. PMID:22039301
Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition
NASA Astrophysics Data System (ADS)
Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong
2017-03-01
Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield ( F v/ F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.
Wood, Sherri; Feng, Jiane; Chung, Jooho; Radojcic, Vedran; Sandy, Ashley R.; Friedman, Ann; Shelton, Amy; Yan, Minhong; Siebel, Christian W.; Bishop, D. Keith; Maillard, Ivan
2015-01-01
Rejection remains a major clinical challenge limiting allograft survival after solid organ transplantation. Both cellular and humoral immunity contribute to this complication, with increased recognition of antibody-mediated damage during acute and chronic rejection. Using a mouse model of MHC-mismatched heart transplantation, we report markedly protective effects of Notch inhibition, dampening both T cell and antibody-driven rejection. T cell-specific pan-Notch blockade prolonged heart allograft survival and decreased IFNγ and IL-4 production by alloreactive T cells, especially when combined with depletion of recipient CD8+ T cells. These effects were associated with decreased infiltration by conventional T cells and an increased proportion of regulatory T cells in the graft. Transient administration of neutralizing antibodies specific for Delta-like1/4 (Dll1/4) Notch ligands in the peri-transplant period led to prolonged acceptance of allogeneic hearts, with superior outcome over Notch inhibition only in T cells. Systemic Dll1/4 inhibition decreased T cell cytokines and graft infiltration, but also germinal center B cell and plasmablast numbers as well as production of donor-specific alloantibodies and complement deposition in the transplanted hearts. Dll1 or Dll4 inhibition alone provided partial protection. Thus, pathogenic signals delivered by Dll1/4 Notch ligands early after transplantation promote organ rejection through several complementary mechanisms. Transient interruption of theses signals represents a new attractive therapeutic strategy to enhance long-term allograft survival. PMID:25687759
Red blood cell decreases of microgravity
NASA Technical Reports Server (NTRS)
Johnson, P. C.
1985-01-01
Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.
Li, Deguan; Lu, Lu; Zhang, Junling; Wang, Xiaochun; Xing, Yonghua; Wu, Hongying; Yang, Xiangdong; Shi, Zhexin; Zhao, Mingfeng; Fan, Saijun; Meng, Aimin
2014-06-12
Hematopoietic injury is the most common side effect of radiotherapy. However, the methods available for the mitigating of radiation injury remain limited. Xuebijing injection (XBJ) is a traditional Chinese medicine used to treat sepsis in the clinic. In this study, we investigated the effects of XBJ on the survival rate in mice with hematopoietic injury induced by γ ray ionizing radiation (IR). Mice were intraperitoneally injected with XBJ daily for seven days after total body irradiation (TBI). Our results showed that XBJ (0.4 mL/kg) significantly increased 30-day survival rates in mice exposed to 7.5 Gy TBI. This effect may be attributable to improved preservation of white blood cells (WBCs) and hematopoietic cells, given that bone marrow (BM) cells from XBJ-treated mice produced more granulocyte-macrophage colony forming units (CFU-GM) than that in the 2 Gy/TBI group. XBJ also decreased the levels of reactive oxygen species (ROS) by increasing glutathione (GSH) and superoxide dismutase (SOD) levels in serum and attenuated the increased BM cell apoptosis caused by 2 Gy/TBI. In conclusion, these findings suggest that XBJ enhances the survival rate of irradiated mice and attenuates the effects of radiation on hematopoietic injury by decreasing ROS production in BM cells, indicating that XBJ may be a promising therapeutic candidate for reducing hematopoietic radiation injury.
García-Fuster, M J; Perez, J A; Clinton, S M; Watson, S J; Akil, H
2010-01-01
Hippocampal plasticity (e.g. neurogenesis) likely plays an important role in maintaining addictive behavior and/or relapse. This study assessed whether rats with differential propensity to drug-seeking behavior, bred Low-Responders (bLR) and bred High-Responders (bHR) to novelty, show differential neurogenesis regulation after cocaine exposure. Using specific immunological markers, we labeled distinct populations of adult stem cells in the dentate gyrus at different time-points of the cocaine sensitization process; Ki-67 for newly born cells, NeuroD for cells born partway, and 5-bromo-2'-deoxyuridine for older cells born prior to sensitization. Results show that: (i) bHRs exhibited greater psychomotor response to cocaine than bLRs; (ii) acute cocaine did not alter cell proliferation in bLR/bHR rats; (iii) chronic cocaine decreased cell proliferation in bLRs only, which became amplified through the course of abstinence; (iv) neither chronic cocaine nor cocaine abstinence affected the survival of immature neurons in either phenotype; (v) cocaine abstinence decreased survival of mature neurons in bHRs only, an effect that paralleled the greater psychomotor response to cocaine; and (vi) cocaine treatment did not affect the ratio of neurons to glia in bLR/bHR rats as most cells differentiated into neurons in both lines. Thus, cocaine exerts distinct effects on neurogenesis in bLR vs. bHR rats, with a decrease in the birth of new progenitor cells in bLRs and a suppression of the survival of new neurons in bHRs, which likely leads to an earlier decrease in formation of new connections. This latter effect in bHRs could contribute to their enhanced degree of cocaine-induced psychomotor behavioral sensitization.
Impact of high pressure freezing on DH5alpha Escherichia coli and red blood cells.
Suppes, Galen J; Egan, Susan; Casillan, Alfred J; Wei Chan, Kok; Seckar, Bill
2003-10-01
The impact of high pressure and freezing on survivability of Escherichia coli and human red blood cells was evaluated to determine the utility of high-pressure transitions for preserving living cells. Based on microscopy and survivability, high pressures did not directly impact physical damage to living cells. E. coli studies showed that increased cell death is due to indirect phenomena with decreasing survivability at increasingly high pressures and exposure times. Pressurization rates up to 1.4kbar/min had negligible effects relative to exposures of >5min at high pressures.Both glycine and control of pH near 7.0 were successful in reducing the adverse impacts of high pressure. Survivability increased from <1% at 5min exposure to 2.1kbar of pressure to typical values >20%. The combination of glycine and the buffer salt led to even further improvements in survivability. Pressure changes were used to traverse temperature and pressures consistent with Ice I and Ice III phase boundaries of pure water.
Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh
2017-01-01
Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas
Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our inmore » vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.« less
[Morphological signs of survival cultured adult rat cardiomyocytes].
Chang, Hui; Zhang, Lin; Yu, Zhi-Bin
2011-02-01
To clarify the key morphological signs for the survival of adult rat cardiomyocytes in primary culture. The adult rat hearts were retrogradely superfused by Langendorff apparatus. Cardiomyocytes were digested by collagenase I and cultured in three groups: (1) Serum free medium + BA (Bongkrekic acid, apoptotic inhibitor), (2) 5% serum medium, and (3) 5% serum medium + BA. The morphological alterations were observed and the percentage of rod-shaped cardiomyocytes, the apoptotic rate of cells, the rate of pseudopodium formation and the nuclear distances of cardiomyocytes were detected during culture. (1) The percentage of rod-shaped cardiomyocytes decreased gradually in the first 3 days of cell culture. The percentage of rod-shaped cardiomyocytes cultured without fetal bovine serum (FBS) decreased more rapidly than those cultured with FBS. No differences were noticed between with and without the addition of apoptotic inhibitor BA. The apoptotic rate of cardiomyocytes increased in the first 3 days of cell culture, and the apoptotic rate of cells cultured without FBS increased more than that cultured with FBS. Also BA had no effect on apoptotic rate. (2) Cardiomyocytes cultured with FBS spread from the intercalated disk and extended pseudopodium on the second or third day of cell culture. Cardiomyocytes with thin membranous pseudopodium developed would survive and spread laterally at the 6th day of culture. Cells with the elongated morphology gradually spread extensively and took on a spheroidal shape. Myofibrils gradually lost their parallel. Cells cultured without FBS had no pseudopodium formation. The intercalated disk of cells gradually changed blunt. There was no effect on the rate of pseudopodium formation when added with apoptotic inhibitor BA. (3) Cytoskeletal remodeling occurred in survived cardiomyocytes. After 6 days of culture, cardiomyocytes exhibited characteristic of redifferentiation. (4) The distance between nuclei decreased in a single cardiomyocyte cultured with FBS for the cytoskeletal reconstruction, whereas it remained unchanged in cardiomyocytes cultured without FBS. We clarify the pseudopodium developed on the second or third day of cell culture will be the critical morphological signs of survival cultured adult rat cardiomyocytes. It is necessary to add FBS for the formation of pseudopodium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway*
Griffiths, Genevieve S.; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S.; Sulzmaier, Florian J.; Caliva, Maisel J.; Ramos, Joe W.; Matter, Michelle L.
2011-01-01
Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions. PMID:21383007
Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses
Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.
2010-01-01
Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533
Leach, Richard E.; Kilburn, Brian A.; Petkova, Anelia; Romero, Roberto; Armant, Randall D.
2008-01-01
Objective The anti-apoptotic action of HBEGF and its regulation by O2 constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia–reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells Study Design A transformed human first trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O2 followed by 20% O2) and assessed for HBEGF expression and cell death. Results Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O2. H/R significantly reduced proliferation and increased cell death when compared to trophoblast cells cultured continuously at 2% or 20% O2. Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either HER1 or HER4, its cognate receptors. Conclusion These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, while restoration of HBEGF signaling improves trophoblast survival. PMID:18395045
Leach, Richard E; Kilburn, Brian A; Petkova, Anelia; Romero, Roberto; Armant, D Randall
2008-04-01
The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi
Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of differentmore » concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.« less
Alachkar, Houda; Mutonga, Martin; Malnassy, Gregory; Park, Jae-Hyun; Fulton, Noreen; Woods, Alex; Meng, Liping; Kline, Justin; Raca, Gordana; Odenike, Olatoyosi; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2015-01-01
Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML. PMID:26450903
Yu, Hao; Sun, Shao-Qian; Gu, Xiao-Bin; Wang, Wen; Gao, Xian-Shu
2017-04-01
Studies have reported that atorvastatin (ATO) may increase the radiosensitivity of malignant cells. However, the influence of ATO on reactive oxygen species (ROS) levels before and after irradiation has not been fully illustrated. In the present study, radiosensitivity was evaluated by a clonogenic assay and a cell survival curve and cell apoptosis was measured by flow cytometry. ROS were detected by a laser scanning confocal microscope and flow cytometry with a DCFH-DA probe. NADPH oxidases (NOXs) and superoxide dismutase (SOD) proteins were detected by immunoblotting, and total SOD activity was measured using an SOD kit. We also conducted transient transfection of NOX2 and NOX4 genes to increase intracellular ROS generation and applied SOD mimetic tempol to enhance ROS elimination ability. Our results demonstrated that, with ATO-alone treatment, the survival fractions of irradiated PC-3 cells were significantly decreased. Meanwhile, the apoptosis rate of the irradiated cells increased significantly (P<0.05). The ROS levels of the study group decreased obviously before irradiation (P<0.01), however, the radiation-induced ROS of the study group was at a high level even when irradiation had been terminated for 2 h (P<0.01). Moreover, NOX2 and NOX4 levels and total SOD activity decreased (P<0.01), while the levels of SOD1 were stably maintained (P>0.05). On the other hand, the decreased survival fractions and high radiation-induced ROS levels were abrogated by increasing the level of NOXs by gene transfection or by enhancing the ability of SOD utilizing the addition of tempol. In conclusion, ATO enhanced the cell killing effect of irradiation by reducing endogenous ROS levels and prolonging the lifespan of radiation‑induced ROS via a decrease in the level of NOXs and SOD activity.
Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh
2015-04-01
Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy.
Ortega, Angel L; Carretero, Julian; Obrador, Elena; Gambini, Juan; Asensi, Miguel; Rodilla, Vicente; Estrela, José M
2003-04-18
High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.
Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço
2016-04-01
The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.
Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, W.G.; McKenzie, B.; Letourneau, M.A.
Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 daysmore » until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, K.; Masunaga, S.; Akaboshi, M.
1994-04-01
We have already reported that the {alpha}/{beta} ratio of the cell survival curve could be estimated from the micronucleus frequency in cytokinesis-blocked cells treated with cytochalasin-B after irradiation. In this paper, we investigate the direct relationship between the {alpha} value and the appearance of micronuclei. Cells of the SCCVII, RIF-1, EMT6, V-79, CHO, HeLa and human esophageal cancer cell lines were used for the study. Low-dose-rate irradiation was used to determine the {alpha} component of the relationship between dose and micronucleus frequency according to the linear-quadratic (LQ) model. A reduction of the dose rate from 3.09 to 0.0142 Gy/min correspondinglymore » decreased the micronucleus frequency; however, the fraction of binucleate cells without micronuclei was not affected in SCCVII and RIF-1 cells. When this fraction was defined as the normal nuclear division fraction, it decreased exponentially as a function of radiation dose. Then dose vs normal nuclear division fraction (NNDF) was fitted as follows: -In NNDF = aD + C, where D is radiation dose in grays and C is constant. The slope of the dose vs normal nuclear division fraction was not affected by dose rate. The correlation was also explored between the slope (a) and the {alpha} value of the cell survival curve determined by the colony formation assay in cells of eight cell lines. These two values showed extremely high agreement: {alpha} = 1.01a + 0.00795 (r = 0.99, P < 0.01). This assay was applied to estimate the {alpha} value of the cell survival curve of human esophageal cancer cell lines established from surgical specimens. 13 refs., 5 figs.« less
Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae.
Liu, Fang; Wang, Zhuanzi; Liu, Jia; Li, Wenjian
2018-04-21
The present study was to evaluate the in vivo radioprotective effect of oral administration of Saccharomyces cerevisiae-derived-beta-d-glucan (S. cerevisiae-BG) and to investigate the protective mechanism. The results demonstrated that oral pretreatment with 350 mg/kg S. cerevisiae-BG once daily for 14 consecutive days significantly increased the survival rate of mice from 6 Gy X-rays irradiation. At the 30th day after irradiation, cellularity and the percentage of hematopoietic stem/progenitor cells in bone marrow (BM) of surviving mice were increased by S. cerevisiae-BG. Further studies showed that S. cerevisiae-BG decreased BM cell DNA damage and improved BM cell cycle progress in irradiated mice. And the reactive oxygen species (ROS) levels in BM cells of irradiated mice were also decreased by S. cerevisiae-BG. These results indicated that oral S. cerevisiae-BG exhibited obviously radioprotective effect in mice and the protective effect may be attributed to the polysaccharide's hematopoiesis-modulating action and free radical scavenging property. S. cerevisiae-BG protects BM cells from radiation damage through scavenging BM cell ROS, mitigating BM cell DNA damage and improving cell cycle progress, and thus mitigated myelosuppression induced by irradiation and stimulated hematopoiesis, ultimately increased the survival of radiated mice. Copyright © 2018. Published by Elsevier B.V.
Pathak, R; Sarma, A; Sengupta, B; Dey, S K; Khuda-Bukhsh, A R
2007-01-01
To study the effects of 12C-beam of 295 keV/microm (57.24 MeV) on M5 and Chinese hamster V79 cells by using cytogenetic assays like micronuclei (MN) induction, chromosomal aberrations (CA) and apoptosis. Additionally, the relative survival of these two cell lines was tested by the colony forming ability of the cells, with a view to understanding the mechanism of cellular damages that lead to difference in cell survival. Confluent cells were irradiated with 12C-beam at various doses using 15UD Pelletron accelerator. Cell survival was studied by the colony forming ability of cells. MN assay was done by fluorescent staining. Different types of chromosomal aberrations in metaphase cells were scored at 12 h after irradiation. Apoptosis was measured at different post irradiation times as detected by nuclear fragmentation and DNA ladder was prepared after 48 h of incubation. Dose-dependent decrease in surviving fractions was found in both the cell lines. However, the surviving fractions were higher in M5 cells in comparison to V79 cells when exposed to the same radiation doses. On the other hand, induced MN frequencies, CA frequencies and apoptosis percentages were less in M5 cells than V79 cells. Very good correlations between surviving fractions and induced MN frequencies or induced total CA or induced apoptosis percentages were obtained in this study. The cell strain M5 showed relatively more radio-resistance to 12C-beam compared to Chinese hamster V79 cells in this study. As the MN formation, CA and apoptosis induction were less in M5 cells as compared to parental V79 cells, the higher cell survival in the former could possibly be attributed to their better repairing ability leading to higher cell survival.
Cao, Wenfeng; Zhang, Bin; Liu, Yanxue; Li, Hongtao; Zhang, Shiwu; Fu, Li; Niu, Yun; Ning, Liansheng; Cao, Xuchen; Liu, Zhihua; Sun, Baocun
2007-09-01
There is sufficient evidence that human stomatin-like protein 2 (SLP-2) is a novel cancer-related gene. Its protein is overexpressed in many human cancers. SLP-2 can contribute to the promotion of cell growth, cell adhesion, and tumorigenesis in esophageal squamous cell carcinoma and lymph node metastasis in laryngeal squamous cell carcinoma. Immunohistochemical detection of SLP-2, estrogen and progesterone receptors, and HER-2/neu were performed on 263 cases of primary invasive breast cancer with a tissue microarray. Of 263 cases, 138 (52.5%) showed high expression of SLP-2 protein, and 125 (47.5%) showed low or absent expression. In addition, there were significant positive associations between tumor stage and size (P = .020), lymph node metastasis (P < .001), clinical stage (P < .001), distant metastasis (P = .002), and HER-2/neu protein expression (P = .037) and high-level SLP-2 expression. High-level SLP-2 expression was associated with decreased overall survival (P = .011) and was more often found in patients with tumors larger than 20 mm, lymph node metastasis, advanced clinical stage, distant metastasis, and HER-2/neu protein-positive expression. More important, lymph node metastasis, HER-2/neu-positive expression, and high-level SLP-2 expression were associated with significantly decreased survival.
Beckman, Sarah A; Sekiya, Naosumi; Chen, William C W; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny
2014-01-01
Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC's higher antioxidant levels. To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs.
Beckman, Sarah A.; Sekiya, Naosumi; Chen, William C.W.; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny
2017-01-01
Introduction Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. Background We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC’s higher antioxidant levels. Aim To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Materials and Methods Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. Results At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. Discussion While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Conclusion Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs. PMID:28989945
Soncin, M; Busetti, A; Fusi, F; Jori, G; Rodgers, M A
1999-06-01
Cu(II)-hematoporphyrin (CuHp) was efficiently accumulated by B78H1 amelanotic melanoma cells upon incubation with porphyrin concentrations up to 52 microM. When the cells incubated for 18 h with 13 microM CuHp were irradiated with 532 nm light from a Q-switched Nd: YAG laser operated in a pulsed mode (10 ns pulses, 10 Hz) a significant decrease in cell survival was observed. The cell photoinactivation was not the consequence of a photodynamic process, as CuHp gave no detectable triplet signal upon laser flash photolysis excitation and no decrease in cell survival was observed upon continuous wave irradiation. Thus, it is likely that CuHp sensitization takes place by photothermal pathways. The efficiency of the photoprocess was modulated by different parameters; thus, while varying the amount of added CuHp in the 3.25-26 microM range had little effect, pulse energies larger than 50 mJ and irradiation times of at least 120 s were necessary to induce a cell inactivation of about 50%. The porphyrin-cell incubation time prior to irradiation had a major influence on cell survival, suggesting that the nature of the CuHp microenvironment can control the efficiency of photothermal sensitization.
NASA Astrophysics Data System (ADS)
Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon
2010-04-01
This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.
BCL-W has a fundamental role in B cell survival and lymphomagenesis.
Adams, Clare M; Kim, Annette S; Mitra, Ramkrishna; Choi, John K; Gong, Jerald Z; Eischen, Christine M
2017-02-01
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.
BCL-W has a fundamental role in B cell survival and lymphomagenesis
Adams, Clare M.; Kim, Annette S.; Mitra, Ramkrishna; Choi, John K.; Gong, Jerald Z.; Eischen, Christine M.
2017-01-01
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation–induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family–targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies. PMID:28094768
Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
Ye, S J
1999-02-01
A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).
The AMPK-related kinase SNARK regulates muscle mass and myocyte survival
Lessard, Sarah J.; Rivas, Donato A.; So, Kawai; Koh, Ho-Jin; Queiroz, André Lima; Hirshman, Michael F.; Fielding, Roger A.; Goodyear, Laurie J.
2015-01-01
The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age. PMID:26690705
Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing
2013-10-01
Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.
Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui; Smith, Christof C; Lang, Martin; Reznik, Ed; Bowlby, Reanne; Gibb, Ewan A; Akbani, Rehan; Beroukhim, Rameen; Bottaro, Donald P; Choueiri, Toni K; Gibbs, Richard A; Godwin, Andrew K; Haake, Scott; Hakimi, A Ari; Henske, Elizabeth P; Hsieh, James J; Ho, Thai H; Kanchi, Rupa S; Krishnan, Bhavani; Kwiatkowski, David J; Lui, Wembin; Merino, Maria J; Mills, Gordon B; Myers, Jerome; Nickerson, Michael L; Reuter, Victor E; Schmidt, Laura S; Shelley, C Simon; Shen, Hui; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Vincent, Benjamin G; Vocke, Cathy D; Wheeler, David A; Yang, Lixing; Kim, William Y; Robertson, A Gordon; Spellman, Paul T; Rathmell, W Kimryn; Linehan, W Marston
2018-04-03
Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival. Published by Elsevier Inc.
Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma.
Park, Soon Young; Piao, Yuji; Thomas, Craig; Fuller, Gregory N; de Groot, John F
2016-05-03
Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27.
Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma
Thomas, Craig; Fuller, Gregory N.; de Groot, John F.
2016-01-01
Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27. PMID:27050366
Differential Effects of RET and TRKB on Axonal Branching and Survival of Parasympathetic Neurons
Simpson, Julie; Keefe, Julie; Nishi, Rae
2014-01-01
Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14–17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-β-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. PMID:22648743
miR-187 inhibits the growth of cervical cancer cells by targeting FGF9.
Liang, Hua; Luo, Ruoyu; Chen, Xiaoqi; Zhao, Yuzi; Tan, Aili
2017-10-01
MicroRNAs (miRNAs) are a cluster of short non-coding RNAs playing critical roles in human cancers. miR-187 was recently found to be a novel cancer-related microRNA. However, the expression and function of miR-187 in cervical cancer have not been investigated. In this study, we found that miR-187 level was decreased in cervical cancer tissues and cell lines. Patients with low level of miR-187 had significantly decreased rate of overall survival (OS) and progression-free survival (DFS). miR-187 overexpression inhibited proliferation and promoted apoptosis of cervical cancer cells, whereas miR-187 knockdown promoted proliferation and inhibited apoptosis of cervical cancer cells. Forced expression of miR-187 inhibited the subcutaneous growth of cervical cancer cells in nude mice. Furthermore, FGF9 was found to be the downstream target of miR-187 in cervical cancer cells. Importantly, targeting FGF9 was required for miR-187 exerting its tumor suppressive roles in cervical cancer cells.
Poff, AM; Ari, C; Arnold, P; Seyfried, TN; D’Agostino, DP
2014-01-01
Cancer cells express an abnormal metabolism characterized by increased glucose consumption owing to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively use ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly luciferase-tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies βHB and acetoacetate. Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51 and 69%, respectively (p < 0.05). Ketone administration elicited anticancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use. PMID:24615175
Fluxá, Paula; Rojas-Sepúlveda, Daniel; Gleisner, María Alejandra; Tittarelli, Andrés; Villegas, Pablo; Tapia, Loreto; Rivera, María Teresa; López, Mercedes Natalia; Catán, Felipe; Uribe, Mario; Salazar-Onfray, Flavio
2018-03-02
Gallbladder cancer (GBC), although infrequent in industrialized countries, has high incidence rates in certain world regions, being a leading cause of death among elderly Chilean women. Surgery is the only effective treatment, and a five-year survival rate of advanced-stage patients is less than 10%. Hence, exploring immunotherapy is relevant, although GBC immunogenicity is poorly understood. This study examined the relationship between the host immune response and GBC patient survival based on the presence of tumor-infiltrating lymphocytes at different disease stages. Tumor tissues from 80 GBC patients were analyzed by immunohistochemistry for the presence of CD3 + , CD4 + , CD8 + , and Foxp3 + T cell populations, and the results were associated with clinical stage and patient survival. The majority of tumor samples showed CD3 + T cell infiltration, which correlated with better prognosis, particularly in advanced disease stages. CD8 + , but not CD4 + , T cell infiltration correlated with improved survival, particularly in advanced disease stages. Interestingly, a < 1 CD4 + /CD8 + T cell ratio was related with increased survival. Additionally, the presence of Foxp3 + T cells correlated with decreased patient survival, whereas a ≤ 1 Foxp3 + /CD8 + T cell ratio was associated with improved patient survival. Depending on the disease stage, the presence of CD8 + and absence of Foxp3 + T cell populations in tumor tissues correlated with improved GBC patient survival, and thus represent potential markers for prognosis and management of advanced disease, and supports testing of immunotherapy.
Herrera, Victoria L; Decano, Julius L; Tan, Glaiza A; Moran, Ann M; Pasion, Khristine A; Matsubara, Yuichi; Ruiz-Opazo, Nelson
2014-01-01
A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu) rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.
Herrera, Victoria L.; Decano, Julius L.; Tan, Glaiza A.; Moran, Ann M.; Pasion, Khristine A.; Matsubara, Yuichi; Ruiz-Opazo, Nelson
2014-01-01
A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nudenu/nu rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface ‘common receptor coordinator’, DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma. PMID:24465725
Nanchal, Rahul; Audi, Said; Konduri, G. Ganesh; Medhora, Meetha
2013-01-01
Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo. PMID:24618542
Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy.
Zhang, Ailian; Li, Jincheng
2017-03-01
The chemotherapy with fluorouracil is not always effective, in which some breast cancer cells may survive the fluorouracil treatment through enhanced autophagy. Crocetin is the major constituent of saffron, a Chinese traditional herb, which has recently found to have multiple pharmacological effects, including anticancer. However, the effects of Crocetin on the outcome of fluorouracil therapy for breast cancer have not been studied. Here, we showed that fluorouracil treatment inhibited the growth of breast cancer cells, in either a Cell Counting Kit-8 assay or an MTT assay. Inhibition of autophagy further suppressed breast cancer cell growth, suggesting that the breast cancer cells increased autophagic cell survival during fluorouracil treatment. However, Crocetin significantly increased the suppressive effects of fluorouracil on breast cancer cell growth, without affecting either cell apoptosis or autophagy. Inhibition of autophagy at the presence of Crocetin partially abolished the suppressive effects on breast cancer cell growth, suggesting that Crocetin may increase autophagic cell death in fluorouracil-treated breast cancer cells. Furthermore, Crocetin decreased Beclin-1 levels but increased ATG1 levels in fluorouracil-treated breast cancer cells. Together, these data suggest that Crocetin may shift autophagic cell survival to autophagic cell death in fluorouracil-treated breast cancer cells, possibly through modulation of the expression of ATG1 and Beclin-1.
Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant
Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K
2004-01-01
To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723
MALAT1 affects ovarian cancer cell behavior and patient survival
Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong
2018-01-01
Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Gyu, E-mail: igkim@kaeri.re.kr; Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology; Kim, Seo Yoen
2014-01-03
Highlights: •DKK1 was expressed differently among non-small-cell lung cancer cell lines. •DKK1 negatively regulated ROMO1 gene expression. •Disturbance of DKK1 level induced the imbalance of cellular ROS. •DKK1/ROMO1-induced ROS imbalance is involved in cell survival in NSCLC. -- Abstract: Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cellsmore » than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.« less
Verma, Rachna; Krishna, Amitabh
2017-01-15
The aim of present study was to evaluate the significance of estradiol (E2) in testicular activities and to find out the mechanism by which E2 regulates spermatogenesis in mice. To achieve this, both in vivo and in vitro effect of Letrozole on testis of adult mice was investigated. Letrozole-induced changes in testicular histology, cell proliferation (proliferating cell nuclear antigen; PCNA), cell survival (B cell lymphoma factor-2; Bcl2), apoptotic (cysteine-aspartic proteases; caspase-3), steroidogenic (side chain cleavage; SCC, 3β-hydroxy steroid dehydrogenase enzyme; 3β HSD, steroidogenic acute regulatory protein; StAR, aromatase and luteinizing hormone receptor; LH-R) markers, glucose level, and rate of expression of glucose transporter (GLUT) 8 and insulin receptor (IR) proteins in the testis along with changes in serum E2 and testosterone (T) levels were evaluated. Letrozole acts on testis and caused significant decrease in E2 synthesis, but increase in testosterone level and showed regressive changes in the spermatogenesis. Letrozole-induced changes in various testicular markers were compared with the changes in serum E2 level. The correlation study showed that decreased circulating E2 level may be responsible for decreased insulin receptor (IR) level in the testis. The decreased effects of insulin inhibited the glucose transport in the testis by suppressing GLUT8. The decreased level of testicular glucose may produce less lactate as energy support to developing germ cells consequently resulting in decreased cell proliferation and cell survival, but increased apoptosis. Thus, Letrozole suppresses spermatogenesis by reducing insulin sensitivity and glucose transport in the testis, but significantly increased testosterone level by promoting gonadotrophin release by decreased E2. Copyright © 2016 Elsevier Inc. All rights reserved.
Radioprotective activity of Gentiana lutea extract and mangiferin.
Menkovic, Nebojsa; Juranic, Zorica; Stanojkovic, Tatjana; Raonic-Stevanovic, Tatjana; Savikin, Katarina; Zdunić, Gordana; Borojevic, Nenad
2010-11-01
Radioprotective/sensitizing actions of Gentiana lutea aqueous-ethanol extract and mangiferin on radiation-induced effects on different types of cells were investigated. The study focused on the decreasing survival of normal human immunocompetent cells, the survival of the malignant cells in vitro, and the survival of ex vivo irradiated cells before and after consumption of the extract by healthy volunteers. The in vitro experiments showed that mangiferin could inhibit cytotoxic action of ionizing irradiation (doses of 6 and 8 Gy) only on normal resting human PBMC, not stimulated for proliferation. Orally consumed G. lutea extract showed the potential to reduce the cytotoxic effect of x-ray irradiation on normal human immunocompetent cells PBMC of some healthy people, without changing the susceptibility of malignant cells to be destroyed by irradiation. Since the radioprotective effect was individually dependent, further clinical studies are needed. Copyright © 2010 John Wiley & Sons, Ltd.
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.
The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations
NASA Astrophysics Data System (ADS)
Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong
2015-11-01
Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.
Xu, Xiao-Tao; Tao, Ze-Zhang; Song, Qi-Bin; Yao, Yi; Ruan, Peng
2012-09-01
In order to investigate the effects of RNA interference of decoy receptor 3 (DcR3) on the sensitivity of gastric cancer cells to 5-fluorouracil (5-FU) and the relevant mechanisms, siRNA against DcR3 was transfected into the gastric cancer cell line AGS. AGS cells were treated with different doses of 5-FU or for different time periods. The sensitivity of AGS cells to 5-FU was determined. The cell survival rate was detected by MTT assay. The apoptotic rate was determined by DAPI staining, and the expression of related proteins were detected by western blot analysis. The results showed that the cell survival rate was significanlty decreased in the knockdown group compared to the control group at different doses of 5-FU (P<0.01). After different time periods of treatment with 5-FU, the cell survival rate in the knockdown group was significantly decreased compared to the control group, respectively (P<0.01). The apoptotic rate of AGS cells in the knockdown group was increased along with the increasing dose of siRNA. The siRNA against DcR3 enhanced the expression of Fas, FasL, caspase-3 and caspase-8. In conclusion, knockdown of DcR3 by RNA interference enhances apoptosis and inhibits the growth of gastric cancer cells. Downregulation of DcR3 enhances the sensitivity of gastric cancer cells to 5-FU and increased the expression of Fas, FasL and caspase-3/8.
Hong, Yu Ah; Bae, So Yeon; Ahn, Shin Young; Kim, Jieun; Kwon, Young Joo; Jung, Woon Yong; Ko, Gang Jee
2017-01-01
SIRT1 activation promotes the resistance of renal tubular cells to oxidative stress, and resveratrol is known as a SIRT1 activator. Resveratrol was injected intraperitoneally with iohexol for 24 hours. NRK-52E cells were pretreated with resveratrol for 24 hours and then exposed to iohexol for 3 hours. Renal function was measured by serum creatinine and cell survival was assessed by MTT assay. We investigated whether resveratrol attenuates oxidative stress and apoptosis in contrast-induced nephropathy (CIN). Serum creatinine and tubular injury increased significantly after iohexol treatment, and resveratrol co-treatment attenuated the renal injury. Cell survival decreased after iohexol exposure and resveratrol reduced cell death induced by iohexol. Resveratrol was accompanied with the activation of SIRT1 and PGC-1α and dephosphorylation of FoxO1 in mice with CIN. SIRT1 and PGC-1α expression were decreased by iohexol, and increased significantly in resveratrol-pretreated cells. These processes resulted in reduction of oxidative stress and apoptosis both in vivo and in vitro experiments. Resveratrol decreased inflammatory cell infiltration induced by iohexol in mice with CIN. SIRT1 inhibition using siRNA in tubular cells accentuated the decrease of cell viability by iohexol. Resveratrol attenuated CIN by modulating renal oxidative stress and apoptosis through activation of SIRT1-PGC-1α-FoxO1 signaling. The Author(s). Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling
2012-01-15
Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growthmore » and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M phase arrest, followed by apoptosis.« less
Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y
1997-06-01
Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.
Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui
2015-11-02
Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.
The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.
Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae
Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.
2012-01-01
The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376
Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.
Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I
2009-01-01
The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidel, Jeanette; Kunc, Klaudia; Possinger, Kurt
2011-10-14
Highlights: {yields} CDCP1 downregulation reduces anchorage free survival of breast cancer cells. {yields} Anoikis of CDCP1-positive breast cancer cells is increased after CDCP1 downregulation. {yields} CDCP1 knockdown decreases migration and extensively reduces invasiveness in vitro. {yields} Proliferation rate does not correlate with CDCP1 expression. {yields} Lapatinib does not influence tyrosine kinases of CDCP1 signal transduction. -- Abstract: The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI),more » is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu{sup (+)/-}/CDCP1{sup +} breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell-substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu{sup +}, but not HER-2/neu{sup (+)/-} cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.« less
Yu, Qiu-Yun; Zhou, Xin-Feng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiu-Ting; Li, Xiang; Shu, Ming
2018-01-01
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca-F and Hca-P cells. A CLIC4-target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca-F and Hca-P cells. Quantitative real-time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide-induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca-F and Hca-P cells transfected by pSilencer-CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca-F and Hca-P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer-CLIC4 siRNA-2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca-F and Hca-P cells. The results demonstrated that siRNA-induced down-regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca-F and Hca-P cells. J. Cell. Biochem. 119: 659-668, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
STK33 kinase activity is nonessential in KRAS-dependent cancer cells.
Babij, Carol; Zhang, Yihong; Kurzeja, Robert J; Munzli, Anke; Shehabeldin, Amro; Fernando, Manory; Quon, Kim; Kassner, Paul D; Ruefli-Brasse, Astrid A; Watson, Vivienne J; Fajardo, Flordeliza; Jackson, Angela; Zondlo, James; Sun, Yu; Ellison, Aaron R; Plewa, Cherylene A; San, Miguel Tisha; Robinson, John; McCarter, John; Schwandner, Ralf; Judd, Ted; Carnahan, Josette; Dussault, Isabelle
2011-09-01
Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. ©2011 AACR.
Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.
Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen
2009-09-01
20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.
Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells.
Hahnel, Antje; Wichmann, Henri; Kappler, Matthias; Kotzsch, Matthias; Vordermark, Dirk; Taubert, Helge; Bache, Matthias
2010-09-17
Osteopontin (OPN) is a secreted glycophosphoprotein that is overexpressed in various tumors, and high levels of OPN have been associated with poor prognosis of cancer patients. In patients with head and neck cancer, high OPN plasma levels have been associated with poor prognosis following radiotherapy. Since little is known about the relationship between OPN expression and radiosensitivity, we investigated the cellular and radiation induced effects of OPN siRNA in human MDA-MB-231 breast cancer cells. MDA-MB-231 cells were transfected with OPN-specific siRNAs and irradiated after 24 h. To verify the OPN knockdown, we measured the OPN mRNA and protein levels using qRT-PCR and Western blot analysis. Furthermore, the functional effects of OPN siRNAs were studied by assays to assess clonogenic survival, migration and induction of apoptosis. Treatment of MDA-MB-231 cells with OPN siRNAs resulted in an 80% decrease in the OPN mRNA level and in a decrease in extracellular OPN protein level. Transfection reduced clonogenic survival to 42% (p = 0.008), decreased the migration rate to 60% (p = 0.15) and increased apoptosis from 0.3% to 1.7% (p = 0.04). Combination of OPN siRNA and irradiation at 2 Gy resulted in a further reduction of clonogenic survival to 27% (p < 0.001), decreased the migration rate to 40% (p = 0.03) and increased apoptosis to 4% (p < 0.005). Furthermore, OPN knockdown caused a weak radiosensitization with an enhancement factor of 1.5 at 6 Gy (p = 0.09) and a dose modifying factor (DMF10) of 1.1. Our results suggest that an OPN knockdown improves radiobiological effects in MDA-MB-231 cells. Therefore, OPN seems to be an attractive target to improve the effectiveness of radiotherapy.
Saffary, Roya; Nandakumar, Renu; Spencer, Dennis; Robb, Frank T; Davila, Joseph M; Swartz, Marvin; Ofman, Leon; Thomas, Roger J; DiRuggiero, Jocelyne
2002-09-24
We have recovered new isolates from hot springs, in Yellowstone National Park and the Kamchatka Peninsula, after gamma-irradiation and exposure to high vacuum (10(-6) Pa) of the water and sediment samples. The resistance to desiccation and ionizing radiation of one of the isolates, Bacillus sp. strain PS3D, was compared to that of the mesophilic bacterium, Deinococcus radiodurans, a species well known for its extraordinary resistance to desiccation and high doses of ionizing radiation. Survival of these two microorganisms was determined in real and simulated space conditions, including exposure to extreme UV radiation (10-100 nm) during a rocket flight. We found that up to 15 days of desiccation alone had little effect on the viability of either bacterium. In contrast, exposure to space vacuum ( approximately 10(-6) Pa) decreased cell survival by two and four orders of magnitude for Bacillus sp. strain PS3D and D. radiodurans, respectively. Simultaneous exposure to space vacuum and extreme UV radiation further decreased the survival of both organisms, compared to unirradiated controls. This is the first report on the isolated effect of extreme UV at 30 nm on cell survival. Extreme UV can only be transmitted through high vacuum, therefore its penetration into the cells may only be superficial, suggesting that in contrast to near UV, membrane proteins rather than DNA were damaged by the radiation.
Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber
NASA Astrophysics Data System (ADS)
Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y..; Delort, A.-M.
2015-02-01
The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by lacks of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 = cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~33 min per m2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.
Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber
NASA Astrophysics Data System (ADS)
Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M.
2015-06-01
The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m-2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.
Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells
Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.
2015-01-01
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843
Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.
Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A
2015-05-29
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2017-01-01
Aggregation of amyloid beta protein (Aβ) and phosphorylated tau (p-Tau) plays critical roles in pathogenesis of Alzheimer's disease (AD). As an antiamyloid natural polyphenol, curcumin (Cur) has a potential role in prevention of neurodegeneration in AD. However, due to limited absorption of the dietary Cur, the solid lipid Cur particles (SLCP) have been suggested as being more effective for AD therapy. In the present study, we compared the role of dietary Cur and SLCP on oxidative stress, neuronal death, p-Tau level, and certain cell survival markers in vitro, after exposure to Aβ42. Mouse neuroblastoma cells were exposed to Aβ42 for 24 h and incubated with or without dietary Cur and/or SLCP. Reactive oxygen species (ROS), apoptotic cell death, p-Tau, and tau kinase (including GSK-3β and cell survival markers, such as total Akt, phosphorylated Akt, and PSD95 levels) were investigated. SLCP showed greater permeability than dietary Cur in vitro, decreased ROS production, and prevented apoptotic death. In addition, SLCP also inhibited p-Tau formation and significantly decreased GSK-3β levels. Further, the cell survival markers, such as total Akt, p-Akt, and PSD95 levels, were more effectively maintained by SLCP than dietary Cur in Aβ42 exposed cells. Therefore, SLCP may provide greater neuroprotection than dietary Cur in Alzheimer's disease. PMID:28567323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to themore » resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.« less
NASA Astrophysics Data System (ADS)
Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.
2017-05-01
Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.
Li, Changping; Thompson, Michael A.; Tamayo, Archito T.; Zuo, Zhuang; Lee, John; Vega, Francisco; Ford, Richard J.; Pham, Lan V.
2012-01-01
Diffuse Large B cell lymphomas (DLBCL) are the most prevalent of the non-Hodgkin lymphomas and are currently initially treated fairly successfully, but frequently relapse as refractory disease, resulting in poor salvage therapy options and short survival. The greatest challenge in improving survival of DLBCL patients is overcoming chemo-resistance, whose basis is poorly understood. Among the potential mediators of DLBCL chemo-resistance is the thioredxoin (Trx) family, primarily because Trx family members play critical roles in the regulation of cellular redox homeostasis, and recent studies have indicated that dysregulated redox homeostasis also plays a key role in chemoresistance. In this study, we showed that most of the DLBCL-derived cell lines and primary DLBCL cells express higher basal levels of Trx-1 than normal B cells and that Trx-1 expression level is associated with decreased patients survival. Our functional studies showed that inhibition of Trx-1 by small interfering RNA or a Trx-1 inhibitor (PX-12) inhibited DLBCL cell growth, clonogenicity, and also sensitized DLBCL cells to doxorubicin-induced cell growth inhibition in vitro. These results indicate that Trx-1 plays a key role in cell growth and survival, as well as chemoresistance, and is a potential target to overcome drug resistance in relapsed/refractory DLBCL. PMID:22447839
Hardonnière, Kévin; Saunier, Elise; Lemarié, Anthony; Fernier, Morgane; Gallais, Isabelle; Héliès-Toussaint, Cécile; Mograbi, Baharia; Antonio, Samantha; Bénit, Paule; Rustin, Pierre; Janin, Maxime; Habarou, Florence; Ottolenghi, Chris; Lavault, Marie-Thérèse; Benelli, Chantal; Sergent, Odile; Huc, Laurence; Bortoli, Sylvie; Lagadic-Gossmann, Dominique
2016-01-01
Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration). PMID:27488617
Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas
2016-01-01
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535
Ebens, Christen L; MacMillan, Margaret L; Wagner, John E
2017-01-01
Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to <10% and acute graft-versus-host disease (GVHD) from >40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.
Stem cell death and survival in heart regeneration and repair.
Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor
2016-03-01
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Stem cell death and survival in heart regeneration and repair
Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor
2016-01-01
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129
EGFR-Dependent Regulation of Matrix-Independent Epithelial Cell Survival
2006-04-01
ultraviolet (UV) irradiation ( Mudgil et al., 2003), decreased adhesive interactions between tumor cells and adjacent epithelia Much remains to be...historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83-E90. Mudgil , A. V., Segal, N., Andriani, F., Wang, Y., Fusenig, N. E. and
How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics.
Avalos Vizcarra, Ima; Hosseini, Vahid; Kollmannsberger, Philip; Meier, Stefanie; Weber, Stefan S; Arnoldini, Markus; Ackermann, Martin; Vogel, Viola
2016-01-05
To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections.
Megison, Michael L.; Gillory, Lauren A.; Stewart, Jerry E.; Nabers, Hugh C.; Mroczek-Musulman, Elizabeth; Waters, Alicia M.; Coleman, Jennifer M.; Kelly, Virginia; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.
2014-01-01
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors. PMID:24497984
Gunther Iv, Nereus W; Rajkowski, Kathleen T; Sommers, Christopher
2015-02-01
The use of polyphosphate-based marinades in the processing of poultry has been previously shown to increase the survival of Campylobacter species present in the exudates derived from these products. This study investigates the effects that some of the same polyphosphates have on the survival of Campylobacter species within a ground turkey product subjected to cryogenic freezing. Ground turkey patties with two different polyphosphate formulations added in two different concentrations were artificially contaminated with known concentrations of Campylobacter jejuni or Campylobacter coli. The patties were cryogenically frozen at -80°F (-62.2°C) with liquid nitrogen vapor and held at -20°C for 7 or 33 days, after which the number of Campylobacter surviving in the patties was determined. On average the cryogenic freezing resulted in a 2.5-log decrease in the survival of C. jejuni cells and a 2.9-log decrease in C. coli cells present in the turkey patties. Additionally, the presence of polyphosphates in the turkey patties had no effect on Campylobacter survival up to the maximum allowed concentration (0.5%) for polyphosphates in poultry marinades. Finally, it was determined that the added polyphosphates had little effect on the pH of the ground turkey meat; an effect which previously had been implicated in the enhancement of Campylobacter survival due to the presence of polyphosphates.
Transforming growth factor-β decreases side population cells in hepatocellular carcinoma in vitro.
Kim, Jong Bin; Lee, Seulki; Kim, Hye Ri; Park, Seo-Young; Lee, Minjong; Yoon, Jung-Hwan; Kim, Yoon Jun
2018-06-01
Hepatocellular carcinoma (HCC) can result from hepatitis B or C infection, fibrosis or cirrhosis. Transforming growth factor-β (TGF-β) is one of the main growth factors associated with fibrosis or cirrhosis progression in the liver, but its role is controversial in hepatocarcinogenesis. In the present study, the effect of TGF-β on the HCC Huh-7 and Huh-Bat cell lines was evaluated. To study the effect of TGF-β, Huh-7 and Huh-Bat cells were treated with TGF-β and a TGF-β receptor inhibitor (SB431542). Cell survival, cell cycle, numbers of side population (SP) cells and expression of the cancer stem cell marker cluster of differentiation (CD)133, epithelial-mesenchymal transition markers (E-cadherin, α-smooth muscle actin and vimentin) and TGF-β-regulated proteins [phospho-c-Jun N-terminal kinase (p-JNK), p-c-Jun and p-smad2] were investigated. TGF-β treatment resulted in decreased cell survival with a targeted effect on SP cells. Expression of CD133 and vimentin was upregulated by treatment with the TGF-β receptor antagonist SB431542, but not with TGF-β. By contrast, TGF-β induced accumulation of cells at G0/G1, and upregulated expression of p-JNK, p-c-Jun and p-smad2. However, these effects were blocked when cells were treated with TGF-β plus SB431542, indicating the specificity of the TGF-β effect. The present results indicated that TGF-β has anticancer effects mediated by survival inhibition of cancer stem cells, which may be developed as a novel therapy for HCC.
Behesti, Hourinaz; Bhagat, Heeta; Dubuc, Adrian M.; Taylor, Michael D.; Marino, Silvia
2013-01-01
SUMMARY BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival. PMID:23065639
Activin A prevents neuron-like PC12 cell apoptosis after oxygen-glucose deprivation☆
Xu, Guihua; He, Jinting; Guo, Hongliang; Mei, Chunli; Wang, Jiaoqi; Li, Zhongshu; Chen, Han; Mang, Jing; Yang, Hong; Xu, Zhongxin
2013-01-01
In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway. PMID:25206395
Han, Tianci; Shu, Tianci; Dong, Siyuan; Li, Peiwen; Li, Weinan; Liu, Dali; Qi, Ruiqun; Zhang, Shuguang; Zhang, Lin
2017-05-01
Decreased expression of human chemokine-like factor-like MARVEL transmembrane domain-containing 3 (CMTM3) has been identified in a number of human tumors and tumor cell lines, including gastric and testicular cancer, and PC3, CAL27 and Tca-83 cell lines. However, the association between CMTM3 expression and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC) patients remains unclear. The aim of the present study was to investigate the correlation between CMTM3 expression and clinicopathological parameters and prognosis in ESCC. CMTM3 mRNA and protein expression was analyzed in ESCC and paired non-tumor tissues by quantitative real-time polymerase chain reaction, western blotting and immunohistochemical analysis. The Kaplan-Meier method was used to plot survival curves and the Cox proportional hazards regression model was also used for univariate and multivariate survival analysis. The results revealed that CMTM3 mRNA and protein expression levels were lower in 82.5% (30/40) and 75% (30/40) of ESCC tissues, respectively, when compared with matched non-tumor tissues. Statistical analysis demonstrated that CMTM3 expression was significantly correlated with lymph node metastasis (P=0.002) and clinical stage (P<0.001) in ESCC tissues. Furthermore, the survival time of ESCC patients exhibiting low CMTM3 expression was significantly shorter than that of ESCC patients exhibiting high CMTM3 expression (P=0.01). In addition, Kaplan-Meier survival analysis revealed that the overall survival time of patients exhibiting low CMTM3 expression was significantly decreased compared with patients exhibiting high CMTM3 expression (P=0.010). Cox multivariate analysis indicated that CMTM3 protein expression was an independent prognostic predictor for ESCC after resection. This study indicated that CMTM3 expression is significantly decreased in ESCC tissues and CMTM3 protein expression in resected tumors may present an effective prognostic biomarker.
Destruction of newly released red blood cells in space flight
NASA Technical Reports Server (NTRS)
Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.
1996-01-01
Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.
Hematology and biochemical findings of Spacelab 1 flight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Chen, J. P.; Crosby, W.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1988-01-01
The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9,3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate caused the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoesis to replace cells destroyed by the spleen soon after weightlessness is attained.
Davis, Bryce H; Morimoto, Yoshihisa; Sample, Chris; Olbrich, Kevin; Leddy, Holly A; Guilak, Farshid; Taylor, Doris A
2012-10-01
One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to transplanted cells may significantly increase their ability to survive in infarct.
Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.
Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew
2018-06-01
Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.
Extremes of urine osmolality - Lack of effect on red blood cell survival
NASA Technical Reports Server (NTRS)
Leon, H. A.; Fleming, J. E.
1980-01-01
Rats were allowed a third of normal water intake for 20 days, and food consumption decreased. The reticulocyte count indicated a suppression of erythropoiesis. Urine osmolality increased from 2,000 mosmol/kg to 3,390 mosmol/kg. Random hemolysis and senescence of a cohort of red blood cell (RBC) previously labeled with (2-(C-14)) glycine was monitored via the production of (C-14)O. Neither hemolysis nor senescence was affected. Following water restriction, the polydipsic rats generated a hypotonic urine. Urine osmolality decreased to 1,300 mosmol/kg for at least 6 days; a reticulocytosis occurred, but RBC survival was unaffected. These results contradict those previously reported, which suggest that RBC survival is influenced by the osmotic stress imposed on the RBC by extremes of urine tonicity. This discrepancy, it is concluded, is due to differences in the methods employed for measuring RBC survival. The random-labeling technique employed previously assumes a steady state between RBC production and destruction. The cohort-labeling technique used here measures hemolysis and senescence independent of changes in RBC production, which is known to be depressed by fasting.
IL-7 receptor blockade following T cell depletion promotes long-term allograft survival
Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul
2014-01-01
T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louwagie, A. C.; Verwilghen, R. L.
1973-07-01
Mice were exposed to 850 or 975 rad of whole-body radiation; three hr later mice were given normal human bone marrow, infectious mononucleosis bone marrow, or cells from malignant blood diseases. The surviving mice were killed at day 9 and the spleen nodules were counted. Some mice were also given antihuman antilymphocytic serum (ALS). In mice exposed to 975 rad, the highest survival was observed in mice grafted with infectious mononucleosis bone marrow, while none of the animals grafted with cells from malignant blood diseases survived 9 days. In mice exposed to 850 rad, grafting of normal or infectious mononucleosismore » bone marrow markedly decreased the survival. Endogenous spleen colonies were induced in all animals grafted with normal or infectious mononucleosis bone marrow. (HLW)« less
Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad
2014-06-01
The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.
Rao, S R; Snaith, A E; Marino, D; Cheng, X; Lwin, S T; Orriss, I R; Hamdy, F C; Edwards, C M
2017-01-01
Background: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. Methods: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. Results: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. Conclusions: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression. PMID:28006818
CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells.
Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E M; Kinstrie, Ross; Guitart, Amelie V; Dunn, Karen; Abraham, Sheela A; Sansom, Owen; Michie, Alison M; Machesky, Laura; Kranc, Kamil R; Graham, Gerard J; Pellicano, Francesca; Holyoake, Tessa L
2016-07-21
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. © 2016 by The American Society of Hematology.
CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells
Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E. M.; Kinstrie, Ross; Guitart, Amelie V.; Dunn, Karen; Abraham, Sheela A.; Sansom, Owen; Michie, Alison M.; Machesky, Laura; Kranc, Kamil R.; Graham, Gerard J.; Pellicano, Francesca
2016-01-01
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34+Hoescht−Pyronin Y− and primitive CD34+38−, as compared with proliferating CD34+Hoechst+Pyronin Y+ and CD34+38+ stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34+ hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2−/− mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin−Sca-1+c-Kit+ subpopulations. Cxcr2−/− stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit+ cells, and Cxcl4−/− mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. PMID:27222476
West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.
2012-01-01
Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496
Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric
2013-05-10
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.
Chae, Hee-Don; Cox, Nick; Dahl, Gary V.; Lacayo, Norman J.; Davis, Kara L.; Capolicchio, Samanta; Smith, Mark; Sakamoto, Kathleen M.
2018-01-01
CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells. PMID:29435104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šefl, Martin, E-mail: martin.sefl@gmail.com; Kyriakou, Ioanna; Emfietzoglou, Dimitris, E-mail: demfietz@cc.uoi.gr
Purpose: To study theoretically the impact on cell survival of the radionuclide uptake rate inside tumor cells for a single administration of a radiopharmaceutical. Methods: The instantaneous-uptake model of O’Donoghue [“The impact of tumor cell proliferation in radioimmunotherapy,” Cancer 73, 974–980 (1994)] for a proliferating cell population irradiated by an exponentially decreasing dose-rate is here extended to allow for the monoexponential uptake of the radiopharmaceutical by the targeted cells. The time derivative of the survival curve is studied in detail deducing an expression for the minimum of the surviving fraction and the biologically effective dose (BED). Results: Surviving fractions aremore » calculated over a parameter range that is clinically relevant and broad enough to establish general trends. Specifically, results are presented for the therapy radionuclides Y-90, I-131, and P-32, assuming uptake half-times 1–24 h, extrapolated initial dose-rates 0.5–1 Gy h{sup −1}, and a biological clearance half-life of seven days. Representative radiobiological parameters for radiosensitive and rapidly proliferating tumor cells are used, with cell doubling time equal to 2 days and α-coefficient equal to 0.3 and 0.5 Gy{sup −1}. It is shown that neglecting the uptake phase of the radiopharmaceutical (i.e., assuming instantaneous-uptake) results in a sizeable over-estimation of cell-kill (i.e., under-estimation of cell survival) even for uptake half-times of only a few hours. The differences between the exponential-uptake model and the instantaneous-uptake model become larger for high peak dose-rates, slow uptakes, and (slightly) for long-lived radionuclides. Moreover, the sensitivity of the survival curve on the uptake model was found to be higher for the tumor cells with the larger α-coefficient. Conclusions: The exponential-uptake rate of the radiopharmaceutical inside targeted cells appears to have a considerable effect on the survival of a proliferating cell population and might need to be considered in radiobiological models of tumor cell-kill in radionuclide therapy.« less
Shearn, Colin T; Reigan, Philip; Petersen, Dennis R
2012-07-01
Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.
EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer
Amato, Katherine R.; Wang, Shan; Tan, Li; Hastings, Andrew K.; Song, Wenqiang; Lovly, Christine M.; Meador, Catherine B.; Ye, Fei; Lu, Pengcheng; Balko, Justin M.; Colvin, Daniel C.; Cates, Justin M.; Pao, William; Gray, Nathanael S.; Chen, Jin
2015-01-01
Despite the success of treating EGFR mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKIs), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib resistant tumor cells harboring EGFRT790M mutations in vitro and inhibited tumor growth and progression in an inducible EGFRL858R+T790M mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small molecule inhibitor, ALW-II-41-27, decreased both survival and proliferation of erlotinib resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third generation EGFR TKI, AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI resistant, EGFR mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI resistant tumors. PMID:26744526
Kim, Hyemin; Jang, Mirim; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Kim, Jihoon; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae
2016-03-01
Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection. Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(-/-) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection. Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(-/-) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(-/-) mice, which were remarkably reduced by red ginseng and vitamin C supplementation. Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Characterization of Relative Biological Effectiveness for Proton Therapy in Human Cancer Cell Lines
NASA Astrophysics Data System (ADS)
Howard, Michelle Erin
Purpose: Relative biological effectiveness (RBE) is utilized to account for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain as it has been shown to vary from the clinically used value of 1.1. The purpose of this thesis was to investigate the RBE of protons as compared to X-rays and correlate the biological differences with the underlying physics. Methods: Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival using clonogenic assay. Cells were irradiated with 71 and 160 MeV protons at depths along the Bragg curve and 6 MV X-rays to various doses. To correlate the underlying physics to RBE, both the dose averaged lineal energy (y¯D) and dose averaged LET (LETd) investigated. The microdosimetric quantity y¯D was measured under similar conditions as the cells using a solid state microdosimeter and LETd calculated using Monte Carlo (MC) simulations. Survival data were fit using the linear quadratic model. RBE values were calculated by comparing the physical dose (D6MV/Dp) that results in 50% (RBE0.5), 10% (RBE0.1) cell survival, and survival after 2Gy (RBE2 Gy).. Results: For 10% and 50% survival, the RBE for all three cell lines increased with decreasing proton energy (or increased depth). The RBE at 2Gy also increased with a decrease in proton energy in all cases, within experimental error. Results also showed the experimental end point proved to influence the measured proton RBE as well with larger values corresponding to 50% cell survival. Cell type had the least influence on proton RBE compared to proton energy and end point. Results from this study showed an increase in RBE corresponded to an increase in both LETd and y¯ D. Additionally, the measured y¯D and calculated LET d values did not match for all the points of measurement along the curve for the 71 and 160 MeV proton beams. Conclusion: Proton RBE depends on proton energy, cell type and LET. Cellular response to radiation is varied and can be seen in the data from CHO, A549 and T98 cell lines irradiated with 71 MeV protons. Both A549 and T98 cells generally had higher RBE values, indicating a greater biological response to protons. The RBE values in this study vary from 0.89- 2.40, indicating the clinical value of 1.1 may not be suitable in all cases. Innovation/impact: The rare but devastating complication of brainstem necrosis has occurred recently in pediatric patients treated with proton therapy (PT). Many believe these effects are due to the uncertainty in the RBE of PT, which may be underestimating the biological dose near critical structures. An increased confidence in RBE for PT can lead to a decrease in toxicity to normal tissues and therefore a decrease in secondary or recurrent cancer and better overall patient outcomes. This study is one of the first to consider the intricacies of proton RBE dependence on parameters such as cell type, proton energy and LET. The broader implications of understanding RBE variations in a cell-specific manner will allow for biologically optimized treatment planning and an overall decrease in PT uncertainty which may lead to improved patient outcomes. Further, this was the first study, to our knowledge, to measure y¯D with a solid state detector for the comparison with measured RBE values.
Ando, Akira; Suzuki, Chise; Shima, Jun
2005-11-01
Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments.
Petrich, Thorsten; Korkmaz, Zekiye; Krull, Doris; Frömke, Cornelia; Meyer, Geerd J; Knapp, Wolfram H
2010-05-01
Monoclonal anti-CD33 antibodies conjugated with toxic calicheamicin derivative (gemtuzumab ozogamicin, GO) are a novel therapy option for acute myeloid leukaemia (AML). Key prognostic factors for patients with AML are high CD33 expression on the leukaemic cells and the ability to overcome mechanisms of resistance to cytotoxic chemotherapies, including drug efflux or other mechanisms decreasing apoptosis. Alpha particle-emitting radionuclides overwhelm such anti-apoptotic mechanisms by producing numerous DNA double-stranded breaks (DSBs) accompanied by decreased DNA repair. We labelled anti-CD33 antibodies with the alpha-emitter (211)At and compared survival of leukaemic HL-60 and K-562 cells treated with the (211)At-labelled antibodies, GO or unlabelled antibodies as controls. We also measured caspase-3/7 activity, DNA fragmentation and necrosis in HL-60 cells after treatment with the different antibodies or with free (211)At. The mean labelling ratio of (211)At-labelled antibodies was 1:1,090 +/- 364 (range: 1:738-1:1,722) in comparison to 2-3:1 for GO. Tumour cell binding of (211)At-anti-CD33 was high in the presence of abundant CD33 expression and could be specifically blocked by unlabelled anti-CD33. (211)At-anti-CD33 decreased survival significantly more than did GO at comparable dilution (1:1,000). No significant differences in induction of apoptosis or necrosis or DNA DSB or in decreased survival were observed after (211)At-anti-CD33 (1:1,090) versus GO (1:1) treatment. Our results suggest that (211)At is a promising, highly cytotoxic radioimmunotherapy in CD33-positive leukaemia and kills tumour cells more efficiently than does calicheamicin-conjugated antibody. Labelling techniques leading to higher chemical yield and specific activities must be developed to increase (211)At-anti-CD33 therapeutic effects.
THE EFFECT OF SAMe AND BETAINE ON HEPA 1-6, C34 AND E47 LIVER CELL SURVIVAL IN VITRO
Oliva, Joan; Zhong, Jin; Buslon, Virgil S.; French, Samuel W.
2011-01-01
In recent years, methyl one-carbon metabolism has received a great deal of attention because the disruption of methyl balance in a variety of genetically modified mice is associated with the development of various forms of liver injury, namely fatty liverdisease and hepatocellular carcinoma (HCC). In addition, patients with liver disease often have an abnormal expression of key genes involved in methionine metabolism as well as elevated serum levels of methionine and homocysteine (Hcy). S-adenosylmethionine (SAMe) has rapidly moved from being a methyl donor to a key metabolite that regulates hepatocyte proliferation, necrosis and differentiation. Biosynthesis of SAMe occurs in all mammalian cells as the first step in methionine catabolism in a reaction catalyzed by methionine adenosyltransferase (MAT). Decreased hepatic SAMe biosynthesis is a consequence of numerous forms of chronic liver injury. In an animal model of chronic liver SAMe deficiency, the liver is predisposed to further injury and develops spontaneous steatohepatitis and HCC. SAMe treatment in experimental animal models of liver injury shows that its hepatoprotective properties. Meta-analyses also showed that it is effective in the treatment of patients with cholestatic liver diseases. We studied the survival of liver cells treated with SAMe and betaine using Hepa 1–6 and E47/C34 cell lines. We showed that exogenous SAMe decreased the number of Hepa 1–6 and E47/C34 cells, and increased the number of dead cells in vitro. Betaine had no significant effect on the number of surviving cells and the number of dead cells. The combination of both methyl donors significantly increased the survival of liver cells and reduced necrosis, compare to SAMe alone. This study showed the inhibition of the proliferatino and increased necrosis in response to SAMe on liver cancer cell lines Hepa 1–6 and C34. PMID:22032937
Targeting constitutively-activated STAT3 in hypoxic ovarian cancer, using a novel STAT3 inhibitor
McCann, Georgia A.; Naidu, Shan; Rath, Kellie S.; Bid, Hemant K.; Tierney, Brent J.; Suarez, Adrian; Varadharaj, Saradhadevi; Zhang, Jianying; Hideg, Kálmán; Houghton, Peter; Kuppusamy, Periannan; Cohn, David E.; Selvendiran, Karuppaiyah
2014-01-01
Tumor hypoxia, a feature of many solid tumors including ovarian cancer, is associated with resistance to therapies. We previously demonstrated that hypoxic exposure results in increased expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3). We hypothesized the activation of STAT3 could lead to chemotherapeutic resistance in ovarian cancer cells in hypoxic conditions. In this study, we demonstrate the level of pSTAT3 Tyr705 is increased in the hypoxic regions of human epithelial ovarian cancer (EOC) specimens, as determined by HIF-1α and CD-31 staining. In vitro mutagenesis studies proved that pSTAT3 Tyr705 is necessary for cell survival and proliferation under hypoxic conditions. In addition, we show that S1PR1, a regulator of STAT3 transcription via the JAK/STAT pathway, is highly expressed in hypoxic ovarian cancer cells (HOCCs). Knock down of S1PR1 in HOCCs reduced pSTAT3 Tyr705 levels and was associated with decreased cell survival. Treatment of HOCCs with the STAT3 inhibitor HO-3867 resulted in a rapid and dramatic decrease in pSTAT3 Tyr705 levels as a result of ubiquitin proteasome degradation. STAT3-target proteins Bcl-xL, cyclin D2 and VEGF showed similar decreases in HO-3867 treated cells. Taken together, these findings suggest that activation of STAT3 Tyr705 promotes cell survival and proliferation in HOCCs, and that S1PR1 is involved in the initiation of STAT3 activation. Targeting hypoxia-mediated STAT3 activation represents a therapeutic option for ovarian cancer and other solid tumors. PMID:25594014
T-cell responses in oiled guillemots and swans in a rehabilitation setting.
Troisi, Gera M
2013-07-01
Aquatic birds are commonly affected by oil spills. Despite rehabilitation efforts, the majority of rehabilitated common guillemots (Uria aalge) do not survive, whereas mute swans (Cygnus olor) tend to have higher postrelease survival. Polyaromatic hydrocarbons (PAHs) present in crude oil and diesel are immunotoxic in birds affecting cell-mediated responses to immunogens. Because it is a target of PAH toxicity, T-lymphocyte response to controlled mitogen administration (phytohemagglutinnin test) was investigated in a scoping study as a potentially useful minimally invasive in vivo test of cell-mediated immunity. The test was performed on 69 mute swans and 31 common guillemots stranded on the Norfolk and Lincolnshire coastline and inland waterways in England (UK) either due to injury or to contamination with crude or diesel oil. T-lymphocyte response was significantly decreased in swans with greater oil scores. T-lymphocyte responses were also decreased in guillemots, but this finding was not statistically significant.
How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics
Avalos Vizcarra, Ima; Hosseini, Vahid; Kollmannsberger, Philip; Meier, Stefanie; Weber, Stefan S.; Arnoldini, Markus; Ackermann, Martin; Vogel, Viola
2016-01-01
To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections. PMID:26728082
Toledo Del Árbol, Julia; Pérez Pulido, Rubén; Grande, Ma José; Gálvez, Antonio; Lucas, Rosario
2015-11-01
Salmorejo is a traditional tomato-based creamy product. Because salmorejo is not heat-processed, there is a risk of contamination with foodborne pathogens from raw materials. Even though bacterial growth in salmorejo is strongly inhibited because of its acidic pH (close to 3.9), the growth and survival of 3 foodborne pathogens in this food has not been studied before. In this study, 3 cocktails consisting of Escherichia coli O157, Salmonella enterica serovar Enteritidis, and Listeria monocytogenes strains were inoculated in freshly prepared salmorejo. The food was treated by high hydrostatic pressure (HHP) at 400, 500, or 600 MPa for 8 min, or left untreated, and stored at 4 °C for 30 d. Viable cell counts were determined on selective media and also by the triple-layer agar method in order to detect sublethally injured cells. In control samples, L. monocytogenes viable cells decreased by 2.4 log cycles at day 7 and were undetectable by day 15. S. enterica cells decreased by 0.5 or 2.4 log cycles at days 7 and 15 respectively, but still were detectable at day 30. E. coli O157 cells survived much better in salmorejo, decreasing only by 1.5 log cycles at day 30. Treatments at pressures of 400 MPa or higher reduced viable counts of L. monocytogenes and S. enterica to undetectable levels. HHP treatments significantly (P < 0.05) reduced E. coli counts by approximately 5.2 to 5.4 log cycles, but also yielded surviving cells that apparently were sublethally injured. Only samples treated at 600 MPA for 8 min were devoid of detectable E. coli cells during storage. Salmorejo is a traditional, vitamin-rich food, usually produced on a small scale. HHP treatment at 600 MPa for 8 min can be an efficient nonthermal method for industrial-scale preparation of preservative-free salmorejo with improved safety against transmission of foodborne pathogens L. monocytogenes serotyes 4a and 4b, S. enterica serovar Enteritidis, and E. coli O157. © 2015 Institute of Food Technologists®
Deep, Gagan; Kumar, Rahul; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh
2014-01-01
Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these results showed that silibinin targets PCA cells' interaction with fibronectin and inhibits their motility, invasiveness and survival; thus further supporting silibinin use in PCA intervention including its metastatic progression. PMID:25285031
Deep, Gagan; Kumar, Rahul; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh
2014-10-01
Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these results showed that silibinin targets PCA cells' interaction with fibronectin and inhibits their motility, invasiveness and survival; thus further supporting silibinin use in PCA intervention including its metastatic progression.
Proton beam irradiation inhibits the migration of melanoma cells.
Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna
2017-01-01
In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.
Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.
Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G
1999-01-01
Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.
Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.
2013-01-01
Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. PMID:23941992
Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K
2013-10-15
Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.
Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.
Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk
2016-05-01
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Leal, Ana S.; Sporn, Michael B.; Pioli, Patricia A.; Liby, Karen T.
2016-01-01
Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4–8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. PMID:27659181
Li, Chichi; Ye, Lechi; Yang, Li; Yu, Xiaofang; He, Yucang; Chen, Zhuojie; Li, Liqun; Zhang, Dan
2017-01-01
Ischemia is one of the main causes of the high rate of absorption of transplanted autologous fat. Autophagy allows cells to survive by providing energy under starvation. Rapamycin has been found to play a role in promoting autophagy. In this study, we investigated whether rapamycin participates in the survival and adipogenesis of ischemia-challenged adipose-derived stem cells (ADSCs) by regulating autophagy. Before the cells were exposed to oxygen-glucose deprivation (OGD), a simulated ischemic microenvironment, the level of autophagy was reduced or increased by lentiviral transfection with short hairpin RNA targeting microtubule-associated protein 1-light chain 3 gene (shRNA-LC3) or treatment with rapamycin, respectively. The level of autophagy was assessed by western blotting, transmission electron microscopythen the apoptosis ratio was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and flow cytometry. Adipogenesis was further evaluated by oil red O staining and the expressions level of some specific proteins for adipocytes. shRNA-LC3 and rapamycin treatment effectively decreased and improved the level of autophagy in cells with or without OGD challenge, respectively. In addition, autophagy inhibition increased the apoptosis rate and activated caspase-3 expression level in response to OGD, and these were markedly inhibited by rapamycin preconditioning. During adipogenesis, autophagy inhibition decreased not only oil droplet accumulation but also lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor gamma (PPARγ) expression in cells with or without OGD challenge. However, autophagy promotion by rapamycin increased oil droplet accumulation and LPL and PPARγ expression. Rapamycin may promote the survival and adipogenesis of ischemia-challenged ADSCs by upregulating autophagy. © 2017 The Author(s). Published by S. Karger AG, Basel.
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Ahmad, Aamir; Azmi, Asfar S.; Sarkar, Sanila H.; Banerjee, Sanjeev; Kong, Dejuan; Li, Yiwei; Thakur, Shivam; Sarkar, Fazlul H.
2013-01-01
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, which is, in part, due to intrinsic (de novo) and extrinsic (acquired) resistance to conventional therapeutics, suggesting that innovative treatment strategies are required for overcoming therapeutic resistance to improve overall survival of patients. Oral administration of metformin in patients with diabetes mellitus has been reported to be associated with reduced risk of pancreatic cancer and that metformin has been reported to kill cancer stem cells (CSC); however, the exact molecular mechanism(s) has not been fully elucidated. In the current study, we examined the effect of metformin on cell proliferation, cell migration and invasion, and self-renewal capacity of CSCs and further assessed the expression of CSC marker genes and microRNAs (miRNA) in human pancreatic cancer cells. We found that metformin significantly decreased cell survival, clonogenicity, wound-healing capacity, sphere-forming capacity (pancreatospheres), and increased disintegration of pancreatospheres in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Metformin also decreased the expression of CSC markers, CD44, EpCAM, EZH2, Notch-1, Nanog and Oct4, and caused reexpression of miRNAs (let-7a, let-7b, miR-26a, miR-101, miR-200b, and miR-200c) that are typically lost in pancreatic cancer and especially in pancreatospheres. We also found that reexpression of miR-26a by transfection led to decreased expression of EZH2 and EpCAM in pancreatic cancer cells. These results clearly suggest that the biologic effects of metformin are mediated through reexpression of miRNAs and decreased expression of CSC-specific genes, suggesting that metformin could be useful for overcoming therapeutic resistance of pancreatic cancer cells. PMID:22086681
Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming
2017-08-14
To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.
Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival
Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia
2014-01-01
Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032
Prolongation of RBC survival in the hypophysectomized rat.
NASA Technical Reports Server (NTRS)
Landaw, S. A.; Bristol, S. K.
1971-01-01
Red blood cell (RBC) survival was prolonged in hypophysectomized rats. While the rate of random hemolysis was decreased in some hypophysectomized hosts, in all directly injected and cross-transfused hypophysectomized rat hosts, there was a significant prolongation of the phase of senescent death. In contrast, RBCs from hypophysectomized donors survived normally in normal hosts. These experiments are further evidence of a relationship between RBC aging and metabolic rate, and suggest an intimate involvement with the calorigenic hormones.
Braun, Stephen E.; Taube, Ran; Zhu, Quan; Wong, Fay Eng; Murakami, Akikazu; Kamau, Erick; Dwyer, Markryan; Qiu, Gang; Daigle, Janet; Carville, Angela; Johnson, R. Paul
2012-01-01
Abstract We evaluated the potential of an anti–human immunodeficiency virus (HIV) Tat intrabody (intracellular antibody) to promote the survival of CD4+ cells after chimeric simian immunodeficiency virus (SIV)/HIV (SHIV) infection in rhesus macaques. Following optimization of stimulation and transduction conditions, purified CD4+ T cells were transduced with GaLV-pseudotyped retroviral vectors expressing either an anti-HIV-1 Tat or a control single-chain intrabody. Ex vivo intrabody-gene marking was highly efficient, averaging four copies per CD4+ cell. Upon reinfusion of engineered autologous CD4+ cells into two macaques, high levels of gene marking (peak of 0.6% and 6.8% of peripheral blood mononuclear cells (PBMCs) and 0.3% or 2.2% of the lymph node cells) were detected in vivo. One week post cell infusion, animals were challenged with SHIV 89.6p and the ability of the anti-HIV Tat intrabody to promote cell survival was evaluated. The frequency of genetically modified CD4+ T cells progressively decreased, concurrent with loss of CD4+ cells and elevated viral loads in both animals. However, CD4+ T cells expressing the therapeutic anti-Tat intrabody exhibited a relative survival advantage over an 8- and 21-week period compared with CD4+ cells expressing a control intrabody. In one animal, this survival benefit of anti-Tat transduced cells was associated with a reduction in viral load. Overall, these results indicate that a retrovirus-mediated anti-Tat intrabody provided significant levels of gene marking in PBMCs and peripheral tissues and increased relative survival of transduced cells in vivo. PMID:22734618
Freudenberg, Robert; Wendisch, Maria; Runge, Roswitha; Wunderlich, Gerd; Kotzerke, Jörg
2012-12-01
Cellular radionuclide uptake increases the heterogeneity of absorbed dose to biological structures. Dose increase depends on uptake yield and emission characteristics of radioisotopes. We used an in vitro model to compare the impact of cellular uptake of (188)Re-perrhenate and (99m)Tc-pertechnetate on cellular survival. Rat thyroid PC Cl3 cells in culture were incubated with (188)Re or (99m)Tc in the presence or absence of perchlorate for 1 hour. Clonogenic cell survival was measured by colony formation. In addition, intracellular radionuclide uptake was quantified. Dose effect curves were established for (188)Re and (99m)Tc for various extra- and intracellular distributions of the radioactivity. In the presence of perchlorate, no uptake of radionuclides was detected and (188)Re reduced cell survival more efficiently than (99m)Tc. A(37), the activity that is necessary to yield 37% cell survival was 14 MBq/ml for (188)Re and 480 MBq/ml for (99m)Tc. In the absence of perchlorate, both radionuclides showed similar uptakes; however, A(37) was reduced by 30% for the beta-emitter and by 95% for (99m)Tc. The dose D(37) that yields 37% cell survival was between 2.3 and 2.8 Gy for both radionuclides. Uptake of (188)Re and (99m)Tc decreased cell survival. Intracellular (99m)Tc yielded a dose increase that was higher compared to (188)Re due to emitted Auger and internal conversion-electrons. Up to 5 Gy there was no difference in radiotoxicity of (188)Re and (99m)Tc. At doses higher than 5 Gy intracellular (99m)Tc became less radiotoxic than (188)Re, probably due to a non-uniform lognormal radionuclide uptake.
Elguindi, Jutta; Alwathnani, Hend A; Rensing, Christopher
2012-04-01
Cronobacter spp. have been identified as the causative agent in meningitis and necrotizing enterocolitis in premature infants which can be linked to the bacterium's desiccation resistance and persistence in powdered infant formula. In this study we examined the efficacy of copper cast alloys in contact killing of Cronobacter sakazakii following periods of desiccation stress. Cronobacter sakazakii cells suspended in Tryptic Soy Broth (TSB) were killed within 10 min while kept moist on 99.9% copper alloys and within 1 min of drying on 99.9% copper alloys. Survival times were unchanged after cells suspended in TSB were desiccated for 33 days. Cronobacter sakazakii cells suspended in infant formula were killed within 30 min under moist conditions and within 3 min of drying on 99.9% copper alloys. However, when desiccated in infant formula for 45 days, survival times decreased to 10 and 1 min in moist and dry conditions, respectively. In contrast, no decrease in viable cells was noted on stainless steel surfaces under the experimental conditions employed in this study. Cronobacter sakazakii was rapidly killed on copper alloys under all testing conditions of this study indicating that desiccation and copper ion resistance do not prolong survival. These results could have important implications for the utilization of copper in the production and storage of powdered infant formula.
Autsavapromporn, Narongchai; de Toledo, Sonia M.; Little, John B.; Jay-Gerin, Jean-Paul; Harris, Andrew L.; Azzam, Edouard I.
2011-01-01
We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase. PMID:21388278
Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.
Ghosh, Somnath; Ghosh, Anu; Krishna, Malini
2015-12-01
The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.
Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Yongqian; Wang, Li; Lu, Huanyu
2012-05-25
Highlights: Black-Right-Pointing-Pointer QKI expression is decreased in gastric cancer samples. Black-Right-Pointing-Pointer Promoter hyper methylation contributes to the downregulation of QKI. Black-Right-Pointing-Pointer QKI inhibits the growth of gastric cancer cells. Black-Right-Pointing-Pointer Decreased QKI expression predicts poor survival. -- Abstract: Gastric cancer (GC) is the fourth most common cancer and second leading cause of cancer-related death worldwide. RNA-binding protein Quaking (QKI) is a newly identified tumor suppressor in multiple cancers, while its role in GC is largely unknown. Our study here aimed to clarify the relationship between QKI expression with the clinicopathologic characteristics and the prognosis of GC. In the 222 GCmore » patients' specimens, QKI expression was found to be significantly decreased in most of the GC tissues, which was largely due to promoter hypermethylation. QKI overexpression reduced the proliferation ability of GC cell line in vitro study. In addition, the reduced QKI expression correlated well with poor differentiation status, depth of invasion, gastric lymph node metastasis, distant metastasis, advanced TNM stage, and poor survival. Multivariate analysis showed QKI expression was an independent prognostic factor for patient survival.« less
Agarwal, Chapla; Agarwal, Rajesh
2014-01-01
Involvement of cancer stem cells (CSC) in initiation, progression, relapse, and therapy-resistance of colorectal cancer (CRC) warrants search for small molecules as ‘adjunct-therapy’ to target both colon CSC and bulk tumor population. Herein, we assessed the potential of silibinin to eradicate colon CSC together with associated molecular mechanisms. In studies examining how silibinin modulates dynamics of CSC spheroids in terms of its effect on kinetics of CSC spheroids generated in presence of mitogenic and interleukin (IL)-mediated signaling which provides an autocrine/paracrine amplification loop in CRC, silibinin strongly decreased colon CSC pool together with cell survival of bulk tumor cells. Silibinin effect on colon CSC was mediated via blocking of pro-tumorigenic signaling, notably IL-4/-6 signaling that affects CSC population. These silibinin effects were associated with decreased mRNA and protein levels of various CSC-associated transcription factors, signaling molecules and markers. Furthermore, 2D and 3D differentiation assays indicated formation of more differentiated clones by silibinin. These results highlight silibinin potential to interfere with kinetics of CSC pool by shifting CSC cell division to asymmetric type via targeting various signals associated with the survival and multiplication of colon CSC pool. Together, our findings further support clinical usefulness of silibinin in CRC intervention and therapy. PMID:24970802
Singh, Balraj; Kinne, Hannah E.; Milligan, Ryan D.; Washburn, Laura J.; Olsen, Mark; Lucci, Anthony
2016-01-01
We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold) as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90%) inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern developmental status and energy balance, and genetic and epigenetic alterations that are selected during cancer evolution. PMID:27390851
Patel, Manali I.; Schupp, Clayton W.; Gomez, Scarlett L.; Chang, Ellen T.; Wakelee, Heather A.
2013-01-01
Purpose Hispanics in the United States have lower age-adjusted mortality resulting from non–small-cell lung cancer (NSCLC) compared with non-Hispanic whites (NHWs). The purpose of this study was to evaluate individual, clinical, and neighborhood factors in survival among Hispanics with NSCLC. Patients and Methods We performed a retrospective analysis of NHWs and Hispanics with NSCLC between 1998 and 2007 in the California Cancer Registry (follow-up to December 2009). Kaplan-Meier curves depict survival by nativity for Hispanics with NSCLC. Cox proportional hazards models estimated hazard of mortality by race with adjustment for individual (age, sex, marital status), clinical (histologic grade, surgery, irradiation, chemotherapy), and neighborhood factors (neighborhood socioeconomic status, ethnic enclave). Results We included 14,280 Hispanic patients with NSCLC. Foreign-born Hispanics had 15% decreased risk of disease-specific mortality resulting from NSCLC compared with NHWs (hazard ratio [HR], 0.85; 95% CI, 0.83 to 0.88) after adjustment for individual, clinical, and neighborhood factors. After adjustment for individual factors, compared with US-born Hispanics, foreign-born Hispanics had 10% decreased risk of disease-specific mortality (HR, 0.90; 95% CI, 0.87 to 0.96). Clinical and neighborhood factors slightly moderated the survival benefit for foreign-born patients. A modestly more pronounced survival advantage was seen for foreign-born Hispanics living in low socioeconomic and high Hispanic enclave neighborhoods as compared with US-born Hispanics (HR, 0.86; 95% CI, 0.81 to 0.90). Conclusion Foreign-born Hispanics with NSCLC have a decreased risk of disease-specific mortality compared with NHWs and US-born Hispanics with NSCLC. Neighborhood factors slightly moderate this survival advantage. This survival advantage is slightly more pronounced in lower socioeconomic and higher Hispanic enclave neighborhoods. PMID:23960183
Beaulieu, Aurore; Poncin, Géraldine; Belaid-Choucair, Zakia; Humblet, Chantal; Bogdanovic, Gordana; Lognay, Georges; Boniver, Jacques; Defresne, Marie-Paule
2011-01-01
It is suspected that bone marrow (BM) microenvironmental factors may influence the evolution of chronic myeloid leukaemia (CML). In this study, we postulated that adipocytes and lipids could be involved in the progression of CML. To test this hypothesis, adipocytes were co-cultured with two BCR-ABL positive cell lines (PCMDS and K562). T cell (Jurkat) and stroma cell (HS-5) lines were used as controls. In the second set of experiments, leukemic cell lines were treated with stearic, oleic, linoleic or α-linolenic acids in presence or absence of leptin. Survival, proliferation, leptin production, OB-R isoforms (OB-Ra and OB-Rb), phosphoinositide 3-kinase (PI3k) and BCL-2 expression have been tested after 24h, 48h and 72h of treatment. Our results showed that adipocytes induced a decrease of CML proliferation and an increase in lipid accumulation in leukemic cells. In addition, CML cell lines induced adipocytes cell death. Chromatography analysis showed that BM microenvironment cells were full of saturated (SFA) and monounsaturated (MUFA) fatty acids, fatty acids that protect tumor cells against external agents. Stearic acid increased Bcl-2 expression in PCMDS, whereas oleic and linoleic acids had no effects. In contrast, α-linolenic acid decreased the proliferation and the survival of CML cell lines as well as BCL-2 and OB-R expression. The effect of α-linolenic acids seemed to be due to PI3K pathway and Bcl-2 inhibition. Leptin production was detected in the co-culture medium. In the presence of leptin, the effect of α-linolenic acid on proliferation, survival, OB-R and BCl-2 expression was reduced.
Lee, Hyunseung; Morales, Liza D.; Slaga, Thomas J.; Kim, Dae Joon
2015-01-01
Chronic exposure to UV radiation can contribute to the development of skin cancer by promoting protein-tyrosine kinase (PTK) signaling. Studies show that exposure to UV radiation increases the ligand-independent activation of PTKs and induces protein-tyrosine phosphatase (PTP) inactivation. In the present work, we report that T-cell PTP (TC-PTP) activity is stimulated during the initial response to UVB irradiation, which leads to suppression of keratinocyte cell survival and proliferation via the down-regulation of STAT3 signaling. Our results show that TC-PTP-deficient keratinocyte cell lines expressed a significantly increased level of phosphorylated STAT3 after exposure to low dose UVB. This increase corresponded with increased cell proliferation in TC-PTP-deficient keratinocytes following UVB irradiation. Loss of TC-PTP also reduced UVB-induced apoptosis. Corroborating with these results, overexpression of TC-PTP in keratinocyte cell lines yielded a decrease in phosphorylated STAT3 levels, which corresponded with a significant decrease in cell proliferation in response to low dose UVB. We demonstrate that TC-PTP activity was increased upon UVB exposure, and overexpression of TC-PTP in keratinocyte cell lines further increased its activity in the presence of UVB. Treatment of TC-PTP-deficient keratinocytes with the STAT3 inhibitor STA21 significantly reduced cell viability following UVB exposure in comparison with untreated TC-PTP-deficient keratinocytes, confirming that the effect of TC-PTP on cell viability is mediated by STAT3 dephosphorylation. Combined, our results indicate that UVB-mediated activation of TC-PTP plays an important role in the STAT3-dependent regulation of keratinocyte cell proliferation and survival. Furthermore, these results suggest that TC-PTP may be a novel potential target for the prevention of UVB-induced skin cancer. PMID:25406309
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
21 CFR 866.5490 - Hemopexin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...
FGFR4 Role in Epithelial-Mesenchymal Transition and Its Therapeutic Value in Colorectal Cancer
Torres, Sofía; Hernández-Varas, Pablo; Teixidó, Joaquín; Bonilla, Félix; de Herreros, Antonio Garcia; Casal, J. Ignacio
2013-01-01
Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg388, in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy. PMID:23696849
Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs.
Urnukhsaikhan, Enerelt; Cho, Hyunjin; Mishig-Ochir, Tsogbadrakh; Seo, Young-Kwon; Park, Jung-Kueg
2016-04-15
Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF. Copyright © 2016 Elsevier Inc. All rights reserved.
de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles
2015-12-01
Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.
CXCR4 engagement promotes dendritic cell survival and maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabashima, Kenji; Sugita, Kazunari; Shiraishi, Noriko
2007-10-05
It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important formore » not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.« less
Cell kill by megavoltage protons with high LET.
Kuperman, Vadim Y
2016-07-21
The aim of the current study is to develop a radiobiological model which describes the effect of linear energy transfer (LET) on cell survival and relative biological effectiveness (RBE) of megavoltage protons. By assuming the existence of critical sites within a cell, analytical expression for cell survival S as a function of LET is derived. The obtained results indicate that in cases where dose per fraction is small, [Formula: see text] is a linear-quadratic (LQ) function of dose while both alpha and beta radio-sensitivities are non-linearly dependent on LET. In particular, in the current model alpha increases with increasing LET while beta decreases. Conversely, in the case of large dose per fraction, the LQ dependence of [Formula: see text] on dose is invalid. The proposed radiobiological model predicts cell survival probability and RBE which, in general, deviate from the results obtained by using conventional LQ formalism. The differences between the LQ model and that described in the current study are reflected in the calculated RBE of protons.
Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha
2012-06-22
Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function. Copyright © 2012 Elsevier Inc. All rights reserved.
p62 modulates Akt activity via association with PKC{zeta} in neuronal survival and differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim
2005-08-26
p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but alsomore » to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKC{zeta} by association of p62 and PKC{zeta}, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation.« less
Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.
Valero, J; Weruaga, E; Murias, A R; Recio, J S; Curto, G G; Gómez, C; Alonso, J R
2007-06-01
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.
De Falco, Filomena; Sabatini, Rita; Del Papa, Beatrice; Falzetti, Franca; Di Ianni, Mauro; Sportoletti, Paolo; Baldoni, Stefano; Screpanti, Isabella; Marconi, Pierfrancesco; Rosati, Emanuela
2015-01-01
In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4. Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells. Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL. PMID:26041884
Hendriks, Koen D W; Lupi, Eleonora; Hardenberg, Maarten C; Hoogstra-Berends, Femke; Deelman, Leo E; Henning, Robert H
2017-11-14
Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.
Crommentuijn, Matheus H W; Maguire, Casey A; Niers, Johanna M; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Tannous, Bakhos A
2016-04-01
Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice survival. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Programmed death-1 controls T cell survival by regulating oxidative metabolism1
Tkachev, Victor; Goodell, Stefanie; Opipari, Anthony W.; Hao, Ling-Yang; Franchi, Luigi; Glick, Gary D.; Ferrara, James L.M.; Byersdorfer, Craig A.
2015-01-01
The co-inhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly up-regulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1HiROSHi phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels and PD-1 driven increases in ROS were dependent upon the oxidation of fatty acids, as treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by anti-oxidants. Furthermore, PD-1 driven changes in ROS were fundamental to establishing a cell’s susceptibility to subsequent metabolic inhibition, as blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing reactive oxygen species in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic. PMID:25972478
Density increment and decreased survival of rat red blood cells induced by cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimoto, M.; Miura, T.
1986-01-01
Male Wistar rats were injected with CdCl/sub 2/ subcutaneously to examine in vivo effects of Cd on density and survival of red blood cells. During the 7 days after administration of 1.0 mg Cd/kg, the following sequence of events occurred: (1) a progressive increase in the amount of more dense red blood cells concomitant with a decrease in that of light red blood cells from the first to the third day; (2) an increase in the spleen weight at the third day; (3) a decrease in the hematocrit value and an increase in the amount of light red blood cellsmore » at the fifth day; and (4) a recovery of the hematocrit value at the seventh day. Five days after administration, the hematocrit value decreased in a dose-dependent mode and the decrease was significant at the 1% level at 1.0 and 1.5 mg Cd/kg. A highly significant splenomegaly was also observed at 0.5 to 1.5 mg Cd/kg. In order to label red blood cells in vivo, (/sup 3/H) diisopropylfluorophosphate ((/sup 3/H)DFP) was injected into rats. At Day 11, Cd at either 0.5 or 1.0 mg/kg was administered to (/sup 3/H)DFP-prelabeled animals. Cd administration accelerated /sup 3/H-labeled red cell clearance from the blood. Six days after Cd administration, the radioactivity of red blood cells was 76 and 68% of the control at 0.5 and 1.0 mg Cd/kg, respectively. In vitro treatment of rat red density and accelerated in vivo clearance of red blood cells from the recipient circulation. These results show that Cd at low dose can cause anemia by increasing red cell density and by accelerating red cell sequestration, presumably in the spleen.« less
Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.
2016-01-01
Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi
2004-03-01
Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.
Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.
Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K
2010-09-27
The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafat, M; Bazalova, M; Palma, B
Purpose: To characterize the effect of very rapid dose delivery as compared to conventional therapeutic irradiation times on clonogenic cell survival. Methods: We used a Varian Trilogy linear accelerator to deliver doses up to 10 Gy using a 6 MV SRS photon beam. We irradiated four cancer cell lines in times ranging from 30 sec to 30 min. We also used a Varian TrueBeam linear accelerator to deliver 9 MeV electrons at 10 Gy in 10 s to 30 min to determine the effect of irradiation time on cell survival. We then evaluated the effect of using 60 and 120more » MeV electrons on cell survival using the Next Linear Collider Test Accelerator (NLCTA) beam line at the SLAC National Accelerator Laboratory. During irradiation, adherent cells were maintained at 37oC with 20%O2/5%CO2. Clonogenic assays were completed following irradiation to determine changes in cell survival due to dose delivery time and beam quality, and the survival data were fitted with the linear-quadratic model. Results: Cell lines varied in radiosensitivity, ranging from two to four logs of cell kill at 10 Gy for both conventional and very rapid irradiation. Delivering radiation in shorter times decreased survival in all cell lines. Log differences in cell kill ranged from 0.2 to 0.7 at 10 Gy for the short compared to the long irradiation time. Cell kill differences between short and long irradiations were more pronounced as doses increased for all cell lines. Conclusion: Our findings suggest that shortening delivery of therapeutic radiation doses to less than 1 minute may improve tumor cell kill. This study demonstrates the potential advantage of technologies under development to deliver stereotactic ablative radiation doses very rapidly. Bill Loo and Peter Maxim have received Honoraria from Varian and Research Support from Varian and RaySearch.« less
EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.
Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin
2016-01-15
Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. ©2016 American Association for Cancer Research.
MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Na; Zhao, Wenchao; Zhang, Zhongmian
2016-01-29
Esophageal cancer (EC) is the sixth leading cause of death worldwide. Recent studies have highlighted the vital role of microRNAs (miRNAs) in EC development and diagnosis. In our study, qPCR analysis showed that miRNA-328 was expressed at significantly low levels in EC109 and EC9706 cells. The results also showed that overexpression of miR-328 by lentivirus-mediated gene transfer markedly inhibited cell proliferation and invasion, and enhanced apoptosis; whereas, inhibition of miR-328 significantly promoted cell proliferation and invasion, and suppressed apoptosis in EC109 and EC9706 cells. Dual-luciferase reporter assay confirmed that miR-328 directly targeted phospholipase C epsilon 1 (PLCE1) by binding to target sequencesmore » in the 3′-UTR. qPCR and Western blot analysis showed that the PLCE1 was overexpressed in EC109 and EC9706 cells. Additionally, we found that miR-328 overexpression decreased PLCE1 mRNA and protein levels, while miR-328 inhibition enhanced the PLCE1 expression. Further analysis showed that PLCE1 overexpression rescued the inhibitory effect of miR-328 on cell proliferation and invasion, and repressed the promotive effect of miR-328 on cell apoptosis. In conclusion, our results suggest that miR-328 suppresses the survival of EC cells by regulating PLCE1 expression, which might be a potential therapeutic method for EC. - Highlights: • PLCE1 was a target gene of miR-328. • MiR-328 overexpression decreased PLCE1 expression. • PLCE1 overexpression rescued the inhibitory effect of miR-328 on the survival of EC cells.« less
Ovarian tumor-initiating cells display a flexible metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.
2014-10-15
An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells,more » TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.« less
Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta
2014-10-01
Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.
Susanto, Johana M; Colvin, Emily K; Pinese, Mark; Chang, David K; Pajic, Marina; Mawson, Amanda; Caldon, C Elizabeth; Musgrove, Elizabeth A; Henshall, Susan M; Sutherland, Robert L; Biankin, Andrew V; Scarlett, Christopher J
2015-05-01
Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5‑AZA‑2' deoxycytidine (5‑AZA‑dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5‑AZA‑dc, resulted in higher cell death and lower DNA synthesis compared to 5‑AZA‑dc alone and controls (DMSO). Further, combination treatment with SAHA and 5‑AZA‑dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.
Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K
2015-01-28
The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn
2016-09-06
Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
A novel NFIA-NFκB feed-forward loop contributes to glioblastoma cell survival
Lee, JunSung; Hoxha, Edlira
2017-01-01
Abstract Background. The nuclear factor I-A (NFIA) transcription factor promotes glioma growth and inhibits apoptosis in glioblastoma (GBM) cells. Here we report that the NFIA pro-survival effect in GBM is mediated in part via a novel NFIA–nuclear factor-kappaB (NFκB) p65 feed-forward loop. Methods. We examined effects of gain- and loss-of-function manipulations of NFIA and NFκB p65 on each other’s transcription, cell growth, apoptosis and sensitivity to chemotherapy in patient-derived GBM cells and established GBM cell lines. Results. NFIA enhanced apoptosis evasion by activating NFκB p65 and its downstream anti-apoptotic factors tumor necrosis factor receptor-associated factor 1 (TRAF1) and cellular inhibitor of apoptosis proteins (cIAPs). Induction of NFκB by NFIA was required to protect cells from apoptosis, and inhibition of NFκB effectively reversed the NFIA anti-apoptotic effect. Conversely, NFIA knockdown decreased expression of NFκB and anti-apoptotic genes TRAF1 and cIAPs, and increased baseline apoptosis. NFIA positively regulated NFκB transcription and NFκB protein level. Interestingly, NFκB also activated the NFIA promoter and increased NFIA level, and knockdown of NFIA was sufficient to attenuate the NFκB pro-survival effect, suggesting a reciprocal regulation between NFIA and NFκB in governing GBM cell survival. Supporting this, NFIA and NFκB expression levels were highly correlated in human GBM and patient-derived GBM cells. Conclusions. These data define a previously unknown NFIA-NFκB feed-forward regulation that may contribute to GBM cell survival. PMID:27994064
Schmidt, Andreas Johannes; Krieg, Jürgen-Christian; Hemmeter, Ulrich Michael; Kircher, Tilo; Schulz, Eberhard; Clement, Hans-Willi; Heiser, Philip
2010-10-01
Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations. Copyright © 2010 John Wiley & Sons, Ltd.
Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man
NASA Technical Reports Server (NTRS)
Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1985-01-01
An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.
Low birth weight is associated with impaired murine kidney development and function.
Barnett, Christina; Nnoli, Oluwadara; Abdulmahdi, Wasan; Nesi, Lauren; Shen, Michael; Zullo, Joseph A; Payne, David L; Azar, Tala; Dwivedi, Parth; Syed, Kunzah; Gromis, Jonathan; Lipphardt, Mark; Jules, Edson; Maranda, Eric L; Patel, Amy; Rabadi, May M; Ratliff, Brian B
2017-08-01
BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.ResultsMalnourished pregnant mothers gave birth to LBW neonates that had 40% reduced body weight and 54% decreased survival. Renal blood perfusion was reduced by 37%, whereas kidney volume and GFR were diminished in the LBW neonate. During gestation, the LBW neonatal kidney had 2.2-fold increased apoptosis, 76% decreased SIX2+ progenitor cells, downregulation of mesenchymal-to-epithelial signaling factors Wnt9b and Fgf8, 64% less renal vesicle formation, and 32% fewer nephrons than controls. At birth, increased plasma levels of IL-1β, IL-6, IL-12(p70), and granulocyte-macrophage colony-stimulating factor in the LBW neonate reduced SIX2+ progenitor cells.ConclusionIncreased pro-inflammatory cytokines in the LBW neonate decrease SIX2+ stem cells in the developing kidney. Reduced renal stem cells (along with the decreased mesenchymal-to-epithelial signaling) blunt renal vesicle generation, nephron formation, and kidney development. Subsequently, the mouse LBW neonate has reduced glomeruli volume, renal perfusion, and GFR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jun; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850; Sun, Hui-Yan
2015-05-01
SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65more » and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.« less
Ibe, Joyce Christina F; Zhou, Qiyuan; Chen, Tianji; Tang, Haiyang; Yuan, Jason X-J; Raj, J Usha; Zhou, Guofei
2013-10-01
Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.
Ibe, Joyce Christina F.; Zhou, Qiyuan; Chen, Tianji; Tang, Haiyang; Yuan, Jason X.-J.; Raj, J. Usha
2013-01-01
Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate–activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension. PMID:23668615
Jung, Enjae; Perrone, Erin E; Brahmamdan, Pavan; McDonough, Jacquelyn S; Leathersich, Ann M; Dominguez, Jessica A; Clark, Andrew T; Fox, Amy C; Dunne, W Michael; Hotchkiss, Richard S; Coopersmith, Craig M
2013-01-01
World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.
Jung, Enjae; Perrone, Erin E.; Brahmamdan, Pavan; McDonough, Jacquelyn S.; Leathersich, Ann M.; Dominguez, Jessica A.; Clark, Andrew T.; Fox, Amy C.; Dunne, W. Michael; Hotchkiss, Richard S.; Coopersmith, Craig M.
2013-01-01
World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target. PMID:24204769
Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.
Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J
2012-10-24
Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.
Sonke, Eric; Verrydt, Megan; Postenka, Carl O.; Pardhan, Siddika; Willie, Chantalle J.; Mazzola, Clarisse R.; Hammers, Matthew D.; Pluth, Michael D.; Lobb, Ian; Power, Nicholas E.; Chambers, Ann F.; Leong, Hon S.; Sener, Alp
2016-01-01
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel–Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease. PMID:26068241
Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.
2012-01-01
GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885
Ye, Yingwang; Ling, Na; Gao, Jina; Zhang, Maofeng; Zhang, Xiyan; Tong, Liaowang; Ou, Dexin; Wang, Yaping; Zhang, Jumei; Wu, Qingping
2018-04-01
Cronobacter sakazakii is associated with severe infections including sepsis, neonatal meningitis, and necrotizing enterocolitis. Antibiotic resistance in Cronobacter species has been documented in recent years, but the genes involved in resistance in Cronobacter strains are poorly understood. In this study, we determined the role of outer membrane protein W (OmpW) on survival rates, morphologic changes, and biofilm formation between wild type (WT) and an OmpW mutant strain (ΔOmpW) under neomycin sulfate stress. Results indicated that the survival rates of ΔOmpW were significantly reduced after half minimum inhibitory concentration (½ MIC) treatment compared with the WT strain. Filamentation of C. sakazakii cells was observed after ½ MIC treatment in WT and ΔOmpW, and morphologic injury, including cell disruption and leakage of cells, was more predominant in ΔOmpW. Under ½ MIC stress, the biofilms of WT and ΔOmpW were significantly decreased, but decreasing rates of biofilm formation in mutant strain were more predominant compared with WT strain. This is the first report to determine the role of OmpW on survival, morphological changes, and biofilm formation in C. sakazakii under neomycin sulfate stress. The findings indicated that OmpW contributed to survival and reduction of morphological injury under neomycin sulfate stress. In addition, enhancing biofilm formation in ΔOmpW may be an alternative advantage for adaptation to neomycin sulfate stress. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance
Su, Cathy
2017-01-01
O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy. PMID:28115479
Carprofen Induction of p75NTR Dependent Apoptosis via the p38 MAPK Pathway in Prostate Cancer Cells
Khwaja, Fatima S.; Quann, Emily J.; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel
2008-01-01
The p75NTR functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we demonstrated that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in several prostate cancer cell lines leading to p75NTR mediated decreased survival. Utilizing the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico data base of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival. Prostate (PC-3, DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75NTR associated loss of survival than breast (MCF7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant negative form of p75NTR prior to carprofen treatment partially rescued cell survival demonstrating a cause and effect relationship between carprofen induction of p75NTR levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF7 and 3T3 cells. Furthermore, siRNA knockdown of the p38 MAPK protein prevented induction of p75NTR by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 minute. Expression of a dominant negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75NTR dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. PMID:18974393
Day, Timothy F; Mewani, Rajshree R; Starr, Joshua; Li, Xin; Chakravarty, Debyani; Ressom, Habtom; Zou, Xiaojun; Eidelman, Ofer; Pollard, Harvey B; Srivastava, Meera; Kasid, Usha N
2017-01-01
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the first discovered oncogenic and an anti-apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by NF-kB, and overexpression of TNFAIP8 has been correlated with poor prognosis in many cancers. Downregulation of TNFAIP8 expression has been associated with decreased pulmonary colonization of human tumor cells, and enhanced sensitivities of tumor xenografts to radiation and docetaxel. Here we have investigated the effects of depletion of TNFAIP8 on the mRNA, microRNA and protein expression profiles in prostate and breast cancers and melanoma. Depending on the tumor cell type, knockdown of TNFAIP8 was found to be associated with increased mRNA expression of several antiproliferative and apoptotic genes (e.g., IL-24, FAT3, LPHN2, EPHA3) and fatty acid oxidation gene ACADL, and decreased mRNA levels of oncogenes (e.g., NFAT5, MALAT1, MET, FOXA1, KRAS, S100P, OSTF1) and glutamate transporter gene SLC1A1. TNFAIP8 knockdown cells also exhibited decreased expression of multiple onco-proteins (e.g., PIK3CA, SRC, EGFR, IL5, ABL1, GAP43), and increased expression of the orphan nuclear receptor NR4A1 and alpha 1 adaptin subunit of the adaptor-related protein complex 2 AP2 critical to clathrin-mediated endocytosis. TNFAIP8-centric molecules were found to be predominately implicated in the hypoxia-inducible factor-1α (HIF-1α) signaling pathway, and cancer and development signaling networks. Thus TNFAIP8 seems to regulate the cell survival and cancer progression processes in a multifaceted manner. Future validation of the molecules identified in this study is likely to lead to new subset of molecules and functional determinants of cancer cell survival and progression.
Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei
2013-01-01
Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213
NASA Technical Reports Server (NTRS)
Lett, J. T.; Cox, A. B.; Story, M. D.
1989-01-01
Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.
Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir
2016-01-01
ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493
Bhalla, Savita; Evens, Andrew M.; Prachand, Sheila; Schumacker, Paul T.; Gordon, Leo I.
2013-01-01
Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells. PMID:24312289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jun; Lei, Ting; Xu, Congjie
2013-08-23
Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels weremore » associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.« less
Li, Lin; Yu, Song; Zang, Chunyi
2018-01-01
The aim of this study was to assess the functions of the necroptosis process on the prognosis of high-risk human papillomavirus (HR-HPV)-related cervical cancer. PCR and western blotting were used to demonstrate the expression of the necroptosis marker, mixed lineage kinase domain-like protein (MLKL), in whole blood and peripheral blood mononuclears (PBMCs) of 89 cervical cancer patients and 15 healthy volunteers. Necroptosis levels and M1 polarization were determined in tumor co-cultured macrophages. We found that MLKL expressions were significantly increased in cervical cancer patients in both whole blood and PBMC samples compared to the expressions in the healthy controls. Low MLKL expression was significantly associated with decreased survival rate in overall survival and disease-free survival. Co-culture cervical cancer cells decrease the necroptosis process of macrophage, together with the proinflammatory factors (M1 markers) downregulation, and this negative regulation was exacerbated in HPV-positive cases. Necroptosis enhancer RIPK3 overexpression showed reversed regulation of these M1 markers, suggesting that co-culture cervical cancer cells decrease the macrophage M1 polarization partly through necroptosis downregulation. Our study revealed that necroptosis process could be a relevant marker for the determination of the prognosis in cervical cancer patients, which might be because of its role in regulating macrophage polarization. © 2018 S. Karger AG, Basel.
Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival.
Cruickshank, Sheena-M; Wakenshaw, Louise; Cardone, John; Howdle, Peter-D; Murray, Peter-J; Carding, Simon-R
2008-10-14
To investigate the function of NOD2 in colonic epithelial cells (CEC). A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2(-/-) mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.
Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival
Cruickshank, Sheena M; Wakenshaw, Louise; Cardone, John; Howdle, Peter D; Murray, Peter J; Carding, Simon R
2008-01-01
AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC). METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation. PMID:18855982
SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION
Gulbransen, Brian; Silver, Wayne; Finger, Tom
2008-01-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260
Decreased function of survival motor neuron protein impairs endocytic pathways.
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C
2016-07-26
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.
Decreased function of survival motor neuron protein impairs endocytic pathways
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.
2016-01-01
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754
Rieu, A; Guzzo, J; Piveteau, P
2010-02-01
To investigate how the survival of Listeria monocytogenes on parsley leaves may affect its ability to sustain process-related harsh conditions and its virulence. Parsley seedlings were spot inoculated with stationary phase cells of L. monocytogenes EGD-e and incubated for 15 days. Each day, bacterial cells were harvested and enumerated, and their ability to survive acetic acid challenge (90 min, pH 4.0), to colonize abiotic surfaces and to grow as biofilms was assessed. After a 3-log decrease over the first 48 h, the population stabilized to about 10(6) CFU g(-1) until the sixth day. After the sixth day, L. monocytogenes was no longer detected, even after specific enrichment. Incubation on parsley leaves affected the ability of L. monocytogenes to survive acetic acid challenge (90 min, pH 4.0) and to adhere to stainless steel although the ability to grow as biofilm was preserved. To further investigate these physiological alterations, the mRNA levels of six target genes (bsh, clpC, groEL, inlA, opuC, prfA) was quantified using reverse transcription qPCR after 5 h of incubation on parsley leaves. A decrease was observed in all but one (bsh) target, including groEL and clpC which are involved in resistance to salt and acid. Moreover, the decrease in the levels of inlA, prfA and opuC transcripts after incubation on parsley suggested a repression of some genes involved in pathogenicity. In vitro assessment of mammalian cell adherence and invasion using Caco-2 cells confirmed the repression of the virulence factor InlA; however, the virulence potential in vivo in the chick embryo model was not affected. Listeria monocytogenes did undergo rapid changes to adapt its physiology to the phyllosphere. This study highlights the physiological changes undergone by L. monocytogenes during/after survival on parsley leaves.
Wang, Jir‐You; Wu, Po‐Kuei; Chen, Paul Chih‐Hsueh; Lee, Chia‐Wen
2016-01-01
Abstract Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c‐Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c‐Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum‐free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS‐like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient‐derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c‐Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS‐like cells by Rb knockdown and c‐Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512–526 PMID:28191765
Possible role of pineal allopregnanolone in Purkinje cell survival
Haraguchi, Shogo; Hara, Sakurako; Ubuka, Takayoshi; Mita, Masatoshi; Tsutsui, Kazuyoshi
2012-01-01
It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has further demonstrated that the pineal gland produces a variety of neurosteroids de novo from cholesterol in the juvenile quail. Importantly, ALLO was far more actively produced in the pineal gland than in the brain. Pinealectomy (Px) decreased ALLO concentration in the cerebellum and induced apoptosis of Purkinje cells, whereas administration of ALLO to Px quail chicks prevented apoptosis of Purkinje cells. We further found that Px significantly increased the number of Purkinje cells that expressed active caspase-3, a key protease in apoptotic pathway, and daily injection of ALLO to Px quail chicks decreased the number of Purkinje cells expressing active caspase-3. These results indicate that the neuroprotective effect of pineal ALLO is associated with the decrease in caspase-3 activity during the early stage of neuronal development. We thus provide evidence that the pineal gland is an important neurosteroidogenic organ and that pineal ALLO may be involved in Purkinje cell survival during development. This is an important function of the pineal gland in the formation of neuronal circuits in the developing cerebellum. PMID:23213208
Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival
Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong
2012-01-01
Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID:23028627
Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L
2016-02-01
Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015 Wiley Periodicals, Inc.
Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.
2016-01-01
BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830
Morphometrics of cellular damage in mice testis receiving X-ray and high-energy particle irradiation
NASA Technical Reports Server (NTRS)
Sapp, Walter J.
1987-01-01
Murine tests were exposed to single, low doses of either X-ray, helium, or argon radiation. Animals were sacrificed seventy-two hours later. Testes were fixed for transmission electron microscopy (TEM) and sectioned at either 60 nm for TEM observation or at 2 micron for counting using routine light microscope methods. Counts of the total population of surviving spermatogonia, including all type A cells, intermediate, and type B cells, were taken from tubule cross sections identified as Stage 6 and Stage 1 according to spermatogonial configuration. The surviving fraction of spermatogonia as compared to control, S/S sub o, was calculated for each dose. For both ions and X-rays, there was a rapid decline in survival at dose levels of .10 to .15 Gy in Stage 6 tubules. This was followed by a more gradual decrease in population. At higher doses, 0.30 Gy for argon and 0.80 Gy for helium and X-rays, the cell survival rates declined rapidly. Pre-leptotene spermatocytes in Stage 1 tubules exhibited a different survival curve indicating the extreme radio-sensitivity of type B spermatogonia. Data verify that the seminiferous tubules are composed of a heterogeneous population of cells with different radio-sensitivities and that these differences are manifested even at very low doses.
do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de
2016-10-01
The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.
Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R
2016-01-19
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Protection Against Lipopolysaccharide-Induced Immunosuppression by IgG and IgM.
Kyvelidou, Christiana; Sotiriou, Dimitris; Zerva, Ioanna; Athanassakis, Irene
2018-04-01
Lipopolysaccharide (LPS) is commonly used in murine sepsis models, which are largely associated with immunosuppression and collapse of the immune system. After adapting the LPS treatment to the needs of locally bred BALB/c mice, the present study explored the potential role of IgG and IgM in reversing LPS endotoxemia. The established protocol consisted of five daily intraperitoneal injections of 0.2 μg/g LPS, which was tolerable by half of the manipulated animals. Such a protocol allowed longer survival, necessary in the prospect of therapeutic treatment application. This treatment significantly decreased CD4+, CD8+, CD3z+, and CD19+ cells, while increasing myeloid-derived suppressor cells (MDSCs; CD11b+Gr1+), CD25+ and Foxp3+ cells. These results were accompanied by increased arginase-1 activity in spleen cell lysates and production of IL-6, TNF-α, IL-18, and C-reactive protein (CRP) in the serum. The applied LPS protocol did not alter serum procalcitonin levels. MDSCs isolated from the spleen of LPS-treated animals (LPS-MDSCs) decreased proliferation of naive T cells in coculture experiments. The application of IgG and IgM to the naive T cell/LPS-MDSCs cocultures significantly decreased CD25+, Foxp3+, and CD3z+ cells, indicating an anti-suppressive effect of immunoglobulins. The in vivo application of IgG and IgM significantly decreased the percent of CD11b+Gr1+, CD25+, Foxp3+ cells, and arginase-1 activity in the spleen of LPS-treated animals, while decreasing IL-6, TNF-α, and CRP levels in the serum, allowing survival to all animals tested. In conclusion, these results reveal a novel mode of action of IgG/IgM in LPS endotoxemia, strengthening thus the use of immunoglobulin treatment is septic patients.
IL-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors
Kee, Barbara L.; Bain, Gretchen; Murre, Cornelis
2002-01-01
Mice that lack the transcription factors encoded by the E2A gene or the receptor for interleukin 7 (IL-7R) have severe overlapping defects in lymphocyte development. Here, we show that E2A proteins are required for the survival of early T-lineage cells; however, they function through a pathway that is distinct from the survival pathway initiated by IL-7R signaling. While E2A proteins are required to suppress caspase 3 activation, ectopic expression of the anti-apoptotic protein Bcl-2 is not sufficient to overcome the lymphopoietic defects observed in the absence of E2A. Remarkably, mice that lack both IL-7Rα and E47 display a synergistic decrease in the number of T-cell, NK-cell and multipotent progenitors in the thymus, indicating that these distinct survival pathways converge to promote the development of multipotent lymphoid progenitors. PMID:11782430
Wafa, Latif A; Cheng, Helen; Plaa, Nathan; Ghaidi, Fariba; Fukumoto, Takahiro; Fazli, Ladan; Gleave, Martin E; Cox, Michael E; Rennie, Paul S
2012-06-15
The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression. Copyright © 2011 UICC.
Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W
2014-01-01
Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113
Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen
2017-04-04
Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras , indicating the existence of Kras -independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras -independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras -expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.
Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis
Mou, Haiwei; Moore, Jill; Malonia, Sunil K.; Li, Yingxiang; Ozata, Deniz M.; Hough, Soren; Song, Chun-Qing; Smith, Jordan L.; Fischer, Andrew; Weng, Zhiping; Xue, Wen
2017-01-01
Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras. Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles’ heel in tumors initiated by oncogenic Kras. PMID:28320962
Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni
2012-01-01
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis.
Lin, Yan-Ren; Li, Chao-Jui; Syu, Shih-Han; Wen, Cheng-Hao; Buddhakosai, Waradee; Wu, Han-Ping; Hsu Chen, Cheng; Lu, Huai-En; Chen, Wen-Liang
2016-01-01
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group ( p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep
2016-01-01
The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657
Gillory, Lauren A.; Megison, Michael L.; Stewart, Jerry E.; Mroczek-Musulman, Elizabeth; Nabers, Hugh C.; Waters, Alicia M.; Kelly, Virginia; Coleman, Jennifer M.; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.
2013-01-01
Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma. PMID:24130898
2010-01-01
Background Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS2concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. Methods Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. Results The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. Conclusions Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects. PMID:20433757
Dakhlallah, Duaa; Zhang, Jianying; Yu, Lianbo; Marsh, Clay B; Angelos, Mark G; Khan, Mahmood
2015-03-01
: Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA (miRNA) in the cardiac muscle and is downregulated in patients with MI. We hypothesized that reprogramming MSCs using miRNA mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs, and the levels of miR-133a were measured by quantitative real-time polymerase chain reaction. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic hearts. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels, and apoptosis-related genes (Apaf-1, Caspase-9, and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function, and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, quantitative real-time polymerase chain reaction data demonstrated a significant decrease in expression of the proapoptotic genes; Apaf-1, caspase-9, and caspase-3 in the miR-133a mimic transplanted group. Furthermore, luciferase reporter assay confirmed that miR-133a is a direct target for Apaf-1. Overall, bioengineering of stem cells through miRNAs manipulation could potentially improve the therapeutic outcome of patients undergoing stem cell transplantation for MI.
Parkin mediates neuroprotection through activation of Notch1 signaling.
Yoon, Ji-Hye; Ann, Eun-Jung; Kim, Mi-Yeon; Ahn, Ji-Seon; Jo, Eun-Hye; Lee, Hye-Jin; Lee, Hye-Won; Lee, Young Chul; Kim, Jeong-Sun; Park, Hee-Sae
2017-02-04
Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Inactivation of Parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins and ensuing neurodegeneration. In this study, we show that Parkin positively regulates the Notch1 signaling pathway. Overexpression of Parkin stabilized Notch1-IC protein levels, whereas knockdown of Parkin decreased Notch1-IC protein stability. Notably, overexpression of Parkin disrupted oxidative stress-induced apoptosis in neuronal cells. However, knockdown of Notch1 inhibited Parkin-induced neuronal cell survival. Together, these results indicate that Parkin is a novel regulator of the Notch1 signaling pathway, which promotes neuronal cell survival.
Rosilio, Célia; Lounnas, Nadia; Nebout, Marielle; Imbert, Véronique; Hagenbeek, Thijs; Spits, Hergen; Asnafi, Vahid; Pontier-Bres, Rodolphe; Reverso, Julie; Michiels, Jean-François; Sahra, Issam Ben; Bost, Fréderic; Peyron, Jean-François
2013-08-09
We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival. In vivo, metformin and AICAR strongly decreased the growth of luciferase-expressing tPTEN-/- cells xenografted in Nude mice, demonstrating that metabolism targeting could be a potent adjuvant strategy for lymphoma/leukaemia treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Valentín-Acevedo, Aníbal; Sinquett, Frank L.; Covey, Lori R.
2011-01-01
LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death. PMID:21984918
Hwang, Su Jin; Lee, Hye Won; Kim, Hye Ree; Song, Hye Jin; Lee, Dong Heon; Lee, Hong; Shin, Chang Hoon; Joung, Je-Gun; Kim, Duk-Hwan; Joo, Kyeung Min; Kim, Hyeon Ho
2015-08-21
Despite great efforts to improve survival rates, the prognosis of lung cancer patients is still very poor, mainly due to high invasiveness. We developed brain metastatic PC14PE6/LvBr4 cells through intracardiac injection of lung adenocarcinoma PC14PE6 cells. Western blot and RT-qPCR analyses revealed that PC14PE6/LvBr4 cells had mesenchymal characteristics and higher invasiveness than PC14PE6 cells. We found that cyclin D1 was upregulated, miR-95-3p was inversely downregulated, and pri-miR-95 and its host gene, ABLIM2, were consistently decreased in PC14PE6/LvBr4 cells. MiR-95-3p suppressed cyclin D1 expression through direct binding to the 3' UTR of cyclin D1 mRNA and suppressed invasiveness, proliferation, and clonogenicity of PC14PE6/LvBr4 cells. Ectopic cyclin D1 reversed miR-95-3p-mediated inhibition of invasiveness and clonogenicity, demonstrating cyclin D1 downregulation is involved in function of miR-95-3p. Using bioluminescence imaging, we found that miR-95-3p suppressed orthotopic tumorigenicity and brain metastasis in vivo and increased overall survival and brain metastasis-free survival. Consistent with in vitro metastatic cells, the levels of miR-95-3p, pri-miR-95, and ABLIM2 mRNA were decreased in brain metastatic tissues compared with lung cancer tissues and higher cyclin D1 expression was involved in poor prognosis. Taken together, our results demonstrate that miR-95-3p is a potential therapeutic target for brain metastasis of lung adenocarcinoma cells.
Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S
2015-07-01
Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001). Copyright © 2015 by The American Association of Immunologists, Inc.
de Masson, Adèle; Beylot-Barry, Marie; Bouaziz, Jean-David; de Latour, Régis Peffault; Aubin, François; Garciaz, Sylvain; d’Incan, Michel; Dereure, Olivier; Dalle, Stéphane; Dompmartin, Anne; Suarez, Felipe; Battistella, Maxime; Vignon-Pennamen, Marie-Dominique; Rivet, Jacqueline; Adamski, Henri; Brice, Pauline; François, Sylvie; Lissandre, Séverine; Turlure, Pascal; Wierzbicka-Hainaut, Ewa; Brissot, Eolia; Dulery, Rémy; Servais, Sophie; Ravinet, Aurélie; Tabrizi, Reza; Ingen-Housz-Oro, Saskia; Joly, Pascal; Socié, Gérard; Bagot, Martine
2014-01-01
The treatment of advanced stage primary cutaneous T-cell lymphomas remains challenging. In particular, large-cell transformation of mycosis fungoides is associated with a median overall survival of two years for all stages taken together. Little is known regarding allogeneic hematopoietic stem cell transplantation in this context. We performed a multicenter retrospective analysis of 37 cases of advanced stage primary cutaneous T-cell lymphomas treated with allogeneic stem cell transplantation, including 20 (54%) transformed mycosis fungoides. Twenty-four patients (65%) had stage IV disease (for mycosis fungoides and Sézary syndrome) or disseminated nodal or visceral involvement (for non-epidermotropic primary cutaneous T-cell lymphomas). After a median follow up of 29 months, 19 patients experienced a relapse, leading to a 2-year cumulative incidence of relapse of 56% (95%CI: 0.38–0.74). Estimated 2-year overall survival was 57% (95%CI: 0.41–0.77) and progression-free survival 31% (95%CI: 0.19–0.53). Six of 19 patients with a post-transplant relapse achieved a subsequent complete remission after salvage therapy, with a median duration of 41 months. A weak residual tumor burden before transplantation was associated with increased progression-free survival (HR=0.3, 95%CI: 0.1–0.8; P=0.01). The use of antithymocyte globulin significantly reduced progression-free survival (HR=2.9, 95%CI: 1.3–6.2; P=0.01) but also transplant-related mortality (HR=10−7, 95%CI: 4.10−8–2.10−7; P<0.001) in univariate analysis. In multivariate analysis, the use of antithymocyte globulin was the only factor significantly associated with decreased progression-free survival (P=0.04). Allogeneic stem cell transplantation should be considered in advanced stage primary cutaneous T-cell lymphomas, including transformed mycosis fungoides. PMID:24213148
Anti-apoptotic effect of hyperglycemia can allow survival of potentially autoreactive T cells.
Ramakrishnan, P; Kahn, D A; Baltimore, D
2011-04-01
Thymocyte development is a tightly controlled multi-step process involving selective elimination of self-reactive and non-functional T cells by apoptosis. This developmental process depends on signaling by Notch, IL-7 and active glucose metabolism. In this study, we explored the requirement of glucose for thymocyte survival and found that in addition to metabolic regulation, glucose leads to the expression of anti-apoptotic genes. Under hyperglycemic conditions, both mouse and human thymocytes demonstrate enhanced survival. We show that glucose-induced anti-apoptotic genes are dependent on NF-κB p65 because high glucose is unable to attenuate normal ongoing apoptosis of thymocytes isolated from p65 knockout mice. Furthermore, we demonstrate that in vivo hyperglycemia decreases apoptosis of thymocytes allowing for survival of potentially self-reactive thymocytes. These results imply that hyperglycemic conditions could contribute to the development of autoimmunity through dysregulated thymic selection. © 2011 Macmillan Publishers Limited
Brederlau, A.; Faigle, R.; Elmi, M.; Zarebski, A.; Sjöberg, S.; Fujii, M.; Miyazono, K.; Funa, K.
2004-01-01
Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture. PMID:15194807
Lansdell, Casey; Alkayyal, Almohanad A.; Baxter, Katherine E.; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B.; Parato, Kelley; Bramson, Jonathan L.; Bell, John C.; Lichty, Brian D.; Auer, Rebecca C.
2016-01-01
Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients. PMID:27196057
Cui, Guo-hong; Shao, Shui-jin; Yang, Jia-jun; Liu, Jian-ren; Guo, Hai-dong
2016-03-01
The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-β peptide (Aβ) in the form of amyloid plaques and neuronal loss. Neural stem cell (NSC) is being scrutinized as a promising cell replacement therapy for various neurodegenerative diseases. However, the unfavorable niche at the site of degenerative disease is hostile to the survival and differentiation of transplanted cells. Here, we undertook in vitro and in vivo works to examine whether a designer self-assemble peptide (DSP), which contains one functional domain Tyr-Ile-Gly-Ser-Arg (YIGSR) derived from laminin, promotes the survival and neuronal differentiation of NSC and behavioral improvement. We found that DSP could undergo spontaneous assembly into well-ordered nanofibers, and it not only facilitated the cell viability in normal culture condition, but also decreased the number of apoptotic cells induced by Aβ in vitro. NSC seeded in DSP showed much more neuronal differentiation than that seeded in self-assemble peptide (SP) or alone. In the AD model, NSC transplantation in DSP-treated AD rats demonstrated much more obvious cognitive rescue with restoration of learning/memory function compared with NSC transplantation in SP, NSC alone, or DSP alone treated ones. Interestingly, DSP enhanced the survival and neuronal differentiation of transplanted NSC. Apoptosis levels in the CA1 region and Aβ level in the hippocampus were significantly decreased in the group of NSC transplantation in DSP. Moreover, synaptic function, indicated by the expression of pre-synaptic protein synapsin-1, was restored and the secretion of anti-inflammatory and neurotrophic factors were increased, such as IL-10, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and insulin-like growth factor 1 (IGF-1), while the expression of pro-inflammatory factors were decreased, such as TNF-α and IL-1β. These data firstly unveiled that the biomaterial DSP can maximize the therapeutic benefits of NSC transplantation for AD through improving the survival and differentiation of transplanted stem cells and promoting the effects of neuroprotection, anti-neuroinflammatory and paracrine action. Our results may have important clinical implications for the design of future NSC-based strategies using the biomaterials for various neurodegenerative diseases including AD.
Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.
2016-01-01
Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701
Li, Hao; Wu, Mei; Shi, Yan; Javid, Babak
2016-01-01
Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage–mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host–pathogen interactions. Macrophage–mycobacteria phagocytic interactions are complex and merit further study. PMID:27867377
Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo.
Tsirmoula, Sotiria; Dimas, Kostas; Hatziapostolou, Maria; Lamprou, Margarita; Ravazoula, Panagiota; Papadimitriou, Evangelia
2012-10-01
Pleiotrophin (PTN) is a heparin-binding growth factor with diverse functions related to tumor growth, angiogenesis, and metastasis. Pleiotrophin seems to have a significant role in prostate cancer cell growth and to mediate the stimulatory actions of other factors that affect prostate cancer cell functions. However, all studies carried out up to date are in vitro, using different types of human prostate cancer cell lines. The aim of the present work was to study the role of endogenous PTN in human prostate cancer growth in vivo. For this purpose, human prostate cancer PC3 cells were stably transfected with a plasmid vector, bearing the antisense PTN sequence, in order to inhibit PTN expression (AS-PC3). Migration, apoptosis, and adhesion on osteoblastic cells were measured in vitro. In vivo, PC3 cells were s.c. injected into male NOD/SCID mice, and tumor growth, survival rates, angiogenesis, apoptosis, and the number of metastasis were estimated. Pleiotrophin depletion resulted in a decreased migration capability of AS-PC3 cells compared with the corresponding mock-transfected or the non-transfected PC3 cells, as well as increased apoptosis and decreased adhesiveness to osteoblastic cells in vitro. In prostate cancer NOD/SCID mouse xenografts, PTN depletion significantly suppressed tumor growth and angiogenesis and induced apoptosis of cancer cells. In addition, PTN depletion decreased the number of metastases, providing a survival benefit for the animals bearing AS-PC3 xenografts. Our data suggest that PTN is implicated in human prostate cancer growth in vivo and could be considered a potential target for the development of new therapeutic approaches for prostate cancer. © 2012 Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
le Roux, K.; Prinsloo, L. C.; Meyer, D.
2014-09-01
Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p < 0.05, one way analysis of variance) increased intensity of phosphatidylethanolamine after metallodrug treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.
Huang, Hai; Du, Tao; Zhang, Yiming; Lai, Yiming; Li, Kaiwen; Fan, Xinxing; Zhu, Dingjun; Lin, Tianxin; Xu, Kewei; Huang, Jian; Liu, Leyuan; Guo, Zhenghui
2017-05-01
SHARPIN, SHANK-associated RH domain interacting protein, associates with a linear ubiquitin chain assembly complex (LUBAC) to regulate inflammation and immunity. It has been reported that SHARPIN is highly expressed in several human tumors including ovarian cancer and liver cancer. We found that SHARPIN is also highly expressed in prostate cancer cell lines of DU145, LNCAP, and PC-3. Suppression of SHARPIN caused an inhibition of NF-κB signal and decreases in tumorigenesis of cultured cells in NOD/SCID mouse model. Overexpression of SHARPIN in prostate cancer cells promoted cell growth and reduced apoptosis through NF-kB/ERK/Akt pathway and apoptosis-associated proteins. We analyzed the expression of SHARPIN in prostate cancer tissues from 95 patients and its relationship with other clinical characteristics associated with PCA malignancies and patient survivals, and examined the impacts of SHARPIN suppression with siRNA on proliferation, angiogenesis, invasion, and expression levels of MMP-9 of prostate cancer cells and metastasis to lung by these cells in nude mice. High levels of SHARPIN were associated with high malignancies of PCA and predicted shorter survivals of PCA patients. Suppression of SHARPIN impaired cell proliferation, angiogenesis, and invasion and reduced levels of MMP-9 in prostate cancer cells and reduced the size of metastatic lung tumors induced by these cells in mice. SHARPIN enhances the metastasis of prostate cancer and impair patient survivals. Prostate 77:718-728, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Banerjee, Pallavi; Basu, Aninda; Wegiel, Barbara; Otterbein, Leo E.; Mizumura, Kenji; Gasser, Martin; Waaga-Gasser, Ana Maria; Choi, Augustine M.; Pal, Soumitro
2012-01-01
The cytoprotective enzyme heme oxygenase-1 (HO-1) is often overexpressed in different types of cancers and promotes cancer progression. We have recently shown that the Ras-Raf-ERK pathway induces HO-1 to promote survival of renal cancer cells. Here, we examined the possible mechanisms underlying HO-1-mediated cell survival. Considering the growing evidence about the significance of apoptosis and autophagy in cancer, we tried to investigate how HO-1 controls these events to regulate survival of cancer cells. Rapamycin (RAPA) and sorafenib, two commonly used drugs for renal cancer treatment, were found to induce HO-1 expression in renal cancer cells Caki-1 and 786-O; and the apoptotic effect of these drugs was markedly enhanced upon HO-1 knockdown. Overexpression of HO-1 protected the cells from RAPA- and sorafenib-induced apoptosis and also averted drug-mediated inhibition of cell proliferation. HO-1 induced the expression of anti-apoptotic Bcl-xL and decreased the expression of autophagic proteins Beclin-1 and LC3B-II; while knockdown of HO-1 down-regulated Bcl-xL and markedly increased LC3B-II. Moreover, HO-1 promoted the association of Beclin-1 with Bcl-xL and Rubicon, a novel negative regulator of autophagy. Drug-induced dissociation of Beclin-1 from Rubicon and the induction of autophagy were also inhibited by HO-1. Together, our data signify that HO-1 is up-regulated in renal cancer cells as a survival strategy against chemotherapeutic drugs and promotes growth of tumor cells by inhibiting both apoptosis and autophagy. Thus, application of chemotherapeutic drugs along with HO-1 inhibitor may elevate therapeutic efficiency by reducing the cytoprotective effects of HO-1 and by simultaneous induction of both apoptosis and autophagy. PMID:22843690
Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina
2018-06-01
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
pH modulation ameliorates the red blood cell storage lesion in a murine model of transfusion.
Chang, Alex L; Kim, Young; Seitz, Aaron P; Schuster, Rebecca M; Pritts, Timothy A
2017-05-15
Prolonged storage of packed red blood cells (pRBCs) induces a series of harmful biochemical and metabolic changes known as the RBC storage lesion. RBCs are currently stored in an acidic storage solution, but the effect of pH on the RBC storage lesion is unknown. We investigated the effect of modulation of storage pH on the RBC storage lesion and on erythrocyte survival after transfusion. Murine pRBCs were stored in Additive Solution-3 (AS3) under standard conditions (pH, 5.8), acidic AS3 (pH, 4.5), or alkalinized AS3 (pH, 8.5). pRBC units were analyzed at the end of the storage period. Several components of the storage lesion were measured, including cell-free hemoglobin, microparticle production, phosphatidylserine externalization, lactate accumulation, and byproducts of lipid peroxidation. Carboxyfluorescein-labeled erythrocytes were transfused into healthy mice to determine cell survival. Compared with pRBCs stored in standard AS3, those stored in alkaline solution exhibited decreased hemolysis, phosphatidylserine externalization, microparticle production, and lipid peroxidation. Lactate levels were greater after storage in alkaline conditions, suggesting that these pRBCs remained more metabolically viable. Storage in acidic AS3 accelerated erythrocyte deterioration. Compared with standard AS3 storage, circulating half-life of cells was increased by alkaline storage but decreased in acidic conditions. Storage pH significantly affects the quality of stored RBCs and cell survival after transfusion. Current erythrocyte storage solutions may benefit from refinements in pH levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar
2018-03-01
This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.
Smelser, Lisa K; Walker, Callum; Burns, Erin M; Curry, Michael; Black, Nathanael; Metzler, Jennifer A; McDowell, Susan A; Bruns, Heather A
Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.
Wonderling, Laura D; Bayles, Darrell O
2004-06-01
Listeria monocytogenes strain H7762, a frankfurter isolate, was tested to determine whether it was able to survive at 4 degrees C in frankfurter pack fluid (exudate) and to determine whether food exposure affects its acid sensitivity. Cultures were sampled and tested for acid sensitivity by challenge with simulated gastric fluid (SGF). SGF challenges performed immediately after inoculation revealed that between 20 and 26% of the cells survived the full 30 min of SGF challenge regardless of whether the cells were inoculated into brain heart infusion broth (BHI) or exudate. After 2 days of incubation, cells exposed to both exudate and BHI had significantly decreased SGF resistance; however, the cells exposed to exudate were significantly more SGF resistant than cells exposed to BHI (after 15 min of SGF treatment, 33% of the exudate-exposed cells survived and 12% of the BHI-exposed cells survived). L. monocytogenes exposed to exudate had greater SGF resistance at all challenge times compared with BHI-exposed cells from day 2 through day 4. From days 8 to 15, exudate-exposed cells continued to have greater SGF resistance than BHI-exposed cells up to 10 min of SGF challenge but were as sensitive as the BHI-exposed cells at 20 to 30 min of challenge. By day 25, cells exposed to exudate were significantly more sensitive to SGF challenge than BHI-exposed cells. The survivor data generated from SGF challenges were modeled by a nonlinear regression analysis to calculate the underlying distribution of SGF resistance found in the challenged populations. These analyses indicated that L. monocytogenes exposed to exudate at 4 degrees C had a broader distribution of resistance to SGF compared with cells exposed to BHI at 4 degrees C. In addition, the mean time of death during SGF treatment was greater after exposure to exudate, indicating that cells exposed to exudate were more resistant to killing by SGF These data suggest that exposure to frankfurter exudate might render L. monocytogenes more able to survive the stomach environment during the initial stages of infection.
Andreucci, M; Fuiano, G; Presta, P; Lucisano, G; Leone, F; Fuiano, L; Bisesti, V; Esposito, P; Russo, D; Memoli, B; Faga, T; Michael, A
2009-08-01
Erythropoietin has been shown to have a protective effect in certain models of ischaemia-reperfusion, and in some cases the protection has been correlated with activation of signalling pathways known to play a role in cell survival and proliferation. We have studied whether erythropoietin would overcome direct toxic effects of hydrogen peroxide (H(2)O(2)) treatment to human renal proximal tubular (HK-2) cells. HK-2 cells were incubated with H(2)O(2) (2 mm) for 2 h with or without erythropoietin at concentrations of 100 and 400 U/ml, and cell viability/proliferation was assessed by chemical reduction of MTT. Changes in phosphorylation state of the kinases Akt, glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) were also analysed. Cells incubated with H(2)O(2) alone showed a significant decrease in viability, which did not significantly change by addition of erythropoietin at concentration of 100 U/ml, but was further reduced when concentration of erythropoietin was increased to 400 U/ml. Phosphorylation state of the kinases Akt, GSK-3beta, mTOR and ERK1/ERK2 of H(2)O(2)-treated HK-2 cells was slightly altered in the presence of erythropoietin at concentration of 100 U/ml, but was significantly less in the presence of erythropoietin at a concentration of 400 U/ml. Phosphorylation of forkhead transcription factor FKHRL1 was diminished in cells incubated with H(2)O(2) and erythropoietin at a concentration of 400 U/ml. Erythropoietin, at high concentrations, may significantly increase cellular damage in HK-2 cells subjected to oxidative stress, which may be due in part to decrease in activation of important signalling pathways involved in cell survival and/or cell proliferation.
Improved human islet preparations using Glucocorticoid and Exendin-4
Miki, Atsushi.; Ricordi, Camillo.; Yamamoto, Toshiyuki.; Sakuma, Yasunaru.; Misawa, Ryosuke.; Mita, Atsuyoshi.; Inverardi, Luca.; Alejandro, Rodolfo; Ichii, Hirohito.
2014-01-01
Objectives The effects of Glucocorticoid during culture on human islet cells have been controversial. Exendin-4 (EX) enhances the insulin secretion and significantly improves clinical outcomes in islet cell transplantation. In this study, we examined the effects of Glucocorticoids and exendin-4 on human islet cells during pre-transplant culture. Methods Methylprednisolone (MP) and/or EX were added to the standard culture medium for clinical islet cell transplantation. Islets were cultured for 24 hours with three different conditions (Control: no additives, MP alone, MP+EX). Beta cell fractional viability, cellular composition, multiple cytokine/chemokine production, multiple phosphorylation proteins and glucose induced insulin secretion were evaluated. Results Viable beta cell survival in MP and MP+EX group was significantly higher than in the control group. EX prevented MP induced reduction of insulin secretion. MP supplementation to the culture medium decreased cytokine and chemokine production. Moreover, Erk1/2 phosphorylation was significantly increased by MP and MP+EX. Conclusions Glucocorticoid supplementation into culture media significantly decreased the cytokine/chemokine production and increased the Erk1/2 phosphorylation, resulting in the improvement of human beta cell survival. In addition, EX maintained the insulin secretion suppressed by MP. The supplementation of MP and EX together could be a useful strategy to create suitable human islets for transplantation. PMID:25036907
Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara
2016-06-01
Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats. © 2016 International Federation for Cell Biology.
Chen, Zhe (Jay); Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder
2011-01-01
Previous studies have shown that the procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations depends strongly on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al. (Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077–1998) was used to characterize the edema evolutions observed previously during clinical PIB for prostate cancer. The concept of biologically effective dose (BED), taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not taken into account appropriately, can increase the cell survival and decrease the probability of local control of PIB. The edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life for radioactive decay and decreasing energy of the photons energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (~21 keV compared to ~30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer. PMID:21772076
NASA Astrophysics Data System (ADS)
(Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder
2011-08-01
Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (~21 keV compared to ~30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer.
Contrasting roles of the ABCG2 Q141K variant in prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobek, Kathryn M.; Cummings, Jessica L.; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
ABCG2 is a membrane transport protein that effluxes growth-promoting molecules, such as folates and dihydrotestosterone, as well as chemotherapeutic agents. Therefore it is important to determine how variants of ABCG2 affect the transporter function in order to determine whether modified treatment regimens may be necessary for patients harboring ABCG2 variants. Previous studies have demonstrated an association between the ABCG2 Q141K variant and overall survival after a prostate cancer diagnosis. We report here that in patients with recurrent prostate cancer, those who carry the ABCG2 Q141K variant had a significantly shorter time to PSA recurrence post-prostatectomy than patients homozygous for wild-typemore » ABCG2 (P=0.01). Transport studies showed that wild-type ABCG2 was able to efflux more folic acid than the Q141K variant (P<0.002), suggesting that retained tumoral folate contributes to the decreased time to PSA recurrence in the Q141K variant patients. In a seemingly conflicting study, it was previously reported that docetaxel-treated Q141K variant prostate cancer patients have a longer survival time. We found this may be due to less efficient docetaxel efflux in cells with the Q141K variant versus wild-type ABCG2. In human prostate cancer tissues, confocal microscopy revealed that all genotypes had a mixture of cytoplasmic and plasma membrane staining, with noticeably less staining in the two homozygous KK patients. In conclusion, the Q141K variant plays contrasting roles in prostate cancer: 1) by decreasing folate efflux, increased intracellular folate levels result in enhanced tumor cell proliferation and therefore time to recurrence decreases; and 2) in patients treated with docetaxel, by decreasing its efflux, intratumoral docetaxel levels and tumor cell drug sensitivity increase and therefore patient survival time increases. Taken together, these data suggest that a patient's ABCG2 genotype may be important when determining a personalized treatment plan. - Highlights: • The presence of ABCG2 Q141K variant decreases time to PSA recurrence. • Cells expressing the Q141K variant retain more folic acid than wild type. • Cells expressing the Q141K variant are more sensitive to docetaxel. • ABCG2 protein is repressed miR-519c and/or miR-520h in prostate cancer cell lines.« less
Extracellular Acidic pH Inhibits Oligodendrocyte Precursor Viability, Migration, and Differentiation
Jagielska, Anna; Wilhite, Kristen D.; Van Vliet, Krystyn J.
2013-01-01
Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination. PMID:24098762
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Wan, Zihao; Huang, Zhihao; Vikash, Vikash; Rai, Kelash; Vikash, Sindhu; Chen, Liaobin; Li, Jingfeng
2017-10-13
The prognosis of male anal squamous cell carcinoma (MASCC) and female anal squamous cell carcinoma (FASCC) is variable. The influence of tumor subtype on the survival rate and gender is poorly known. Our study is the largest population-based study and aims to outline the difference in survival between MASCC and FASCC patients. A retrospective population-based study was performed to compare the disease-specific mortalities (DSMs) between genders related to the tumor subtypes. The Surveillance, Epidemiology, and End Results (SEER) program database was employed to obtain the data from January 1988 to December 2014. A total of 4,516, (3,249 males and 1,267 females), patients with anal squamous cell carcinomas (ASCC) were investigated. The 5-year DSMs were 24.18% and 18.08% for men and women, respectively. The univariate analysis of the male basaloid squamous cell carcinoma (BSCC) and cloacogenic carcinoma (CC) patients demonstrated higher DSMs (P <0.001). Moreover, in the multivariate analysis, BSCC and CC were associated with soaring DSMs in male patients (P < 0.05). In the cohort of BSCC and CC patients, male patients demonstrated a considerable decrease in survival rate compared to females. A more precise classification of ASCC and individualized management for MASCC are warranted.
Stangl, Stefan; Tontcheva, Nikoletta; Sievert, Wolfgang; Shevtsov, Maxim; Niu, Minli; Schmid, Thomas E; Pigorsch, Steffi; Combs, Stephanie E; Haller, Bernhard; Balermpas, Panagiotis; Rödel, Franz; Rödel, Claus; Fokas, Emmanouil; Krause, Mechthild; Linge, Annett; Lohaus, Fabian; Baumann, Michael; Tinhofer, Inge; Budach, Volker; Stuschke, Martin; Grosu, Anca-Ligia; Abdollahi, Amir; Debus, Jürgen; Belka, Claus; Maihöfer, Cornelius; Mönnich, David; Zips, Daniel; Multhoff, Gabriele
2018-05-01
Tumor cells frequently overexpress heat shock protein 70 (Hsp70) and present it on their cell surface, where it can be recognized by pre-activated NK cells. In our retrospective study the expression of Hsp70 was determined in relation to tumor-infiltrating CD56 + NK cells in formalin-fixed paraffin embedded (FFPE) tumor specimens of patients with SCCHN (N = 145) as potential indicators for survival and disease recurrence. All patients received radical surgery and postoperative cisplatin-based radiochemotherapy (RCT). In general, Hsp70 expression was stronger, but with variable intensities, in tumor compared to normal tissues. Patients with high Hsp70 expressing tumors (scores 3-4) showed significantly decreased overall survival (OS; p = 0.008), local progression-free survival (LPFS; p = 0.034) and distant metastases-free survival (DMFS; p = 0.044), compared to those with low Hsp70 expression (scores 0-2), which remained significant after adjustment for relevant prognostic variables. The adverse prognostic value of a high Hsp70 expression for OS was also observed in patient cohorts with p16- (p = 0.001), p53- (p = 0.0003) and HPV16 DNA-negative (p = 0.001) tumors. The absence or low numbers of tumor-infiltrating CD56 + NK cells also correlated with significantly decreased OS (p = 0.0001), LPFS (p = 0.0009) and DMFS (p = 0.0001). A high Hsp70 expression and low numbers of tumor-infiltrating NK cells have the highest negative predictive value (p = 0.00004). In summary, a strong Hsp70 expression and low numbers of tumor-infiltrating NK cells correlate with unfavorable outcome following surgery and RCT in patients with SCCHN, and thus serve as negative prognostic markers. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
Influence of P53 on the radiotherapy response of hepatocellular carcinoma
Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.
2015-01-01
Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121
NASA Astrophysics Data System (ADS)
Abourabia, Assya
Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing literature, we hypothesize that oxaliplatin-resistant pancreatic cancer cells, PANC-1/OR, are much more resistant to radiation exposure than their drug-sensitive analogues, PANC-1 cells. We think that the acquisition of chemoresistance entails mechanisms that also impart some loss of radiation sensitivity in PANC-1/OR cells. Responsiveness of pancreatic cancer cells to the radiation was measured by clonogenic survival. The results presented in this thesis show that drug-resistant PANC- 1/OR cells survive high doses of radiation exposure better than PANC-1 cells. Moreover, the presence of gold nanoparticles decreases cell survival when combined with the X-ray radiation. In conclusion, the combination of GNP and X-rays radiation produces a slight radiosensitizing effect for pancreatic cancer cells, PANC-1, and their chemoresistance variant, and we can speculate that this is a good mean of achieving additive cytotoxic effects on pancreatic cells.
2'-Hydroxyflavanone: A novel strategy for targeting breast cancer.
Singhal, Jyotsana; Nagaprashantha, Lokesh; Chikara, Shireen; Awasthi, Sanjay; Horne, David; Singhal, Sharad S
2017-09-26
Breast cancer is the most common cancer in women that is driven by cross-talk with hormonal and cellular signaling pathways. The natural phytochemicals, due to broad-spectrum anti-inflammatory and anti-cancerous properties, present with novel opportunities for targeting breast cancer. Intake of citrus fruits is known to reduce the risk for incidence of breast cancer. Hence, we tested the efficacy of citrus flavonoid 2'-hydroxyflavanone (2HF) in breast cancer. 2HF inhibited survival, clonogenic ability, cell cycle progression and induced apoptosis in breast cancer cells. 2HF also decreased VEGF levels and inhibited migratory capacity of breast cancer cells. Administration of 2HF led to regression of triple-negative MDA-MB-231 tumors in the mice xenograft model. 2HF decreased the levels of RLIP76 both in vitro studies and in vivo MDA-MB-231 xenograft model of breast cancer. Western blot and histopathological analyses of resected tumors showed a decline in the levels of survival and proliferation markers Ki67, pAkt, survivin, and cell cycle proteins CDK4 and cyclin B1. 2HF treatment led to inhibition of angiogenesis as determined by decreased VEGF levels in vitro and angiogenesis marker CD31 in vivo . 2HF reversed the pro-/anti-apoptotic ratio of BAX/BCL-2 by decreasing anti-apoptotic protein BCL-2 and increasing pro-apoptotic proteins BAX and BIM in vivo . 2HF also decreased the mesenchymal markers vimentin and fibronectin along with causing a parallel increase in pro-differentiation protein E-cadherin. Collectively, the ability of 2HF to decrease RLIP76, VEGF and regulate critical proliferative, apoptotic and differentiation proteins together provides strong rationale to further develop 2HF based interventions for targeting breast cancer.
2010-01-01
Objective Workers chronically exposed to hexavalent chromium have elevated risk of lung cancer. Our study investigates the incidence of lung cancer types, age at onset of the disease, and survival time among chromium exposed workers with respect to the expression of anti-apoptotic p53 and pro-apoptotic survivin proteins. Materials and methods 67 chromium exposed workers and 104 male controls diagnosed with lung cancer were analyzed. The mean exposure time among workers was 16.7 ± 10.0(SD) years (range 1- 41 years). To investigate the possible regulation of survivin by p53 we examined the expression of both proteins using immohistochemical visualization. Results Chromium exposure significantly decreases the age of onset of the disease by 3.5 years (62.2 ± 9.1 in the exposed group vs. 65.7 ± 10.5 years in controls; P = 0.018). Small cell lung carcinoma (SCLC) amounted for 25.4% of all cases in chromium exposed workers and for 16.3% in non-exposed individuals. The mean survival time in the exposed group was 9.0 ± 12.7 vs. 12.1 ± 21.9 months in controls, but this difference was not significant. Survivin was predominantly expressed in both cell nucleus and cytoplasm, whereas p53 was expressed in the nucleus. There was a negative correlation between survivin and p53 expression. A decreased intensity of expression and fewer cells positive for survivin was detected in SCLC compared with other types of lung cancer. P53 was expressed in 94.1% and survivin in 79.6% of the samples analyzed. Conclusion The study calls attention to decreased expression of survivin, as opposed to p53, in small cell lung carcinoma. PMID:21147621
CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis.
Stromberg, Paul E; Woolsey, Cheryl A; Clark, Andrew T; Clark, Jessica A; Turnbull, Isaiah R; McConnell, Kevin W; Chang, Katherine C; Chung, Chun-Shiang; Ayala, Alfred; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M
2009-06-01
Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1(-/-) and wild-type (WT) mice. However, Rag-1(-/-) animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1(-/-) mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4(+) but not CD8(+), gammadelta, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1(-/-) mice. Further, adoptively transferring lymphocytes to Rag-1(-/-) mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4(+) lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.
Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A.
Abdul Rahim, Siti Aminah; Dirkse, Anne; Oudin, Anais; Schuster, Anne; Bohler, Jill; Barthelemy, Vanessa; Muller, Arnaud; Vallar, Laurent; Janji, Bassam; Golebiewska, Anna; Niclou, Simone P
2017-09-05
Hypoxia is negatively associated with glioblastoma (GBM) patient survival and contributes to tumour resistance. Anti-angiogenic therapy in GBM further increases hypoxia and activates survival pathways. The aim of this study was to determine the role of hypoxia-induced autophagy in GBM. Pharmacological inhibition of autophagy was applied in combination with bevacizumab in GBM patient-derived xenografts (PDXs). Sensitivity towards inhibitors was further tested in vitro under normoxia and hypoxia, followed by transcriptomic analysis. Genetic interference was done using ATG9A-depleted cells. We find that GBM cells activate autophagy as a survival mechanism to hypoxia, although basic autophagy appears active under normoxic conditions. Although single agent chloroquine treatment in vivo significantly increased survival of PDXs, the combination with bevacizumab resulted in a synergistic effect at low non-effective chloroquine dose. ATG9A was consistently induced by hypoxia, and silencing of ATG9A led to decreased proliferation in vitro and delayed tumour growth in vivo. Hypoxia-induced activation of autophagy was compromised upon ATG9A depletion. This work shows that inhibition of autophagy is a promising strategy against GBM and identifies ATG9 as a novel target in hypoxia-induced autophagy. Combination with hypoxia-inducing agents may provide benefit by allowing to decrease the effective dose of autophagy inhibitors.
Leal, Ana S; Sporn, Michael B; Pioli, Patricia A; Liby, Karen T
2016-12-01
Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras G12D/+ ;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dorneburg, Carmen; Fischer, Matthias; Barth, Thomas F E; Mueller-Klieser, Wolfgang; Hero, Barbara; Gecht, Judith; Carter, Daniel R; De Preter, Katleen; Mayer, Benjamin; Christner, Lisa; Speleman, Frank; Marshall, Glenn M; Debatin, Klaus-Michael; Beltinger, Christian
2018-06-20
To investigate whether lactate dehydrogenase A (LDHA), an important component of the LDH tetramer crucial for aerobic glycolysis, is associated with patient outcome and constitutes a therapeutic target in neuroblastoma (NB). Expression of LDHA mRNA and protein was determined in 709 and 110 NB patient samples, respectively, and correlated to survival and risk factors. LDHA and LDHB were depleted in human NB cell lines by CRISPR/Cas9 and shRNA, respectively, and aerobic glycolysis, clonogenicity and tumorigenicity were determined. Expression of LDHA in relation to MYCN was measured in NB cell lines and in the TH-MYCN NB mouse model. Expression of LDHA, both on the mRNA and the protein level, was significantly and independently associated with decreased patient survival. Predominant cytoplasmic localization of LDHA protein was associated with poor outcome. Amplification and expression of MYCN did not correlate with expression of LDHA in NB cell lines or TH-MYCN mice, respectively. Knockout of LDHA inhibited clonogenicity, tumorigenicity and tumor growth without abolishing LDH activity or significantly decreasing aerobic glycolysis. Concomitant depletion of LDHA and the isoform LDHB ablated clonogenicity while not abrogating LDH activity or decreasing aerobic glycolysis. The isoform LDHC was not expressed. High expression of LDHA is independently associated with poor outcome of NB and NB cells can be inhibited by depletion of LDHA or LDHB. This inhibition appears to be unrelated to LDH activity and aerobic glycolysis. Thus, investigations of inhibitory mechanisms beyond attenuation of aerobic glycolysis are warranted, both in NB and normal cells. Copyright ©2018, American Association for Cancer Research.
Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S
2014-03-01
Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.
Solitary chemoreceptor cell survival is independent of intact trigeminal innervation.
Gulbransen, Brian; Silver, Wayne; Finger, Thomas E
2008-05-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al. [2003] Proc Natl Acad Sci USA 100:8981-8986). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al. [2003]) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. (c) 2008 Wiley-Liss, Inc.
Scroggins, Sabrina M; Olivier, Alicia K; Meyerholz, David K; Schlueter, Annette J
2013-01-01
Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3-4 months) and older (14-18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD.
Light-controlled inhibition of malignant glioma by opsin gene transfer
Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P
2013-01-01
Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851
Light-controlled inhibition of malignant glioma by opsin gene transfer.
Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P
2013-10-31
Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach.
Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient
NASA Technical Reports Server (NTRS)
Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.
2004-01-01
Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.
Schmidt, Andrea; Sinnett-Smith, James; Young, Steven; Chang, Hui-Hua; Hines, O Joe; Dawson, David W; Rozengurt, Enrique; Eibl, Guido
2017-06-01
There is strong evidence linking inflammation and the development of pancreatic ductal adenocarcinoma. Cyclooxygenase-2 (COX-2) and COX-2-derived PGE 2 are overexpressed in human and murine pancreatic ductal adenocarcinoma. Several studies have demonstrated an important role of COX-2-derived PGE 2 in tumor-stroma interactions; however, the direct growth effects of prostaglandin E 2 (PGE 2 ) on pancreatic ductal adenocarcinoma cells is less well defined. Our aim was to investigate the effects of PGE 2 on pancreatic ductal adenocarcinoma cell growth and to characterize the underlying mechanisms. Human pancreatic ductal adenocarcinoma cell lines, Panc-1 and MIA PaCa-2, were treated with PGE 2 in varying doses (0-10 μM). Effects on the phosphorylation of ERK1/2 were evaluated by Western blot. Colony formation was observed for cells treated with PGE 2 for 11 days. DNA synthesis was determined by (3H)-thymidine incorporation assay. Gene expression of E-type prostaglandin (EP)2/EP4 receptors and their correlation with survival in patients with pancreatic ductal adenocarcinoma were assessed using the RNA-Seq data set from The Cancer Genome Atlas Research Network. PGE 2 decreased the size and number of colonies in Panc-1 but not MIA PaCa-2 cells. In the Panc-1 cells, PGE 2 activated PKA/CREB and decreased phosphorylation of ERK1/2, which was reversed by an EP4 receptor antagonist, while an EP2 receptor antagonist had no effect. In contrast, in MIA PaCa-2 cells, PGE 2 had no effect on ERK1/2 phosphorylation. Treatment of both Panc-1 and MIA PaCa-2 cells with forskolin/IBMX decreased ERK1/2 phosphorylation. Finally, PGE 2 decreased DNA synthesis only in Panc-1 cells, which was reversed by an EP4 receptor antagonist. In human pancreatic ductal adenocarcinoma, high EP2 and low EP4 gene expression was correlated to worse median overall survival (15.6 vs 20.8 months, log-rank P = .017). Our study provides evidence that PGE 2 can inhibit directly pancreatic ductal adenocarcinoma cell growth through an EP4-mediated mechanism. Together with our gene expression and survival analysis, this observation suggests a protective role of EP4 receptors in human pancreatic ductal adenocarcinoma that expresses E-type prostaglandin receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santo Domingo, J.W.; Fuentes, F.A.; Hazen, T.C.
1987-12-31
The in situ survival and activity of Streptococcus faecalis and Escherichia coli were studied using membrane diffusion chambers in tropical marine waters receiving oil refinery effluents. Protein synthesis, DNA synthesis, respiration or fermentation, INT reduced per cell, and ATP per cell were used to measure physiological activity. Cell densities decreased significantly over time at both sites for both S. faecalis and E. coli; however, no significant differences in survival pattern were observed between S. faecalis and E.coli. Differences in protein synthesis between the two were only observed at a study site which was not heavily oiled. Although fecal streptococci havemore » been suggested as a better indicator of fecal contamination than fecal coliforms in marine waters, in this study both E. coli and S. faecalis survived and remained physiologically active for extended periods of time. These results suggest that the fecal streptococci group is not a better indicator of fecal contamination in tropical marine waters than the fecal coliform group, especially when that environment is high in long-chained hydrocarbons.« less
Gillis, Joshua; Gebremeskel, Simon; Phipps, Kyle D; MacNeil, Lori A; Sinal, Christopher J; Johnston, Brent; Hong, Paul; Bezuhly, Michael
2015-08-01
Autologous fat grafting is a popular reconstructive technique, but is limited by inconsistent graft retention. The authors examined whether a widely available, clinically safe antioxidant, N-acetylcysteine, could improve adipose-derived stem cell survival and graft take when added to tumescent solution during fat harvest. Inguinal fat pads were harvested from C57BL/6 mice using tumescent solution with or without N-acetylcysteine. Flow cytometric, proliferation, and differentiation assays were performed on isolated primary adipose-derived stem cells and 3T3-L1 preadipocytes treated with or without hydrogen peroxide and/or N-acetylcysteine. N-Acetylcysteine-treated or control grafts were injected under recipient mouse scalps and assessed by serial micro-computed tomographic volumetric analysis. Explanted grafts underwent immunohistochemical analysis. In culture, N-acetylcysteine protected adipose-derived stem cells from oxidative stress and improved cell survival following hydrogen peroxide treatment. Combined exposure to both N-acetylcysteine and hydrogen peroxide led to a 200-fold increase in adipose-derived stem cell proliferation, significantly higher than with either agent alone. N-Acetylcysteine decreased differentiation of adipose-derived stem cells into mature adipocytes, as evidenced by decreased transcription of adipocyte differentiation markers and reduced Oil Red-O staining. In vivo, N-acetylcysteine treatment resulted in improved graft retention at 3 months compared with control (46 versus 17 percent; p = 0.027). N-Acetylcysteine-treated grafts demonstrated less fibrosis and inflammation, and a 33 percent increase in adipocyte density compared with controls (p < 0.001) that was not associated with increased vascularity. These findings provide proof of principle for the addition of N-acetylcysteine to tumescent harvest solution in the clinical setting to optimize fat graft yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbour, Salma K., E-mail: jabbousk@cinj.rutgers.edu; Kim, Sinae; Department of Biostatistics, School of Public Health, Rutgers University, New Brunswick, New Jersey
2015-07-01
Purpose: We sought to evaluate whether tumor response using cone beam computed tomography (CBCT) performed as part of the routine care during chemoradiation therapy (CRT) could forecast the outcome of unresectable, locally advanced, non-small cell lung cancer (NSCLC). Methods and Materials: We manually delineated primary tumor volumes (TV) of patients with NSCLC who were treated with radical CRT on days 1, 8, 15, 22, 29, 36, and 43 on CBCTs obtained as part of the standard radiation treatment course. Percentage reductions in TV were calculated and then correlated to survival and pattern of recurrence using Cox proportional hazard models. Clinicalmore » information including histologic subtype was also considered in the study of such associations. Results: We evaluated 38 patients with a median follow-up time of 23.4 months. The median TV reduction was 39.3% (range, 7.3%-69.3%) from day 1 (D1) to day 43 (D43) CBCTs. Overall survival was associated with TV reduction from D1 to D43 (hazard ratio [HR] 0.557, 95% CI 0.39-0.79, P=.0009). For every 10% decrease in TV from D1 to D43, the risk of death decreased by 44.3%. For patients whose TV decreased ≥39.3 or <39.3%, log-rank test demonstrated a separation in survival (P=.02), with median survivals of 31 months versus 10 months, respectively. Neither local recurrence (HR 0.791, 95% CI 0.51-1.23, P=.29), nor distant recurrence (HR 0.78, 95% CI 0.57-1.08, P=.137) correlated with TV decrease from D1 to D43. Histologic subtype showed no impact on our findings. Conclusions: TV reduction as determined by CBCT during CRT as part of routine care predicts post-CRT survival. Such knowledge may justify intensification of RT or application of additional therapies. Assessment of genomic characteristics of these tumors may permit a better understanding of behavior or prediction of therapeutic outcomes.« less
Wang, Zhong-Min; Lu, Jian; Zhang, Li-Yun; Lin, Xiao-Zhu; Chen, Ke-Min; Chen, Zhi-Jin; Liu, Fen-Ju; Yan, Fu-Hua; Teng, Gao-Jun; Mao, Ai-Wu
2015-01-01
AIM: To determine the mechanism of the radiation-induced biological effects of 125I seeds on pancreatic carcinoma cells in vitro. METHODS: SW1990 and PANC-1 pancreatic cancer cell lines were cultured in DMEM in a suitable environment. Gray’s model of iodine-125 (125I) seed irradiation was used. In vitro, exponential phase SW1990, and PANC-1 cells were exposed to 0, 2, 4, 6, and 8 Gy using 125I radioactive seeds, with an initial dose rate of 12.13 cGy/h. A clonogenic survival experiment was performed to observe the ability of the cells to maintain their clonogenic capacity and to form colonies. Cell-cycle and apoptosis analyses were conducted to detect the apoptosis percentage in the SW1990 and PANC-1 cells. DNA synthesis was measured via a tritiated thymidine (3H-TdR) incorporation experiment. After continuous low-dose-rate irradiation with 125I radioactive seeds, the survival fractions at 2 Gy (SF2), percentage apoptosis, and cell cycle phases of the SW1990 and PANC-1 pancreatic cancer cell lines were calculated and compared. RESULTS: The survival fractions of the PANC-1 and SW1990 cells irradiated with 125I seeds decreased exponentially as the dose increased. No significant difference in SF2 was observed between SW1990 and PANC-1 cells (0.766 ± 0.063 vs 0.729 ± 0.045, P < 0.05). The 125I seeds induced a higher percentage of apoptosis than that observed in the control in both the SW1990 and PANC-1 cells. The rate of apoptosis increased with increasing radiation dosage. The percentage of apoptosis was slightly higher in the SW1990 cells than in the PANC-1 cells. Dose-dependent G2/M cell-cycle arrest was observed after 125I seed irradiation, with a peak value at 6 Gy. As the dose increased, the percentage of G2/M cell cycle arrest increased in both cell lines, whereas the rate of DNA incorporation decreased. In the 3H-TdR incorporation experiment, the dosimetry results of both the SW1990 and PANC-1 cells decreased as the radiation dose increased, with a minimum at 6 Gy. There were no significant differences in the dosimetry results of the two cell lines when they were exposed to the same dose of radiation. CONCLUSION: The pancreatic cancer cell-killing effects induced by 125I radioactive seeds mainly occurred via apoptosis and G2/M cell cycle arrest. PMID:25741139
In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma
Masuelli, Laura; Benvenuto, Monica; Mattera, Rosanna; Di Stefano, Enrica; Zago, Erika; Taffera, Gloria; Tresoldi, Ilaria; Giganti, Maria Gabriella; Frajese, Giovanni Vanni; Berardi, Ginevra; Modesti, Andrea; Bei, Roberto
2017-01-01
Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API. PMID:28674496
Lyons, John D; Chen, Ching-Wen; Liang, Zhe; Zhang, Wenxiao; Chihade, Deena B; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig
2018-06-08
Patients with cancer who develop sepsis have a markedly higher mortality than patients who were healthy prior to the onset of sepsis. Potential mechanisms underlying this difference have previously been examined in two preclinical models of cancer followed by sepsis. Both pancreatic cancer/pneumonia and lung cancer/cecal ligation and puncture (CLP) increase murine mortality, associated with alterations in lymphocyte apoptosis and intestinal integrity. However, pancreatic cancer/pneumonia decreases lymphocyte apoptosis and increases gut apoptosis while lung cancer/CLP increases lymphocyte apoptosis and decreases intestinal proliferation. These results cannot distinguish the individual roles of cancer versus sepsis since different models of each were used. We therefore created a new cancer/sepsis model to standardize each variable. Mice were injected with a pancreatic cancer cell line and three weeks later cancer mice and healthy mice were subjected to CLP. Cancer septic mice had a significantly higher 10-day mortality than previously healthy septic mice. Cancer septic mice had increased CD4 T cells and CD8 T cells, associated with decreased CD4 T cell apoptosis 24 hours after CLP. Further, splenic CD8+ T cell activation was decreased in cancer septic mice. In contrast, no differences were noted in intestinal apoptosis, proliferation or permeability, nor were changes noted in local bacterial burden, renal, liver or pulmonary injury. Cancer septic mice thus have consistently reduced survival compared to previously healthy septic mice, independent of the cancer or sepsis model utilized. Changes in lymphocyte apoptosis are common to cancer model and independent of sepsis model whereas gut apoptosis is common to sepsis model and independent of cancer model. The host response to the combination of cancer and sepsis is dependent, at least in part, on both chronic co-morbidity and acute illness.
Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis
2006-01-01
Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.
Lu, Chi; Xie, Conghua
2016-06-01
Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa
Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggestedmore » that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.« less
[Effects of methyl tertiary butyl ether on cell cycle and cell apoptosis].
Zhou, W; Huang, G; Zhang, H; Ye, S
2000-07-01
To explore the effects of the new gasoline additive, methyl tertiary butyl ether (MTBE) on cell cycle and cell apoptosis. Flow cytometry was used to evaluate the effect of MTBE (1, 2, 4 microl/ml, 24 h) on NIH/3T3 cell cycles; and the effect of MTBE on Hela cell apoptosis was evaluated by detecting cell survival using crystal violet staining. Flow cytometry showed that MTBE could change NIH/3T3 cell cycles, decrease the number of cells in S stage, and arrest cells at G(2) + M stage. The results suggested that MTBE could affect NIH/3T3 cell cycles and induce cell proliferation. This situation existed 48 hours after the treatment, and cell cycles came back normal 96 hours after the treatment. By detecting cell survival using crystal violet staining, we found that MTBE could inhibit the apoptosis of Hela cells which was induced by tumor necrosis factor (TNF)alpha and cycloheximide. MTBE's carcinogenicity to animals may relate to induction of cell proliferation and inhibition of cell apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harm, W.
1973-12-01
The survival of uv-irradiated phage Tl is much lower in excision repair- deficient than in excision repair-proficient E.coli cells, due to lack of host ceH reactivation (HCR). sn additional decrease in phage survival occurs when repair-deficient (HCR-) host cells have been exposed to uv doses from 3000 to 10,000 erg mm/-sup 2/ of 254 nm uv radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations thatmore » preclude HCR completely. Its full inhibition by uv-irradiation of the cells requires on approximately 8 times larger dose than complete inhibition of HCR. In heavily preirradiated cells, the TI burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting Tl in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely. (auth)« less
Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidd, Ambrose R.; Snider, Jared L.; Martin, Timothy D.
2010-09-01
Purpose: Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. Methods and Materials: RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expressionmore » of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, {gamma}H2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. Results: Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. Conclusions: Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.« less
Growth and Survival Mechanisms Associated with Perineural Invasion in Prostate Cancer
2004-09-01
Haematol 2001;115:279–86. 29. Hutcheson JA, Vural E, Korourian S, Hanna E. Neural cell adhesion molecule expression in adenoid cystic carcinoma of the...and inducible NFkappaB activation and decreases IL-8 production by human cystic fibrosis bron- chial gland cells. Am J Pathol 1999;155:473–81. 27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, Yasuyuki, E-mail: yasu-m@med.gunma-u.ac.jp; Koike, Hidekazu; Sekine, Yoshitaka
Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, whichmore » is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels. Transfection siRNA against survivin enhanced the cytotoxicity of docetaxel in PC3 cells. Conclusion: The rapamycin-dependent enhancement of the cytotoxic effects of docetaxel was associated with the downregulation of survivin expression. Our results suggest that the combination of docetaxel and rapamycin is a candidate for the improved treatment of advanced prostate cancer.« less
MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth
Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata
2013-01-01
Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033
Sacková, Veronika; Kuliková, Lucia; Mikes, Jaromír; Kleban, Ján; Fedorocko, Peter
2005-01-01
The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm(2)) to the fractionated light delivery (1 + 11 J/cm(2)) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin.
Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.
Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco
2015-09-08
B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.
Gholinejad, Masoumeh; Jafari Anarkooli, Iraj; Taromchi, Amirhossein; Abdanipour, Alireza
2018-05-01
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H 2 O 2 ) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 ( Mst1 ), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H 2 O 2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1 , nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H 2 O 2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.
Medina, E A; Oberheu, K; Polusani, S R; Ortega, V; Velagaleti, G V N; Oyajobi, B O
2014-10-01
Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes, but paradoxically decreased in obesity, that has been implicated in MM progression. Herein, we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA), which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK, in turn, induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated, at least in part, by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC), which is essential to lipogenesis. Supplementation with palmitic acid, the preliminary end product of fatty acid synthesis, rescues MM cells from adiponectin-induced apoptosis. Furthermore, 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an ACC inhibitor, exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus, adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators, or inhibitors of ACC, may be useful adjuvants to treat MM. Moreover, the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia, as occurs in obesity, promotes MM tumor progression.
Wagner, W; Kania, K D; Blauz, A; Ciszewski, W M
2017-08-01
The lactate receptor, also known as hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), plays a vital role in cancer biology. Recently, HCAR1 was reported to enhance metastasis, cell growth, and survival of pancreatic, breast, and cervical cancer cells. This study showed, for the first time, the mechanism of HCAR1-mediated chemoresistance to doxorubicin through regulation of ABCB1 transporter. We observed the HCAR1 agonists L-lactate, D-lactate and 3,5-dihydroxybenzoic acid (DHBA) induced up-regulation of ABCB1. HCAR1 silencing decreased ABCB1 mRNA and protein by 80% and 40%, respectively. Moreover, cellular doxorubicin accumulation decreased by 30% after DHBA treatment, while HCAR1 silencing increased accumulation of ABCB1 substrates by nearly 2-fold. Based on growth inhibition assays, cell cycle analysis, and annexin V staining assays, we demonstrated that HCAR1 enhances cell survival and doxorubicin resistance. Finally, DHBA-stimulated up-regulation of ABCB1 functionality was suppressed by pharmacological inhibition of the PKC pathway. Taken together, our study shows the novel role of HCAR1 in development of chemoresistance in cervical carcinoma HeLa cells via ABCB1 transporter up-regulation.
Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro
2015-01-01
The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607
The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability
NASA Astrophysics Data System (ADS)
Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan
2011-06-01
The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.
Sanguri, Sweta; Gupta, Damodar
2018-06-27
Low LET Ionizing radiation is known to alter intracellular redox balance by inducing free radical generation, which may cause oxidative modification of various cellular biomolecules. The extent of biomolecule-modifications/ damages and changes in vital processes (viz. cellular homeostasis, inter-/intra-cellular signaling, mitochondrial physiology/dynamics antioxidant defence systems) are crucial which in turn determine fate of cells. In the present study, we expended TLR expressing (normal/ transformed) and TLR null cells; and we have shown that mannan pretreatment in TLR expressing normal cells offers survival advantage against lethal doses of ionizing radiation. On the contrary, mannan pretreatment does not offer any protection against radiation to TLR null cells, NKE ρ° cells and transformed cells. In normal cells, abrupt decrease in mitochondrial membrane potential and endogenous ROS levels occurs following treatment with mannan. We intend to irradiate mannan-pretreated cells at a specific stage of perturbed mitochondrial functioning and ROS levels to comprehend if mannan pretreatment offers any survival advantage against radiation exposure to cells. Interestingly, pre-irradiation treatment of cells with mannan activates NFκB, p38 and JNK, alters mitochondrial physiology, increases expression of Cu/ZnSOD and MnSOD, minimizes oxidation of mitochondrial phospholipids and offers survival advantage in comparison to irradiated group, in TLR expressing normal cells. The study demonstrates that TLR and mitochondrial ETC functions are inevitable in radio-protective efficacy exhibited by mannan.
Kang, Kyoung Ah; Wang, Zhi Hong; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kang, Sam Sik; Kim, Young Woo; Lee, Jongsung; Park, Deokhoon; Hyun, Jin Won
2010-01-01
Recently, we demonstrated that myricetin exhibits cytoprotective effects against H2O2-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G1 cell population, and disruption of mitochondrial membrane potential (Δψm), which are increased in H2O2-treated cells. Western blot data showed that in H2O2-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H2O2-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H2O2-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. PMID:21151442
Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M
2015-01-01
Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.
Laryngeal cancer in the United States: changes in demographics, patterns of care, and survival.
Hoffman, Henry T; Porter, Kimberly; Karnell, Lucy H; Cooper, Jay S; Weber, Randall S; Langer, Corey J; Ang, Kie-Kian; Gay, Greer; Stewart, Andrew; Robinson, Robert A
2006-09-01
Survival has decreased among patients with laryngeal cancer during the past 2 decades in the United States. During this same period, there has been an increase in the nonsurgical treatment of laryngeal cancer. The objectives of this study were to identify trends in the demographics, management, and outcome of laryngeal cancer in the United States and to analyze factors contributing to the decreased survival. The authors conducted a retrospective, longitudinal study of laryngeal cancer cases. Review of the National Cancer Data Base (NCDB) revealed 158,426 cases of laryngeal squamous cell carcinoma (excluding verrucous carcinoma) diagnosed between the years 1985 and 2001. Analysis of these case records addressed demographics, management, and survival for cases grouped according to stage, site, and specific TNM classifications. This review of data from the NCDB analysis confirms the previously identified trend toward decreasing survival among patients with laryngeal cancer from the mid-1980s to mid-1990s. Patterns of initial management across this same period indicated an increase in the use of chemoradiation with a decrease in the use of surgery despite an increase in the use of endoscopic resection. The most notable decline in the 5-year relative survival between the 1985 to 1990 period and the 1994 to 1996 period occurred among advanced-stage glottic cancer, early-stage supraglottic cancers, and supraglottic cancers classified as T3N0M0. Initial treatment of T3N0M0 laryngeal cancer (all sites) in the 1994 to 1996 period resulted in poor 5-year relative survival for those receiving either chemoradiation (59.2%) or irradiation alone (42.7%) when compared with that of patients after surgery with irradiation (65.2%) and surgery alone (63.3%). In contrast, identical 5-year relative survival (65.6%) rates were observed during this same period for the subset of T3N0M0 glottic cancers initially treated with either chemoradiation or surgery with irradiation. The decreased survival recorded for patients with laryngeal cancer in the mid-1990s may be related to changes in patterns of management. Future studies are warranted to further evaluate these associations.
CD6 as a potential target for treating multiple sclerosis
Singer, Nora G.; Whitbred, Joy; Bowen, Michael A.; Lin, Feng
2017-01-01
CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell–driven autoimmune conditions. PMID:28209777
Flint, D J; Boutinaud, M; Tonner, E; Wilde, C J; Hurley, W; Accorsi, P A; Kolb, A F; Whitelaw, C B A; Beattie, J; Allan, G J
2005-08-01
We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue remodeling processes. The ability to separate these properties, using mutant IGFBPs, is currently under investigation.
Zhan, L; Qin, Q; Lu, J; Liu, J; Zhu, H; Yang, X; Zhang, C; Xu, L; Liu, Z; Cai, J; Ma, J; Dai, S; Tao, G; Cheng, H; Sun, X
2016-04-01
Radiotherapy plays an important role in the treatment of esophageal squamous cell carcinoma (ESCC). However, the outcome of radiotherapy in ESCC remains unsatisfactory because esophageal squamous cancer cells, particularly those under hypoxic condition, exhibit radioresistance. The aim of this study was to determine whether or not AZD2281, a potent poly (ADP-ribose) polymerase (PARP) inhibitor, could enhance the radiation sensitivity of two ESCC cell lines, namely ECA109 and TE13. The radiosensitizing effect of AZD2281 was evaluated on the basis of cell death, clonogenic survival and tumor xenograft progression. AZD2281 alone was slightly toxic to ESCC cell lines. Apoptosis was increased and clonogenic survival was decreased in both cell lines when AZD2281 was combined with ionizing radiation (IR) under normoxic condition. AZD2281 enhanced IR-induced apoptosis to a more significant level under chronic hypoxic condition (0.2% O(2), 48 hour) than under normoxic condition. AZD2281 also slightly enhanced clonogenic cell death under chronic hypoxic condition compared with that under normoxic condition. This result could be associated with increased radiation-induced DNA double-strand breaks (DSB), decreased DSB repair and increased apoptosis of ESCC cells. Furthermore, homologous recombination (HR) protein Rad51 expression and focus formation were decreased in ESCC cells exposed to moderate chronic hypoxic condition (0.2% O(2), 48 hour); this result indicated that chronic hypoxic ESCC cells were HR deficient, possibly causing contextual synthetic lethality with PARP inhibitor in radiation sensitization. AZD2281 was also a radiation sensitizer in ESCC tumor xenograft models. Hence, in vitro and in vivo findings provide evidence that AZD2281 potently sensitizes ESCC cells to X-ray irradiation. The selective cell killing of HR-defective hypoxic cells contributes to radiosensitization by PARP inhibitor in ESCC cells under hypoxic condition. © 2015 International Society for Diseases of the Esophagus.
Yang, Peng; Ma, Junhong; Yang, Xin; Li, Wei
2017-01-01
Background To investigate the clinical significance of naïve T cells, memory T cells, CD45RA+CD45RO+ T cells, and naïve/memory ratio in non-small cell lung cancer (NSCLC) patients. Methods Pretreatment peripheral blood samples from 76 NSCLC patients and 28 age- and sex-matched healthy volunteers were collected and tested for immune cells by flow cytometry. We compared the expression of these immune cells between patients and healthy controls and evaluated their predictive roles for survival in NSCLC by cox proportional hazards model. Results Decreased naïve CD4+ T cells, naïve CD8+ T cells, CD4+ naïve/memory ratios and CD4+CD45RA+CD45RO+ T cells, and increased memory CD4+ T cells, were observed in 76 NSCLC patients compared to healthy volunteers. Univariate analysis revealed that elevated CD4+ naïve/memory ratio correlated with prolonged progression-free survival (P=0.013). Multivariate analysis confirmed its predictive role with a hazard ratio of 0.35 (95% confidence interval, 0.19-0.75, P=0.012). Conclusions Peripheral CD4+ naïve/memory ratio can be used as a predictive biomarker in NSCLC patients and used to optimize personalized treatment strategies. PMID:29137371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy
2010-06-29
To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, inmore » p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.« less
Kwon, Deborah Y.; Motley, William W.; Fischbeck, Kenneth H.; Burnett, Barrington G.
2011-01-01
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced levels of the survival motor neuron (SMN) protein. Here we show that the proteasome inhibitor, bortezomib, increases SMN in cultured cells and in peripheral tissues of SMA model mice. Bortezomib-treated animals had improved motor function, which was associated with reduced spinal cord and muscle pathology and improved neuromuscular junction size, but no change in survival. Combining bortezomib with the histone deacetylase inhibitor trichostatin A (TSA) resulted in a synergistic increase in SMN protein levels in mouse tissue and extended survival of SMA mice more than TSA alone. Our results demonstrate that a combined regimen of drugs that decrease SMN protein degradation and increase SMN gene transcription synergistically increases SMN levels and improves the lifespan of SMA model mice. Moreover, this study indicates that while increasing SMN levels in the central nervous system may help extend survival, peripheral tissues can also be targeted to improve the SMA disease phenotype. PMID:21693563
Investigation on the suitable pressure for the preservation of astrocyte
NASA Astrophysics Data System (ADS)
Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.
2010-03-01
The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.
Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma
Stafman, Laura L.; Mruthyunjayappa, Smitha; Waters, Alicia M.; Garner, Evan F.; Aye, Jamie M.; Stewart, Jerry E.; Yoon, Karina J.; Whelan, Kimberly; Mroczek-Musulman, Elizabeth; Beierle, Elizabeth A.
2018-01-01
Increasing incidence coupled with poor prognosis and treatments that are virtually unchanged over the past 20 years have made the need for the development of novel therapeutics for hepatoblastoma imperative. PIM kinases have been implicated as drivers of tumorigenesis in multiple cancers, including hepatocellular carcinoma. We hypothesized that PIM kinases, specifically PIM3, would play a role in hepatoblastoma tumorigenesis and that PIM kinase inhibition would affect hepatoblastoma in vitro and in vivo. Parameters including cell survival, proliferation, motility, and apoptosis were assessed in human hepatoblastoma cells following PIM3 knockdown with siRNA or treatment with the PIM inhibitor AZD1208. An in vivo model of human hepatoblastoma was utilized to study the effects of PIM inhibition alone and in combination with cisplatin. PIM kinases were found to be present in the human hepatoblastoma cell line, HuH6, and in a human hepatoblastoma patient-derived xenograft, COA67. PIM3 knockdown or inhibition with AZD1208 decreased cell survival, attachment independent growth, and motility. Additionally, inhibition of tumor growth was observed in a hepatoblastoma xenograft model in mice treated with AZD1208. Combination therapy with AZD1208 and cisplatin resulted in a significant increase in animal survival when compared to either treatment alone. The current studies showed that PIM kinase inhibition decreased human hepatoblastoma tumorigenicity both in vitro and in vivo, implying that PIM inhibitors may be useful as a novel therapeutic for children with hepatoblastoma.
Sun, Y; Gu, X; Zhang, E; Park, M-A; Pereira, A M; Wang, S; Morrison, T; Li, C; Blenis, J; Gerbaudo, V H; Henske, E P; Yu, J J
2014-05-15
Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.
Brodie, Shlomit; Lee, Hae Kyung; Jiang, Wei; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M; Datta, Indrani; Kalkanis, Steve; Ginsberg, Doron; Brodie, Chaya
2017-05-09
Despite advances in novel therapeutic approaches for the treatment of glioblastoma (GBM), the median survival of 12-14 months has not changed significantly. Therefore, there is an imperative need to identify molecular mechanisms that play a role in patient survival. Here, we analyzed the expression and functions of a novel lncRNA, TALNEC2 that was identified using RNA seq of E2F1-regulated lncRNAs. TALNEC2 was localized to the cytosol and its expression was E2F1-regulated and cell-cycle dependent. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM specimens derived from short-term survivors and in glioma cells and glioma stem cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the cells in the G1\\S phase of the cell cycle in various cancer cell lines. In addition, silencing of TALNEC2 decreased the self-renewal and mesenchymal transformation of GSCs, increased sensitivity of these cells to radiation and prolonged survival of mice bearing GSC-derived xenografts. Using miRNA array analysis, we identified specific miRNAs that were altered in the silenced cells that were associated with cell-cycle progression, proliferation and mesenchymal transformation. Two of the downregulated miRNAs, miR-21 and miR-191, mediated some of TALNEC2 effects on the stemness and mesenchymal transformation of GSCs. In conclusion, we identified a novel E2F1-regulated lncRNA that is highly expressed in GBM and in tumors from patients of short-term survival. The expression of TALNEC2 is associated with the increased tumorigenic potential of GSCs and their resistance to radiation. We conclude that TALNEC2 is an attractive therapeutic target for the treatment of GBM.
Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassouna, Imam; Sperling, Swetlana; Kim, Ella
2008-11-01
Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less
Dong, Jing-Mei; Zhao, Sheng-Guo; Huang, Guo-Yin; Liu, Qing
2004-06-01
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) mediated generation of reactive oxygen species (ROS) was originally identified as the powerful host defense machinery against microorganism in phagocytes. But recent reports indicated that some non-phagocytic cells also have the NADPH oxidase activity, and the ROS produced by it may act as cell signal molecule. But as far as today, whether the NADPH oxidase also plays similar role in phagocyte has not been paid much attention. Utilizing the undifferentiated HL-60 promyelocytic leukemia cells as a model, the aim of the present study was to determine whether NADPH oxidase plays a role on ROS generation in undifferentiated HL-60, and the ROS mediated by it was essential for cell's survival. For the first time, we verified that the release of ROS in undifferentiated HL-60 was significantly increased by the stimulation with Calcium ionophore or opsonized zymosan, which are known to trigger respiration burst in phagocytes by NADPH oxidase pathway. Diphenylene iodonium (DPI) or apocynin (APO), two inhibitors of NADPH oxidase, significantly suppressed the increasing of ROS caused by opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI and APO, as well as superoxide dismutase (SOD) and catalase (CAT) concentration-dependently decreased the viability of undifferentiated HL-60 cells, whereas exogenous H2O2 can rescue the cells from death obviously. Our results suggested that the ROS, generated by NADPH oxidase play an essential role in the survival of undifferentiated HL-60 cells.
Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang
2017-01-01
Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone. PMID:27427555
Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang
2017-01-01
Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.
Photodynamic treatment of culture medium containing serum induces long-lasting toxicity in vitro.
Olivier, David; Douillard, Samuel; Lhommeau, Isabelle; Patrice, Thierry
2009-10-01
Photodynamic therapy (PDT) produces singlet oxygen and reactive oxygen species (ROS) that damage tumor cells and the vasculature. The resulting effect is a balance between photo-oxidations through primary or secondary ROS and scavenging activity. Sensitizers are distributed in the extracellular space before and during cell sensitization, suggesting that PDT could act directly on cell structures and on extracellular compartments, including sera. In this study we endeavored to determine whether the application of PDT to culture medium could affect cell survival. Culture medium [RPMI 1640 supplemented with fetal calf serum (FCS)] was incubated with Rose Bengal and irradiated before being added to cells for various contact times as a replacement for untreated medium. Cells were then kept in darkness until the survival assay. Treated medium reduced cell survival by up to 40% after 30 min of contact for 10 microg/ml of Rose Bengal and 20 J/cm(2). Rose Bengal or m-THPC alone or irradiated in water had no effect. This effect was dependent on the doses of Rose Bengal and light and decreased when FCS was replaced by human serum mixed with FCS. The reduction in survival observed with treated medium was more pronounced when the cell doubling time was shorter. Analysis of ROS or peroxide production in treated medium by DCFH added at the end of irradiation of Rose Bengal in serum-containing medium revealed a long-lasting oxidizing activity. Our findings support the hypothesis of an ROS- or peroxide-mediated, PDT-induced, long-lasting cell toxicity.
Khwaja, Fatima S; Quann, Emily J; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel
2008-11-01
The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.
FAK Inhibition Decreases Hepatoblastoma Survival Both In Vitro and In Vivo12
Gillory, Lauren A; Stewart, Jerry E; Megison, Michael L; Nabers, Hugh C; Mroczek-Musulman, Elizabeth; Beierle, Elizabeth A
2013-01-01
Hepatoblastoma is the most frequently diagnosed liver tumor of childhood, and children with advanced, metastatic or relapsed disease have a disease-free survival rate under 50%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult hepatocellular carcinoma, leading us to hypothesize that FAK would be present in hepatoblastoma and would impact its cellular survival. In the current study, we showed that FAK was present and phosphorylated in human hepatoblastoma tumor specimens. We also examined the effects of FAK inhibition upon hepatoblastoma cells using a number of parallel approaches to block FAK including RNAi and small molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Further, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse xenograft model of hepatoblastoma. The findings from this study will help to further our understanding of the regulation of hepatoblastoma tumorigenesis and may provide desperately needed novel therapeutic strategies and targets for aggressive, recurrent, or metastatic hepatoblastomas. PMID:23544173
Frau, Maddalena; Feo, Francesco; Pascale, Rosa M
2013-10-01
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Kaigorodova, Evgeniya V; Zavyalova, Marina V; Bychkov, Vyacheslav A; Perelmuter, Vladimir M; Choynzonov, Evgenii L
2016-06-24
The small heat shock protein 27 kDA (Hsp27) acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. To study the intracellular localization of phosphorylated and non-phosphorylated forms of Hsp27 in squamous cell carcinoma of the larynx (SCCL) and to evaluate their relationship with regional lymphatic metastasis and overall five-year survival. Tumor biopsies of larynx tissue were collected from 50 patients who were between the ages of 30 to 80 years and had a confirmed diagnosis of squamous cell carcinoma of the larynx. Immunohistochemistry was used to determine the intracellular localization of the phosphorylated and non-phosphorylated forms of Hsp27. The study revealed that the Hsp27 chaperone was expressed in both the cytoplasm and the nucleus of tumor cells in SCCL. The biopsies of patients with lymph node metastases showed significantly higher expression of the phosphorylated and unphosphorylated forms of Hsp27 in the nucleus compared to those of patients without lymph node metastases. At the same time, the cytoplasmic expression of Hsp27 in these patients did not differ statistically. Analysis of the overall five-year survival rates showed that negative Hsp27 expression in the nucleus of tumor cells is associated with the survival rate of patients with SCCL. The nuclear expression of phosphorylated and unphosphorylated forms of Hsp27 is a molecular marker of unfavorable squamous cell carcinoma of the larynx associated with lymphogenous metastasis and decreased total five-year survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah
Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less
Hematology: ATG and Newton's third law of motion.
Brunstein, Claudio G
2010-01-01
Patients with hematological malignancies have a risk of developing graft-versus-host disease (GVHD) following allogeneic hematopoietic stem-cell transplantation. The addition of ATG to prophylaxis regimens decreases the incidence of GVHD without compromising overall survival in these patients.
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan
2017-10-06
We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.
Wahba, Amy; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J
2018-06-04
Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSCs) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of the clinically relevant XPO1 inhibitor Selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, Selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. Based on γH2AX foci and neutral comet analyses, Selinexor inhibited the repair of radiation-induced DNA double strand breaks in GSCs suggesting that the Selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, Selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with Selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the in vivo response to Selinexor and radiation. Treatment of mice bearing orthotopic xenografts with Selinexor decreased tumor translational efficiency as determined from polysome profiles. Although Selinexor treatment alone had no effect on the survival of mice with brain tumors, it significantly enhanced the radiation-induced prolongation of survival. These results indicate that Selinexor enhances the radiosensitivity of glioblastoma cells and suggest that this effect involves a global inhibition of gene translation. Copyright ©2018, American Association for Cancer Research.
Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D
2013-01-01
Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625
Pathobiological implications of MUC4 in non-small-cell lung cancer.
Majhi, Prabin Dhangada; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P; Jain, Maneesh; Das, Srustidhar; Kaur, Sukhwinder; Shimizu, Su Tomohiro; West, William W; Johansson, Sonny L; Smith, Lynette M; Yu, Fang; Rolle, Cleo E; Sharma, Poonam; Carey, George B; Batra, Surinder K; Ganti, Apar Kishor
2013-04-01
Altered expression of MUC4 plays an oncogenic role in various cancers, including pancreatic, ovarian, and breast. This study evaluates the expression and role of MUC4 in non-small-cell lung cancer (NSCLC). We used a paired system of MUC4-expressing (H292) and MUC4-nonexpressing (A549) NSCLC cell lines to analyze MUC4-dependent changes in growth rate, migration, and invasion using these sublines. We also evaluated the alterations of several tumor suppressor, proliferation, and metastasis markers with altered MUC4 expression. Furthermore, the association of MUC4 expression (by immunohistochemistry) in lung cancer samples with patient survival was evaluated. MUC4-expressing lung cancer cells demonstrated a less proliferative and metastatic phenotype. Up-regulation of p53 in MUC4-expressing lung cancer cells led to the accumulation of cells at the G2/M phase of cell cycle progression. MUC4 expression attenuated Akt activation and decreased the expression of Cyclins D1 and E, but increased the expression of p21 and p27. MUC4 expression abrogated cancer cell migration and invasion by altering N- & E-cadherin expression and FAK phosphorylation. A decrease in MUC4 expression was observed with increasing tumor stage (mean composite score: stage I, 2.4; stage II, 1.8; stage III, 1.4; and metastatic, 1.2; p = 0.0093). Maximal MUC4 expression was associated with a better overall survival (p = 0.042). MUC4 plays a tumor-suppressor role in NSCLC by altering p53 expression in NSCLC. Decrease in MUC4 expression in advanced tumor stages also seems to confirm the novel protective function of MUC4 in NSCLC.
Kim, Dong Hwan; Won, Dong Il; Lee, Nan Young; Sohn, Sang Kyun; Suh, Jang Soo; Lee, Kyu Bo
2006-07-01
The effect of the transplant dose of each cell subset on engraftment kinetics and transplantation outcomes was evaluated in HLA-identical allogeneic peripheral blood stem cell transplantation (PBSCT). Sixty-nine patients were included in this retrospective study. Engraftment kinetics, transplantation outcomes, and immune reconstitution up to 1 year after transplantation were analyzed according to the transplant dose of CD34+ and non-CD34+ cells, including natural killer (NK) cells and CD8+ cytotoxic T (Tc) cells. An accelerated neutrophil engraftment was strongly associated with a higher transplant dose of NK cells (12 versus 16 days, P < .001) and Tc cells (13 versus 16 days, P < .001) but not CD34+ cells (P = .442). Survival analyses revealed a favorable prognosis for patients who received a higher dose of non-CD34+ cell subsets, rather than CD34+ cells, in terms of overall survival (OS; P = .024 for NK cells and .050 for Tc cells) and nonrelapse mortality (NRM; P = .005 for NK cells, .060 for Tc cells). In addition, a higher transplant dose of NK and Tc cells was correlated with a faster lymphoid reconstitution. In multivariate analyses, rapid neutrophil engraftment was correlated with a higher transplant dose of NK cells (P = .001) and Tc cells (P = .004). Moreover, an increased OS was associated with the NK cell dose (P = .007) and chronic graft-versus-host disease (P = .009), whereas a decreased NRM was associated with the NK dose (P = .024). In conclusion, in a PBSCT setting, a higher transplant dose of NK and Tc cells accelerated neutrophil engraftment, improved the immune reconstitution, and decreased NRM, thereby increasing OS after allogeneic PBSCT.
Apoptotic pathways of epothilone BMS 310705.
Uyar, Denise; Takigawa, Nagio; Mekhail, Tarek; Grabowski, Dale; Markman, Maurie; Lee, Francis; Canetta, Renzo; Peck, Ron; Bukowski, Ronald; Ganapathi, Ram
2003-10-01
BMS 310705 is a novel water-soluble analog of epothilone B currently in phase I clinical evaluation in the treatment of malignancies such as ovarian, renal, bladder, and lung carcinoma. Using an early passage cell culture model derived from the ascites of a patient clinically refractory to platinum/paclitaxel therapy, we evaluated the pathway of caspase-mediated apoptosis. Cells were treated for 1 h and subsequently evaluated for apoptosis, survival, and caspase activity. Apoptosis was determined by fluorescent microscopy. Caspase-3, -8, and -9 activities were determined by fluorometry using target tetrapeptide substrates. Mitochondrial release of cytochrome c was determined by immunoblot analysis. After treatment with BMS 310705, apoptosis was confirmed in >25% of cells at 24 h. Survival was significantly lower (P < 0.02) in cells treated with 0.05 micro M BMS 310705 vs paclitaxel. Analysis revealed an increase of caspase-9 and -3 activity; no caspase -8 activity was observed. Release of cytochrome c was detected at 12 h following treatment. SN-38 and topotecan failed to induce apoptosis. BMS 310705 induces significant apoptosis, decreases survival, and utilizes the mitochondrial-mediated pathway for apoptosis in this model.
Maurya, Akhilendra Kumar; Vinayak, Manjula
2017-04-01
AKT signaling is important to maintaining normal physiology. Hyperactivation of AKT signaling is frequent in cancer, which maintains a high oxidative state in a tumor microenvironment that is needed for tumor adaptation. Therefore, antioxidants are proposed to exhibit anticancer properties by interfering with the tumor microenvironment. Quercetin is an ubiquitous bioactive antioxidant rich in vegetables and beverages. The present study aimed to analyze cancer preventive property of quercetin in ascite cells of Dalton's lymphoma-bearing mice. Protein level was determined by Western blotting. Nitric oxide (NO) level was estimated spectrophotometrically using Griess reagent. Results show downregulation in phosphorylation of AKT and PDK1 by quercetin, which was consistent with decreased phosphorylation of downstream survival factors such as BAD, GSK-3β, mTOR, and IkBα. Further, quercetin attenuated the levels of angiogenic factor VEGF-A and inflammatory enzymes COX-2 and iNOS as well as NO levels, whereas it increased the levels of phosphatase PTEN. Overall results suggest that quercetin modulates AKT signaling leading to attenuation of cell survival, inflammation, and angiogenesis in lymphoma-bearing mice.
Baeten, Jeremy T.; Lilly, Brenda
2015-01-01
Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. PMID:25957400
Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S
2016-02-08
This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution.
Padmini, Ekambaram; Vijaya Geetha, Bose
2009-09-01
Mitochondrial heat shock protein 70 (mtHSP70) is found to play a primary role in cellular defense against physiological stress like exposure to environmental contaminants and helpful in the maintenance of cellular homeostasis by promoting the cell survival. In the present investigation, the environmental-stress-induced increase in mtHSP70 levels along with the quantification of apoptosis signal regulating kinase 1 (ASK1) and thioredoxin (Trx) were measured in the liver mitochondria of grey mullets (Mugil cephalus) collected from the polluted Ennore estuary and the unpolluted Kovalam estuary for a period of 2 years. The results showed elevated lipid peroxide (LPO) and decreased total antioxidant capacity along with the decrease in mitochondrial viability percentage. Mitochondrial HSP70, ASK1, and Trx levels were increased under this stress condition. A 42% increase in LPO levels and 18% decrease in mitochondrial survivality were observed in the polluted-site fish liver mitochondria when compared to the results of unpolluted estuary. We also report that, under observed oxidative stress condition in Ennore fish samples, the ASK1 levels are only moderately elevated (13% increase). This may be due to mitochondrial-HSP70-induced adaptive tolerance signaling for the activation of Trx (22% increase) which suppresses the ASK1 expression thereby promoting the cell survival that leads to the maintenance of the cellular homeostasis.
Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar
2017-01-01
Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular zinc homeostasis in Leishmania can be explored for new drug targets and chemotherapeutics to control Leishmanial growth and disease progression.
Quantitative survival of Leptospira interrogans in soil and water microcosms.
Casanovas-Massana, Arnau; Pedra, Gabriel Ghizzi; Wunder, Elsio A; Diggle, Peter J; Begon, Mike; Ko, Albert I
2018-04-27
Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a qPCR and a PMA-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/mL or g decreased to approximately 100 cells/mL or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether our findings suggest that the environment is not a multiplication reservoir, but a temporary carrier of the L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in endemic areas. Copyright © 2018 American Society for Microbiology.
[Knockdown of ATG5 enhances the sensitivity of human renal carcinoma cells to sunitinib].
Li, Peng; Han, Qi; Tang, Ming; Zhang, Keqin
2017-03-01
Objective To investigate the expression levels of autophagy-related gene 5 (ATG5) and microtubule-associated protein 1 light chain 3 (LC3) and their effects on sunitinib resistance in human renal carcinoma cells. Methods After clinic-pathologic feature and survival analysis, 99 renal clear cell carcinoma tissues with different histological grades were used to detect the expression of ATG5 and LC3 by immunohistochemistry. Renal carcinoma cell line A-498 was infected with lentivirus-mediated ATG5 shRNA. Western blot analysis was performed to confirm the efficiency of ATG5 knockdown. Proliferation rate of A-498 cells in control group and ATG5 low expression group was determined by flow cytometry. Finally, the survival rate was detected by MTT assay after A-498 cells were treated with different concentrations of sunitinib. Results The expression levels of ATG5 and LC3 in renal clear cell carcinoma tissues were significantly higher than those in para-tumor tissues. The expression levels of ATG5 and LC3 were associated with classification, histological grade, TNM stage and survival rate, rather than gender, age, location, tumor size. Compared with the control group, the protein expressions of ATG5 and LC3 significantly decreased in A-498 cells with ATG5 low expression. The cell proliferation rate in ATG5 downregulation group was lower than that in the control group. Compared with control group, the survival rate in ATG5 low expression group were significantly reduced in a dose-dependent manner after sunitinib treatment. Conclusion Autophagy is active in renal clear cell carcinoma, and the drug sensitivity to sunitinib in renal cancer cells can be enhanced by the downregulation of ATG5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.
2008-12-01
Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less
Chu, Theresa S; Chen, Jocelyn S; Lopez, Jay Patrick; Pardo, Francisco S; Aguilera, Joseph; Ongkeko, Weg M
2008-09-01
To investigate whether the mechanism for the reversal of ABCG2 (also known as ABCP, MXR, and BCRP)-mediated drug resistance by imatinib mesylate (Gleevec, STI571; Novartis Pharmaceuticals Corp, East Hanover, New Jersey) is caused by the downregulation of Akt kinase. The adenosine triphosphatase-binding cassette protein ABCG2 has been suggested to be involved in the resistance against various anticancer drugs. Recent studies show that imatinib reverses ABCG2-mediated drug resistance to topotecan hydrochloride and SN-38. In addition, we have previously reported that imatinib downregulates Akt kinase activity, which is elevated in head and neck squamous cell carcinoma. Flow cytometric analysis was used to determine the levels of drug or dye extrusion from the cells. We used Akt kinase inhibitors, transfection with short interfering RNA (siRNA) Akt, and the tyrosine kinase inhibitor imatinib to show that these treatments decreased the side population by 50% to 70% in Hoechst 33342 extrusion studies. Doxorubicin hydrochloride extrusion experiments also demonstrated 20% to 26% decrease in doxorubicin efflux on cells treated with imatinib, 1L6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, and transfection with siRNA Akt. With Western blot and immunofluorescence experiments, our data suggest that ABCG2 translocation is the mechanism by which imatinib and Akt regulate drug resistance. Clonogenic survival assays performed with imatinib-treated cells resulted in a dose-dependent decrease in cell survival compared with the control population. Our findings demonstrate that imatinib confers greater doxorubicin retention, presumably via inhibition of Akt, which regulates ABCG2 function.
The new approaches to preservation of graft cell integrity in preservation for transplantation.
Gewartowska, Magdalena; Olszewski, Waldemar L
2005-01-01
Restoration of cell plasma membrane integrity after injury is essential for the survival of animal cells. In case of graft preservation or during chemotherapy in cancer, cell membrane integrity and the process of its repair are disrupted. Cytoprotective substances are important in such cases, as well as in other diseases, for example in myocardial infarction, acute insults and in chronic neurodegenerative diseases. Hyperosmolarity is a condition in which cell membrane stability may be damaged in vivo but preserved in the in vitro conditions. Hypertonicity causes water leaving from cells by osmosis, decreasing cell volume and increasing of intracellular ionic strength. High intracellular ionic strength perturbs cellular function by decreasing the rates of biochemical reaction. We review the new experimentally studied cytoprotective substances and their application in cell membrane protection. Moreover, we present our data on the effects of hyperosmolarity and its protective effect on cell internal structure.
Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival
Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.
2012-01-01
The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448
Fang, Liang; Gong, Jiuyu; Wang, Ying; Liu, Rongrong; Li, Zengshan; Wang, Zhe; Zhang, Yun; Zhang, Chunmei; Song, Chaojun; Yang, Angang; Ting, Jenny P-Y; Jin, Boquan; Chen, Lihua
2014-09-18
MICA/B are major ligands for NK cell activating receptor NKG2D and previous studies showed that the serum level of soluble MICA (sMICA) is an independent prognostic factor for advanced human hepatocellular carcinoma. However, the correlation between cellular MICA/B expression pattern and human hepatocellular carcinoma progression has not been well explored. The unfolded protein response is one of the main causes of resistance to chemotherapy and radiotherapy in tumor cells. However, whether the UPR in HCC could regulate the expression levels of MICA/B and affect the sensitivity of HCC cells to NK cell cytolysis has not been established yet. MICA/B expression pattern was evaluated by immunohistochemistry and Kaplan-Meier survival analysis was done to explore the relationship between MICA/B expression level and patient survival. The protein and mRNA expression levels of MICA/B in SMMC7721 and HepG2 cells treated by tunicamycin were evaluated by flow cytometry, Western Blot and RT-PCR. The cytotoxicity analysis was performed with the CytoTox 96 Non-Radioactive LDH Cytotoxicity Assay. MICA/B was highly expressed in human hepatocellular carcinoma and the expression level was significantly and negatively associated with tumor-node metastasis (TNM) stages. Patients with low level of MICA/B expression showed a trend of shorter survival time. The unfolded protein response (UPR) downregulated the expression of MICA/B. This decreased protein expression occurred via post-transcriptional regulation and was associated with proteasomal degradation. Moreover, decreased expression level of MICA/B led to the attenuated sensitivity of human HCC to NK cell cytotoxicity. These new findings of the connection of MICA/B, UPR and NK cells may represent a new concrete theory of NK cell regulation in HCC, and suggest that targeting this novel NK cell-associated immune evasion pathway may be meaningful in treating patients with HCC.
GATA4 promotes hepatoblastoma cell proliferation by altering expression of miR125b and DKK3.
Pei, Yihua; Yao, Qin; Yuan, Sibo; Xie, Bozhen; Liu, Yan; Ye, Chunsheng; Zhuo, Huiqin
2016-11-22
GATA4 is a zinc finger DNA-binding protein that plays an important role in mammalian liver development. However, the effects of GATA4 in hepatoblastoma (HB), a common liver cancer in pediatric patients, remain largely unknown. In this study, we demonstrate that GATA4 promotes growth and survival in the Huh6 human hepatoblastoma cell line. GATA4 expression was high in Huh6 cells, and its knockdown decreased expression of Dickkopf-related protein 3 (DKK3), a gene that may contribute to premature or undifferentiated phenotypes in HB. GATA4 also directly bound to the promoter regions of the miRNA miR125b and inhibited its expression in Huh6 cells. DKK3 was a direct target of miR125b in Huh6 cells. Inhibition of miR125b or overexpression of DKK3 promoted proliferation, survival, migration, and invasion in Huh6 cells. This is the first report to demonstrate that GATA4 promotes oncogenesis by inhibiting miR125b-dependent suppression of DKK3 expression. This GATA4/miR125b/DKK3 axis may be a major regulator of growth, migration, invasion, and survival in hepatoma cells, and is therefore a potential therapeutic target or biomarker for progression in HB patients.
van der Sligte, Naomi E; Kampen, Kim R; ter Elst, Arja; Scherpen, Frank J G; Meeuwsen-de Boer, Tiny G J; Guryev, Victor; van Leeuwen, Frank N; Kornblau, Steven M; de Bont, Eveline S J M
2015-06-20
Acute lymphoblastic leukemia (ALL) relapse remains a leading cause of cancer related death in children, therefore, new therapeutic options are needed. Recently, we showed that a peptide derived from Cyclic-AMP Responsive Element Binding Protein (CREB) was highly phosphorylated in pediatric leukemias. In this study, we determined CREB phosphorylation and mRNA levels showing that CREB expression was significantly higher in ALL compared to normal bone marrow (phosphorylation: P < 0.0001, mRNA: P = 0.004). High CREB and phospho-CREB expression was correlated with a lower median overall survival in a cohort of 140 adult ALL patients. ShRNA mediated knockdown of CREB in ALL cell lines blocked leukemic cell growth by inducing cell cycle arrest and apoptosis. Gene expression array analysis showed downregulation of CREB target genes regulating cell proliferation and glucose metabolism and upregulation of apoptosis inducing genes. Similar to CREB knockdown, the CREB inhibitor KG-501 decreased leukemic cell viability and induced apoptosis in ALL cell lines, as well as primary T-ALL samples, with cases showing high phospho-CREB levels being more sensitive than those with lower phospho-CREB levels. Together, these in vitro findings support an important role for CREB in the survival of ALL cells and identify this transcription factor as a potential target for treatment.
NASA Technical Reports Server (NTRS)
Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.
1992-01-01
This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.
Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia
Rodriguez-Brotons, A.; Bietiger, W.; Peronet, C.; Magisson, J.; Sookhareea, C.; Langlois, A.; Mura, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.; Maillard, E.
2016-01-01
In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm2) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040
Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.
2009-01-01
The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433
Pre-Clinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma
Waters, Alicia M.; Stewart, Jerry E.; Atigadda, Venkatram R.; Mroczek-Musulman, Elizabeth; Muccio, Donald D.; Grubbs, Clinton J.; Beierle, Elizabeth A.
2015-01-01
Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell cycle analysis, migration, and invasion were studied using alamarBlue® assays, FACS, and Transwell® assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion and migration, cell cycle arrest and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment. PMID:25944918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Adam R.; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas; Atkinson, Rachel L.
Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL),more » or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients and IBC patient-derived cell lines. A more expansive study is needed to verify these observations.« less
Combination Treatment of Glioblastoma by Low-Dose Radiation and Genistein.
Atefeh, Zamanian; Vahid, Changizi; Hasan, Nedaie; Saeed, Amanpour; Mahnaz, Haddadi
2016-01-01
Gioblastoma multiforme as a chemoresistant and radioresistant malignant cell line needs to novel strategies to treatment. Low-dose hyper-radiosensitivity (LDHRS) seems to be an effective phenomenon to irradiation that can save normal brain fibroblasts. Genistein which is a soy isoflavone can be cytotoxic in some tumor cell lines. So we determined to study the effect of combining these two treatment modalities. After 30 hours incubation with Genistein in different concentrations on U87MG cell line, proliferation and clonogenicity were conducted by both clonogenic and MTT assays. A conventional 2Gy radiation dose was compared with 10 doses of 0.2Gy gamma irradiation with 3 minutes and 1 hour intervals. Finally, concurrent effect of these modalities was assessed. Based on acquired cell doubling time (30 hours), one doubling time treatment by Genistein could decrease clonogenicity. U87MG cell line exhibited HRS at low dose irradiations. 2Gy irradiation was more effective than ultra-fractionation methods in comparison with control group. All groups with 50uM concentration of Genistein showed decrease in the survival. This decrease compared with control group, in 10x0.2Gy with 3 minutes intervals plus 50uM Genistein was significant and for groups with the same dose of Genistein but along with continuous 2Gy was more significant. In one day treatment regimen, 10x0.2Gy ultra-fractionation with 3 minutes and 1 hour intervals seems to be less effective than conventional 2Gy irradiation, however adding 50uM Genistein can decrease survival more. Although 2Gy conventional dose plus 50uM Genistein was the most effective regimen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Schilling, B.; Sondermann, W.; Zhao, F.; Griewank, K. G.; Livingstone, E.; Sucker, A.; Zelba, H.; Weide, B.; Trefzer, U.; Wilhelm, T.; Loquai, C.; Berking, C.; Hassel, J.; Kähler, K. C.; Utikal, J.; Al Ghazal, P.; Gutzmer, R.; Goldinger, S. M.; Zimmer, L.; Paschen, A.; Hillen, U.; Schadendorf, D.
2014-01-01
Background Since the majority of melanomas eventually become resistant and progress, combining selective BRAF inhibitors (BRAFi) with immunotherapies has been proposed to achieve more durable treatment responses. Here, we explored the impact of selective BRAFi on the hosts' immune system. Patients and methods Clinical data, whole blood counts (WBC) and serum lactate dehydrogenase (LDH) of 277 vemurafenib- and 65 dabrafenib-treated melanoma patients were evaluated. The frequency and phenotype of lymphocyte subpopulations were determined by flow cytometry while T cell cytokine secretion was measured by multiplex assays. Results Progression-free survival (PFS) as well as overall survival (OS) were similar in patients treated with either BRAFi. High pretreatment LDH was associated with shorter PFS and OS in both groups. During therapy, peripheral lymphocytes decreased by 24.3% (median, P < 0.0001) in vemurafenib-treated patients but remained unchanged in dabrafenib-treated patients (+1.2%, P = 0.717). Differentiation of peripheral lymphocytes of vemurafenib-treated patients showed a significant decrease in CD4+ T cells (P < 0.05). Within CD4+ T cells obtained during treatment, an increase in CCR7+CD45RA+ (naïve) and a decrease in CCR7+CD45RA− (central memory) populations were found (P < 0.01 for both). Furthermore, secretion of interferon-γ and interleukin-9 by CD4+ T cells was significantly lower in samples obtained during vemurafenib treatment compared with baseline samples. Conclusion While both compounds have comparable clinical efficacy, vemurafenib but not dabrafenib decreases patients peripheral lymphocyte counts and alters CD4+ T cell phenotype and function. Thus, selective BRAFi can significantly affect patients' peripheral lymphocyte populations. Fully understanding these effects could be critical for successfully implementing combinatorial therapies of BRAFi with immunomodulatory agents. PMID:24504444
Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer
2014-10-01
3962–76. 27. Lin SP, Lee YT, Wang JY, Miller SA, Chiou SH, Hung MC, et al. Survival of cancer stem cells under hypoxia and serum depletion via...the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 2007;25:765–78. 26. SahuB, LaaksoM,OvaskaK...al. Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death Dis 2013;4:e706. 29
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nambiar, Dhanya K.; School of Environmental Sciences, Jawaharlal Nehru University, New Delhi; Rajamani, Paulraj
Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response tomore » IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic (VEGF, iNOS), migratory (MMP-2) and EMT promoting proteins (uPA, vimentin, N-cadherin) were up-regulated by IR in PCa cells. Interestingly, all of these invasive and EMT promoting actions of IR were markedly decreased by silibinin. Further, we found that potentiated effect was an end result of attenuation of IR-activated mitogenic and pro-survival signaling, including Akt, Erk1/2 and STAT-3, by silibinin.« less
Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F
2015-10-01
Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.
Rai, Kelash; Vikash, Sindhu; Chen, Liaobin; Li, Jingfeng
2017-01-01
Background and objective The prognosis of male anal squamous cell carcinoma (MASCC) and female anal squamous cell carcinoma (FASCC) is variable. The influence of tumor subtype on the survival rate and gender is poorly known. Our study is the largest population-based study and aims to outline the difference in survival between MASCC and FASCC patients. Methods A retrospective population-based study was performed to compare the disease-specific mortalities (DSMs) between genders related to the tumor subtypes. The Surveillance, Epidemiology, and End Results (SEER) program database was employed to obtain the data from January 1988 to December 2014. Results A total of 4,516, (3,249 males and 1,267 females), patients with anal squamous cell carcinomas (ASCC) were investigated. The 5-year DSMs were 24.18% and 18.08% for men and women, respectively. The univariate analysis of the male basaloid squamous cell carcinoma (BSCC) and cloacogenic carcinoma (CC) patients demonstrated higher DSMs (P <0.001). Moreover, in the multivariate analysis, BSCC and CC were associated with soaring DSMs in male patients (P < 0.05). Conclusions In the cohort of BSCC and CC patients, male patients demonstrated a considerable decrease in survival rate compared to females. A more precise classification of ASCC and individualized management for MASCC are warranted. PMID:29137429
Park, In-Su; Mondal, Arindam; Chung, Phil-Sang; Ahn, Jin Chul
2015-03-01
The aim of this study was to investigate the effects of low-level light therapy (LLLT) on transplanted human adipose-derived mesenchymal stromal cells (ASCs) in the skin flap of mice. LLLT, ASC transplantation and ASC transplantation with LLLT (ASC + LLLT) were applied to the skin flap. Immunostaining and Western blot analysis were performed to evaluate cell survival and differentiation and secretion of vascular endothelial growth factor and basic fibroblast growth factor by the ASCs. Vascular regeneration was assessed by means of immunostaining in addition to hematoxylin and eosin staining. In the ASC + LLLT group, the survival of ASCs was increased as the result of the decreased apoptosis of ASCs. The secretion of growth factors was higher in this group as compared with ASCs alone. ASCs contributed to tissue regeneration through vascular cell differentiation and secretion of angiogenic growth factors. The ASC + LLLT group displayed improved treatment efficacy including neovascularization and tissue regeneration compared with ASCs alone. Transplanting ASCs to ischemic skin flaps improved therapeutic efficacy for ischemia treatment as the result of enhanced cell survival and paracrine effects. These data suggest that LLLT is an effective biostimulator of ASCs in vascular regeneration, which enhances the survival of ASCs and stimulates the secretion of growth factors in skin flaps. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Fonseca, A.S.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.
2015-01-01
Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337
Ekambaram, Padmini; Narayanan, Meenakshi; Parasuraman, Parimala
2017-02-15
The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xia, Lingzi; Yin, Zhihua; Li, Xuelian; Ren, Yangwu; Zhang, Haibo; Zhao, Yuxia; Zhou, Baosen
2017-01-01
Background To explore the association of genetic polymorphisms in pre-miRNA 30c-1 rs928508 and pre-miRNA 27a rs895819 with non-small-cell lung cancer prognosis. Materials and Methods 480 patients from five hospitals were enrolled in this prospective cohort study. They were followed up for five years. The association between genotypes and overall survival was assessed by Cox proportional hazards regression models. A meta-analysis was conducted to provide evidence for the effect of microRNA 27a rs895819 on cancer survival. Results G-allele containing genotypes of microRNA 30c-1 polymorphisms and C-allele containing genotypes of microRNA 27a were significantly associated with poorer overall survival. Multivariate Cox regression models indicated that these genetic polymorhpisms were independently predictive factors of poorer overall survival. In stratified analysis, the effect was observed in many strata. The significant joint effect was also observed in our study. Patients with G allele of microRNA 30c-1 rs928508 and C allele of microRNA 27a rs895819 had the poorer overall survival than patients with C allele of rs928508 and T allele of rs895819. The effect of the microRNA 27a rs895819 on non-small cell lung cancer overall survival was supported by the meta-analysis results. Conclusions The two single nucleotide polymorphisms in microRNA 30c-1 and microRNA 27a can predict the outcome of non-small cell lung cancer patients and they may decrease the sensitivity to anti-cancer drugs. PMID:29100439
Banerjee, Nivedita; Talcott, Stephen; Safe, Stephen; Mertens –Talcott, Susanne U
2012-01-01
Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast-tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol 3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract. Pg extract (2.5–50 µg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1. In summary the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an important role in the proliferative/inflammatory phenotype exhibited by these cell lines PMID:22941571
Shen, Zhen; Jing, Yan; Lu, Haibo; Li, Heng; Yang, Xiaoye; Cui, Xiangbin; Li, Yuqing; Lou, Zheng; Liu, Peng; Zhang, Cun; Zhang, Wei
2017-01-01
Circulating tumor cells (CTC) are useful in early detection of colorectal cancer. This study described a newly developed platform, integrated subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), to assess CTCs in colorectal cancer. CTCs were detected by SE-iFISH in 40 of 44 preoperative colorectal cancer patients, and yielded a sensitivity of 90.9%, which was significantly higher than CellSearch system (90.9% vs. 43.2%, P=0.033). No significant association was found between tumor stage, survival and preoperative CTC number. CTCs were detected in 10 colorectal cancer patients one week after surgery; seven patients with decreased CTC numbers (compared with preoperative CTC number) were free of recurrence; whereas two of the three patients with increased CTC numbers had tumor recurrence. Moreover, CTCs were detected in 34 colorectal cancer patients three months after surgery; patients with CTC<2 at three months after surgery had significantly longer Progression Free Survival than those with CTC>=2 (P=0.019); patients with decreased CTC number (compared with preoperative CTC number) had significantly longer Progression Free Survival than those with increased CTC number (P=0.003). In conclusion, CTCs could be detected in various stages of colorectal cancer using SE-iFISH. Dynamic monitoring of CTC numbers could predict recurrence and prognosis. PMID:28423493
Dalle, Stéphane; Ravier, Magalie A; Bertrand, Gyslaine
2011-03-01
Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs. Copyright © 2010 Elsevier Inc. All rights reserved.
UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense
Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea
2012-01-01
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638
Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.
Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian
2013-10-14
MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.
Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter
2011-09-01
The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.
Kikuchi, Hidehiko; Kuribayashi, Futoshi; Takami, Yasunari; Imajoh-Ohmi, Shinobu; Nakayama, Tatsuo
2011-02-25
Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). Copyright © 2011 Elsevier Inc. All rights reserved.
Kelly, J; Murphy, J E J
2016-12-01
Sunlight represents the primary threat to mitochondrial integrity in skin given the unique nature of the mitochondrial genome and its proximity to the electron transport chain. The accumulation of mitochondrial DNA (mtDNA) mutations is a key factor in many human pathologies and this is linked to key roles of mitochondrial function in terms of energy production and cell regulation. The main objective of this study was to evaluate solar radiation induced changes in mitochondrial integrity, function and dynamics in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart and evaluated using cell survival, viability and mitochondrial membrane potential (MMP) and mass at 1, 4 and 7days post one exposure for Group A and 1, 4, 7 and 14days post second exposure for Group B. Viability and survival of HaCaT and HDFn cells decreased after repeat exposure to Simulated Sunlight Irradiation (SSI) with no recovery. HDFn cells showed no loss in MMP after one or two exposures to SSI compared to HaCaT cells which showed a periodic loss of MMP after one exposure with a repeat exposure causing a dramatic decrease from which cells did not recover. Mitochondrial Mass in exposed HDFn cells was consistent with control after one or two exposures to SSI; however mitochondrial mass was significantly decreased in HaCaT cells. Data presented here suggests that mitochondria in epidermal cells are more sensitive to sunlight damage compared to mitochondria in dermal cells, despite their origin, confirming a skin layer specific sensitivity to sunlight, but not as expected. Copyright © 2016 Elsevier B.V. All rights reserved.
Fujimichi, Yuki; Hamada, Nobuyuki
2014-01-01
Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y; Dahlman, E
2014-06-01
Purpose: To evaluate the analytic formula of the cell death probability after single fraction dose. Methods: Cancer cells endlessly divide, but radiation causes the cancer cells to die. Not all cells die right away after irradiation. Instead, they continue dividing for next few cell cycles before they stop dividing and die. At the end of every cell cycle, the cell decides if it undertakes the mitotic process with a certain probability, Pdiv, which is altered by the radiation. Previously, by using a simple analytic model of radiobiology experiments, we obtained a formula of Pdeath (= 1 − Pdiv). A questionmore » is if the proposed probability can reproduce the well-known survival data of the LQ model. In this study, we evaluated the formula by doing a Monte Carlo simulation of the cell proliferation process. Starting with Ns seed cells, the cell proliferation process was simulated for N generations or until all cells die. We counted the number of living cells at the end. Assuming that the cell colony survived when more than Nc cells were still alive, the surviving fraction S was estimated. We compared the S vs. dose, or S-D curve, with the LQ model. Results: The results indicated that our formula does not reproduce the experimentally observed S-D curve without selecting appropriate α and α/β. With parameter optimization, there was a fair agreement between the MC result and the LQ curve of dose lower than 20Gy. However, the survival fraction of MC decreased much faster in comparison to the LQ data for doses higher than 20 Gy. Conclusion: This study showed that the previously derived probability of cell death per cell cycle is not sufficiently accurate to replicate common radiobiological experiments. The formula must be modified by considering its cell cycle dependence and some other unknown effects.« less
Shannon, Stephen; Vaca, Connan; Jia, Dongxuan; Entersz, Ildiko; Schaer, Andrew; Carcione, Jonathan; Weaver, Michael; Avidar, Yoav; Pettit, Ryan; Nair, Mohan; Khan, Atif; Foty, Ramsey A.
2015-01-01
Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our results describe a new role for Dex as a suppressor of GBM dispersal and growth. PMID:26284619
Imamura, Keiko; Takeshima, Takao; Kashiwaya, Yoshihiro; Nakaso, Kazuhiro; Nakashima, Kenji
2006-11-01
It has been postulated that the pathogenesis of Parkinson's disease (PD) is associated with mitochondrial dysfunction. Rotenone, an inhibitor of mitochondrial complex I, provides models of PD both in vivo and in vitro. We investigated the neuroprotective effect of D-beta-hydroxybutyrate (bHB), a ketone body, against rotenone toxicity by using SH-SY5Y dopaminergic neuroblastoma cells. SH-SY5Y cells, differentiated by all-trans-retinoic acid, were exposed to rotenone at concentrations ranging from 0 to 1,000 nM. We evaluated cellular oxidation reduction by the alamarBlue assay, viability by lactate dehydrogenase (LDH) assay, and survival/death ratio by live/dead assays. Exposure to rotenone for 48 hr oxidized cells and decreased their viability and survival rate in a concentration-dependent manner. Pretreatment of cells with 8 mM bHB provided significant protection to SH-SY5Y cells. Whereas rotenone caused the loss of mitochondrial membrane potential, released cytochrome c into the cytosol, and reduced cytochrome c content in mitochondria, addition of bHB blocked this toxic effect. bHB also attenuated the rotenone-induced activation of caspase-9 and caspase-3. Administration of 0-10 mM 3-nitropropionic acid, a complex II inhibitor, also decreased the reducing power of SH-SY5Y cells measured by alamarBlue assay. Pretreatment with 8 mM bHB attenuated the decrease of alamarBlue fluorescence. These data demonstrated that bHB had a neuroprotective effect that supported the mitochondrial respiration system by reversing the inhibition of complex I or II. Ketone bodies, the alternative energy source in the mammalian brain, appear to have therapeutic potential in PD. Copyright 2006 Wiley-Liss, Inc.
Renibacterium salmoninarum: effect of hypochlorite treatment, and survival in water.
Hirvelä-Koski, Varpu
2004-04-21
The effect of different concentrations of sodium hypochlorite on Renibacterium salmoninarum and the survival of the bacterium in autoclaved river water and groundwater were examined. The disinfection trial was performed using R. salmoninarum ATCC 33209. The concentrations of free chlorine were 10, 50, 100 and 200 mg 1(-1), the contact times were 5, 15, and 30 min and 24 h, and the test suspensions were subcultured both on Kidney disease medium (KDM2) agar and in 3 parallel KDM2 broths, which were then subcultured on KDM2 and selective KDM (SKDM) agar. The survival of the bacterium in river water and groundwater was studied using 4 isolates of R. salmoninarum including ATCC 33209. Treatment with sodium hypochlorite effectively reduced the number of culturable cells of R. salmoninarum, but use of the recovery broth showed that small numbers of cells remained viable at all concentrations of free chlorine. The numbers of R. salmoninarum decreased to an undetectable level after 4 wk incubation in the survival trials, but low numbers of colonies were again found in the subculture after 5 wk incubation. Viable cells of R. salmoninarum were still detected in subcultures of all strains after 20 wk of incubation in river water.
Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.
2013-01-01
Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212
Melo, Adma Nadja Ferreira de; Souza, Geany Targino de; Schaffner, Donald; Oliveira, Tereza C Moreira de; Maciel, Janeeyre Ferreira; Souza, Evandro Leite de; Magnani, Marciane
2017-06-19
This study assessed changes in thermo-tolerance and capability to survive to simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 inoculated in chicken breast meat following exposure to stresses (cold, acid and osmotic) commonly imposed during food processing. The effects of the stress imposed by exposure to oregano (Origanum vulgare L.) essential oil (OVEO) on thermo-tolerance were also assessed. After exposure to cold stress (5°C for 5h) in chicken breast meat the test strains were sequentially exposed to the different stressing substances (lactic acid, NaCl or OVEO) at sub-lethal amounts, which were defined considering previously determined minimum inhibitory concentrations, and finally to thermal treatment (55°C for 30min). Resistant cells from distinct sequential treatments were exposed to simulated gastrointestinal conditions. The exposure to cold stress did not result in increased tolerance to acid stress (lactic acid: 5 and 2.5μL/g) for both strains. Cells of S. Typhimurium PT4 and S. Enteritidis PT4 previously exposed to acid stress showed higher (p<0.05) tolerance to osmotic stress (NaCl: 75 or 37.5mg/g) compared to non-acid-exposed cells. Exposure to osmotic stress without previous exposure to acid stress caused a salt-concentration dependent decrease in counts for both strains. Exposure to OVEO (1.25 and 0.62μL/g) decreased the acid and osmotic tolerance of both S. Enteritidis PT4 and S. Typhimurium PT4. Sequential exposure to acid and osmotic stress conditions after cold exposure increased (p<0.05) the thermo-tolerance in both strains. The cells that survived the sequential stress exposure (resistant) showed higher tolerance (p<0.05) to acidic conditions during continuous exposure (182min) to simulated gastrointestinal conditions. Resistant cells of S. Enteritidis PT4 and S. Typhimurium PT4 showed higher survival rates (p<0.05) than control cells at the end of the in vitro digestion. These results show that sequential exposure to multiple sub-lethal stresses may increase the thermo-tolerance and enhance the survival under gastrointestinal conditions of S. Enteritidis PT4 and S. Typhimurium PT4. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Hoikyung; Bang, Jihyun; Beuchat, Larry R; Ryu, Jee-Hoon
2008-05-01
Survival of Enterobacter sakazakii dried on the surface of stainless steel and exposed to 43% relative humidity, as affected by temperature, was studied. Populations of E. sakazakii (7.4 to 8.6 log CFU per coupon) on coupons dried for 2 h at 22 degrees C decreased significantly (P < or = 0.05) at 4, 25, and 37 degrees C within 10, 3, and 1 day(s), respectively, but the pathogen remained viable for up to 60 days. At a given storage temperature and time, reductions were significantly greater when cells had been suspended in water rather than in infant formula before drying. Formation of biofilm by E. sakazakii on stainless steel immersed in M9 medium, which contains minimal concentrations of nutrients, and infant formula at 25 degrees C and subsequent survival of cells at 25 degrees C as affected by exposure to 23, 43, 68, 85, and 100% relative humidity were investigated. Some of the cells in these biofilms survived under all test relative humidities for up to 42 days. The overall order of survival as affected by relative humidity was 100 > 23 = 43 = 68 > 85% relative humidity, regardless of the medium in which the biofilm was formed. Reduction in viability of cells was significantly greater in biofilm that had formed in M9 medium than in biofilm formed in infant formula. Results indicate that infant formula provides protection for attached cells, as well as cells in biofilm, against lethality on exposure to desiccation. These results are useful when predicting the survival characteristics of E. sakazakii on stainless steel surfaces in processing and preparation kitchen environments.
Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1
NASA Astrophysics Data System (ADS)
Pasini, D.
2014-04-01
Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.
Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose M; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; del Toro-Arreola, Susana; de Celis-Carrillo, Ruth; Sahagun-Flores, Jose E; de Alba-Garcia, Javier E Garcia; Hernandez-Flores, Georgina
2010-05-19
Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IkappaBalpha and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IkappaBalpha levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR. PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells.
2010-01-01
Background Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. Methods HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. Results PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR. Conclusion PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells. PMID:20482878
Zinc as a paracrine effector in pancreatic islet cell death.
Kim, B J; Kim, Y H; Kim, S; Kim, J W; Koh, J Y; Oh, S H; Lee, M K; Kim, K W; Lee, M S
2000-03-01
Because of a huge amount of Zn2+ in secretory granules of pancreatic islet beta-cells, Zn2+ released in certain conditions might affect the function or survival of islet cells. We studied potential paracrine effects of endogenous Zn2+ on beta-cell death. Zn2+ induced insulinoma/islet cell death in a dose-dependent manner. Chelation of released endogenous Zn2+ by CaEDTA significantly decreased streptozotocin (STZ)-induced islet cell death in an in vitro culture system simulating in vivo circumstances but not in the conventional culture system. Zn2+ chelation in vivo by continuous CaEDTA infusion significantly decreased the incidence of diabetes after STZ administration. N-(6-methoxy-quinolyl)-para-toluene-sulfonamide staining revealed that Zn2+ was densely deposited in degenerating islet cells 24 h after STZ treatment, which was decreased by CaEDTA infusion. We show here that Zn2+ is not a passive element for insulin storage but an active participant in islet cell death in certain conditions, which in time might contribute to the development of diabetes in aged people.
Chao, Pei-Yu; Lin, James A.; Ye, Je-Chiuan; Hwang, Jin-Ming; Ting, Wei-Jen; Huang, Chih-Yang; Liu, Jer-Yuh
2017-01-01
Objectives:Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods:We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results:Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy. PMID:28824312
β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation
Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.
2013-01-01
Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208
Transcriptome-derived stromal and immune scores infer clinical outcomes of patients with cancer.
Liu, Wei; Ye, Hua; Liu, Ying-Fu; Xu, Chao-Qun; Zhong, Yue-Xian; Tian, Tian; Ma, Shi-Wei; Tao, Huan; Li, Ling; Xue, Li-Chun; He, Hua-Qin
2018-04-01
The stromal and immune cells that form the tumor microenvironment serve a key role in the aggressiveness of tumors. Current tumor-centric interpretations of cancer transcriptome data ignore the roles of stromal and immune cells. The aim of the present study was to investigate the clinical utility of stromal and immune cells in tissue-based transcriptome data. The 'Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data' (ESTIMATE) algorithm was used to probe diverse cancer datasets and the fraction of stromal and immune cells in tumor tissues was scored. The association between the ESTIMATE scores and patient survival data was asessed; it was indicated that the two scores have implications for patient survival, metastasis and recurrence. Analysis of a colorectal cancer progression dataset revealed that decreased levels immune cells could serve an important role in cancer progression. The results of the present study indicated that trasncriptome-derived stromal and immune scores may be a useful indicator of cancer prognosis.
Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.
2013-01-01
The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375
Autophagy: not good OR bad, but good AND bad.
Altman, Brian J; Rathmell, Jeffrey C
2009-05-01
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.
Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou
2013-01-01
Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM. PMID:24278406
Radiation Induced Vaccination to Breast Cancer
2016-12-01
in supporting a memory CD8 T cell response and decreased MDSCs but in reality the small patient numbers and the relatively short survival times...ABSTRACT Inhibiting TGFβ in the context of focal irradiation seems to create a favorable systemic immune landscape that drives T cell memory ...differentiation while limiting myeloid suppression. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES
Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity
Buda, Renata; Liu, Yunxiao; Yang, Jin; Hegde, Smitha; Stevenson, Keiran; Bai, Fan; Pilizota, Teuta
2016-01-01
For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood. Here, we characterize E. coli’s passive response to a sudden hypoosmotic shock (downshock) on a single-cell level. We show that initial fast volume expansion is followed by a slow volume recovery that can end below the initial value. Similar response patterns were observed at downshocks of a wide range of magnitudes. Although wild-type cells adapted to osmotic downshocks and resumed growing, cells of a double-mutant (ΔmscL,ΔmscS) strain expanded, but failed to fully recover, often lysing or not resuming growth at high osmotic downshocks. We propose a theoretical model to explain our observations by simulating mechanosensitive channels opening, and subsequent solute efflux and water flux. The model illustrates how solute efflux, driven by mechanical pressure and solute chemical potential, competes with water influx to reduce cellular osmotic pressure and allow volume recovery. Our work highlights the vital role of mechanosensation in bacterial survival. PMID:27647888
Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa
2015-08-01
The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Pu, Junliang; Wan, Lei; Zheng, Daofeng; Wei, Xufu; Wu, Zhongjun; Tang, Chengyong
2017-07-01
Objective To investigate the protective effect of fisetin (FIS) against hypoxia/reoxygenation (H/R) injury in rat hepatocytes and its mechanism. Methods H/R injury model of BRL-3A cells was established and the cells were pretreated with FIS. Survival rate was detected by CCK-8 assay. Cell apoptosis was measured by flow cytometry. The levels of ALT and AST were determined by microplate assay. The production of TNF-α and IL-1β were detected by ELISA. The mRNA and protein levels of TLR4 and NF-κBp65 were analyzed by quantitative real-time PCR and Western blotting, respectively. Results After subjected to H/R, cell survival rate decreased and the apoptosis level increased. The levels of ALT and AST in cell supernatant were elevated, so were the production of TNF-α and IL-1β. FIS pretreatment increased the cell survival rate and inhibited apoptosis. The levels of ALT, AST and the production of TNF-α and IL-1β were reduced significantly. Moreover, FIS inhibited the increasing expression levels of TLR4 and NF-κBp65 induced by H/R. Conclusion FIS alleviates the hepatocyte injury induced by H/R via modulation of TLR4/NF-κB signaling pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Su Jin; New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk; Chang, Suhwan
Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatmentmore » retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.« less
Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Wang, Yang; Gui, Jian-Fang
2017-06-01
Dead end (dnd), vertebrate-specific germ cell marker, had been demonstrated to be essential for primordial germ cell (PGC) migration and survival, and the link between PGC number and sex change had been revealed in some teleost species, but little is known about dnd in hermaphroditic vertebrates. In the present study, a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides) dnd homologue (Ecdnd) was identified and characterized. Quantitative real-time PCR and in situ hybridization analysis revealed a dynamic and sexually dimorphic expression pattern in PGCs and germ cells of gonads. During sex changing, the Ecdnd transcript sharply increased in early transitional gonad, reached the highest level at late transitional gonad stage, and decreased after testis maturation. Visualization of zebrafish PGCs by injecting with RFP-Ecdnd-3'UTR RNA and GFP-zfnanos3-3'UTR RNA confirmed importance of Ecdnd 3'UTR for the PGC distribution. In addition, knockdown of EcDnd by using antisense morpholinos (MO) caused the ablation of PGCs in orange-spotted grouper. Therefore, the current data indicate that Ecdnd is essential for PGCs survival and may serve as a useful germ cell marker during gametogenesis in hermaphroditic grouper. Copyright © 2017 Elsevier Inc. All rights reserved.
Alvero, Ayesha B; Montagna, Michele K; Sumi, Natalia J; Joo, Won Duk; Graham, Emma; Mor, Gil
2014-09-30
Survival rate in ovarian cancer has not improved since chemotherapy was introduced a few decades ago. The dismal prognosis is mostly due to disease recurrence where majority of the patients succumb to the disease. The demonstration that tumors are comprised of subfractions of cancer cells displaying heterogeneity in stemness potential, chemoresistance, and tumor repair capacity suggests that recurrence may be driven by the chemoresistant cancer stem cells. Thus to improve patient survival, novel therapies should eradicate this cancer cell population. We show that in contrast to the more differentiated ovarian cancer cells, the putative CD44+/MyD88+ ovarian cancer stem cells express lower levels of pyruvate dehydrogenase, Cox-I, Cox-II, and Cox-IV, and higher levels of UCP2. Together, this molecular phenotype establishes a bioenergetic profile that prefers the use of glycolysis over oxidative phosphorylation to generate ATP. This bioenergetic profile is conserved in vivo and therefore a maintenance regimen of 2-deoxyglucose administered after Paclitaxel treatment is able to delay the progression of recurrent tumors and decrease tumor burden in mice. Our findings strongly suggest the value of maintenance with glycolysis inhibitors with the goal of improving survival in ovarian cancer patients.
Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer
van der Gun, B T F; Huisman, C; Stolzenburg, S; Kazemier, H G; Ruiters, M H J; Blancafort, P; Rots, M G
2013-01-01
Background: The epithelial cell adhesion molecule (EpCAM) is overexpressed on most carcinomas. Dependent on the tumour type, its overexpression is either associated with improved or worse patient survival. For ovarian cancer, however, the role of EpCAM remains unclear. Methods: Cell survival of ovarian cancer cell lines was studied after induction or repression of endogenous EpCAM expression using siRNA/cDNA or artificial transcription factors (ATF) consisting of engineered zinc-fingers fused to either a transcriptional activator or repressor domain. Results: Two ATFs were selected as the most potent down- and upregulator, showing at least a two-fold alteration of EpCAM protein expression compared with control. Downregulation of EpCAM expression resulted in growth inhibition in breast cancer, but showed no effect on cell growth in ovarian cancer. Induction or further upregulation of EpCAM expression decreased ovarian cancer cell survival. Conclusion: The bidirectional ATF-based approach is uniquely suited to study cell-type-specific biological effects of EpCAM expression. Using this approach, the oncogenic function of EpCAM in breast cancer was confirmed. Despite its value as a diagnostic marker and for immunotherapy, EpCAM does not seem to represent a therapeutic target for gene expression silencing in ovarian cancer. PMID:23403823
Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan
2015-01-01
Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction. PMID:26074971
Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan
2015-01-01
Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen
Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy ismore » widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.« less
Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin.
Barton, Lacy J; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K
2016-07-01
The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y
2016-05-01
OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents.
Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCλ/ι.
Nakanishi, Yuki; Reina-Campos, Miguel; Nakanishi, Naoko; Llado, Victoria; Elmen, Lisa; Peterson, Scott; Campos, Alex; De, Surya K; Leitges, Michael; Ikeuchi, Hiroki; Pellecchia, Maurizio; Blumberg, Richard S; Diaz-Meco, Maria T; Moscat, Jorge
2016-09-20
Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
O'Leary, Olivia F; O'Connor, Richard M; Cryan, John F
2012-01-01
Adult hippocampal neurogenesis is an important process in the regulation of cognition, stress responsivity, and sensitivity to antidepressant and mood stabiliser drugs. Increasing evidence suggests that the hippocampus is functionally divided along its axis with the ventral hippocampus (vHi) playing a preferential role in stress- and anxiety-related processes, while the dorsal hippocampus (dHi) is crucial for spatial learning and memory. However, it is currently unclear whether stress or the medications used to treat stress-related disorders, preferentially affect neurogenesis in the vHi rather than dHi. The aim of this study was to determine whether the mood stabiliser, lithium, preferentially affects cell proliferation and survival in the vHi rather than dHi under stress conditions. To this end, mice of the stress-sensitive strain, BALB/c, underwent chronic exposure to immobilisation stress plus lithium treatment (0.2% lithium-supplemented diet), and the rates of cell proliferation and survival were compared in the dHi and vHi. Lithium preferentially increased cell proliferation in the vHi under stress conditions only. This increase in cell proliferation was secondary to reductions in the survival of newly-born cells. Moreover, lithium-induced decreases in cell survival in the vHi were only observed under stress conditions. Taken together, the data suggest that the turnover of newly-born cells in response to chronic stress and lithium treatment occurs predominantly in the vHi rather than the dHi. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl
Gregory, Mark A.; Phang, Tzu L.; Neviani, Paolo; Alvarez-Calderon, Francesca; Eide, Christopher A.; O’Hare, Thomas; Zaberezhnyy, Vadym; Williams, Richard T.; Druker, Brian J.; Perrotti, Danilo; DeGregori, James
2010-01-01
Summary Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to completely eradicate Bcr-Abl+ leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl+ leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib in CML cells. This screen identified numerous components of a Wnt/Ca2+/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl+ acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl+ leukemias. PMID:20609354
Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.
Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram
2014-11-01
Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, Jeong-A; Choi, Su Jin; Moon, Jae Yun; Kim, Hye Sun
2016-05-15
Dystrophin-deficient muscle is known to be more vulnerable to oxidative stress, but not much is known about the signaling pathway(s) responsible for this phenomenon. α-Syntrophin, a component of the dystrophin-glycoprotein complex, can function as a scaffold protein because of its multiple protein interaction domains. In this study, we investigated the role of α-syntrophin in C2 myoblasts under menadione-induced oxidative stress. We found that the protein level of α-syntrophin was elevated when cells were exposed to menadione. To investigate the function of α-syntrophin during oxidative stress, we established α-syntrophin-overexpressing and knockdown cell lines. The α-syntrophin-overexpressing cells were resistant to the menadione-induced oxidative stress. In addition, survival signalings such as protein kinase B (Akt) phosphorylation and the Bcl-2/BAX ratio were increased in these cells. On the other hand, apoptotic signals such as cleavage of caspase-3 and poly ADP ribose polymerase (PARP) were increased in the α-syntrophin knockdown cells. Furthermore, Ca(2+)influx, which is known to increase when cells are exposed to oxidative stress, decreased in the α-syntrophin-overexpressing cells, but increased in the knockdown cells. These results suggest that α-syntrophin plays a pivotal role in the survival pathway triggered by menadione-induced oxidative stress in cultured myoblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.
Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh
2018-01-01
Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.
Balermpas, P; Rödel, F; Liberz, R; Oppermann, J; Wagenblast, J; Ghanaati, S; Harter, P N; Mittelbronn, M; Weiss, C; Rödel, C; Fokas, E
2014-10-14
We investigated the prognostic role of tumour-associated macrophages (TAMs) in patients with head and neck squamous cell carcinoma (HNSCC) treated with definitive chemoradiotherapy (CRT). The expression of CD68+, CD163+ and CD11b+ cells was assessed using immunohistochemistry in n=106 pre-treatment tumour biopsy samples and was correlated with clinicopathological characteristics, including T-stage, N-stage, grading, tumour localisation, age and sex as well as local failure-free survival (LFFS), distant metastases-free survival (DMFS), progression-free (PFS), and overall survival (OS). Finally, TAMs expression and vessel density (CD31) were examined in n=12 available early local recurrence samples and compared with their matched primary tumours . The diagnostic images and radiotherapy plans of these 12 patients were also analysed. All local recurrences occurred in the high radiation dose region (⩾70 Gy). With a median follow-up of 40 months, OS at 2 years was 60.5%. High CD163 expression in primary tumours was associated with decreased OS (P=0.010), PFS (P=0.033), LFFS (P=0.036) and DMFS (P=0.038) in multivariate analysis. CD163 demonstrated a strong prognostic value only in human papillomavirus (p16(INK4))-negative patients. Early local recurrence specimens demonstrated a significantly increased infiltration of CD11b+ myeloid cells (P=0.0097) but decreased CD31-positive vessel density (P=0.0004) compared with their matched primary samples. Altogether, baseline CD163 expression predicts for an unfavourable clinical outcome in HNSCC after definitive CRT. Early local recurrences showed increased infiltration by CD11b+ cells. These data provide important insight on the role of TAMs in mediating response to CRT in patients with HNSCC.
Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B; Schmitz, Alexander; Kung, Hank F; Ferrari, Victor A; Zhou, Rong
2009-03-01
To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. http://radiology.rsnajnls.org/cgi/content/full/250/3/821/DC1. RSNA, 2009
Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène
2012-01-01
Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204
Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.
Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G
2010-06-01
Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.
Deng, Jingyu; Liang, Han; Dong, Qiuping; Hou, Yachao; Xie, Xingming; Yu, Jun; Fan, Daiming; Hao, Xishan
2014-07-01
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.
Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.
2013-01-01
Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. PMID:23349823
Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo
2016-01-01
Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.
Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo
2016-01-01
Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568
Huo, Yanqing; Li, Qingbo; Wang, Xiqian; Jiao, Xiejia; Zheng, Jiachun; Li, Zhiqiang; Pan, Xiaohan
2017-01-01
Osteosarcoma is the most common type of bone cancer, especially in children and young adults. Recently, long noncoding RNAs (lncRNAs) have emerged as new prognostic markers and gene regulators in several cancers, including osteosarcoma. In this study, we investigated the contributions of the lncRNA MALAT1 in osteosarcoma with a specific focus on its transcriptional regulation and its interaction with EZH2. Our results showed that MALAT1 was significantly increased in osteosarcoma specimens and cell lines. ROC curve analysis showed that MALAT1 had a higher area under the curve than alkaline phosphatase, and Kaplan-Meier survival analysis indicated that patients with high serum levels of MALAT1 showed reduced survival rate. Knockdown of MALAT1 decreased osteosarcoma cell invasion and promoted E-cadherin expression. Mechanistic investigations showed that MALAT1 was transcriptionally activated by TGF-β. Additionally, EZH2 is highly expressed and associated with the 3’ end region of lncRNA MALAT1 in osteosarcoma, and this association finally suppressed the expression of E-cadherin. Subsequently, our gain and loss function assay showed that MALAT1 overexpression promoted cell metastasis and decreased E-cadherin level, however, this effect was partially reversed by EZH2 knockdown. In conclusion, our work illuminates that lncRNA MALAT1 is a potential diagnostic and prognostic factor in osteosarcoma and further demonstrates how MALAT1 confers an oncogenic function. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for osteosarcoma patients. PMID:28388584
Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D
2013-08-01
Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A; Basher, Fahmin; Roddy, Patrick O; Siskind, Leah J; Nietert, Paul J; Nowling, Tamara K
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Uchiyama, M; Jin, X; Zhang, Q; Amano, A; Watanabe, T; Niimi, M
2012-05-01
In clinical practice, music has been used to decrease stress, heart rate, and blood pressure and to provide a distraction from disease symptoms. We investigated sound effects on alloimmune responses in murine heart transplantation. Naïve and eardrum-ruptured CBA/N (CBA, H2(K)) underwent transplantation of a C57BL/6 (B6, H2(b)) heart and were exposed to 1 of 3 types of music-opera (La Traviata), classical (Mozart), and New Age (Enya)-or 1 of 6 different single sound frequencies for 7 days. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Cell-proliferation, cytokine, and flow cytometry assessments were also performed. CBA recipients of a B6 graft exposed to opera and classical music had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to 6 single sound frequencies and New Age did not (MSTs, 7, 8, 9, 8, 8, 8, and 11 days, respectively). Untreated and eardrum-ruptured CBA rejected B6 grafts acutely (MSTs, 7 and 8.5 days, respectively). Adoptive transfer of whole splenocytes, CD4(+) cells, and CD4(+)CD25(+) cells from opera-exposed primary recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and >50 days, respectively). Cell-proliferation, interleukin (IL)-2 and interferon-γ were suppressed in opera-exposed mice, whereas IL-4 and IL-10 from opera-exposed recipients were up-regulated. Flow cytometry studies showed an increased CD4(+)CD25(+)Foxp3(+) cell population in splenocytes from opera-exposed mice. In conclusion, exposure to some types of music may induce prolonged survival of fully allogeneic cardiac allografts and generate CD4(+)CD25(+)Foxp3(+) regulatory cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.
2016-01-01
Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696
Scroggins, Sabrina M.; Olivier, Alicia K.; Meyerholz, David K.; Schlueter, Annette J.
2013-01-01
Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3–4 months) and older (14–18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD. PMID:24040397
Metterlein, Thomas; Hoffmann, Petra; Späth, Ruth; Gruber, Michael; Graf, Bernhard M; Zink, Wolfgang
2015-01-01
Rhabdomyosarcoma is a rare malignant skeletal muscle tumor. It mainly occurs in children and young adults and has an unsatisfactory prognosis. Prior studies showed a direct myotoxic effect of bupivacaine on differentiated muscle cells in vitro and in vivo. Exact mechanisms of this myotoxicity are still not fully understood, but a myotoxic effect on malignant muscle tumor cells has not been examined so far. Thus, the aim of this study was to examine if bupivacaine has cytotoxic effects on rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells. Cell lines of rhabdomyosarcoma cells, immortalized muscle cells and differentiated muscle cells were established. After microscopic identification, cells were exposed to various concentrations of bupivacaine (500, 1,000, 1,750, 2,500 and 5,000 ppm) for 1 and 2 h, respectively. 24 and 28 h after incubation the cultures were stained with propidium iodid and analyzed by flow cytometry. The fraction of dead cells was calculated for each experiment and the concentration with 50% cell survival (IC50) was computed. Cell groups as well as incubation and recovery time were compared (ANOVA/Bonferroni p < 0.01). The total number of cultured cells was similar for the different local anesthetics and examined concentrations. Increasing concentrations of bupivacaine led to a decrease in survival of muscle cells. IC50 was highest for immortalized cells, followed by rhabdomyosarcoma cells and differentiated cells. Exposure time, but not recovery time, had an influence on survival. Bupivacaine has clear but different cytotoxic effects on various muscle cell types in vitro. Differentiated primary cells seem to be more vulnerable than tumor cells possibly because of more differentiated intracellular structures.
2012-01-01
Introduction The taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance. Methods MCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR). Results MCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes in the expression of TNF-α-related genes consistent with reduced TNF-induced cytotoxicity and activation of NF-κB survival pathways. Conclusions We report for the first time that taxanes can promote dose-dependent sTNF-α production in tumor cells at clinically relevant concentrations, which can contribute to their cytotoxicity. Defects in the TNF cytotoxicity pathway or activation of TNF-dependent NF-κB survival genes may, in contrast, contribute to taxane resistance in tumor cells. These findings may be of strong clinical significance. PMID:22225778
Koshimoto, Chihiro; Mazur, Peter
2002-08-01
We have recently reported that the survival of mouse spermatozoa is decreased when they are warmed at a suboptimal rate after being frozen at an optimal rate. We proposed that this drop in survival is caused by physical damage derived from the recrystallization of extracellular ice during slow warming. The first purpose of the present study was to determine the temperatures over which the decline in survival occurs during slow warming and the kinetics of the decline at fixed subzero temperatures. The second purpose was to examine the effects of antifreeze proteins (AFP) on the survival of slowly warmed mouse spermatozoa, the rationale being that AFP have the property of inhibiting ice recrystallization. With respect to the first point, a substantial loss in motility occurred when slow warming was continued to higher than -50 degrees C and the survival of the sperm decreased with an increase in the temperature at which slow warming was terminated. In contrast, the motility of sperm that were warmed rapidly to these temperatures remained high initially but dropped with increased holding time. At -30 degrees C, most of the drop occurred in 5 min. These results are consistent with the hypothesis that damage develops as a consequence of the recrystallization of the external ice. AFP ought to inhibit such recrystallization, but we found that the addition of AFP-I, AFP-III, and an antifreeze glycoprotein at concentrations of 1-100 microg/ml did not protect the frozen-thawed cells; rather it led to a decrease in survival that was proportional to the concentration. There was no decrease in survival from exposure to the AFP in the absence of freezing. AFP are known to produce changes in the structure and habit of ice crystals, and some have reported deleterious consequences associated with those structural changes. We suggest that such changes may be the basis of the adverse effects of AFP on the survival of the sperm, especially since mouse sperm are exquisitely sensitive to a variety of mechanical stresses.
Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line
Krautkramer, Kimberly A.; Linnemann, Amelia K.; Fontaine, Danielle A.; Whillock, Amy L.; Harris, Ted W.; Schleis, Gregory J.; Truchan, Nathan A.; Marty-Santos, Leilani; Lavine, Jeremy A.; Cleaver, Ondine; Kimple, Michelle E.
2013-01-01
Recently, a novel type 1 diabetes association locus was identified at human chromosome 6p31.3, and transcription factor 19 (TCF19) is a likely causal gene. Little is known about Tcf19, and we now show that it plays a role in both proliferation and apoptosis in insulinoma cells. Tcf19 is expressed in mouse and human islets, with increasing mRNA expression in nondiabetic obesity. The expression of Tcf19 is correlated with β-cell mass expansion, suggesting that it may be a transcriptional regulator of β-cell mass. Increasing proliferation and decreasing apoptotic cell death are two strategies to increase pancreatic β-cell mass and prevent or delay diabetes. siRNA-mediated knockdown of Tcf19 in the INS-1 insulinoma cell line, a β-cell model, results in a decrease in proliferation and an increase in apoptosis. There was a significant reduction in the expression of numerous cell cycle genes from the late G1 phase through the M phase, and cells were arrested at the G1/S checkpoint. We also observed increased apoptosis and susceptibility to endoplasmic reticulum (ER) stress after Tcf19 knockdown. There was a reduction in expression of genes important for the maintenance of ER homeostasis (Bip, p58IPK, Edem1, and calreticulin) and an increase in proapoptotic genes (Bim, Bid, Nix, Gadd34, and Pdia2). Therefore, Tcf19 is necessary for both proliferation and survival and is a novel regulator of these pathways. PMID:23860123
Gao, Xueqin; Usas, Arvydas; Lu, Aiping; Kozemchak, Adam; Tang, Ying; Poddar, Minakshi; Sun, Xuying; Cummins, James H; Huard, Johnny
2016-08-01
This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Thisgaard, Helge; Halle, Bo; Aaberg-Jessen, Charlotte; Olsen, Birgitte Brinkmann; Therkelsen, Anne Sofie Nautrup; Dam, Johan Hygum; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne Winther
2016-01-01
Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [125I]5-Iodo-2'-deoxyuridine (125I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy. PMID:27924163
Thisgaard, Helge; Halle, Bo; Aaberg-Jessen, Charlotte; Olsen, Birgitte Brinkmann; Therkelsen, Anne Sofie Nautrup; Dam, Johan Hygum; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne Winther
2016-01-01
Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [ 125 I]5-Iodo-2'-deoxyuridine ( 125 I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125 I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125 I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125 I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125 I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy.
diphosphoglycerate , and adenosine triphosphate occurred with storage in both sets. 2,3 diphosphoglycerate levels were slightly higher initially in...Adenosine triphosphate levels increased significantly and remained high 24 hr after transfusion. Red cell survival decreased with storage for both
Duan, Ting; Shi, Chenchen; Zhou, Jing; Lv, Xiao; Li, Yongli
2018-01-01
ABSTRACT This study aimed to test the hypothesis that the aerial survival of the northern snakehead is involved not only with suprabranchial chamber respiration but also with physiological regulations. The aerial survival time and oxygen consumption rate (VO2) were determined in snakeheads with either normal or injured suprabranchial organs. Some hematological and biochemical parameters were assessed during aerial exposure. The results showed that resting VO2 decreased when switching from water to air in both the control and the suprabranchial organ-injured fish, with decreases of 22.4% and 23.5%, respectively. Resting VO2 in air was not different between the control and the suprabranchial organ-injured fish. The red blood cell (RBC) count and hemoglobin concentration showed no marked changes, while RBC size increased when exposed to air. The liver lactate concentration remained unchanged, and the white muscle lactate concentration decreased when switching from water to air. The blood ammonia concentration tended to increase during aerial respiration. These results suggest that the aerial survival of the snakehead is positively associated with a combination of factors, including respiration of suprabranchial organs and other accessory organs, depressed metabolic demands and increased oxygen transport, and negatively associated with the accumulation of blood ammonia but not anaerobic metabolism. PMID:29361611
Regulation of Blood Volume During Spaceflight
NASA Technical Reports Server (NTRS)
Alfrey, Clarence P.
1997-01-01
The effects of spaceflight on erythropoiesis and blood volume in the rat were studied during the 14-day NASA Spacelab Life Sciences 2 (SLS-2) Shuttle mission. Measurements included red blood cell mass (RBCM), plasma volume (PV), iron utilization and iron utilization in response to an injection of erythropoietin. Red blood cell (RBC) survival, splenic sequestration and erythrocyte morphology were also evaluated. At landing, the RBCM adjusted for body weight was significantly lower in the flight animals than in the ground controls. While the PV was also decreased, the change was not statistically significant. Incorporation of iron into circulating RBCs was normal when measured after five days of spaceflight and the rat responded normally to the single in-flight injection of erythropoietin. No change in RBC morphology could be attributed to spaceflight. A normal survival was found for the RBC population that was represented by Cr-51 labeled RBCS. These results demonstrate that rats, like humans, return from spaceflight with a decreased RBCM and total blood volume.
xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.
Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P
2018-05-23
Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.
Borlido, Joana; Sakuma, Stephen; Raices, Marcela; Carrette, Florent; Tinoco, Roberto; Bradley, Linda M; D'Angelo, Maximiliano A
2018-06-01
Nuclear pore complexes (NPCs) are channels connecting the nucleus with the cytoplasm. We report that loss of the tissue-specific NPC component Nup210 causes a severe deficit of naïve CD4 + T cells. Nup210-deficient CD4 + T lymphocytes develop normally but fail to survive in the periphery. The decreased survival results from both an impaired ability to transmit tonic T cell receptor (TCR) signals and increased levels of Fas, which sensitize Nup210 -/- naïve CD4 + T cells to Fas-mediated cell death. Mechanistically, Nup210 regulates these processes by modulating the expression of Cav2 (encoding Caveolin-2) and Jun at the nuclear periphery. Whereas the TCR-dependent and CD4 + T cell-specific upregulation of Cav2 is critical for proximal TCR signaling, cJun expression is required for STAT3-dependent repression of Fas. Our results uncover an unexpected role for Nup210 as a cell-intrinsic regulator of TCR signaling and T cell homeostasis and expose NPCs as key players in the adaptive immune system.
Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells
Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy
2018-01-01
Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391
Studies on the cytotoxicity of diamond nanoparticles against human cancer cells and lymphocytes.
Adach, Kinga; Fijalkowski, Mateusz; Gajek, Gabriela; Skolimowski, Janusz; Kontek, Renata; Blaszczyk, Alina
2016-07-25
Detonation nanodiamonds (DND) are a widely studied group of carbon nanomaterials. They have the ability to adsorb a variety of biomolecules and drugs onto their surfaces, and additionally their surfaces may be subjected to chemical functionalization by covalent bonds. We present a procedure for the purification and surface oxidation of diamond nanoparticles, which were then tested by spectroscopic analysis such as ATR-FTIR, Raman spectroscopy, and thermogravimetric analysis. We also examined the zeta potential of the tested material. Analysis of the cytotoxic effect of nanodiamonds against normal lymphocytes derived from human peripheral blood, the non-small cell lung cancer cell line (A549) and the human colorectal adenocarcinoma cell line (HT29) was performed using MTT colorimetric assay. Evaluation of cell viability was performed after 1-h and 24-h treatment with the tested nanoparticles applied at concentrations ranging from 1 μg/ml to 100 μg/ml. We found that the survival of the examined cells was strongly associated with the presence of serum proteins in the growth medium. The incubation of cells with nanodiamonds in the presence of serum did not exert a significant effect on cell survival, while the cell treatment in a serum-free medium resulted in a decrease in cell survival compared to the negative control. The role of purification and functionalization of nanodiamonds on their cytotoxicity was also demonstrated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Leopoldino, Andréia M; Squarize, Cristiane H; Garcia, Cristiana B; Almeida, Luciana O; Pestana, Cezar R; Sobral, Lays M; Uyemura, Sérgio A; Tajara, Eloiza H; Silvio Gutkind, J; Curti, Carlos
2012-11-01
Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ramírez-Sánchez, Jeney; Simões Pires, Elisa Nicoloso; Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Fonseca-Fonseca, Luis Arturo; Ruiz-Reyes, Alberto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O; Salbego, Christianne
2015-11-01
Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 μM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3β (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 μM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako
2015-01-01
Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047
Association of Time between Surgery and Adjuvant Therapy with Survival in Oral Cavity Cancer.
Chen, Michelle M; Harris, Jeremy P; Orosco, Ryan K; Sirjani, Davud; Hara, Wendy; Divi, Vasu
2018-06-01
Objective The National Cancer Center Network recommends starting radiation therapy within 6 weeks after surgery for oral cavity squamous cell carcinoma (OCSCC), but there is limited evidence of the importance of the total time from surgery to completion of radiation therapy (package time). We set out to determine if there was an association between package time and survival in OCSCC and to evaluate the impact of treatment location on outcomes. Study Design Retrospective cohort study. Setting Tertiary academic medical center. Subjects and Methods We reviewed the records of patients with OCSCC who completed postoperative radiation therapy at an academic medical center from 2008 to 2016. The primary endpoints were overall survival and recurrence-free survival. Statistical analysis included χ 2 tests and Cox proportional hazards regressions. Results We identified 132 patients with an average package time of 12.6 weeks. On multivariate analysis, package time >11 weeks was independently associated with decreased overall survival (hazard ratio, 6.68; 95% CI, 1.42-31.44) and recurrence-free survival (hazard ratio, 2.94; 95% CI, 1.20-7.18). Patients who received radiation therapy at outside facilities were more likely to have treatment delays (90.2% vs 62.9%, P = .001). Conclusions Prolonged package times are associated with decreased overall and recurrence-free survival among patients with OCSCC. Patients who received radiation therapy at outside facilities are more likely to have prolonged package times.
Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.
Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill
2017-11-01
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
Agle, Kimberle; Vincent, Benjamin G; Piper, Clint; Belle, Ludovic; Zhou, Vivian; Shlomchik, Warren; Serody, Jonathan S; Drobyski, William R
2018-05-16
CD8 + Foxp3 + T cells (Tregs) are a potent regulatory population whose functional and ontological similarities to CD4 + Fox3 + T cells have not been well delineated. Using an experimental model of graft versus host disease (GVHD), we observed that CD8 + Tregs were significantly less potent than CD4 + Tregs for the suppression of GVHD. To define the mechanistic basis for this observation, we examined the T cell repertoire and the transcriptional profile of in vivo-derived CD4 + and CD8 + Tregs that emerged early during this disease. Polyclonal and alloantigen-induced CD8 + Tregs had repertoire diversity that was similar to that of conventional CD8 + T cells, indicating that a restricted repertoire was not the proximate cause of decreased suppression. Transcriptional profiling revealed that CD8 + Tregs possessed a canonical Treg transcriptional signature that was similar to that observed in CD4 + Tregs, yet distinct from conventional CD8 + T cells. Pathway analysis, however, demonstrated that CD8 + Tregs had differential gene expression in pathways involved in cell death and survival. This was further confirmed by detailed mRNA sequence analysis and protein expression studies which demonstrated that CD8 + Tregs had increased expression of Bim and reduced expression of Mcl-1. Transplantation with CD8 + Foxp3 + Bim -/- Tregs resulted in prolonged Treg survival and reduced GVHD lethality compared to wild type CD8 + Tregs, providing functional confirmation that increased expression of Bim was responsible for reduced in vivo efficacy. Thus, Bim regulates the survival and suppressive capability of CD8 + Tregs which may have implications for their use in regulatory T cell therapy. Copyright © 2018 American Society of Hematology.
Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.
Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng
2016-12-01
The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.
Abrevaya, Ximena C; Paulino-Lima, Ivan G; Galante, Douglas; Rodrigues, Fabio; Mauas, Pablo J D; Cortón, Eduardo; Lage, Claudia de Alencar Santos
2011-12-01
The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10(5) to 10(6) cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10(-5) Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10(-2), which was larger than that of D. radiodurans (1.13±0.23)×10(-2). The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10(-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150 J m(-2). For fluences larger than 150 J m(-2), there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350 J m(-2)), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions.
Fu, Chien-Yao; Tseng, Yan-Shen; Chen, Ming-Cheng; Hsu, Hsi-Hsien; Yang, Jaw-Ji; Tu, Chuan-Chou; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang
2018-02-01
Human osteosarcoma (OS) is a malignant cancer of the bone. It exhibits a characteristic malignant osteoblastic transformation and produces a diseased osteoid. A previous study demonstrated that doxorubicin (DOX) chemotherapy decreases human OS cell proliferation and might enhance the relative RNA expression of ZAK. However, the impact of ZAKα overexpression on the OS cell proliferation that is inhibited by DOX and the molecular mechanism underlying this effect are not yet known. ZAK is a protein kinase of the MAPKKK family and functions to promote apoptosis. In our study, we found that ZAKα overexpression induced an apoptotic effect in human OS cells. Treatment of human OS cells with DOX enhanced ZAKα expression and decreased cancer cell viability while increasing apoptosis of human OS cells. In the meantime, suppression of ZAKα expression using shRNA and inhibitor D1771 both suppressed the DOX therapeutic effect. These findings reveal a novel molecular mechanism underlying the DOX effect on human OS cells. Taken together, our findings demonstrate that ZAKα enhances the apoptotic effect and decreases cell viability in DOX-treated human OS cells. © 2017 Wiley Periodicals, Inc.
Yamashita, Yoji; Krauze, Michal T.; Kawaguchi, Tomohiro; Noble, Charles O.; Drummond, Daryl C.; Park, John W.; Bankiewicz, Krystof S.
2007-01-01
Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas. PMID:17018695
Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Illades-Aguiar, Berenice; Rivera-Ramírez, Ana Bertha; Saavedra-Herrera, Mónica Virginia; Leyva-Vázquez, Marco Antonio
2018-06-01
Dihydrofolate reductase (DHFR) has an important function in DNA synthesis and is a target of methotrexate, which is a crucial treatment option for acute lymphoblastic leukemia (ALL). However, the number of studies conducted to date on DHFR expression in childhood ALL is limited. The aim of the present study was to determine whether the expression of DHFR is associated with survival in childhood ALL. The expression of DHFR in 96 children with ALL and 100 control individuals was determined using reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that the expression of DHFR mRNA in children with ALL was significantly increased (P<0.001), compared with that in the control group. In addition, increased levels of DHFR mRNA were observed in patients with B-cell lineage, compared with patients with T-cell lineage ALL (P<0.05). The Kaplan-Meier estimator analysis revealed that children with ALL who exhibited increased levels of DHFR mRNA had a decreased overall survival time (P<0.05). It was observed that certain patient prognostic features (including age, sex, white blood cell count and high DHFR expression), are associated with poor survival (log-rank test, P<0.05). Therefore, the results of the present study indicated that DHFR upregulation is a factor for poor survival in ALL.
Shen, Chuan; Peng, Chenghong; Shen, Baiyong; Zhu, Zhecheng; Xu, Ning; Li, Tao; Xie, Junjie
2016-01-01
Immunosuppressive agents used postoperatively after liver transplantation (LT) for hepatocellular carcinoma (HCC) favor recurrence and metastasis. Therefore, new effective immunosuppressants are needed. This retrospective study assessed combined sirolimus and metformin on survival of HCC patients after LT. In 2001-2013, 133 HCC patients with LT were divided into four groups: sirolimus and metformin combination (Sir+Met), sirolimus monotherapy (Sir), other immunosuppressants in diabetes mellitus (DM) patients without metformin (No Sir with DM), and other immunosuppressants in patients without DM (No Sir without DM). Kaplan-Meier and Log-rank tests were used to assess survival. Cell proliferation and tumor xenograft assays were performed to disclose the mechanisms underlying the sirolimus and metformin effects. The Sir+Met group showed significantly prolonged survival compared to the other groups. The most significant cytotoxicity was seen in the Sir+Met group, with significantly decreased levels of phosphorylated PI3K, AKT, AMPK, mTOR, 4EBP1 and S6K, compared with the other groups. In agreement, Sir+Met had the highest suppressive effect on tumor growth among all groups (P<0.01). In summary, Sir+Met treatment significantly prolonged survival, likely by suppressing cell proliferation. Therefore, this combination could represent a potential routine-regimen for patients post LT. PMID:27577068
Paly, Jonathan J; Hallemeier, Christopher L; Biggs, Peter J; Niemierko, Andrzej; Roeder, Falk; Martínez-Monge, Rafael; Whitson, Jared; Calvo, Felipe A; Fastner, Gerd; Sedlmayer, Felix; Wong, William W; Ellis, Rodney J; Haddock, Michael G; Choo, Richard; Shipley, William U; Zietman, Anthony L; Efstathiou, Jason A
2014-03-01
This study aimed to analyze outcomes in a multi-institutional cohort of patients with advanced or recurrent renal cell carcinoma (RCC) who were treated with intraoperative radiation therapy (IORT). Between 1985 and 2010, 98 patients received IORT for advanced or locally recurrent RCC at 9 institutions. The median follow-up time for surviving patients was 3.5 years. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were estimated with the Kaplan-Meier method. Chained imputation accounted for missing data, and multivariate Cox hazards regression tested significance. IORT was delivered during nephrectomy for advanced disease (28%) or during resection of locally recurrent RCC in the renal fossa (72%). Sixty-nine percent of the patients were male, and the median age was 58 years. At the time of primary resection, the T stages were as follows: 17% T1, 12% T2, 55% T3, and 16% T4. Eighty-seven percent of the patients had a visibly complete resection of tumor. Preoperative or postoperative external beam radiation therapy was administered to 27% and 35% of patients, respectively. The 5-year OS was 37% for advanced disease and 55% for locally recurrent disease. The respective 5-year DSS was 41% and 60%. The respective 5-year DFS was 39% and 52%. Initial nodal involvement (hazard ratio [HR] 2.9-3.6, P<.01), presence of sarcomatoid features (HR 3.7-6.9, P<.05), and higher IORT dose (HR 1.3, P<.001) were statistically significantly associated with decreased survival. Adjuvant systemic therapy was associated with decreased DSS (HR 2.4, P=.03). For locally recurrent tumors, positive margin status (HR 2.6, P=.01) was associated with decreased OS. We report the largest known cohort of patients with RCC managed by IORT and have identified several factors associated with survival. The outcomes for patients receiving IORT in the setting of local recurrence compare favorably to similar cohorts treated by local resection alone suggesting the potential for improved DFS with IORT. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paly, Jonathan J.; Hallemeier, Christopher L.; Biggs, Peter J.
2014-03-01
Purpose/Objective(s): This study aimed to analyze outcomes in a multi-institutional cohort of patients with advanced or recurrent renal cell carcinoma (RCC) who were treated with intraoperative radiation therapy (IORT). Methods and Materials: Between 1985 and 2010, 98 patients received IORT for advanced or locally recurrent RCC at 9 institutions. The median follow-up time for surviving patients was 3.5 years. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were estimated with the Kaplan-Meier method. Chained imputation accounted for missing data, and multivariate Cox hazards regression tested significance. Results: IORT was delivered during nephrectomy for advanced disease (28%) or duringmore » resection of locally recurrent RCC in the renal fossa (72%). Sixty-nine percent of the patients were male, and the median age was 58 years. At the time of primary resection, the T stages were as follows: 17% T1, 12% T2, 55% T3, and 16% T4. Eighty-seven percent of the patients had a visibly complete resection of tumor. Preoperative or postoperative external beam radiation therapy was administered to 27% and 35% of patients, respectively. The 5-year OS was 37% for advanced disease and 55% for locally recurrent disease. The respective 5-year DSS was 41% and 60%. The respective 5-year DFS was 39% and 52%. Initial nodal involvement (hazard ratio [HR] 2.9-3.6, P<.01), presence of sarcomatoid features (HR 3.7-6.9, P<.05), and higher IORT dose (HR 1.3, P<.001) were statistically significantly associated with decreased survival. Adjuvant systemic therapy was associated with decreased DSS (HR 2.4, P=.03). For locally recurrent tumors, positive margin status (HR 2.6, P=.01) was associated with decreased OS. Conclusions: We report the largest known cohort of patients with RCC managed by IORT and have identified several factors associated with survival. The outcomes for patients receiving IORT in the setting of local recurrence compare favorably to similar cohorts treated by local resection alone suggesting the potential for improved DFS with IORT.« less
Childhood cancer incidence and survival in Japan and England: A population-based study (1993-2010).
Nakata, Kayo; Ito, Yuri; Magadi, Winnie; Bonaventure, Audrey; Stiller, Charles A; Katanoda, Kota; Matsuda, Tomohiro; Miyashiro, Isao; Pritchard-Jones, Kathy; Rachet, Bernard
2018-02-01
The present study aimed to compare cancer incidence and trends in survival for children diagnosed in Japan and England, using population-based cancer registry data. The analysis was based on 5192 children with cancer (age 0-14 years) from 6 prefectural cancer registries in Japan and 21 295 children diagnosed in England during 1993-2010. Differences in incidence rates between the 2 countries were measured with Poisson regression models. Overall survival was estimated using the Kaplan-Meier method. Incidence rates for Hodgkin lymphoma, renal tumors and Ewing sarcomas in England were more than twice as high as those in Japan. Incidence of germ cell tumors, hepatic tumors, neuroblastoma and acute myeloid leukemia (AML) was higher in Japan than in England. Incidence of all cancers combined decreased in Japan throughout the period 1993 to 2010, which was mainly explained by a decrease in registration of neuroblastoma in infants. For many cancers, 5-year survival improved in both countries. The improvement in survival in chronic myeloid leukemia (CML) was particularly dramatic in both countries. However, 5-year survival remained less than 80% in 2005-2008 in both countries for AML, brain tumors, soft tissue sarcomas, malignant bone tumors and neuroblastoma (age 1-14 years). There were significant differences in incidence of several cancers between countries, suggesting variation in genetic susceptibility and possibly environmental factors. The decrease in incidence for all cancers combined in Japan was related to the cessation of the national screening program for neuroblastoma. The large improvement in survival in CML coincided with the introduction of effective therapy (imatinib). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad
2013-11-01
In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p < 0.001). The extract also dose-dependently reduced intracellular ROS production (p < 0.001). Moreover, the extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.
The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic
Bieghs, Liesbeth; Lub, Susanne; Fostier, Karel; Maes, Ken; Van Valckenborgh, Els; Menu, Eline; Johnsen, Hans E.; Overgaard, Michael T.; Larsson, Olle; Axelson, Magnus; Nyegaard, Mette; Schots, Rik; Jernberg-Wiklund, Helena
2014-01-01
The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737. Concurrently, the IGF-1 receptor inhibitor picropodophyllin (PPP) synergistically sensitized HMCL, primary human MM and murine 5T33MM cells to ABT-737 and ABT-199 by further decreasing cell viability and enhancing apoptosis. Knockdown of Bcl-2 by shRNA protected MM cells to ABT-737, while Mcl-1 shRNA sensitized the cells. PPP overcame the Bcl-2 dependency of ABT-737, but failed to completely overcome the protective effect of Mcl-1. In vivo, co-treatment of 5T33MM bearing mice significantly decreased tumor burden and prolonged overall survival both in a prophylactic and therapeutic setting. Interestingly, proteasome inhibitor resistant CD138− 5T33MM cells were more sensitive to ABT-737, whereas PPP alone targeted the CD138+ cells more effectively. After co-treatment, both subpopulations were targeted equally. Together, the combination of an IGF-1R inhibitor and an ABT-analogue displays synergistic anti-myeloma activity providing the rational for further (pre)clinical testing. PMID:25008202
c-Myb promotes the survival of CD4+CD8+ double positive thymocytes through up-regulation of Bcl-xL1
Yuan, Joan; Crittenden, Rowena B.; Bender, Timothy P.
2010-01-01
Mechanisms that regulate the lifespan of CD4+CD8+ double positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms that control DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is up-regulated in the small, pre-selection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcrα repertoire biased towards 5’ Jα segment usage. Premature apoptosis occurs in the small pre-selection DP compartment in an αβTCR independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival and re-introduction of c-Myb restores both Bcl-xL expression and the small pre-selection DP compartment. We further demonstrate that thymocytes become dependent on Bcl-xL for survival upon entering the quiescent, small pre-selection DP stage and c-Myb promotes transcription at the Bclx locus via a genetic pathway that is independent of the expression of TCF-1 or RORγt, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development. PMID:20142358
Kerosuo, Laura; Bronner, Marianne E.
2014-01-01
Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680
Uzarevic, Zvonimir; Ozretic, Petar; Musani, Vesna; Rafaj, Maja; Cindric, Mario; Levanat, Sonja
2014-01-01
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen. PMID:25503972
Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung
2016-10-01
Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.
Idiopathic aplastic anemia: diagnosis and classification.
Dolberg, Osnat Jarchowsky; Levy, Yair
2014-01-01
Aplastic anemia (AA) is a disease characterized by pancytopenia and hypoplastic bone marrow caused by the decrease of hematopoietic stem cells. The pathogenesis of AA is complex and involves an abnormal hematopoietic microenvironment, hematopoietic stem cell/progenitor cell deficiencies and immunity disorders. Survival in severe aplastic anemia (SAA) has markedly improved in the past 4 decades because of advances in hematopoietic stem cell transplantation, immunosuppressive and biologic drugs, and supportive care. Herein, we will update the main issues concern AA according to our literature review. Copyright © 2014 Elsevier B.V. All rights reserved.
[Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells].
Zhang, Peng-Yu; Zhao, Xuan; Zhang, Wen-Juan; Zhang, Wang-Gang; Chen, Yin-Xia
2016-04-01
To study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells. The MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively. After treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells. The leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).
Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma
van Kempen, Pauline M W; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; van Es, Robert J J; Willems, Stefan M
2015-01-01
Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I–II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC. PMID:26194878
Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals.
Park, Jinse; Park, Hyun-Hee; Choi, Hojin; Kim, Young Seo; Yu, Hyun-Jeung; Lee, Kyu-Yong; Lee, Young Joo; Kim, Seung Hyun; Koh, Seong-Ho
2012-10-10
Recanalization and secondary prevention are the main therapeutic strategies for acute ischemic stroke. Neuroprotective therapies have also been investigated despite unsuccessful clinical results. Coenzyme Q10 (CoQ10), which is an essential cofactor for electron transport in mitochondria, is known to have an antioxidant effect. We investigated the protective effects of CoQ10 against hypoxia in neural stem cells (NSCs). We measured cell viability and levels of intracellular signaling proteins after treatment with several concentrations of CoQ10 under hypoxia-reperfusion. CoQ10 protected NSCs against hypoxia-reperfusion in a concentration-dependent manner by reducing growth inhibition and inhibiting free radical formation. It increased the expression of a number of survival-related proteins such as phosphorylated Akt (pAkt), phosphorylated glycogen synthase kinase 3-β (pGSK3-β), and B-cell lymphoma 2 (Bcl-2) in NSCs injured by hypoxia-reperfusion and reduced the expression of death-related proteins such as cleaved caspase-3. We conclude that CoQ10 has effects against hypoxia-reperfusion induced damage to NSCs by enhancing survival signals and decreasing death signals. Copyright © 2012 Elsevier B.V. All rights reserved.
AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer.
Bi, Lihong; Ma, Feng; Tian, Rui; Zhou, Yanli; Lan, Weiguang; Song, Quanmao; Cheng, Xiankui
2018-02-20
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times. Copyright © 2017 Elsevier B.V. All rights reserved.
Gonçalves, Tatiana Siqueira; de Menezes, Luciane Macedo; Ribeiro, Luciele Gonzaga; Lindholz, Catieli Gobetti; Medina-Silva, Renata
2014-01-01
The aim of this study was to evaluate the cytotoxicity induced by orthodontic bands through survival tests on Saccharomyces cerevisiae, a microorganism that presents several genetic and biochemical characteristics similar to human cells. Three groups of bands were evaluated: silver soldered (SSB), laser soldered (LSB), and bands without any solder (WSB). Yeast cells were directly exposed to the bands and indirectly, when a previous elution of the metals in artificial saliva was performed. The negative control was composed of yeast cells or artificial saliva not exposed to any kind of metal. In the direct exposure experiments, all tested groups of bands induced a slight reduction in yeast viability compared to the control. This effect was more intense for the SSB, although not statistically significant. For the indirect exposure experiments, the SSB induced a statistically significant decrease in cell viability compared to the LSB. There were no significant differences between the survival rates of the negative control and the LSB group in both direct and saliva tests. SSBs were cytotoxic, whilst LSBs were not, confirming that laser soldering may be a more biocompatible alternative for use in connecting wires to orthodontic appliances. PMID:24511527
Baeten, Jeremy T; Lilly, Brenda
2015-06-26
Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs.
Maruyama, Jun; Yamagata, Takahiko; Ulfendahl, Mats; Bredberg, Göran; Altschuler, Richard A; Miller, Josef M
2007-02-01
Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent degeneration of deafferented CNVIII spiral ganglion cells (SGCs) in deafened guinea pigs. Following destruction of sensory cells, guinea pigs were treated immediately with Trolox (a water soluble vitamin E analogue)+ascorbic acid (vitamin C) administered either locally, directly in the inner ear, or systemically. Electrical auditory brainstem response (EABR) thresholds were recorded to assess nerve function and showed a large increase following deafness. In treated animals EABR thresholds decreased and surviving SGCs were increased significantly compared to untreated animals. These results indicate that a change in oxidative state following deafferentation plays a role in nerve cell death and antioxidant therapy may rescue SGCs from deafferentation-induced degeneration.
Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Woodfield, Sarah E; Zhang, Huiyuan; Yang, Kristine L; Bieerkehazhi, Shayahati; Qi, Lin; Li, Xiaonan; Gu, Jerry; Xu, Xin; Jin, Jingling; Muscal, Jodi A; Yang, Tianshu; Xu, Guo-Tong; Yang, Jianhua
2017-08-01
Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Hong Sun; Chen, Yu-Chih; Nör, Felipe; Warner, Kristy A; Andrews, April; Wagner, Vivian P; Zhang, Zhaocheng; Zhang, Zhixiong; Martins, Manoela D; Pearson, Alexander T; Yoon, Euisik; Nör, Jacques E
2017-11-21
Recent evidence suggests that the metastatic spread of head and neck squamous cell carcinomas (HNSCC) requires the function of cancer stem cells endowed with multipotency, self-renewal, and high tumorigenic potential. We demonstrated that cancer stem cells reside in perivascular niches and are characterized by high aldehyde dehydrogenase (ALDH) activity and high CD44 expression (ALDH high CD44 high ) in HNSCC. Here, we hypothesize that endothelial cell-secreted interleukin-6 (IL-6) contributes to tumor progression by enhancing the migratory phenotype and survival of cancer stem cells. Analysis of tissue microarrays generated from the invasive fronts of 77 HNSCC patients followed-up for up to 11 years revealed that high expression of IL-6 receptor (IL-6R) (p=0.0217) or co-receptor gp130 (p=0.0422) correlates with low HNSCC patient survival. We observed that endothelial cell-secreted factors induce epithelial to mesenchymal transition (EMT) and enhance invasive capacity of HNSCC cancer stem cells. Conditioned medium from CRISPR/Cas9-mediated IL-6 knockout primary human endothelial cells is less chemotactic for cancer stem cells in a microfluidics-based system than medium from control endothelial cells (p<0.05). Blockade of the IL-6 pathway with a humanized anti-IL-6R antibody (tocilizumab) inhibited endothelial cell-induced motility in vitro and decreased the fraction of cancer stem cells in vivo . Notably, xenograft HNSCC tumors vascularized with IL-6-knockout endothelial cells exhibited slower tumor growth and smaller cancer stem cell fraction. These findings demonstrate that endothelial cell-secreted IL-6 enhances the motility and survival of highly tumorigenic cancer stem cells, suggesting that endothelial cells can create a chemotactic gradient that enables the movement of carcinoma cells towards blood vessels.
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma
Jiang, Wei; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Ziv; Mikkelsen, Tom; Poisson, Laila; Shackelford, David B.; Brodie, Chaya
2016-01-01
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication. PMID:27486821
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma.
Jiang, Wei; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Ziv; Mikkelsen, Tom; Poisson, Laila; Shackelford, David B; Brodie, Chaya
2016-08-30
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication.
Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel
2015-01-01
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388
Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D
2015-04-20
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.